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1 Introduction

The Petersen or P-geometries are diagram geometries belonging to the diagram

� � � � � � � P �
2 2 2 2 1

Here the final stroke �
2

P �
1
denotes the natural geometry of edges and vertices of

the Petersen graph.
Five of the sporadic simple groups occur as flag-transitive automorphism groups

of P-geometries of low rank. The books of Ivanov [3] and Ivanov and Shpectorov
[5] are largely devoted to a proof that there are exactly eight flag-transitive P-
geometries. It is thus desirable to find elementary geometric characterizations of
these P-geometries. Additional conditions are necessary, since there is at least one P-
geometry of rank 3 that is not flag-transitive, and the flag transitive P-geometries of
rank 4 and 5 (the largest rank for which P-geometries are known to exist) admit huge
numbers of distinct quotients that are not flag-transitive.

A first geometric classification was given in [2], where the two P-geometries of
rank 3 that are flag-transitive, GðM22Þ and Gð3 �M22Þ, were characterized among all
rank 3 P-geometries as those that are linear and planar. The geometry is linear if
any two lines meet in at most one point and planar if any three pairwise collinear
points are coplanar. A third flag-transitive example is characterized in [1], where the
P-geometry GðCo2Þ is proven to be the unique linear and planar P-geometry of rank
4 whose P-residues of rank 3 are all GðM22Þ.

With each P-geometry of rank n we can associate a collection of geometries of
rank n� 1 called wide components. (See [3, p. 22, 311] and Proposition 2.1 below.) A
crucial step in [2] was the identification of each wide component as either GðSp4ð2ÞÞ
or Gð3 � Sp4ð2ÞÞ. The first case leads to GðM22Þ and the second to Gð3 �M22Þ. This in
turn implies that the wide components of an arbitrary P-geometry of rank n, each of
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whose rank 3 P-residues is GðM22Þ, must be Cn�1 geometries of order 2. Therefore
(see Theorem 2.3 below) each wide component is either a building GðSp2n�2ð2ÞÞ or
the sporadic geometry GðA7Þ for the alternating group of degree 7, in which case
n ¼ 4.

Here we show that the exceptional case characterizes a fourth flag-transitive P-
geometry.

Theorem 1. Suppose G is a P-geometry of rank 4 in which every point residue is

isomorphic to GðM22Þ and every wide component is isomorphic to GðA7Þ. Then G is

isomorphic to GðM23Þ.

The rest of this introduction provides references and notation. The second section
presents and discusses the wide components of P-geometries. The third section con-
tains the proof of the main theorem. A final section presents related problems of
further interest.

Our general reference for diagram geometries is [6]. For tilde geometries, P-
geometries, and their properties, see [3, 5]. The P-geometries GðM23Þ and GðM22Þ are
described in [3, §3.4] in terms of the Witt design W24 and its children W23 and W22 [3,
§§2.3, 2.10]. The generalized quadrangle GðSp4ð2ÞÞ is described in [3, p. 59] and the
sporadic geometry GðA7Þ in [6, p. 152–153]. Also see [2] for GðSp4ð2ÞÞ, Gð3 � Sp4ð2ÞÞ,
GðM22Þ, and Gð3 �M22Þ.

By definition, geometries are residually connected. For us, an incidence system is a
geometry without connectivity requirements.

Consider an incidence system I of rank nd 2 with a string diagram whose types
are assigned consecutively from the interval ½1; n�. For I a subset of ½1; n�, the set II

consists of all elements of I with type belonging to I . The elements of I1, I2, I3,
and I4 are, respectively, the points, lines, planes, and 3-spaces of I. If x has type
i, then res�IðxÞ ¼ resIðxÞVI½1; i�1� and resþIðxÞ ¼ resIðxÞVI½iþ1;n�. When I is clear
from the context, we may write res in place of resI.

If I is a P-geometry, then a P-residue is resIð f Þ ¼ resþIð fiÞ, for some flag f of type
½1; i� with i < n� 1 and fi ¼ f VIi.

We thank Antonio Pasini for his help, particularly in guiding us to Theorem 2.3.

2 Wide components of P-geometries

In this section we discuss the existence and general properties of wide components for
P-geometries. A reader interested only in the specific case considered in Theorem 1
could skip directly to the next section, taking the statements of Lemma 3.1 as given.

Let G be a P-geometry of rank n at least 2. Let S be the graph on the set Gn�1 that
has a adjacent to b provided there is a p A Gn�2 with the edges a and b opposite in the
Petersen graph resþð pÞ. (So if n ¼ 2, two elements of type n� 1 ¼ 1 are adjacent in S
precisely when they are opposite edges of the Petersen graph.) The connected com-
ponents in S are then the wide classes in S. Especially, a wide class of the Petersen
graph resþðpÞ consists of three pairwise opposite edges. For x A G½1;n�2�, each wide
class of the P-geometry resþGðxÞ is a connected subgraph of S.
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For i0 n and x A Gi, let X be a wide class of resþðxÞ with X ¼ fxg if i ¼ n� 1.
We define the i-claw ½x;X � to be the set of all y A G½i;n�1� for which there is some flag
fx; y; zg with z A X . Thus ½x;X � can be thought of as cone-shaped, with vertex x and
base X , consisting of all y of G½i;n�1� on a geodesic from x to X .

In particular ½x;X �VG½1; i�1� ¼ q, and ½x;X �VGi ¼ fxg. Furthermore ½x;X �V
Gn�1 ¼ X , and an n� 1-claw is just an element of Gn�1.

The claw system C ¼ CðGÞ is the rank n� 1 incidence system whose elements of
type i are the i-claws of G with incidence given by containment. That is, if ½x;X � is
an i-claw and ½y;Y � is a j-claw for i < j, then they are incident precisely when
½x;X �I ½y;Y �.

We shall be interested in the type-preserving map vert : C ! G½1;n�1� that takes
each claw to its vertex: vertð½x;X �Þ ¼ x.

The connected components of the claw system CðGÞ are the wide components of G.
(See [3, p. 311–312], especially [3, Lemma 7.1.7], for a similar construction.)

Proposition 2.1. A wide component W is a string geometry of rank n� 1 with Wn�1 ¼
WVGn�1 a union of wide classes of G. For x A Wn�1, the restriction vert : resWðxÞ !
res�GðxÞ is an isomorphism of rank n� 2 projective spaces over F2.

Proof. The geometry G contains flags of rank n, and incidence is given by con-
tainment; so C is a string incidence system of rank n� 1. By definition, a and b are
adjacent in S when there is in C an n� 2-claw ½ p; fa; b; cg�. Therefore a and b are
adjacent in S if and only if they have distance 2 in the bipartite graph Cn�2 UCn�1,
and any wide class of G is in a single wide component.

Let x A Wn�1. For each w A res�GðxÞ, there is a unique claw ½w;W � in resWðxÞ,
namely that for which W is the wide class of resGðwÞ containing x. Therefore
vert : resWðxÞ ! res�GðxÞ is a bijection. If ½w;W � and ½y;Y � are claws of resWðxÞ,
then x A W VY is nonempty. If additionally w and y are incident, then this implies
that W JY or W KY . Therefore ½w;W � and ½y;Y � are incident in resWðxÞ if and
only if w and y are incident in res�GðxÞ. In the P-geometry G, we see that res�GðxÞ is an
An�2 geometry of over F2; so we have verified the second sentence.

The proof will be complete once we have shown that W is residually connected.
In view of the previous paragraph, it su‰ces to show that resWð½x;X �Þ is connected,
for x a point of G and X a wide class of resGðxÞ. Let ½a;A� and ½b;B� be two claws
of resWð½x;X �Þ. Thus a and b are incident to x, and A and B are contained in X .
For a0 A A and b0 A B, we have ½a;A� connected to a0 and ½b;B� connected to b0
in resWð½x;X �Þ. We apply the final sentence of the first paragraph within the P-
geometry resGðxÞ to find that a0 and b0 are connected in resWð½x;X �Þ. Therefore
½a;A� and ½b;B� are connected in resWð½x;X �Þ, as desired. r

Proposition 2.2. Let G be a P-geometry of rank nd 4.
(1) If resþGðxÞ is GðM22Þ, for all x A Gn�3, then each wide component W is a Cn�1

geometry of order 2. (That is, each rank 2 residue of the Cn�1 geometry W is defined

over F2.)
(2) If resþGðxÞ is Gð3 �M22Þ, for all x A Gn�3, then each wide component W is a rank

n� 1 tilde geometry.
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(3) If we are in Case (1) or in Case (2), then the restriction vert : W ! vertðWÞJ
G½1;n�1� is a 2-cover of incidence systems.

Proof. By definition, the restriction of vert to W is a 2-cover of vertðWÞ when
vert induces an isomorphism of each rank 2 residue of W with its image in G½1;n�1�.
If f is a flag in W of cotype fi; jg, then by Proposition 2.1 vert is an isomorphism
on resWð f Þ, except possibly when fi; jg ¼ fn� 2; n� 1g. In this remaining case, let
½x;X � A f VWn�3. Then within resþGðxÞ we can check that vert gives an isomorphism
of resþWð½x;X �Þ with a wide component of resþGðxÞ. The wide component is of type
GðSp4ð2ÞÞ under Case (1) and Gð3 � Sp4ð2ÞÞ under Case (2). r

The 2-cover vert is an isomorphism of W with an induced subsystem (an embed-

ding of W) precisely when it is injective. This is equivalent to requiring that the image
system be a subgeometry, since injectivity only fails if, for some element x, there is
more than one wide class in resþWðxÞ.

In all the flag-transitive examples, vert is an embedding of W as a subgeometry
of G.

Recall that the sporadic geometry GðA7Þ is a C3 geometry with seven points, 35
lines (being all 3-sets of points), and 15 planes (one orbit of A7 acting on projective
planes based on the point set).

Theorem 2.3. For md 2, a Cm geometry of order 2 is either a building GðSp2mð2ÞÞ or
the sporadic geometry GðA7Þ for the alternating group of degree 7, in which case

m ¼ 3.

Proof. This can be extracted almost entirely from the book of Pasini [6].
As the geometry has order 2, it is locally finite and so finite by [6, Corollary 7.32].

If m ¼ 2, we have GðSp4ð2ÞÞ. If md 3, then the C3-residue of the geometry is a polar
space or flat by [6, Theorem 14.17]. Therefore if md 4, the geometry is a polar space
by [6, Corollary 14.19]. We conclude that a Cm geometry of order 2 either is a polar
space or is flat and m ¼ 3. In the first case it must be GðSp2mð2ÞÞ, for instance, by
Shult’s Triangle Theorem [8]. In the second case, it must be GðA7Þ by a result of Rees
[7, Lemma 5.14]. r

Proposition 2.4. Let G be a P-geometry of rank nd 4, and let W be a wide component

of G. If resþGðxÞ is GðM22Þ, for all x A Gn�3, then the set Wn�1 is a wide class of G.

Proof. As seen above, adjacency in S corresponds to distance 2 in Cn�2 UCn�1. The
Cn�1 geometry W is one of those given in Theorem 2.3, so within it we check that
Wn�2 UWn�1 is connected. As Wn�1 is a union of wide classes of G by Proposition 2.1,
it is in fact a single wide class. r

The proposition suggests that in Case (1) of Proposition 2.2 the map vert is always
an embedding. In the main case of interest to us, this holds.
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Lemma 2.5. Let G be a P-geometry of rank 4. If resþGðxÞ is GðM22Þ, for all x A Gn�3,
and the wide component W is of type GðA7Þ, then the map vert : W ! G is an em-

bedding of W in G.

Proof. We must show that vert is injective on Wi for i ¼ 1; 2; 3. This is immediate for
W3, a subset of G3 of size 15.

Next consider a point p with ½ p;P� A W1, and let x A P. Examine resGðpÞ, iso-
morphic to GðM22Þ. The wide class A of this residue that contains x must be con-
tained in P. But wide components of GðM22Þ have type GðSp4ð2ÞÞ, so jAj ¼ 15. As
AJPJW3, we find A ¼ P ¼ W3. In particular, for all ½ p1;P1� and ½ p2;P2� in W1,
we have P1 ¼ W3 ¼ P2. Thus ½ p1;P1� ¼ ½ p2;P2� if and only if p1 ¼ p2, and vert is
injective on W1.

Finally, suppose that ½L;B1�; ½L;B2� A W2. We may assume that p A L. But then
B1 UB2 JW3 ¼ P, so ½L;B1� and ½L;B2� are incident to ½ p;P� and in a single wide
component of resGðpÞ. Such a wide component has type GðSp4ð2ÞÞ, within which we
see that B1 ¼ B2. Therefore vert is injective on W2 as well, giving the lemma. r

3 Proof of Theorem 1

Let G be a P-geometry of rank 4 as in the hypothesis of Theorem 1. We identify each
wide component (or component, for short) with the corresponding subgeometry of G
(as we may, by Lemma 2.5). In our situation, the results of the previous section give:

Lemma 3.1. (1) Every wide component W is an induced subgeometry of points, lines,
and planes of G that is isomorphic to GðA7Þ.

(2) Every plane of G belongs to a unique wide component of G.
(3) If the line L of G belongs to the wide component W, then the three planes of

resþWðLÞ form a triple of pairwise opposite edges in the Petersen graph resþGðLÞ.

A reader who has chosen not to read the previous section can take Lemma 3.1 as
defining the set of wide components in G.

Suppose u and v are collinear points of G. We first study resðuÞV resðvÞ.

Lemma 3.2. No two lines in resðuÞV resðvÞ are coplanar.

Proof. In a plane two lines share only one point. r

Let L1;L2; . . . ;Lm be the lines from resðuÞV resðvÞ, and let the wide components
containing both u and v be W1;W2; . . . ;Wn.

Lemma 3.3. Every Li is contained in exactly five components Wj and every Wj contains

exactly five lines Li on u and v. In particular, m ¼ n.

Proof. The first claim follows from Lemma 3.1.2–3. Since the component Wj is iso-
morphic to GðA7Þ, we get that u and v are incident to exactly five lines in Wj. r
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We examine resðuÞV resðvÞ in terms of its embedding in resðuÞ, which is isomorphic
to GðM22Þ. Recall that under this isomorphism the lines from resðuÞ correspond to
pairs of points of W22, the unique 3-ð22; 6; 1Þ design [9, Satz 4]. (To avoid confusion
between points of G and points of W22, we call the latter Witt points.) Two lines of
resðuÞ are coplanar precisely when the corresponding pairs are disjoint and together
in a hexad of W22. The wide components containing u correspond to hexads. A line
of G lies in a component if and only if the corresponding pair lies in the correspond-
ing hexad.

Lemma 3.4. We have nd 21.

Proof. Since two hexads of W22 cannot meet in more than two Witt points, two
components containing u share at most one line on u. As u and v are collinear, there
is at least one line Li. By the previous lemma, this line is contained in five compo-
nents. Each of these contains four additional lines on u and v. Any two of the hexads
among those corresponding to the five components meet only in the pair corre-
sponding to Li. Therefore, no two of the new lines coincide, and hence we have at
least 21 lines on u and v. r

According to Lemma 3.2, two lines Li and Lj that lie in the same component Wk

are never coplanar. As the corresponding pairs in resðuÞ are in a common hexad, they
must share a Witt point. Since this is true for any two of the five lines Li in Wk, the
five associated pairs in the hexad Hk of resðuÞ that corresponds to Wk must have a
common Witt point, which we call the base point of Hk.

Lemma 3.5. For all i and j, the base point of Hi lies in Hj.

Proof. Suppose the base point a of Hi is not contained in Hj. Let b be the base point
of Hj.

We claim that b B Hi. Indeed, if b A Hi then Hi VHj ¼ fb; cg for some c. Since b is
the base point of Hj, the pair fb; cg corresponds to some line Lk. As fb; cg is also
contained in Hi, it must contain the base point of Hi, that is, a, a contradiction. Thus,
b B Hi, as claimed.

Let c, ðc0 aÞ be any Witt point in HinHj; and let H be the unique hexad
containing a, b, and c. Then H VHi ¼ fa; cg and H VHj ¼ fb; dg for some d. Since
c B Hj, we have c0 d. Thus, the pairs fa; cg and fb; dg of H are disjoint, hence the
corresponding lines Lk are coplanar, against Lemma 3.2. r

Corollary 3.6. We have n ¼ 21. The 21 hexads Hi have the same base point a, and the

21 lines Li correspond to the pairs containing a. These 21 pairs fa; xg carry the struc-

ture of a projective plane of order 4, where a projective line consists of five pairs within

a given hexad Hi.

Proof. By the lemma every base point is contained in the intersection of all the Hi.
Since there are at least 21 Hi’s, there is only one base point, which we call a. As there
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are exactly 21 hexads on a fixed Witt point, the Hi exhaust the hexads on a. The final
sentence follows from an examination of W22 and also can be verified directly. r

Corollary 3.6 establishes a mapping from the set of points v of G that are collinear
with u to the set of Witt points of resðuÞ, given by v 7! a ¼ av, the uniquely deter-
mined base point of resðuÞV resðvÞ.

Lemma 3.7. The mapping v 7! av is a bijection. In particular, every point u of G is

collinear with exactly 22 other points.
Let the line L be incident to the points fu; v;wg. Then in resðuÞ the line L corresponds

to the pair fa; bg of Witt points if and only if fa; bg ¼ fav; awg.

Proof. We first show that this mapping is an injection. Suppose v and w are two
points of G that are collinear with u and correspond to the same base point a. Let
fa; bg and fa; cg be distinct pairs, and let L and L 0 be the lines on u corresponding to
these pairs. Then L and L 0 are incident to the same three points, u, v and w. Let H be
the hexad containing a, b, and c. Then L and L 0 are lines of the wide component W
of H. Since no two lines of W, isomorphic to GðA7Þ, have the same three points, we
get a contradiction which proves injectivity. Surjectivity will follow from the final
sentence of the lemma.

Let L be the line on u corresponding to fa; bg, and let v and w be the two remain-
ing points incident to L. Since resðuÞV resðvÞ and resðuÞV resðwÞ cannot have the
same base point, we must have fa; bg ¼ fav; awg, as desired. r

Lemma 3.8. The collinearity graph of G is complete of size 23. Furthermore, for every
triple of points of G there is a unique line incident to this triple. (In particular, lines can
be identified with their point sets.)

Proof. Suppose v and w are points of G collinear with u. Let the base point of v

in resðuÞ be a and the base point of w be b. Then the line L on u corresponding to
fa; bg has points u, v, and w, as in Lemma 3.7. This shows that v and w are collinear,
proving that the collinearity graph is complete. It also shows that for every triple of
points fu; v;wg there is a line through them. This line is unique since pairs corre-
sponding to distinct lines are distinct. r

Consider the block design D on the point set of G, where a block consists of seven
points lying in a wide component.

Lemma 3.9. The design D is isomorphic to the Witt design W23.

Proof. By the theorem of Witt [9, Satz 5] (or see [3, Lemma 2.9.4]), it su‰ces to show
that any four points u, v, w, and x lie in a unique wide component. This is clear, since
in resðuÞ there is a unique hexad containing the base points of v, w, and x. r

To complete the identification of G it remains to describe its elements and inci-
dence in terms of D. In fact, it will be more convenient to work in the Witt design
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W24, which we obtain by adding an extra point y. Then D is the residue design of y
in W24, and the blocks of D are obtained by removing y from the octads of W24

containing it. We remark that the remaining octads are symmetric di¤erences of two
blocks of D meeting in three points, and so they are determined by resðuÞ as well.

By Lemma 3.8, the points of G are the points of D, those points of W24 not equal
to y. Wide components are flat; that is, every plane in a wide component is incident
with all seven points of the component. Thus, all planes of a wide component have
the same points. Indeed, by Lemma 3.9 two planes have the same point set if and
only if they belong to the same component.

Again by Lemma 3.8, the lines of G are the triples of points of D with incidence
being containment. Equally well, we can think of a line as a tetrad (4-set) containing
y. Each such tetrad in turn lies in a unique sextet, a partition of the 24 points of W24

into six tetrads, any two of which have union an octad. A trio is a partition into three
octads. We can also view octads as partitions with two parts, the octad and its com-
plement. Two partitions are said to be compatible if one of them is a refinement of the
other.

Lemma 3.10. (1) The 3-spaces of G correspond bijectively to octads of W23. A point is

incident to a 3-space if and only if it does not belong to the corresponding octad.
(2) A line is incident to a 3-space if and only if the corresponding sextet and octad are

compatible.

Proof. The number of 3-spaces in G is equal to the number of octads in W23, namely
506. (The first can be calculated by counting incident pairs of points and 3-spaces in
two ways, and the second by subtracting the number of blocks in W23 from the
number of octads in W24.) Therefore to prove (1) it su‰ces to show that the point set
of a 3-space is the complement of an octad and that the complement of every octad is
the point set of a 3-space. This we do in the course of proving (2).

We next show that if the line L is incident to the 3-space V , then the point set of V
is the complement of an octad that is compatible with the sextet of L. This gives one
direction of (2) and shows that the point set of any 3-space is the complement of an
octad.

The line L is in five wide components by Lemma 3.3. The point set of each of
these components coincides with some LUTi, where the sextet of L consists of
fygUL and Ti, for 1c ic 5. The 3-space V is incident to three planes of resþðLÞ.
By Lemma 3.1.3, those three planes belong to three di¤erent wide components, since
the corresponding edges of the Petersen graph share a Petersen vertex, namely V .
This shows that the point set of V , being the union of the point sets of its three planes
on L, is the union of L and three of the tetrads Ti. Therefore, the complement in D of
the point set of V is one of the octads Ti UTj, as desired.

Since every octad of W23 can be realized as Ti UTj, for some choice of line L and
corresponding sextet, it remains to prove that to each Ti UTj there is indeed a corre-
sponding 3-space incident to L. The line L is incident to ten di¤erent 3-spaces (the
number of vertices in the Petersen graph resþðLÞ), and there are exactly ten octads
Ti UTj. If two 3-spaces, V1 and V2, are associated with the same octad, say T4 UT5,
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then the three planes on L and each of the Vi, although possibly di¤erent, must have
point sets LUT1, LUT2, and LUT3. Recall that two planes have the same point set
precisely when they belong to the same wide component. Therefore, in the Petersen
graph resþðLÞ, the vertices V1 and V2 are incident to members of the same three sets
of opposite edges. This forces V1 ¼ V2, as required. r

Lemma 3.11. The planes of G correspond bijectively to trios. The points of a plane are

those of the same octad in the trio as y. The lines of the plane correspond to the sextets

compatible with the trio. A plane and 3-space are incident when the corresponding trio

contains the corresponding octad.

Proof. Let P be a plane, L a line incident to the plane, and V1 and V2 the two 3-
spaces incident to P. By the previous lemma, these two spaces correspond to distinct
octads, O1 and O2, both compatible with the sextet S of L. If O1 and O2 were not
disjoint, then O1 VO2 would be a tetrad belonging to the sextet of every line in the
plane, which is not the case. Therefore each plane corresponds to a pair of disjoint
octads, each compatible with the sextet of each line of the plane. The octads O1 and
O2 together with their complementary octad O3 form a trio compatible with S, the
points of P being O3ny. There are exactly seven sextets compatible with a given trio,
and here these must correspond to the seven lines of P. In particular, this trio corre-
sponds to a unique plane.

There are three octads of W23 compatible with S and disjoint from the octad
O1. These correspond to the three planes of V1 containing L. Therefore every trio
compatible with S corresponds to a plane incident to L, hence every trio of W23

corresponds to a unique plane. r

This lemma completes the proof of Theorem 1. In summary, we have identified the
points, lines, planes, and 3-spaces of G as, respectively, the points of W24 other than
y, the sextets, the trios, and the octads not on y. A point is incident to the sextets
and trios in which it shares a tetrad or octad with y and to the octads not containing
it (and y). Sextets, trios, and octads are incident when compatible.

Thus our description of G matches the description of GðM23Þ given in [3, p.
115–116].

4 Problems

Problem 4.1. Prove: a rank 3 P-geometry with all wide components equal to GðSp4ð2ÞÞ
must be GðM22Þ. (In that case, the P-residue hypothesis of Theorem 1 would not be

necessary.)

Problem 4.2. In a linear rank 4 P-geometry with all rank 3 P-residues GðM22Þ, all wide
components are GðSp6ð2ÞÞ by Theorem 2.2. Prove: planarity follows from this (so that

[1] applies).

Problem 4.3. Prove: in a rank 4 P-geometry with all rank 3 P-residues GðM22Þ, either
all wide components are GðA7Þ or all wide components are GðSp6ð2ÞÞ.
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Problem 4.4. Prove: a rank 5 linear and planar P-geometry with all rank 4 P-residues

GðCo2Þ (or, perhaps, all rank 3 P-residues GðM22Þ) is GðBMÞ. (See [4] and [5, p.
273–274].)

Problem 4.5. Characterize each of the flag-transitive Petersen geometries by its wide

component and rank 3 P-residue (but see Problem 4.1).

Problem 4.6. Characterize each of the flag-transitive tilde geometries by its wide

component and rank 3 P-residue.

Problem 4.7. Under what circumstances is the map vert of the second section an

embedding?
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