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Abstract. In Blok [1] a‰nely rigid classes of geometries were studied. These are classes B of
geometries with the following property: Given any two geometries G1;G2 A B with subspaces
S1 and S2 respectively, then any isomorphism G1 �S1 ! G2 �S2 uniquely extends to an iso-
morphism G1 ! G2.
Suppose G belongs to an a‰nely rigid class. Then for any subspace S we have

AutðG�SÞcAutðGÞ. Suppose that, in addition, G is embedded into the projective space
PðVÞ for some vector space V . Then one may think of V as a ‘‘natural’’ embedding if every
automorphism of G is induced by some (semi-) linear automorphism of V . This is for instance
true of the projective geometry G ¼ PðVÞ itself by the fundamental theorem of projective
geometry. Clearly since G belongs to an a‰nely rigid class and has a natural embedding into
PðVÞ, also the embedding G�S into PðVÞ is natural.
In Blok [1] the notion of a layer-extendable class was introduced and it was shown that

layer-extendable classes are a‰nely rigid. As an application, it was shown that the union
of most projective geometries, (dual) polar spaces, and strong parapolar spaces forms an af-
finely rigid class. However, the geometries motivating that study, the Grassmannians defined
over F2, were not included in this class because they do not form a layer-extendable class.
Since a‰ne projective geometries (1-Grassmannians, if you will) are simply complete graphs,
clearly they are not a‰nely rigid at all. In the present note we show that also the class of
2-Grassmannians over F2 fails to form an a‰nely rigid class, although in a less dramatic
way, whereas the class of k-Grassmannians of projective spaces of dimension n over F2 where
3c kc n� 2 is in fact a‰nely rigid.

Key words. Grassmannian, parapolar spaces, hyperplane complements, a‰ne geometry, iso-
morphism extensions, Fundamental Theorem of Projective Geometry.
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1 Introduction

A point-line geometry is a pair G ¼ ðP;LÞ, where P is a set whose elements are
called points and L is a set whose elements are subsets of P called lines. A point-
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line geometry G is a partial linear space, if any two points are contained in at most
one line. We call G thick, if every line has at least three points. Note that this means
that a grid, although not thick as a building, is thick as a point-line geometry in the
sense defined here. Throughout the paper we will assume that point-line geometries
are partial linear and thick, unless specified otherwise.

Given a point-line geometry G ¼ ðP;LÞ, let X be any subset of P. If jLVX jd 2
for some line L A L, then we call this intersection a line of X. The collection of
all lines of X is denoted LðXÞ. We call X a subspace if all lines of X are in fact
lines of G. The subspace X is proper if q0X 0P. A (geometric) hyperplane of G
is a proper subspace H with the property that LVH0q for all L A L. Hyperplanes
are ‘‘large’’ and are often, but not always, maximal subspaces with respect to
containment.

Given a subspace S of G, by G�S we denote the point-line geometry induced by
G on the point-set P�S.

We recall the following definition from Blok [1].

Definition 1.1. A class B of point-line geometries is called a‰nely rigid (AR) if and
only if

(AR) given Gi A B with a subspace Si ði ¼ 1; 2Þ, then any isomorphism G1 �S1 !
G2 �S2 extends uniquely to an isomorphism G1 ! G2.

Grassmannians are mostly a‰nely rigid. We will now discuss the geometries under
study in this note and state the main results. Let D be the building of type An over
the field F. This is the incidence geometry whose objects of type i (for all 1c ic n)
are the i-spaces of some vector space V of dimension nþ 1 over F and in which two
objects are incident whenever one contains the other as a subspace. Recall that a flag

F is a set of pairwise incident elements and that typðFÞ is the set of types of elements
occurring in F .

The k-shadow space of D is also called an ðn; kÞ-Grassmannian over F, or simply
an An;kðFÞ geometry. It is is the point-line geometry G ¼ ðP;LÞ whose points are
the k-spaces of V and whose lines are pairs ðB;UÞ, where B is a ðk � 1Þ-space and
U is a ðk þ 1Þ-space of V such that BcU , and in which a point P belongs to a line
ðB;UÞ if and only if BcPcU .

The ðn; kÞ-Grassmannians over F2 are the main object of this study. We ask which
families of Grassmannians over F2 form an a‰nely rigid class. Many other geome-
tries, including the Grassmannians defined over any field other than F2, were already
considered in Blok [1]. The Grassmannians defined over F2 however form the main
case missing from that paper.

In order to phrase the answer it is convenient to distinguish the following subfami-
lies of Grassmannians over F. For any l A N>0, let AlðFÞ denote the class of all An;k

geometries such that k ¼ l or k ¼ nþ 1� l. Thus A1ðFÞ is the class of (dual) projec-
tive spaces and A2ðFÞ is the class of projective (dual) line-Grassmannians. Also,
for m A N>0, let AdmðFÞ ¼ 6An;kðFÞ where the union runs over all n and k with
mc kc nþ 1�m. For a finite prime power q we abbreviate AlðFqÞ by AlðqÞ, and
so on.
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Clearly the class A1ð2Þ is not a‰nely rigid. Given a projective space G of projective
dimension n and hyperplane S, the geometry G�S is just a complete graph on 2n

points so that AutðG�SÞ ¼ Symð2nÞ. On the other hand, AutðGÞ ¼ SLnþ1ðF2Þ and
StabAutðGÞðG�SÞ ¼ 2n:SLnðF2Þ. For nd 3 the former group is larger than the latter
so there are many automorphisms of G�S that cannot be extended to an isomor-
phism of G.

A more subtle case is the following.

Theorem 1. The class A2ð2Þ of (dual) line-Grassmannians over F2 is not a‰nely rigid.

It turns out that here the gap between AutðG�SÞ and StabAutðGÞðG�SÞ depends
on S and is generally not very large, and is 0 whenever S is an attenuated hyper-
plane. The following result settles the a‰ne rigidity for all remaining Grassmannians
over F2.

Theorem 2. The class Ad3ð2Þ of all ðn; kÞ-Grassmannians over F2 such that 3c kc

n� 2 is a‰nely rigid.

In Section 2 we prove Theorem 2.5 which provides a method for showing that a
class of geometries that contains many LE-subgeometries is itself LE (see Definition
2.2). This is a generalization of Theorem 4.3 of Blok [1].

In Section 3 we study some general properties of a Grassmannian G that are
uniquely determined by G�S. For instance, Lemma 3.4 shows that given an Ani ;ki -
geometry Gi, i ¼ 1; 2, with subspace Si and an isomorphism j : G1 �S1 ! G2 �S2,
it follows that G1;G2 A An;k where n ¼ n1 ¼ n2 and k1; k2 A fk; nþ 1� kg.

In Section 4 we prove Theorem 1 by explicitly calculating the index
½AutðG�SÞ : StabAutðGÞðG�SÞ� in the case that S is a hyperplane. This index is
governed by the size of the radical of the symplectic form defining the hyperplane.
Also, our Theorem 4.6 answers the following question of Shult [7] in the a‰rmative.

Question 1.2. Let S1 and S2 be hyperplanes of the ðn; kÞ-Grassmannian G with
underlying vector space V . If the a‰ne Grassmannians G�S1 and G�S2 are
isomorphic, does there exist an element of PGLðVÞ that induces an isomorphism of
G�S1 and G�S2?

In Section 5 we prove Theorem 2 using Theorem 2.5.

Further notation. The objects of D of type k � 1, k, k þ 1 will be referred to as objects
of type �, 0, þ, respectively; to objects of type k þ i and k � i with id 2 we refer as
objects of type þi and �i.

We will want to have the following notation available to us. However, to avoid
overly cumbersome notation, we will only use it to avoid possible confusion. For
any flag F of D and t A f�k; . . . ;�; 0;þ; . . . ; n� kg, let ½F �t denote the t-shadow of
F , that is, the set of objects of type t incident with F in D. Since in G�S a flag F of
D is only represented by its set of points o¤ S we need special notation for shadows
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of other types in G�S. More precisely, for t as above, let ½F �ta be the set of objects
of type t that are incident with F and some point of G�S (a for ‘‘a‰ne’’).

Example 1.3. If L is a line of G, then in fact L is a flag ð½L��; ½L�þÞ of type ð�;þÞ.
Also, ½L�0 is the set of points of G on L and ½L�0;a is the set of points of G�S on L.

The collinearity graph of a point-line geometry G ¼ ðP;LÞ is the graph with vertex
set P and in which two vertices are adjacent if and only if the corresponding points
are collinear. We call a point-line geometry connected if its collinearity graph is
connected. The distance dðX ;Y Þ between points X and Y is the length of a shortest
path from X to Y in the collinearity graph of G. The diameter is the integer diam ¼
maxfdðX ;Y Þ jX ;Y A Pg if it is finite, and diam ¼ y otherwise. We say that two
lines L and M are concurrent if they intersect in a point; we write L �M.

A singular subspace of a point-line geometry is a subspace any two points of which
are collinear. A set of points C is called convex if any geodesic in the collinearity
graph between two points of the subspace is entirely contained in the collinearity
graph of that subspace. The convex closure of a set of points X is the smallest convex
subspace containing X .

A symplecton is a subspace isomorphic to a non-degenerate polar space of rank at
least 2 that is the convex closure of any two of its points at mutual distance 2.

2 Layer-extendable classes

Given G with subspace S, a point P A S is non-deep in S if it is collinear to some
point of G�S. We denote the set of non-deep points in S by NðSÞ; this set is
sometimes called the boundary of S. The elements of DðSÞ ¼ S�NðSÞ are called
deep in S. The following refinement of this notion will be crucial in this paper.

Definition 2.1. Following Shult [6] we define a sequence of subsets DiðSÞ as follows:
Set D�1ðSÞ ¼ P�S, let D0ðSÞ be the set of non-deep points of S, and for id 0
define

Diþ1ðSÞ ¼ fP A P jP is collinear to a point of DiðSÞ

but not to any point of Di�1ðSÞg:

We then set

D�
i ðSÞ ¼ 6

y

j¼i

DjðSÞ:

Given a line L of G and some subset of points lJL, if jljd 2 then, since G is a
partial linear space, l determines the line L uniquely. We say that l supports L and
write l ¼ L. We call a line L of G�S short if L0L. Note that in this case LVS
consists of exactly one point. Lines of G�S that are not short are called long.
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We recall from Blok [1] the definition of a layer-extendable class of geometries.

Definition 2.2. A layer-extendable or LE-class is a class B of point-line geometries,
which is closed under isomorphisms, with the following properties:

(LE1) Every element of B is a connected thick partial linear space,

(LE2) for every G A B with subspace SJG the set D�
i ðSÞ is a subspace of G for

every i A N,

(LE3) given Gi A B with subspace Si ði ¼ 1; 2Þ and some isomorphism e : G1 �S1 !
G2 �S2, for any two non-intersecting lines L1;L2 A G1 �S1 we have
(LE3.1) L1 0L1 if and only if L e

1 0Le
1,

(LE3.2) L1 � L2 if and only if L e
1 � L e

2, and
(LE3.3) for any line H1 with jH1 VNðS1Þjd 2 there is a line H2 with

jH2 VNðS2Þjd 2 such that L1 � L1 A H1 if and only if L e
1 � L e

1 A H2.

Note 2.3. In Blok [1] we did not specify whether or not we understood an LE-class to
be closed under isomorphism.

The use of this notion is the following result proved in Blok [1].

Theorem 2.4. Let B be a class of point-line geometries satisfying (LE1) and (LE2).
Then B is an LE-class if and only if it is a‰nely rigid.

We now present a way to discover new LE-classes using old LE-classes. This is a
modified, but considerably more powerful version of Theorem 3.4 of Blok [1].

Theorem 2.5. Let B be a class of point-line geometries satisfying (LE1) and (LE2) of
Definition 2.2. Suppose in addition that for any G A B with subspace S there is a col-

lection TðSÞ of subspaces of G satisfying the following conditions.

(L) Every line containing a non-deep point P of S is contained in some element of

TðSÞ, and

(IL) for any two lines L1 and L2 of G�S such that L1 and L2 intersect in a non-deep

point P of S, there is a k and a finite sequence

L1 ¼ M0;T0;M1;T1; . . . ;Tk;Mkþ1 ¼ L2

where Mi, Miþ1 are lines of G�S belonging to Ti A TðSÞ such that Mi and

Miþ1 intersect in P.

Moreover, given Gi A B with subspace Si ði ¼ 1; 2Þ and some isomorphism

e : G1 �S1 ! G2 �S2,

A‰ne Grassmannians over F2 229

(AutoPDF V7 11/1/06 10:41) WDG (170�240mm) TMaths J-1445 Adv. in Geom. 6:2 PMU:I(CKN[V])10/1/2006 pp. 225–241 1445_6-2_04 (p. 229)



(T) for every T1 A TðS1Þ, there is T2 A TðS2Þ such that ðT1 �S1Þe ¼ T2 �S2,
and

(LE) the set TðS1ÞUTðS2Þ forms an LE-class.

Then B is an LE-class.

Proof. We only have to show that B satisfies (LE3.1)–(LE3.3). Let Gj A B have
subspace Sj ð j ¼ 1; 2Þ and suppose there is an isomorphism e : G1 �S1 ! G2 �S2.
Now let L1, L2 be non-intersecting lines of G1 �S1.

(LE3.1): Suppose L1 or L e
1 is short. Without loss of generality we may assume

that L1 is short. By (L) applied to L1, there exists T1 A TðS1Þ such that T1 con-
tains L1. By (T) there is T2 A TðS2Þ such that eðT1 �S1Þ ¼ T2 �S2. By (LE),
TðS1ÞUTðS2Þ is an LE-class. Now e : T1 �S1 ! T2 �S2 is an isomorphism
and by (LE3.1) applied to the LE-class TðS1ÞUTðS2Þ, L1 0L1 if and only if
Le
1 0L e

1. Hence (LE3.1) is satisfied.
(LE3.2): If L1 and L2 intersect in a (non-deep) point P A S1, then by (IL) there is a

k and a finite sequence L1 ¼ M0;T0;M1;T1; . . . ;Tk;Mkþ1 ¼ L2 where Mi, Miþ1 are
lines of G�S in Ti A TðSÞ such that Mi and Miþ1 intersect in P.

Fix i A f1; 2; . . . ; kg and set T ¼ Ti, L ¼ Mi, N ¼ Miþ1. We then have the follow-
ing. Since T A TðS1Þ, by (T) there is U A TðS2Þ such that eðT �S1Þ ¼ U �S2.
Now e : T �S1 ! U �S2 is an isomorphism and by (LE3.2) applied to the LE-
class TðS1ÞUTðS2Þ, since L �N, also Le �N e. This holds for any i and since
M e

i �M e
i consists of a single point for all i, we find that Le

1 � Le
2. Now the same ar-

gument applied to the isomorphism e�1 shows that also Le
1 � Le

2 implies L1 � L2. Thus
(LE3.2) is satisfied.

(LE3.3): Suppose H1 is a line of G1 with jH1 VNðS1Þjd 2. Since H1 contains a
non-deep point of S1, by (IL), there is an element T1 A TðS1Þ containing H1. By
(T) there is T2 A TðS2Þ such that eðT1 �S1Þ ¼ T2 �S2.

Since H1 contains a non-deep point of S1 and DðT1 \S1Þ is a subspace of T1,
at least two points of H1 are non-deep points of T1 VS1 in T1 and hence are
non-deep points of S1 also. Now e : T1 �S1 ! T2 �S2 is an isomorphism and
so by (LE3.3) applied to the LE-class TðS1ÞUTðS2Þ, there is a line H2 in G2

with jH2 VNðS2Þjd 2 such that for all short lines L1 of T1 �S1, L1 � L1 A H1 if
and only if L e

1 � L e
1 A H2. Now let L2 0L1 be any other short line of G1 �S1 with

L2 � L2 ¼ L1 � L1. Then since G1 is a partial linear space, L1 VL2 ¼ q and since e

is an isomorphism, also L e
1 VL e

2 ¼ q. By (LE3.2) since L1 � L2, also Le
1 � L e

2 and so
Le

2 � L e
2 ¼ Le

1 � L e
1 A H2. The fact that Le

1 � L e
1 A H2 implies L1 � L1 A H1, follows

by applying the same argument to the isomorphism e�1.
Since B satisfies (LE1)–(LE3), it is an LE-class. r

3 Properties of a‰ne Grassmannians

In this section we make an initial study of properties of a Grassmannian that
are properties of any of its subspace complements. More precisely, given a Grass-
mannian Gi, i ¼ 1; 2, defined over a field F with subspace Si and an isomorphism
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j : G1 �S1 ! G2 �S2, we ask which characteristics of G1 are necessarily shared by
G2. A large portion of these characteristics can be read o¤ from the residue of a point.
Since the cases k A f1; ng have been dealt with, we will now focus on the situation
where 1 < k < n.

Let D denote the An building over F of which G is the k-shadow space. The residue
DF of a flag F of D is the building of all flags of D incident to F and having type set
disjoint from typðFÞ whose incidence relation is the one induced by D. Set

M� ¼ fobjects of type �g

Mþ ¼ fobjects of type þg

M ¼ M� UMþ:

For � A f�;þg, the singular subspace ½M �0 with M A M� is said to be of �-type. The
singular subspace ½M �0a of G�S, whenever non-empty, is also said to be of �-type.

The coarse residual geometry at an arbitrary point P of G is the point-line geometry
CGP ¼ ðLP;MPÞ, where LP and MP are the sets of flags in L, and M respectively
incident to P and incidence is induced by D. Elements of the same type are considered
to be incident only when equal; we do not consider elements of M�

P and Mþ
P to be

incident, although they are in D. Note that for P B S and any M A MP, the singular
subspace ½M �0a is non-empty.

Lemma 3.1. Let G be a Grassmannian of type An;k with 1 < k < n over a field F and

let S be a, possibly empty, subspace. Then the following hold.

(a) The intersection of two singular subspaces from M of the same type consists of a

single point or is empty.

(b) The intersection of two singular subspaces from M of opposite type consists of the

points on a line or is empty.

(c) The coarse residual geometry of a point P is a grid with point set LP and in which

M� and Mþ form the two parallel classes of lines.

(d) The elements of M induce the only maximal singular subspaces of G and G�S
alike.

Clearly any isomorphism G1 ! G2 sends maximal singular subspaces to maximal
singular subspaces and the same holds for isomorphisms G1 �S1 ! G2 �S2. There-
fore using Part (d) of Lemma 3.1 the elements of M are well-defined objects of the
point-line geometry G and, similarly, those elements of M having non-empty inter-
section with G�S are well-defined objects of the point-line geometry G�S.

Proof of Lemma 3.1. (a) and (b): This follows from the definitions of D and G and
some elementary linear algebra.

(c): This follows immediately from (a) and (b).
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(d): We show that any singular subspace S of G�S containing at least two inter-
secting lines is contained in a singular subspace of type � or þ.

We first prove the following. Fix a point P A G�S. Since the subspace S in-
tersects any line L on P in at most one point, and G is thick, there is at least one point
Q on L�S di¤erent from P. Take another line M on P and let R be a point on
M �S di¤erent from P. We claim that Q and R are collinear in G�S if and only
if either ½L�� ¼ ½M �� or ½L�þ ¼ ½M �þ.

The ‘‘if ’’ part of this claim is clearly true since the point sets ½½L���0a and ½½L�þ�0a
are singular. To prove the ‘‘only if ’’ part, we note that a similar statement holds for
G itself. Assume that Q and R belong to some line N. Looking at the dimensions
of the intersections among ½M ��, ½N��, ½L��, ½M �þ, ½N�þ, and ½L�þ, reveals that either
½M �� ¼ ½N�� ¼ ½L�� or ½M �þ ¼ ½N�þ ¼ ½L�þ.

Now Part (d) follows from our claim. Namely, let P A S be the intersection point
of the two lines L and M contained in S by assumption. Let Q and R be as above.
Then by our claim either P;Q;R A ½X �0 where fXg ¼ ½L�� or fXg ¼ ½L�þ. Suppose
without loss of generality that the former is true. Considering any other point T A S

on some line M 0 with P we find that also P;T A ½X �0, where fXg ¼ ½M 0��. Hence
SJ ½X �0. r

We now consider isomorphisms between a‰ne Grassmannians.

Corollary 3.2. For i ¼ 1; 2, let Gi be a geometry of type Ani ;ki over a field F with

subspace Si. If there is an isomorphism j : G1 �S1 ! G2 �S2, then n1 ¼ n2 and

k1 A fk2; n2 þ 1� k2g.

Proof. This is implicit in Theorem 2 of Blok [1] for all fields F other than F2. Now let
F ¼ F2. For i ¼ 1; 2, consider a point Pi A Gi �Si and suppose P

j
1 ¼ P2. Now j

sends the coarse residual geometry of P1 to the coarse residual geometry of P2. It
preserves the lines of the grid because j sends maximal singular subspaces on P1 to
maximal singular subspaces on P2. By the intersection properties between the two
types of lines in the grid (Lemma 3.1 (a) and (b)), j sends lines of the same type
to lines of the same type. In the coarse residual geometry of Pi, the lines of type þ
have size 2ki � 1 and lines of type � have size 2niþ1�ki � 1. Thus fk1; n1 þ 1� k1g ¼
fk2; n2 þ 1� k2g and n1 ¼ k1 þ ðn1 þ 1� k1Þ � 1 ¼ k2 þ ðn2 þ 1� k2Þ � 1 ¼ n2. We
are done. r

The following connectivity result is needed to show that certain local information
is in fact global information.

Lemma 3.3. For any thick Grassmannian G with subspace S, the geometry G�S is

connected.

We note that this was proved in Shult [6] in case S is a hyperplane.
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Proof. Let G be a geometry of type An;k over a field F. We prove that for any
pair of distinct points P and Q in G�S, there is an l and a path of points
P ¼ P0;P1; . . . ;Pl ¼ Q all in G�S such that, for i ¼ 1; 2; . . . ; l the points Pi�1 and
Pi are collinear. We use induction on n. This is clearly true for n ¼ 1; 2 since in that
case G is singular.

Now let nd 3. Suppose first that P and Q are incident with some m-object X of D.
Assume without loss of generality that m > k. Then the subspace G 0 of G induced on
½X �0 is a geometry of type Am�1;k. Now S 0 ¼ ½X �0 VS is a subspace of G 0 and so by
induction there is a path from P to Q entirely contained in G 0 �S 0 and hence this
path is entirely contained in G�S.

Next assume that P and Q are not incident with any common object. Then
n ¼ 2k � 1. Note that P and Q are not collinear since that is only possible if k ¼ 1,
but then n ¼ 1 < 3. Take lines L and M with P A L, Q A M such that ½L�� is not in-
cident to a common object with ½M �þ and also ½M �� is not incident to a common
object with ½L�þ. Since n ¼ 2k � 1 there is a unique 2 object Z incident to ½L�þ and
½M �þ. For each point R on L there is a unique point S on M such that R, S and Z

share a common 1-object. Clearly S is the unique point on M closest to R.
Let us for the moment assume that both L and M meet S. Let T be the unique

point of L in S and let U be the unique point of M in S. Since G is thick, one of
the following must occur: P 0 ¼ P is closest to some point Q 0 on M di¤erent from U ,
Q 0 ¼ Q is closest to some point P 0 on L di¤erent from T , or there exists a point P 0 on
L di¤erent from T that is closest to a point Q 0 on M di¤erent from U . By the previ-
ous case there is a path of points entirely in G�S from P 0 to Q 0 and this path ex-
tends to a path of points entirely in G�S from P to Q. In case L does not meet S,
then we can drop the condition that P 0 be di¤erent from T and the result follows
even more easily. r

Lemma 3.4. Let Gi be a thick geometry of type Ani ;ki with subspace Si. Suppose there is

an isomorphism j : G1 �S1 ! G2 �S2. Then two maximal singular subspaces X and

Y of G1 �S1 are of the same type if and only if X j and Y j are of the same type.

Proof. By Lemma 3.1 X and Y are of type � or þ. Let P and Q be points of G1 �S1

on X and Y respectively. By definition of the lines of G1 there exist lines L and M

in G1 such that P A L, Q A M, and X A f½½L���0a; ½½L�þ�0ag, Y A f½½M ���0a; ½½M �þ�0ag.
By connectedness of G1 (Lemma 3.3) there is an l and a path L ¼ L1;P1;L2; . . . ;
Pl�1;Ll ¼ M in G1 �S1 where Li and Liþ1 are lines on the point Pi for all
i ¼ 1; 2; . . . ; l � 1. Now for each i A f1; 2; . . . ; l � 1g and any d; � A f�;þg, we have
Pi A ½½Li���0a V ½½Liþ1�d�0a and so by Lemma 3.1 this intersection has size 1 if and
only if � ¼ d. In particular, both X and Y are of the same type � if and only if
jX V ½½L2���0aj ¼ 1 ¼ jY V ½½Ll ���0aj. Under j this all carries over, and we are done.

r

Thus not only are the elements of M having non-empty intersection with G�S
well-defined objects of G�S, but their partition M ¼ M� ]Mþ is a feature of
G�S as well. Note that Lemma 3.4 does not claim that Mþ and M� separately
are features of G�S, though this is clearly the case if n0 2k þ 1.
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4 Line-Grassmannians

We now turn our attention to the class A2ð2Þ of Grassmannians of type An;2 over
F2. We consider a geometry G of type An;2 over F2 with hyperplane S. Although
the situation is not as degenerate as for the class A1ð2Þ, there are cases where
AutðG�SÞG StabAutðGÞðG�SÞ, and we explicitly describe each case. This is done
by studying the universal embedding of G, on which AutðGÞ acts as a linear group,
and a natural embedding of the space of maximal singular subspaces of G�S on
which AutðG�SÞ acts as a linear group.

4.1 Universal embeddings. Let P ¼ ðO;KÞ be a partial linear space of order 2 (that
is, three points per line). A representation of P in the vector space V over F2 is a map
f : O ! V � 0 such that fðxÞ þ fðyÞ þ fðzÞ ¼ 0 in V whenever fx; y; zg A K. The
representation is an embedding if f is injective, and it is full if fðOÞ spans V .

Theorem 4.1. Every partial linear space P ¼ ðO;KÞ of order 2 has a universal full rep-

resentation ^ : O ! V̂V over F2.

If P has an embedding, then ^ is an embedding. In this case AutðPÞ is isomorphic to

StabPGLðV̂VÞðP̂PÞ, the stabilizer of ÔO and K̂K in PGLðV̂VÞ.

Proof. This fundamental observation is due to Ronan [5]. Let V̂V0 have as F2-basis x̂x,
for x A O; and set R̂R ¼ hx̂xþ ŷyþ ẑz j fx; y; zg A Ki. Then V̂V ¼ V̂V0=R̂R. r

4.2 Automorphisms of a‰ne line-Grassmannians.

Theorem 4.2. Let G be a Grassmann space of type An;2ðFÞ, where F is a field. Then,
for each geometric hyperplane S of G, there is a symplectic form b on V ¼ Fnþ1 for

which S is the set of b-isotropic 2-spaces of V.

Proof. This is a special case of Theorem 1 of [6] and is also due to Cooperstein and
Shult [3]. r

Proposition 4.3. Let V and b be as in Theorem 4.2 with F ¼ F2. Let R ¼ RadðV ; bÞ
with dimR ¼ k and dimV=R ¼ 2mðd 2Þ. Let P be the embeddable partial linear

space of order 2 whose point set is V � R and whose lines are the hyperbolic lines

(2-spaces) for b.
ð1Þ If m ¼ 1, then V is a universal embedding space for P.

ð2Þ Assume md 2. Then the universal embedding space V̂V for P has dimension

k þ 2mþ 1. There is a quadratic form q̂q : V̂V ! F2 (with associated symplectic form

b̂b) for which

ÔO ¼ fx A V̂V j q̂qðxÞ ¼ 1; x B RadðV̂V ; b̂bÞg;

and K consists of all totally nonsingular lines (2-spaces) in V̂V for q.
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Here the singular radical SRadðV̂V ; q̂qÞ ¼ fx A RadðV̂V ; b̂bÞ j q̂qðxÞ ¼ 0g has dimension k

and codimension 1 in RadðV̂V ; b̂bÞ, and q̂q induces a nonsingular but degenerate quadratic

form on V̂V=SRadðV̂V ; q̂qÞ.

Proof. See [4, Theorems 1 and 3]. r

The case m ¼ 1 is that of an attenuated hyperplane of the line-Grassmannian. The
hyperplane is the set of all lines of V meeting a given codimension-2 space.

Proposition 4.4. Let G�S be the hyperplane complement of Theorem 4.2 with nd 4,
and let P ¼ ðO;KÞ be the associated partial linear space of Proposition 4.3.

Then AutðG�SÞGAutðPÞ.

Proof. The points of G�S are the lines of P, and a line of G�S consists of
two concurrent (and coplanar) lines of P. Therefore G�S is the line graph of P,
and AutðPÞcAutðG�SÞ. On the other hand, by Lemma 3.4, the points of O
can be recognized as the singular subspaces in G�S of maximal cardinality; so
AutðG�SÞcAutðPÞ. r

Using the notation introduced in this section, we formulate the following result.

Theorem 4.5.

(1) AutðG�SÞd StabPGLðVÞðG�SÞG 22mk : ðGLkð2Þ � Sp2mð2ÞÞ.

(2) If m ¼ 1, then AutðG�SÞGAutðPÞ ¼ StabPGLðV̂VÞðPÞG StabPGLðVÞðG�SÞ
G 22k : ðGLkð2Þ � Symð3ÞÞ.

(3) If md 2, then AutðG�SÞGAutðPÞ ¼ StabPGLðV̂VÞðPÞG 22mkþk : ðGLkð2Þ�
Sp2mð2ÞÞ. The subgroup StabPGLðVÞðG�SÞ of AutðG�SÞ is realized as the

stabilizer of a nonsingular vector from RadðV̂V ; b̂bÞ � SRadðV̂V ; q̂qÞ.

Proof. For (1), the containment is clear. We are looking for the symplectic group of
the form b. Consider the subspace chain 0cRadðV ; bÞcV . The radical RadðV ; bÞ
has dimension k, and GLkð2Þ acts on it preserving the form b. Also, the full symplec-
tic group is induced on the nondegenerate space V=RadðV ; bÞ. Thus modulo the nor-
mal subgroup of all symplectic isometries that stabilize the chain 0cRadðV ; bÞcV

(that is, are trivial on both RadðV ; bÞ and V=RadðV ; bÞ) we have GLkð2Þ � Sp2mð2Þ.
The radical has dimension k and codimension 2m, so the full subgroup of
GLðVÞ ¼ PGLðVÞ that stabilizes the chain 0cRadðV ; bÞcV is elementary abelian
of order 2k�2m. Any such map moves members of V only by elements of the radical
of b, so all such maps are isometries, completing (1).

For (2) and (3), the first isomorphism comes from Proposition 4.4 and the equality
from Theorem 4.1. Proposition 4.3.1 then completes (2).

By Proposition 4.3.2, for the final isomorphism in (3), we need the orthogonal
group of the quadratic form q̂q. Its structure follows, as in (1), from consideration of
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the subspace chain 0c SRadðV̂V ; q̂qÞc V̂V . Again the singular radical of dimension k

admits all transformations of GLkð2Þ as isometries. The quotient V̂V=SRadðV̂V ; q̂qÞ is a
nonsingular orthogonal space of dimension 2mþ 1 and all O2mþ1ð2ÞG Sp2mð2Þ acts;
so the stablizer quotient is GLkð2Þ � Sp2mð2Þ, as claimed. The full stabilizer of the
chain 0c SRadðV̂V ; q̂qÞc V̂V is elementary abelian of order 2k�ð2mþ1Þ. As all its ele-
ments move members of V̂V only by members of the singular radical SRadðV̂V ; q̂qÞ,
they are all isometries of q̂q, giving (3). r

Proof of Theorem 1. For i ¼ 1; 2, let Gi be a geometry of type Ani ;2 over F2 with
hyperplane Si. If e : G1 �S1 ! G2 �S2 is an isomorphism, then n1 ¼ n2 ¼ n by
Corollary 3.2.

If h is another such isomorphism, then h�1 � e A AutðG1 �S1Þ. It now follows
from Theorem 4.5 that if nd 4 there are certain choices of S1 for which there are
many isomorphisms e that are not extendable to an isomorphism G1 ! G2. r

We can now answer question 1.2 of Shult [7].

Theorem 4.6. Let S1 and S2 be hyperplanes of the ðn; kÞ-Grassmannian G with under-

lying vector space V , and suppose that the a‰ne Grassmannians G�S1 and G�S2

are isomorphic. Then there is an element of PGLðVÞ that induces an isomorphism of

G�S1 and G�S2.

Proof. If V is not defined over F2 or if 3c kc n� 2, then this follows immediately
from Theorem 2 of [1] and the present Theorem 2.

In the remaining cases V is defined over F2 and we have k ¼ 1; 2; n� 1, or n. If
k ¼ 1 or n, then all hyperplanes are in the same PGLðVÞ orbit. If k ¼ 2 or n� 2,
then, as seen in Theorem 4.2 above, hyperplanes correspond to symplectic forms on
V . Two such forms are in the same orbit under PGLðVÞ if and only if they have the
same dimension radical. But it is easy to check that if G�S1 and G�S2 are isomor-
phic, then the radicals of the corresponding forms have the same dimension; for in-
stance using that the 1-spaces o¤ the radical are the maximal singular subspaces of
G�Si of �-type. r

5 A‰nely rigid Grassmannians over F2

We now address the class of remaining Grassmannians. This is the class Ad3ð2Þ of
ðn; kÞ-Grassmannians over F2, where 3c kc n� 2. We will label the objects of the
An-building as follows:

Figure 1. The central labeling of the An diagram
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Lemma 3.1 tells us that the coarse residual geometry of a point is a grid, where M�

and Mþ are the two parallel classes of lines. In order to prove Theorem 2 we will
need to analyze the residue of a point in more detail. To his end define

L� ¼ fð�;þ2Þ flagsg

Lþ ¼ fð�2;þÞ flagsg

L ¼ L� ULþ

P� ¼ fð�;þ3Þ flagsg if kc n� 3

f� flagsg if k ¼ n� 2

(

Pþ ¼ fð�3;þÞ flagsg if 4c k

fþ flagsg if 3 ¼ k

(

P ¼ P� UPþ

Q ¼

fð�2;þ2Þ flagsg if 3c kc n� 2

f�2 flagsg if 3c k ¼ n� 1

fþ2 flagsg if 2 ¼ kc n� 2

G if 2 ¼ k ¼ n� 1

8>>><
>>>:

The elements of Q are the symplecta of G. Such an element Q is a well-defined ob-
ject of G since it is the convex closure of any two of its points at mutual distance 2.
Thus given Grassmannians Gi with set of symplecta Qi, i ¼ 1; 2, any isomorphism
G1 ! G2 necessarily maps an element of Q1 to an element of Q2. It will be important
for us to decide when Q�S, if not always, is a well-defined object of G�S. In
order to do this, we will take a closer look at the residue of a point.

For a point P, let LP be the set of flags in L incident to P. Similarly, define PP,
MP, QP, L

�
P , L

þ
P , P

�
P , P

�
P , M

�
P , M

�
P , and Q�

P .
The residual geometry of a point P is the point-line geometry GP ¼ ðLP;LPÞ in

which incidence is inherited from D. Again, elements of the same type are only con-
sidered incident when equal; elements from L�

P and Lþ
P are never incident in GP even

if they are in D.
We briefly interpret the elements of PP, MP, and QP as subspaces of GP and de-

scribe the relation between GP and CGP. To begin with, the points of GP are also the
points of CGP. An element X from PP defines a subspace of GP isomorphic to
a projective plane denoted XP. Similarly, an element X from MP, which is a line in
CGP, defines a subspace of GP isomorphic to a projective space, also denoted XP. An
element Q A Q induces a subspace of G of type A3;2. Given a point P in Q, the sub-
space QP of the residual geometry GP is a grid containing nine points of LP, and three
lines from L�

P and Lþ
P each. Since the points of GP and CGP are the same and each

element of L�
P is contained in a unique element of M�

P we can regard QP as a small
3� 3 subgrid of the larger grid CGP.
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For the rest of this section, let S be a fixed but arbitrary subspace of G. Assume
that P A S. By SP we denote the set of all points of GP that, viewed as lines of G, are
entirely contained in S. This forms a subspace of GP, but not necessarily of CGP.
Hence given some element M A M containing P, the intersection MP VSP is a sub-
space of the projective subspace MP of GP. Similarly, given some element Q A QP, the
intersection QP VSP is a subspace of the grid-subspace QP of GP.

The next lemma describes a convexity property of subspaces Q�S of G�S for
Q A Q. Note that an element of Q is a ð3; 2Þ-Grassmannian. We prefer to consider it
as the polar geometry Oþ

6 ð2Þ in its natural embedding.
We recall the notion of 2-convexity from Blok [1]. Given a point-line geometry A

we call a set of points X 2-convex (in A) if it has the property that, for any x; y A X at
mutual distance at most 2, all points on a geodesic of A from x to y are also con-
tained in X . The 2-convex closure of X is the smallest 2-convex subspace containing
X . The 2-convex closedness of subspace complements will be of crucial importance.
Note that if A is such a subspace complement of G, then the 2-convex closure of a
point subset of A means the closure in A, but not in G. Note that in that case geo-
desics of A need not be geodesics of G, but geodesics of length 2 are.

Lemma 5.1. Let G be a geometry of type Oþ
6 ð2Þ and let S be a subspace. Then G�S

is the 2-convex closure of any two of its points at mutual distance two, except if S is

the hyperplane carrying a polar space of type O5ð2Þ.

Proof. We will only outline the proof since almost all was done in Blok [1]. By
Lemma 5.8 of Blok [1], we only have to check the case where S is a proper subspace
of the hyperplane carrying the structure of a polar space of type O5ð2Þ. Such a sub-
space either is a set of pairwise non-collinear points, is contained in a hyperplane of
O5ð2Þ of type Oþ

4 ð2Þ (a grid), or is contained in X? for some point X of O5ð2Þ. The
former case is dealt with in the proof of the same Lemma 5.8. In the latter two cases,
S is in fact contained in a hyperplane of Oþ

6 ð2Þ of type X? for some point X in
Oþ

6 ð2Þ and we are led back to Lemma 5.8. r

A square in a point-line geometry is a set of four points P1, P2, P3, P4 in which any
two points are collinear except for the pairs ðP1;P3Þ and ðP2;P4Þ. For the sequel it
will be helpful to verify that in GP every square is contained in a 3� 3 grid QP for
some Q A QP. With apologies to the reader for its distinctly ad-hoc nature, we now
introduce the notion of a (local ) a‰ne square. This is a square in GP (and in CGP),
no point of which belongs to SP. The only excuse for introducing it is the following
useful signalling function these a‰ne squares have.

Corollary 5.2. Let P A S and let Q A QP. If QP contains an a‰ne square, then Q�S
is the 2-convex closure of any two of its points at mutual distance 2.

Proof. If QVS is the hyperplane of type O5ð2Þ, then QP VSP consists of three pair-
wise non-collinear points in the 3� 3 grid QP, for any point P A Q, so QP does not
contain an a‰ne square. The result follows now from Lemma 5.1. r
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Our next aim is to prove a couple of lemmas about a‰ne squares. They are easily
interpreted by viewing the lines of the grid CGP as projective subspaces of GP.

Lemma 5.3. Fix P A S, non-deep and fix � A f�;þg. If each of M 1;M 2 A M�
P contains

some point of GP �SP, then they contain points of GP �SP that are collinear.

Proof. Since M 1
P contains a point of GP �SP the set M 1

P VSP is a proper subspace of
M 1

P whose size is strictly less than half the size of M 1
P. The same holds for M 2. Now

M 1 and M 2 are two parallel lines in the grid that is the coarse residual geometry and
the result is obvious. r

Note that the next lemma is not valid when allowing k ¼ 2 or k ¼ n� 1. Also, in
these cases it is easy to find counterexamples to the conclusions of Lemmas 5.5 and
5.6.

Lemma 5.4. Fix P A S, non-deep, and let M A MP. Then any pair of points from

MP �SP belongs to some a‰ne square.

Proof. In this proof � A f�;þg will be a sign. Without loss of generality we may as-
sume � ¼ �. Assume M 1 ¼ M A M�

P and let N 1;N 2 A M��
P be such that the points

ðM 1;N 1Þ and ðM 1;N 2Þ both belong to GP �SP.
Fix an arbitrary N A M��

P . As we know, NP is a projective space of dimension
at least 2 since 3c k (and in case � ¼ þ since 3c nþ 1� k). The projection map
pi : N

i
P ! NP, i ¼ 1; 2, sending ðM;N iÞ to ðM;NÞ for all M A M�

P is an isomor-
phism. Thus p1ðN 1

P VSPÞ and p2ðN 2 VSPÞ are subspaces of NP whose union is (con-
tained in) the union of two hyperplanes of NP. As NP is a projective space of dimen-
sion at least 2, the complement of two hyperplanes contains at least two points. One
of these points is ðM 1;NÞ. Let ðM 2;NÞ with M 2 A M�

P be another such point, then
both ðM 2;N 1Þ and ðM 2;N 2Þ belong to GP �SP and together with ðM 1;N 1Þ and
ðM 1;N 2Þ they form the four points of an a‰ne square. r

Lemma 5.5. Fix P A S, non-deep. Then the graph with vertex set LP �SP and in

which two vertices are adjacent whenever the corresponding points are in an a‰ne

square, is connected.

Proof. By Lemma 5.4 this graph is connected if (and only if ) the collinearity graph of
GP �SP is connected. It follows immediately from Lemma 5.3 that the latter graph is
connected. In fact one easily verifies that the point-a‰ne square graph has diameter
at most 3. r

Lemma 5.6. Fix P A S, non-deep. Then any point of GP belongs to some grid QP con-

taining an a‰ne square.

Proof. In this proof we denote the points of GP by lower case letters. If the point
under consideration is in GP �SP, this follows from Lemma 5.5. Therefore, let l 0
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be any point of SP. Since P is non-deep, there is some point l1 in GP �SP. Let
M 0 A M�

P and N 0 A Mþ
P be such that l0 is the line ðM 0;N 0Þ. There are two cases to

distinguish.
(1) At least one of M 0

P and N 0
P contains a point of GP �SP. Suppose M

0
P contains

a point m0 of GP �SP. Since M 0
P is a projective space of dimension at least 2 in GP

with proper subspace M 0
P VSP, there is a line of M 0

P on l 0 and m0 that contains an-
other point m1 of GP �SP. By Lemma 5.4 there is an a‰ne square containing m0

and m1. This a‰ne square determines a unique grid QP which contains l 0.
(2) Neither M 0

P nor N 0
P contains a point of GP �SP. Now l0 and l 1 are contained

in a unique grid QP. In this grid, the two lines intersecting at l0 necessarily form the
proper subspace QP VSP of QP. Its complement is the desired a‰ne square. r

Proof of Theorem 2. We show that Ad3ð2Þ satisfies the conditions of Theorem 2.5.
(LE1): By definition of a parapolar space, Ad3ð2Þ satisfies (LE1).
(LE2): By a result of Shult [6] (see also Blok [1, Lemma 2.1]) the class of all strong

parapolar spaces and in particular Ad3ð2Þ satisfies (LE2).
For any G A Ad3ð2Þ with subspace S, let

TðSÞ ¼ fQ A Q jQ�S is the 2-convex closure

of any two of its points at mutual distance 2g:

We will need the following characterization of Q�S for Q A TðSÞ. By Lemma 5.1
if Q A TðSÞ, then QVS can be anything other than a hyperplane of Q of type
O5ð2Þ. One easily verifies that if QVS is of type O5ð2Þ, then the 2-convex closure
of any two points at mutual distance 2 in Q�S is a set of six points forming the
vertices of an octahedron. In fact this means that the 2-convex closure in Q�S of
any two of its points at mutual distance 2 is not a set of six points forming the vertices
of an octahedron if and only if Q A TðSÞ.

We claim that TðSÞ satisfies conditions (L), (IL), (T), and (LE) of Theorem 2.5.
(L) and (IL) follow immediately from Lemmas 5.6 and 5.5 respectively, applied to

the residual geometry of the non-deep point P.
(T): The argument will rely on the following two observations. Let i ¼ 1; 2.
(1) By definition of a strong parapolar space, a symplecton Ti is convex in Gi, so

any geodesic in Gi between points of Ti is contained in Ti.
(2) Moreover, any geodesic in Gi �Si between points at mutual distance 2 is a geo-

desic in Gi and the same holds if we replace Gi by Ti. Combining this with the previ-
ous observation, we find that the 2-convex closure in Ti �Si of a set of points equals
the 2-convex closure of that set of points in Gi �Si.

Let Gi A Ad3ð2Þ with subspace Si ði ¼ 1; 2Þ and let e : G1 �S1 ! G2 �S2 be some
isomorphism. Suppose T1 A TðS1Þ. For every T1 A TðS1Þ, by definition T1 �S1 is
the 2-convex closure of any two of its points at mutual distance 2. By observation (2),
this is true also if we consider the 2-convex closure in G1 �S1 instead of in T1 �S1.
Let X , Y be points at mutual distance 2 in T1 �S1. Such points exist since T1 �S1

is non-degenerate by Lemma 4.15 in Blok [1]. Then, X e, Y e are points at mutual dis-
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tance 2 in G2 �S2. Hence, they are also at mutual distance 2 in G2. Their (2-) convex
hull in G2 is (contained in) a symplecton T2. By observation (1), the points X e and Y e

are at mutual distance 2 in T2 �S2. Therefore, since e is an isomorphism, we find
that ðT1 �S1Þe JT2 �S2. Now clearly the 2-convex closure of the points X e and
Y e in T2 �S2 contains ðT1 �S1Þe and so is not merely a set of 6 points forming
the vertices of an octahedron. Hence our observation following the definition of T
implies T2 A TðS2Þ. Applying the same argument to the map e�1 shows that we
must have ðT1 �S1Þe ¼ T2 �S2.

Thus (T) is satisfied.
(LE): This is true in the strongest fashion: up to isomorphism TðS1ÞUTðS2Þ

only contains the polar space Oþ
6 ð2Þ. Hence, by a result from Cohen and Shult [2]

(see also Theorem 4.1 of Blok [1]) this set forms an LE-class. r
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