
Chapter 2

Sphere Packing and
Shannon’s Theorem

In the first section we discuss the basics of block coding on the m-ary symmetric
channel. In the second section we see how the geometry of the codespace can
be used to make coding judgements. This leads to the third section where we
present some information theory and Shannon’s basic Channel Coding Theorem.

2.1 Basics of block coding on the mSC

Let A be any finite set. A block code or code, for short, will be any nonempty block code

subset of the set An of n-tuples of elements from A. The number n = n(C) is
the length of the code, and the set An is the codespace. The number of members length

codespacein C is the size and is denoted |C|. If C has length n and size |C|, we say that
sizeC is an (n, |C|) code.
(n, |C|) codeThe members of the codespace will be referred to as words, those belonging
wordsto C being codewords. The set A is then the alphabet.
codewords
alphabet

If the alphabet A has m elements, then C is said to be an m-ary code. In

m-ary code

the special case |A|=2 we say C is a binary code and usually take A = {0, 1}

binary

or A = {−1,+1}. When |A|=3 we say C is a ternary code and usually take

ternary

A = {0, 1, 2} or A = {−1, 0,+1}. Examples of both binary and ternary codes
appeared in Section 1.3.

For a discrete memoryless channel, the Reasonable Assumption says that a
pattern of errors that involves a small number of symbol errors should be more
likely than any particular pattern that involves a large number of symbol errors.
As mentioned, the assumption is really a statement about design.

On an mSC(p) the probability p(y|x) that x is transmitted and y is received
is equal to pdqn−d, where d is the number of places in which x and y differ.
Therefore

Prob(y |x) = qn(p/q)d ,
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a decreasing function of d provided q > p. Therefore the Reasonable Assumption
is realized by the mSC(p) subject to

q = 1− (m− 1)p > p

or, equivalently,
1/m > p .

We interpret this restriction as the sensible design criterion that after a symbol
is transmitted it should be more likely for it to be received as the correct symbol
than to be received as any particular incorrect symbol.

Examples.
(i) Assume we are transmitting using the the binary Hamming code

of Section 1.3.3 on BSC(.01). Comparing the received word 0011111 with
the two codewords 0001111 and 1011010 we see that

p(0011111|0001111) = q6p1 ≈ .009414801 ,

while
p(0011111|1011010) = q4p3 ≈ .000000961 ;

therefore we prefer to decode 0011111 to 0001111. Even this event is
highly unlikely, compared to

p(0001111|0001111) = q7 ≈ .932065348 .

(ii) If m = 5 with A = {0, 1, 2, 3, 4}6 and p = .05 < 1/5 = .2, then
q = 1− 4(.05) = .8; and we have

p(011234|011234) = q6 = .262144

and
p(011222|011234) = q4p2 = .001024 .

For x,y ∈ An, we define

dH(x,y) = the number of places in which x and y differ.

This number is the Hamming distance between x and y. The Hamming distanceHamming distance

is a genuine metric on the codespace An. It is clear that it is symmetric and
that dH(x,y) = 0 if and only if x = y. The Hamming distance dH(x,y) should
be thought of as the number of errors required to change x into y (or, equally
well, to change y into x).

Example.
dH(0011111, 0001111) = 1 ;

dH(0011111, 1011010) = 3 ;

dH(011234, 011222) = 2 .

( 2.1.1) Problem. Prove the triangle inequality for the Hamming distance:

dH(x,y) + dH(y, z) ≥ dH(x, z) .
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The arguments above show that, for an mSC(p) with p < 1/m, maximum
likelihood decoding becomes:

Minimum Distance Decoding — When y is received, we must
decode to a codeword x that minimizes the Hamming distance dH(x,y).

We abbreviate minimum distance decoding as MDD. In this context, incom- minimum distance decoding

MDDplete decoding is incomplete minimum distance decoding IMDD:
IMDD

Incomplete Minimum Distance Decoding — When y is re-
ceived, we must decode either to a codeword x that minimizes the
Hamming distance dH(x,y) or to the “error detected” symbol ∞.

( 2.1.2) Problem. Prove that, for an mSC(p) with p = 1/m, every complete decoding
algorithm is an MLD algorithm.

( 2.1.3) Problem. Give a definition of what might be called maximum distance
decoding, MxDD; and prove that MxDD algorithms are MLD algorithms for an
mSC(p) with p > 1/m.

In An, the sphere1 of radius ρ centered at x is sphere

Sρ(x) = {y ∈ An | dH(x,y) ≤ ρ }.

Thus the sphere of radius ρ around x is composed of those y that might be
received if at most ρ symbol errors were introduced to the transmitted codeword
x.

The volume of a sphere of radius ρ is independent of the location of its
center.

( 2.1.4) Problem. Prove that in An with |A| = m, a sphere of radius e contains
eX
i=0

 
n

i

!
(m− 1)i words.

For example, a sphere of radius 2 in {0, 1}90 has volume

1 +
(

90
1

)
+
(

90
2

)
= 1 + 90 + 4005 = 4096 = 212

corresponding to a center, 90 possible locations for a single error, and
(
90
2

)
possibilities for a double error. A sphere of radius 2 in {0, 1, 2}8 has volume

1 +
(

8
1

)
(3− 1)1 +

(
8
2

)
(3− 1)2 = 1 + 16 + 112 = 129 .

For each nonnegative real number ρ we define a decoding algorithm SSρ for SSρ
An called sphere shrinking. sphere shrinking

1Mathematicians would prefer to use the term ‘ball’ here in place of ‘sphere’, but we stick
with the traditional coding terminology.
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Radius ρ Sphere Shrinking — If y is received, we decode to
the codeword x if x is the unique codeword in Sρ(y), otherwise we
declare a decoding default.

Thus SSρ shrinks the sphere of radius ρ around each codeword to its center,
throwing out words that lie in more than one such sphere.

The various distance determined algorithms are completely described in
terms of the geometry of the codespace and the code rather than by the specific
channel characteristics. In particular they no longer depend upon the transi-
tion parameter p of an mSC(p) being used. For IMDD algorithms A and B,
if PC(A) ≤ PC(B) for some mSC(p) with p < 1/m, then PC(A) ≤ PC(B)
will be true for all mSC(p) with p < 1/m. The IMDD algorithms are (incom-
plete) maximum likelihood algorithms on every mSC(p) with p ≤ 1/m, but this
observation now becomes largely motivational.

Example. Consider the specific case of a binary repetition code of
length 26. Since the first two possibilities are not algorithms but classes
of algorithms there are choices available.

w = number of 1’s 0 1 ≤ w ≤ 11 = 12 = 13 = 14 15 ≤ w ≤ 25 26

IMDD 0/∞ 0/∞ 0/∞ 0/1/∞ 1/∞ 1/∞ 1/∞
MDD 0 0 0 0/1 1 1 1

SS12 0 0 0 ∞ 1 1 1

SS11 0 0 ∞ ∞ ∞ 1 1

SS0 0 ∞ ∞ ∞ ∞ ∞ 1

Here 0 and 1 denote, respectively, the 26-tuple of all 0’s and all 1’s. In the
fourth case, we have less error correcting power. On the other hand we
are less likely to have a decoder error, since 15 or more symbol errors must
occur before a decoder error results. The final case corrects no errors, but
detects nontrivial errors except in the extreme case where all symbols are
received incorrectly, thereby turning the transmitted codeword into the
other codeword.

The algorithm SS0 used in the example is the usual error detection algo-
rithm: when y is received, decode to y if it is a codeword and otherwise decode
to ∞, declaring that an error has been detected.

2.2 Sphere packing

The code C in An has minimum distance dmin(C) equal to the minimum ofminimum distance

dH(x,y), as x and y vary over all distinct pairs of codewords from C. (This
leaves some confusion over dmin(C) for a length n code C with only one word. It
may be convenient to think of it as any number larger than n.) An (n,M) code
with minimum distance d will sometimes be referred to as an (n,M, d) code.(n,M, d) code

Example. The minimum distance of the repetition code of length n is
clearly n. For the parity check code any single error produces a word of



2.2. SPHERE PACKING 19

odd parity, so the minimum distance is 2. The length 27 generalized Reed-
Solomon code of Example 1.3.6 was shown to have minimum distance 21.

Laborious checking reveals that the [7, 4] Hamming code has minimum
distance 3, and its extension has minimum distance 4. The [4, 2] ternary
Hamming code also has minimum distance 3. We shall see later how to
find the minimum distance of these codes easily.

(2.2.1) Lemma. The following are equivalent for the code C in An for an
integer e ≤ n:

(1) under SSe any occurrence of e or fewer symbol errors will always be
successfully corrected;

(2) for all distinct x,y in C, we have Se(x) ∩ Se(y) = ∅;
(3) the minimum distance of C, dmin(C), is at least 2e+ 1.

Proof. Assume (1), and let z ∈ Se(x), for some x ∈ C. Then by assumption
z is decoded to x by SSe. Therefore there is no y ∈ C with y 6= x and z ∈ Se(y),
giving (2).

Assume (2), and let z be a word that results from the introduction of at
most e errors to the codeword x. By assumption z is not in Se(y) for any y of
C other than x. Therefore, Se(z) contains x and no other codewords; so z is
decoded to x by SSe, giving (1).

If z ∈ Se(x) ∩ Se(y), then by the triangle inequality we have dH(x,y) ≤
dH(x, z) + dH(z,y) ≤ 2e, so (3) implies (2).

It remains to prove that (2) implies (3). Assume dmin(C) = d ≤ 2e. Choose
x = (x1, . . . , xn) and y = (y1, . . . , yn) in C with dH(x,y) = d. If d ≤ e, then
x ∈ Se(x) ∩ Se(y); so we may suppose that d > e.

Let i1, . . . , id ≤ n be the coordinate positions in which x and y differ: xij 6=
yij , for j = 1, . . . , d. Define z = (z1, . . . , zn) by zk = yk if k 6∈ {i1, . . . , ie} and
zk = xk if k ∈ {i1, . . . , ie}. Then dH(y, z) = e and dH(x, z) = d − e ≤ e. Thus
z ∈ Se(x) ∩ Se(y). Therefore (2) implies (3). 2

A code C that satisfies the three equivalent properties of Lemma 2.2.1 is
called an e-error-correcting code. The lemma reveals one of the most pleasing e-error-correcting code

aspects of coding theory by identifying concepts from three distinct and impor-
tant areas. The first property is algorithmic, the second is geometric, and the
third is linear algebraic. We can readily switch from one point of view to another
in search of appropriate insight and methodology as the context requires.

( 2.2.2) Problem. Explain why the error detecting algorithm SS0 correctly detects
all patterns of fewer than dmin symbol errors.

( 2.2.3) Problem. Let f ≥ e. Prove that the following are equivalent for the code C
in An:

(1) under SSe any occurrence of e or fewer symbol errors will always be successfully
corrected and no occurrence of f or fewer symbol errors will cause a decoder error;

(2) for all distinct x,y in C, we have Sf (x) ∩ Se(y) = ∅;
(3) the minimum distance of C, dmin(C), is at least e+ f + 1.

A code C that satisfies the three equivalent properties of the problem is called an e-
error-correcting, f -error-detecting code. e-error-correcting,

f -error-detecting
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( 2.2.4) Problem. Consider an erasure channel, that is, a channel that erases
certain symbols and leaves a ‘?’ in their place but otherwise changes nothing. Explain
why, using a code with minimum distance d on this channel, we can correct all patterns
of up to d− 1 symbol erasures. (In certain computer systems this observation is used
to protect against hard disk crashes.)

By Lemma 2.2.1, if we want to construct an e-error-correcting code, we
must be careful to choose as codewords the centers of radius e spheres that are
pairwise disjoint. We can think of this as packing spheres of radius e into the
large box that is the entire codespace. From this point of view, it is clear that
we will not be able to fit in any number of spheres whose total volume exceeds
the volume of the box. This proves:

(2.2.5) Theorem. (Sphere packing condition.) If C is an e-error-correcting
code in An, then

|C| · |Se(∗)| ≤ |An| . 2

Combined with Problem 2.1.4, this gives:

(2.2.6) Corollary. (Sphere packing bound; Hamming bound.) If C is
a m-ary e-error-correcting code of length n, then

|C| ≤ mn

/ e∑
i=0

(
n

i

)
(m− 1)i. 2

A code C that meets the sphere packing bound with equality is called a
perfect e-error-correcting code. Equivalently, C is a perfect e-error-correctingperfect e-error-correcting code

code if and only if SSe is a MDD algorithm. As examples we have the binary
repetition codes of odd length. The [7, 4] Hamming code is a perfect 1-error-
correcting code, as we shall see in Section 4.1.

(2.2.7) Theorem. (Gilbert-Varshamov bound.) There exists an m-ary
e-error-correcting code C of length n such that

|C| ≥ mn

/ 2e∑
i=0

(
n

i

)
(m− 1)i .

Proof. The proof is by a “greedy algorithm” construction. Let the code-
space be An. At Step 1 we begin with the code C1 = {x1}, for any word x1.
Then, for i ≥ 2, we have:

Step i. Set Si =
⋃i−1
j=1 Sd−1(xj).

If Si = An, halt.
Otherwise choose a vector xi in An − Si;
set Ci = Ci−1 ∪ {xi};
go to Step i+ 1.
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At Step i, the code Ci has cardinality i and is designed to have minimum distance
at least d. (As long as d ≤ n we can choose x2 at distance d from x1; so each
Ci, for i ≥ 1 has minimum distance exactly d.)

How soon does the algorithm halt? We argue as we did in proving the sphere
packing condition. The set Si =

⋃i−1
j=1 Sd−1(xj) will certainly be smaller than

An if the spheres around the words of Ci−1 have total volume less than the
volume of the entire space An; that is, if

|Ci−1| · |Sd−1(∗)| < |An| .

Therefore when the algorithm halts, this inequality must be false. Now Problem
2.1.4 gives the bound. 2

A sharper version of the Gilbert-Varshamov bound exists, but the asymptotic
result of the next section is unaffected.

Examples.
(i) Consider a binary 2-error-correcting code of length 90. By the

Sphere Packing Bound it has size at most

290

|S2(∗)| =
290

212
= 278 .

If a code existed meeting this bound, it would be perfect.
By the Gilbert-Varshamov Bound, in {0, 1}90 there exists a code C

with minimum distance 5, which therefore corrects 2 errors, and having

|C| ≥ 290

|S4(∗)| =
290

2676766
≈ 4.62× 1020 .

As 278 ≈ 3.02× 1023, there is a factor of roughly 650 separating the lower
and upper bounds.

(ii) Consider a ternary 2-error-correcting code of length 8. By the
Sphere Packing Bound it has size bounded above by

38

|S2(∗)| =
6561

129
≈ 50.86 .

Therefore it has size at most b50.86c = 50. On the other hand, the Gilbert-
Varshamov Bound guarantees only a code C of size bounded below by

|C| ≥ 6561

|S4(∗)| =
6561

1697
≈ 3.87 ,

that is, of size at least d3.87e = 4 ! Later we shall construct an appropriate
C of size 27. (This is in fact the largest possible.)

( 2.2.8) Problem. In each of the following cases decide whether or not there exists a
1-error-correcting code C with the given size in the codespace V . If there is such a code,
give an example (except in (d), where an example is not required but a justification is).
If there is not such a code, prove it.

(a) V = {0, 1}5 and |C| = 6;
(b) V = {0, 1}6 and |C| = 9;
(c) V = {0, 1, 2}4 and |C| = 9.
(d) V = {0, 1, 2}8 and |C| = 51.
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( 2.2.9) Problem. In each of the following cases decide whether or not there exists
a 2-error-correcting code C with the given size in the codespace V . If there is such a
code, give an example. If there is not such a code, prove it.

(a) V = {0, 1}8 and |C| = 4;
(b) V = {0, 1}8 and |C| = 5.

2.3 Shannon’s theorem and the code region

The present section is devoted to information theory rather than coding theory
and will not contain complete proofs. The goal of coding theory is to live up to
the promises of information theory. Here we shall see of what our dreams are
made.

Our immediate goal is to quantify the Fundamental Problem. We need to
evaluate information content and error performance.

We first consider information content. The m-ary code C has dimensiondimension

k(C) = logm(|C|). The integer k = dk(C)e is the smallest such that each
message for C can be assigned its own individual message k-tuple from the m-
ary alphabet A. Therefore we can think of the dimension as the number of
codeword symbols that are carrying message rather than redundancy. (Thus
the number n− k is sometimes called the redundancy of C.) A repetition coderedundancy

has n symbols, only one of which carries the message; so its dimension is 1. For
a length n parity check code, n − 1 of the symbols are message symbols; and
so the code has dimension n− 1. The [7, 4] Hamming code has dimension 4 as
does its [8, 4] extension, since both contain 24 = 16 codewords. Our definition
of dimension does not apply to our real Reed-Solomon example 1.3.6 since its
alphabet is infinite, but it is clear what its dimension should be. Its 27 positions
are determined by 7 free parameters, so the code should have dimension 7.

The dimension of a code is a deceptive gauge of information content. For
instance, a binary code C of length 4 with 4 codewords and dimension log2(4) =
2 actually contains more information than a second code D of length 8 with 8
codewords and dimension log2(8) = 3. Indeed the code C can be used to produce
16 = 4× 4 different valid code sequences of length 8 (a pair of codewords) while
the code D only offers 8 valid sequences of length 8. Here and elsewhere, the
proper measure of information content should be the fraction of the code symbols
that carries information rather than redundancy. In this example 2/4 = 1/2 of
the symbols of C carry information while for D only 3/8 of the symbols carry
information, a fraction smaller than that for C.

The fraction of a repetition codeword that is information is 1/n, and for a
parity check code the fraction is (n−1)/n. In general, we define the normalized
dimension or rate κ(C) of the m-ary code C of length n byrate

κ(C) = k(C)/n = n−1 logm(|C|) .

The repetition code thus has rate 1/n, and the parity check code rate (n−1)/n.
The [7, 4] Hamming code has rate 4/7, and its extension rate 4/8 = 1/2. The
[4, 2] ternary Hamming code has rate 2/4 = 1/2. Our definition of rate does
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not apply to the real Reed-Solomon example of 1.3.6, but arguing as before we
see that it has “rate” 7/27. The rate is the normalized dimension of the code,
in that it indicates the fraction of each code coordinate that is information as
opposed to redundancy.

The rate κ(C) provides us with a good measure of the information content
of C. Next we wish to measure the error handling ability of the code. One
possible gauge is PC , the error expectation of C; but in general this will be
hard to calculate. We can estimate PC , for an mSC(p) with small p, by making
use of the obvious relationship PC ≤ PC(SSρ) for any ρ. If e = b(d − 1)/2c,
then C is an e-error-correcting code; and certainly PC ≤ PC(SSe), a probability
that is easy to calculate. Indeed SSe corrects all possible patterns of at most e
symbol errors but does not correct any other errors; so

PC(SSe) = 1−
e∑
i=0

(
n

i

)
(m− 1)ipiqn−i .

The difference between PC and PC(SSe) will be given by further terms pjqn−j

with j larger than e. For small p, these new terms will be relatively small.
Shannon’s theorem guarantees the existence of large families of codes for

which PC is small. The previous paragraph suggests that to prove this efficiently
we might look for codes with arbitrarily small PC(SS(dmin−1)/2), and in a sense
we do. However, it can be proven that decoding up to minimum distance
alone is not good enough to prove Shannon’s Theorem. (Think of the ‘Birthday
Paradox’.) Instead we note that a received block of large length n is most likely
to contain sn symbol errors where s = p(m − 1) is the probability of symbol
error. Therefore in proving Shannon’s theorem we look at large numbers of
codes, each of which we decode using SSρ for some radius ρ a little larger than
sn.

A family C of codes over A is called a Shannon family if, for every ε > 0, Shannon family

there is a code C ∈ C with PC < ε. For a finite alphabet A, the family C must
necessarily be infinite and so contain codes of unbounded length.

( 2.3.1) Problem. Prove that the set of all binary repetition codes of odd length is
a Shannon family on BSC(p) for p < 1/2.

Although repetition codes give us a Shannon family, they do not respond to
the Fundamental Problem by having good information content as well. Shannon
proved that codes of the sort we need are out there somewhere.

(2.3.2) Theorem. (Shannon’s Channel Coding Theorem.) Consider the
m-ary symmetric channel mSC(p) with p < 1/m. There is a function Cm(p)
such that, for any κ < Cm(p),

Cκ = { m-ary block codes of rate at least κ}

is a Shannon family. Conversely if κ > Cm(p), then Cκ is not a Shannon family.
2



24 CHAPTER 2. SPHERE PACKING AND SHANNON’S THEOREM

The function Cm(p) is the capacity function for themSC(p) and will be discussed
below.

Shannon’s theorem tells us that we can communicate reliably at high rates;
but, as R.J. McEliece has remarked, its lesson is deeper and more precise than
this. It tells us that to make the best use of our channel we must transmit at
rates near capacity and then filter out errors at the destination. Think about
Lucy and Ethel wrapping chocolates. The company can maximize its total profit
by increasing the conveyor belt rate and accepting a certain amount of wastage.
The tricky part is figuring out how high the rate can be set before chaos ensues.

Shannon’s theorem is robust in that bounding rate by the capacity function
still allows transmission at high rate for most p. In the particular case m = 2,
we have

C2(p) = 1 + p log2(p) + q log2(q) ,

where p+q = 1. Thus on a binary symmetric channel with transition probability
p = .02 (a pretty bad channel), we have C2(.02) ≈ .8586. Similarly C2(.1) ≈
.5310, C2(.01) ≈ .9192, and C2(.001) ≈ .9886. So, for instance, if we expect bit
errors .1 % of the time, then we may transmit messages that are nearly 99%
information but still can be decoded with arbitrary precision. Many channels
in use these days operate with p between 10−7 and 10−15.

We define the general entropy and capacity functions before giving an idea
of their origin. The m-ary entropy function is defined on (0, (m− 1)/m] byentropy

Hm(x) = −x logm(x/(m− 1))− (1− x) logm(1− x),

where we additionally define Hm(0) = 0 for continuity. Notice Hm(m−1
m ) =

1. Having defined entropy, we can now define the m-ary capacity function oncapacity

[0, 1/m] by
Cm(p) = 1−Hm((m− 1)p) .

We have Cm(0) = 1 and Cm(1/m) = 0.
We next see why entropy and capacity might play a role in coding problems.

(The lemma is a consequence of Stirling’s formula.)

(2.3.3) Lemma. For spheres in An with |A| = m and any σ in (0, (m−1)/m],
we have

lim
n→∞

n−1 logm(|Sσn(∗)|) = Hm(σ). 2

For a code C of sufficient length n on mSC(p) we expect sn symbol errors in
a received word, so we would like to correct at least this many errors. Applying
the Sphere Packing Condition 2.2.5 we have

|C| · |Ssn(∗)| ≤ mn ,

which, upon taking logarithms, is

logm(|C|) + logm(|Ssn(∗)|) ≤ n .
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We divide by n and move the second term across the inequality to find

κ(C) = n−1 logm(|C|) ≤ 1− n−1 logm(|Ssn(∗)|) .

The righthand side approaches 1−Hm(s) = Cm(p) as n goes to infinity; so, for
C to be a contributing member of a Shannon family, it should have rate at most
capacity. This suggests:

(2.3.4) Proposition. If C is a Shannon family for mSC(p) with 0 ≤ p ≤
1/m, then lim infC∈C κ(C) ≤ Cm(p). 2

The proposition provides the converse in Shannon’s Theorem, as we have
stated it. (Our arguments do not actually prove this converse. We can not
assume our spheres of radius sn to be pairwise disjoint, so the Sphere Packing
Condition does not directly apply.)

We next suggest a proof of the direct part of Shannon’s theorem, notic-
ing along the way how our geometric interpretation of entropy and capacity is
involved.

The outline for a proof of Shannon’s theorem is short: for each ε > 0 (and
n) we choose a ρ (= ρε(n) = sn+ o(n) ) for which

avgC PC(SSρ) < ε ,

for all sufficiently large n, where the average is taken over all C ⊆ An with
|C| = mκn (round up), codes of length n and rate κ. As the average is less than
ε, there is certainly some particular code C with PC less than ε, as required.

In carrying this out it is enough (by symmetry) to consider all C containing
a fixed x and prove

avgC Px(SSρ) < ε .

Two sources of incorrect decoding for transmitted x must be considered:

(i) y is received with y 6∈ Sρ(x);

(ii) y is received with y ∈ Sρ(x) but also y ∈ Sρ(z), for some z ∈ C with
z 6= x.

For mistakes of the first type the binomial distribution guarantees a probability
less than ε/2 for a choice of ρ just slightly larger than sn = p(m − 1)n, even
without averaging. For our fixed x, the average probability of an error of the
second type is over-estimated by

mκn |Sρ(z)|
mn

,

the number of z ∈ C times the probability that an arbitrary y is in Sρ(z). This
average probability has logarithm

−n
(

(1− n−1 logm(|Sρ(∗)|))− κ
)
.
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In the limit, the quantity in the parenthesis is

(1−Hm(s))− κ = β ,

which is positive by hypothesis. The average then behaves like m−nβ . Therefore
by increasing n we can also make the average probability in the second case less
than ε/2. This completes the proof sketch.

Shannon’s theorem now guarantees us codes with arbitrarily small error
expectation PC , but this number is still not a very good measure of error han-
dling ability for the Fundamental Problem. Aside from being difficult to cal-
culate, it is actually channel dependent, being typically a polynomial in p and
q = 1 − (m − 1)p. As we have discussed, one of the attractions of IMDD
decoding on m-ary symmetric channels is the ability to drop channel specific
parameters in favor of general characteristics of the code geometry. So perhaps
rather than search for codes with small PC , we should be looking at codes with
large minimum distance. This parameter is certainly channel independent; but,
as with dimension and rate, we have to be careful to normalize the distance.
While 100 might be considered a large minimum distance for a code of length
200, it might not be for a code of length 1,000,000. We instead consider the
normalized distance of the length n code C defined as δ(C) = dmin(C)/n.normalized distance

As further motivation for study of the normalized distance, we return to the
observation that, in a received word of decent length n, we expect sn = p(m−1)n
symbol errors. For correct decoding we would like

p(m− 1)n ≤ (dmin − 1)/2 .

If we rewrite this as

0 < 2p(m− 1) ≤ (dmin − 1)/n < dmin/n = δ ,

then we see that for a family of codes with good error handling ability we
attempt to bound the normalized distance δ away from 0.

The Fundamental Problem has now become:

The Fundamental Problem of Coding Theory — Find practi-
cal m-ary codes C with reasonably large rate κ(C) and reasonably
large normalized distance δ(C).

What is viewed as practical will vary with the situation. For instance, we might
wish to bound decoding complexity or storage required.

Shannon’s theorem provides us with cold comfort. The codes are out there
somewhere, but the proof by averaging gives no hint as to where we should
look.2 In the next chapter we begin our search in earnest. But first we discuss
what sort of pairs (δ(C), κ(C)) we might attain.

2In the last fifty years many good codes have been constructed, but only beginning in
1993—with the introduction of turbo codes, the rediscovery of LDPC codes, and the intense
study of related codes and associated iterative decoding algorithms—did we start to see how
Shannon’s bound is approachable in practice in certain cases. The codes and algorithms
discussed in these remain of importance.



2.3. SHANNON’S THEOREM AND THE CODE REGION 27

We could graph in [0, 1]× [0, 1] all pairs (δ(C), κ(C)) realized by some m-ary
code C, but many of these correspond to codes that have no claim to being
practical. For instance, the length 1 binary code C = {0, 1} has (δ(C), κ(C)) =
(1, 1) but is certainly impractical by any yardstick. The problem is that in order
for us to be confident that the number of symbol errors in a received n-tuple
is close to p(m − 1)n, the length n must be large. So rather than graph all
attainable pairs (δ(C), κ(C)), we adopt the other extreme and consider only
those pairs that can be realized by codes of arbitrarily large length.

To be precise, the point (δ, κ) ∈ [0, 1]×[0, 1] belongs to the m-ary code region code region

if and only if there is a sequence {Cn} of m-ary codes Cn with unbounded length
n for which

δ = lim
n→∞

δ(Cn) and κ = lim
n→∞

κ(Cn) .

Equivalently, the code region is the set of all accumulation points in [0, 1]× [0, 1]
of the graph of achievable pairs (δ(C), κ(C)).

(2.3.5) Theorem. (Manin’s bound on the code region.) There is a
continuous, nonincreasing function κm(δ) on the interval [0, 1] such that the
point (δ, κ) is in the m-ary code region if and only if

0 ≤ κ ≤ κm(δ) . 2

Although the proof is elementary, we do not give it. However we can easily
see why something like this should be true. If the point (δ, κ) is in the code
region, then it seems reasonable that the code region should contain as well the
points (δ′, κ) , δ′ < δ, corresponding to codes with the same rate but smaller
distance and also the points (δ, κ′), κ′ < κ, corresponding to codes with the
same distance but smaller rate. Thus for any point (δ, κ) of the code region, the
rectangle with corners (0, 0), (δ, 0), (0, κ), and (δ, κ) should be entirely contained
within the code region. Any region with this property has its upper boundary
function nonincreasing and continuous.

In our discussion of Proposition 2.3.4 we saw that κ(C) ≤ 1−Hm(s) when
correcting the expected sn symbol errors for a code of length n. Here sn is
roughly (d− 1)/2 and s is approximately (d− 1)/2n. In the present context the
argument preceding Proposition 2.3.4 leads to

(2.3.6) Theorem. (Asymptotic Hamming bound.) We have

κm(δ) ≤ 1−Hm(δ/2) . 2

Similarly, from the Gilbert-Varshamov bound 2.2.7 we derive:

(2.3.7) Theorem. (Asymptotic Gilbert-Varshamov bound.) We have

κm(δ) ≥ 1−Hm(δ) . 2

Various improvements to the Hamming upper bound and its asymptotic
version exist. We present two.
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(2.3.8) Theorem. (Plotkin bound.) Let C be an m-ary code of length n
with δ(C) > (m− 1)/m. Then

|C| ≤ δ

δ − m−1
m

. 2

(2.3.9) Corollary. (Asymptotic Plotkin bound.)
(1) κm(δ) = 0 for (m− 1)/m < δ ≤ 1.
(2) κm(δ) ≤ 1− m

m−1δ for 0 ≤ δ ≤ (m− 1)/m. 2

For a fixed δ > (m − 1)/m, the Plotkin bound 2.3.8 says that code size is
bounded by a constant. Thus as n goes to infinity, the rate goes to 0, hence
(1) of the corollary. Part (2) is proven by applying the Plotkin bound not to
the code C but to a related code C ′ with the same minimum distance but of
shorter length. (The proof of part (2) of the corollary appears below in §6.1.3.
The proof of the theorem is given as Problem 3.1.6.)

( 2.3.10) Problem. (Singleton bound.) Let C be a code in An with minimum
distance d = dmin(C). Prove |C| ≤ |A|n−d+1 . ( Hint: For the word y ∈ An−d+1, how
many codewords of C can have a copy of y as their first n− d+ 1 entries?)

( 2.3.11) Problem. (Asymptotic Singleton bound.) Use Problem 2.3.10 to
prove δ + κm(δ) ≤ 1. (We remark that this is a weak form of the asymptotic Plotkin
bound.)

While the asymptotic Gilbert-Varshamov bound shows that the code region
is large, the proof is essentially nonconstructive since the greedy algorithm must
be used infinitely often. Most of the easily constructed families of codes give
rise to code region points either on the δ-axis or the κ-axis.

( 2.3.12) Problem. Prove that the family of repetition codes produces the point
(1, 0) of the code region and the family of parity check codes produces the point (0, 1).

The first case in which points in the interior of the code region were explicitly
constructed was the following 1972 result of Justesen:

(2.3.13) Theorem. For 0 < κ < 1
2 , there is a positive constant c and a

sequence of binary codes Jκ,n with rate at least κ and

limn→∞δ(Jκ,n) ≥ c(1− 2κ) .

Thus the line δ = c(1− 2κ) is constructively within the binary code region. 2

Justesen also has a version of his construction that produces binary codes of
larger rate. The constant c that appears in Theorem 2.3.13 is the unique solution
to H2(c) = 1

2 in [0, 1
2 ] and is roughly .110 .

While there are various improvements to the asymptotic Hamming upper
bound on κm(δ) and the code region, such improvements to the asymptotic
Gilbert-Varshamov lower bound are rare and difficult. Indeed for a long time
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Nice Graph

Figure 2.1: Bounds on the m-ary code region

Another Nice Graph

Figure 2.2: The 49-ary code region

it was conjectured that the asymptotic Gilbert-Varshamov bound holds with
equality,

κm(δ) = 1−Hm(δ) .

This is now known to be false for infinitely many m, although not as yet for the
important cases m = 2, 3. The smallest known counterexample is at m = 49.

(2.3.14) Theorem. The line

κ+ δ =
5
6

is within the 49-ary code region but is not below the corresponding Gilbert-
Varshamov curve

κ = 1−H49(δ) . 2

This theorem and much more was proven by Tsfasman, Vladut, and Zink in
1982 using difficult results from algebraic geometry in the context of a broad
generalization of Reed-Solomon codes.

It should be emphasized that these results are of an asymptotic nature. As
we proceed, we shall see various useful codes for which (δ, κ) is outside the
code region and important families whose corresponding limit points lie on a
coordinate axis κ = 0 or δ = 0.


