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A.2 Polynomial Algebra over Fields

A.2.1 Polynomial rings over fields

We have introduced fields in order to give arithmetic structure to our alphabet
F . Our next wish is then to give arithmetic structure to words formed from
our alphabet. Additive structure has been provided by considering words as
members of the vector space Fn of n-tuples from F for appropriate n. Scalar
multiplication in Fn does not however provide a comprehensive multiplication
for words and vectors. In order to construct a workable definition of multipli-
cation for words, we introduce polynomials over F .

Let F be a field, and let x be a symbol not one of those of F , an indetermi-
nate. To any n-tupleindeterminate

(a0, a1, a2, . . . , an−1)

of members of F we associate the polynomial in x :polynomial

a0x
0 + a1x

1 + a2x
2 + · · ·+ an−1x

n−1.

In keeping with common notation we usually write a0 for a0x
0 and a1x for a1x

1.
Also we write 0 · xi = 0 and 1 · xi = xi. We sometimes use summation notation
for polynomials:

d∑
i=0

aix
i = a0x

0 + a1x
1 + a2x

2 + · · ·+ adx
d.

We next define F [x] as the set of all polynomials in x over F :F [x]

F [x] = {
∞∑

i=0

aix
i | ai ∈ F, ai = 0 for all but a finite number of i}.

Polynomials are added in the usual manner:

∞∑
i=0

aix
i +

∞∑
i=0

bix
i =

∞∑
i=0

(ai + bi)xi.

This addition is compatible with vector addition of n-tuples in the sense that
if the vector a of Fn is associated with the polynomial a(x) and the vector b
is associated with the polynomial b(x), then the vector a + b is associated with
the polynomial a(x) + b(x).

Polynomial multiplication is also familiar:

∞∑
i=0

aix
i ·
∞∑

j=0

bjx
j =

∞∑
k=0

ckx
k,

where the coefficient ck is given by convolution: ck =
∑

i+j=k aibj . This multi-
plication is the inevitable consequence of the distributive law provided we require
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that axi · bxj = (ab)xi+j always. (As usual we shall omit the · in multiplication
when convenient.)

The set F [x] equipped with the operations + and · is the polynomial ring in polynomial ring

x over the field F . F is the field of coefficients of F [x]. coefficients
Polynomial rings over fields have many of the properties enjoyed by fields.

F [x] is closed and distributive nearly by definition. Commutativity and additive
associativity for F [x] are easy consequences of the same properties for F , and
multiplicative associativity is only slightly harder to check. The constant poly-
nomials 0x0 = 0 and 1x0 = 1 serve respectively as additive and multiplicative
identities. The polynomial ax0 = a, for a ∈ F , is usually referred to as a con-
stant polynomial or a scalar polynomial. Indeed if we define scalar multiplication constant polynomial

scalar polynomialby α ∈ F as multiplication by the scalar polynomial α(= αx0), then F [x] with
polynomial addition and this scalar multiplication is a vector space over F , a
basis for which is the subset {1, x, x2, x3, . . . , xi, . . .}. (Note that (−1) · a(x) is
the additive inverse of the polynomial a(x).)

We therefore see that, as with the integers, the only thing that keeps F [x]
from being a field is the lack of multiplicative inverses. Every nonzero scalar
polynomial in F [x] has a multiplicative inverse, but as we shall see below no
other polynomial of F [x] does. Again like the integers, F [x] does satisfy the
cancellation law and so is an integral domain. These last two claims follow from
some results of independent interest. To prove them we first need a (once again
familiar) definition. The degree of the polynomial a(x) of F [x] is the largest degree

power of x occurring in a(x) with a nonzero coefficient. Thus a(x) =
∑d

i=0 aix
i

has degree d provided that ad is not 0. In this case we write deg(a(x)) = d.
This defines a degree for all nonzero polynomials. By convention we define the
degree of the scalar polynomial 0 to be −∞.

Every polynomial a(x) of degree d not equal to −∞ has a unique scalar
multiple whose xd term has coefficient 1. (Indeed if a(x) =

∑d
i=0 aix

i, then the
appropriate multiple is a−1

d a(x).) A polynomial whose highest degree term has
coefficient 1 is called monic. monic

(A.2.1) Proposition. Let a(x) and b(x) be polynomials of F [x], for F a
field.

(1) deg(a(x)) + deg(b(x)) = deg(a(x)b(x));
(2) deg(a(x) + b(x)) ≤ max

(
deg(a(x)),deg(b(x))

)
. 2

(A.2.2) Problem. Prove the proposition.

(A.2.3) Corollary. Let F be a field.
(1) An element of F [x] has a multiplicative inverse if and only if it has degree

0.
(2) If a(x) · b(x) = 0, then a(x) = 0 or b(x) = 0.
(3) If a(x) is nonzero and a(x)b(x) = a(x)c(x) in F [x], then b(x) = c(x).

Proof. (1) We have already mentioned that polynomials of degree 0 (i.e.,
nonzero scalars) have inverses. Suppose that b(x) is the inverse of the polynomial
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a(x). Then a(x)b(x) = 1, so examining degrees we have deg(a(x))+deg(b(x)) =
0. The two terms on the left must be either −∞ or nonnegative integers. We
see that the only possibility is that both are 0, as claimed.

(2) The righthand side has degree −∞, so at least one of the factors on the
lefthand side has degree −∞ as well.

(3) Apply (2) to the equation a(x)(b(x)− c(x)) = 0. 2

(A.2.4) Problem. Let a(x), b(x), c(x), d(x) be nonzero polynomials in F [x], for F
a field. Suppose that a(x) = b(x)c(x) and b(x) = a(x)d(x). Prove that c(x) = c is a
constant polynomial and that d(x) = c−1 is also constant.
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A.2.2 The division algorithm and roots

In the previous section we noted that, like the integers, polynomial rings over
fields are integral domains. Continuing the parallel with the integers, we note
that although in general polynomials do not have inverses, we can still perform
division with remainder terms.

(A.2.5) Theorem. ( The Division Algorithm.) Let F be a field, and let
a(x) and b(x) be two polynomials of F [x], b(x) not 0. Then there are unique
polynomials q(x) and r(x) satisfying

(1) a(x) = b(x)q(x) + r(x);
(2) deg(r(x)) < deg(b(x)). 2

This is to be compared with the standard result in the integers that for
integers a, b with b 6= 0 there are unique q and r with a = bq + r and 0 ≤
r < b. The division algorithm is absolutely essential for us, but its proof is
largely mechanical, composed of a verification that standard “polynomial long-
division” works, as expected. There is a subtlety here, however. In particular,
the division algorithm is not valid for polynomials with coefficients from the
integers rather than fields. The difficulty is not hard to see. If a(x) =

∑m
i=0 aix

i

and b(x) =
∑n

j=0 bjx
j , where m = deg(a(x)) is larger than n = deg(b(x)), then

to carry out the first step of the long-division we must subtract from a(x) the
multiple (am/bn)xm−nb(x) of b(x). This requires the ability to divide by bn in
F , and this for arbitrary nonzero bn in F , if the division algorithm is to be true
in general.

Of course, the most important case is when the remainder term r(x) is 0. If,
for nonzero polynomials a(x) and b(x) of F [x], there is a polynomial q(x) ∈ F [x]
with a(x) = b(x)q(x), then we say that b(x) is a factor of a(x), that a(x) is a factor

multiple of b(x), and that b(x) divides a(x). multiple

divides
(A.2.6) Problem. Prove Theorem A.2.5.
( Hint: For existence, subtract (amb

−1
n )xm−nb(x) from a(x), then use induction to

divide b(x) into the resulting polynomial of smaller degree than a(x). For uniqueness
subtract one such answer from the other to get 0, and from this conclude first that
the two remainder terms are equal and then that the two dividends are equal. It is
important here that F [x] is an integral domain.)

For an α in F and polynomial p(x) =
∑

i pix
i in F [x], we write p(α) for∑

i piα
i. We call this evaluation of p(x) at α, or, more loosely, substituting α evaluation

for x in p(x).

(A.2.7) Problem. Prove that if p(x) + q(x) = a(x) and p(x)q(x) = b(x) in F [x],
then p(α) + q(α) = a(α) and p(α)q(α) = b(α) in F .

An easy consequence of the division algorithm is

(A.2.8) Lemma. For p(x) a polynomial of F [x], F a field, and α ∈ F ,
p(x) = (x− α)q(x) + p(α).
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Proof. By the Division Algorithm A.2.5 there are polynomials q(x) and
r(x) such that p(x) = (x−α)q(x) + r(x) with deg(r(x)) < deg(x− a) = 1. The
polynomial r(x) must therefore be a constant r. We find the exact value of r
by substituting α for x: p(α) = (α− α)q(α) + r = 0 + r = r. 2

Notice that a particular consequence of Lemma A.2.8 is that p(α) is 0 if and
only if x− α is a factor of p(x). If this is the case, then we say that α is a rootroot

of p(x).

(A.2.9) Lemma. Let p(x) = a(x)b(x) where a(x), b(x), p(x) are polynomials
of F [x] for F a field. If α ∈ F is a root of p(x), then it is a root of either a(x)
or b(x).

Proof. 0 = p(α) = a(α)b(α). As F is a field, this forces either a(α) = 0 or
b(α) = 0. 2

(A.2.10) Proposition. Let p(x) be a nonzero polynomial in F [x], F a field,
of degree d. Then p(x) has at most d distinct roots in F .

Proof. The proof proceeds by induction on d. The result is clearly true
for d = 0, 1. Assume now that d > 1 and that the proposition is true for all
polynomials of degree less than d. Consider a polynomial p(x) of degree d. If
p(x) has no roots in F , then the proposition clearly holds for p(x) (as 0 < d).
Thus we may assume that p(x) has at least one root, α say. Then by Lemma
A.2.8 p(x) = (x− α)q(x), for some q(x) of degree d− 1 (by Proposition A.2.1).
By Lemma A.2.9 any root of p(x) other than α must also be a root of q(x).
However by induction q(x) has at most d− 1 roots. Therefore p(x) has at most
1 + (d− 1) = d roots, as claimed. This completes the induction. 2

(A.2.11) Theorem. ( Lagrange Interpolation.) Let f(x) be a polynomial
of degree d in F [x], F a field. Assume that, for distinct α1, . . . , αn of F with
d < n, we have f(αi) = βi. Then

f(x) =
n∑

i=1

βi

∏
j 6=i

x− αj

αi − αj


Proof. Let g(x) be the righthand side of the equation, a polynomial of

degree at most n − 1 with g(αi) = βi, for i = 1, . . . , n. Therefore f(x) − g(x)
has degree at most n − 1 but has at least n distinct roots α1, . . . , αn. Thus
f(x)− g(x) is the zero polynomial by Proposition A.2.10. That is, f(x) = g(x).

2

(A.2.12) Problem. Let a0, . . . , am, b0, ..., bm be elements of the field F with the ai

nonzero. Then the columns of the matrix

P =

26664
a0b

0
0 a1b

0
1 · · · amb

0
m

a0b
1
0 a1b

1
1 · · · amb

1
m

...
...

. . .
...

a0b
m
0 a1b

m
1 · · · amb

m
m

37775
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are linearly independent over F if and only if the bj are distinct. ( Hint: By Propo-
sition A.1.12 the columns of square P are linearly independent if and only if its rows
are linearly independent. Prove that a linear dependence of the rows of P corresponds
to a polynomial that has each bj as a root.)

Remark. If in P we choose ai = 1, for all i, the result is the usual matrix
of Vandermonde type. Then Problem A.2.12 asserts the well-known fact that
the determinant of a Vandermonde matrix is nonzero. The matrix P can also
be viewed as a generalization of the usual discrete Fourier transform matrix.
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A.2.3 Modular polynomial arithmetic

Starting with the infinite integral domain Z we found finite rings by doing
arithmetic modulo specific fixed integers. This gave us finite alphabets with
good arithmetic structure. We would now like to extend this by giving structure
to strings of alphabet members. This is achieved by doing arithmetic in the
integral domain F [x], F a field, modulo a specific fixed polynomial.

Let d be any positive integer. For any field F , let F [x]d be the set of all
polynomials of F [x] of degree less than d, that is,

F [x]d = {f0 + f1x+ f2x
2 + · · · + fd−1x

d−1 | f0, f1, f2, . . . , fd−1 ∈ F}.

Then with the usual scalar multiplication and polynomial addition F [x]d is a
vector space over F of dimension d. Can we define a multiplication on F [x]d
to make it into a ring? Using the division algorithm we can (in fact in several
different ways).

Let m(x) be a fixed polynomial of F [x] of degree d. By the Division Algo-
rithm A.2.5, for any polynomial p(x) there is a unique polynomial r(x) deter-
mined by:

(i) deg(r(x)) < d;
(ii) p(x)− r(x) is a multiple of m(x) in F [x].
Now we may define a multiplication on F [x]d. For a(x), b(x) in F [x]d we

define multiplication modulo m(x) by

a(x) · b(x) = r(x) (mod m(x))

where r(x) is the remainder of a(x)b(x) upon division by m(x). We write F [x]
(mod m(x)) for the set F [x]d equipped with the operations of usual polynomialF [x] (mod m(x))

addition and multiplication modulo the polynomial m(x) of degree d. It is now
routine to check that these operations satisfy the first six axioms of Section
A.1.1, giving:

(A.2.13) Lemma. For any nonconstant polynomial m(x), F [x] (mod m(x))
is a commutative ring. 2

It should be noted that Lemma A.2.13 is not a purely trivial observation, but
its subtlety is largely embedded in the original definition. The least obvious fact
is that we are able to define multiplication consistently. The division algorithm
is required to do that. Checking multiplicative associativity and distributivity
also requires some care.

For the integers we found that modular arithmetic produced a field (indeed
an integral domain) precisely when the modulus was a prime. What is the
counterpart to a prime for polynomial rings? A polynomial m(x) ∈ F [x] of
degree d (> 0) is a prime polynomial if whenever m(x) divides the productprime polynomial

a(x)b(x) of the two polynomials a(x) and b(x), then in fact it divides at least
one of a(x) and b(x).

The following theorem is the counterpart for polynomial rings over fields of
the earlier result Theorem A.1.1 for the integers.
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(A.2.14) Theorem. Let F be a finite field and m(x) a nonconstant polyno-
mial of F [x]. The following are equivalent:

(1) m(x) is prime;
(2) F [x] (mod m(x)) is an integral domain;
(3) F [x] (mod m(x)) is a field.

Proof. (3) implies (2) by the definitions, and (2) implies (3) by Exer-
cise A.1.2, since the integral domain under discussion is finite with |F |deg(m(x))

elements.
(2) implies (1): Ifm(x) divides the product a(x)b(x), then it must also divide

the product a1(x)b1(x), where a1(x) is the remainder of a(x) upon division by
m(x) and b1(x) is the remainder of b(x) upon division by m(x). Here both a1(x)
and b1(x) have smaller degree than m(x). But then we have a1(x) · b1(x) = 0
(mod m(x)), so either a1(x) = 0 (mod m(x)) or b1(x) = 0 (mod m(x)) in the
integral domain F [x] (mod m(x)). One of the remainders is 0, and m(x) divides
a(x) or b(x).

(1) implies (2): Let g(x) and h(x) be members of F [x] (mod m(x)), that
is, polynomials of degree less than that of the prime polynomial m(x). If
g(x)h(x) = 0 (mod m(x)), then the product g(x)h(x) is a multiple of m(x).
Since m(x) is prime, either g(x) or h(x) is a multiple of m(x). That is, g(x) = 0
(mod m(x)) or h(x) = 0 (mod m(x)).

The theorem is in fact true without the assumption that |F | is finite, a fact
used here only in the proof that (2) implies (3). A strengthened version of the
theorem will appear later as Theorem A.2.22.

Related to the modular arithmetic statement

p(x) = q(x) (mod m(x)) in F [x] (mod m(x))

is the modular congruence statement modular congruence

p(x) ≡ q(x) (mod m(x)) in F [x] ,

which, by definition, says that

p(x)− q(x) = f(x)m(x) ,

for some polynomial f(x) ∈ F [x]. That is, p(x) and q(x) are congruent modulo
m(x) precisely when their difference is a multiple of m(x). Equivalently, p(x)
and q(x) have the same remainder upon division by m(x).

We are familiar with congruence statements over the integers, where, for
instance, the even integers are precisely those integers congruent to 0 modulo 2
and the odd integers consist of those integers congruent to 1 modulo 2. Arith-
metic in the integers modulo 2, Z2, can be interpreted as making statements
about the relationship between the set of even integers (represented by 0) and
the set of odd integers (represented by 1). For instance, we have

“The sum of an odd integer and an even integer is odd.”
“The product of two odd integers is odd.”
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Similar statements hold for arithmetic done modulo any integer:

“The product of two numbers each 2 more than a multiple of 3
is a number that is 1 more than a multiple of 3.”

That is, the product of two numbers, each congruent to 2 modulo 3 is a number
congruent to 1 modulo 3.

Polynomial modular arithmetic has a similar relationship to polynomial
modular congruences, as the following problem demonstrates.

(A.2.15) Problem.
Prove that, if a1(x) ≡ a(x) (mod m(x)) and b1(x) ≡ b(x) (mod m(x)), then

(a) a1(x) + b1(x) ≡ a(x) + b(x) (mod m(x)); and
(b) a1(x)b1(x) ≡ a(x)b(x) (mod m(x)).

We see that the statement

a(x) + b(x) = c(x) (mod m(x))

is a special case of

a(x) + b(x) ≡ c(x) (mod m(x)) ;

and, similarly,
a(x)b(x) = c(x) (mod m(x))

is a special case of
a(x)b(x) ≡ c(x) (mod m(x)) .

With this in mind, we will usually use the symbol = in place of ≡ , abusing
our notation by writing

a(x)b(x) = c(x) (mod m(x))

even when the polynomials a(x), b(x), and c(x) have degree larger than that of
m(x).
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A.2.4 Greatest common divisors and unique factorization

We introduce the important concept of the greatest common divisor of a pair
(or set) of polynomials.

(A.2.16) Theorem. In F [x], F a field, let a(x) and b(x) be two polynomials
not both equal to 0. Then there is a unique monic polynomial g(x) in F [x] such
that:

(i) a(x) and b(x) are multiples of g(x);
(ii) if n(x) divides both a(x) and b(x) then g(x) is a multiple of n(x).

Indeed g(x) is the unique monic polynomial of minimal degree in the set

G = { s(x)a(x) + t(x)b(x) | s(x), t(x) ∈ F [x]} .

Proof. Choose in the set G a monic polynomial g(x) = s(x)a(x) + t(x)b(x)
of smallest degree. This determines g(x) uniquely, since if g∗(x) = s∗(x)a(x) +
t∗(x)b(x) were a different monic polynomial in G of the same degree as g(x),
then

g(x)− g∗(x) =
(
s(x)− s∗(x)

)
a(x) +

(
t(x)− t∗(x)

)
b(x)

would have a monic multiple of smaller degree that still belonged to G.
If n(x) divides a(x) and b(x), then it certainly divides g(x) = s(x)a(x) +

t(x)b(x), giving (ii).
It remains to check (i). By the Division Algorithm A.2.5 there are polyno-

mials q(x) and r(x) with a(x) = q(x)g(x) + r(x) and deg(r(x)) < deg(g(x)).
Here

r(x) = a(x)− q(x)g(x)
= 1 · a(x)− q(x)(s(x)a(x) + t(x)b(x))
=

(
1− q(x)s(x)

)
a(x) +

(
− q(x)t(x)

)
b(x) .

Therefore r(x) is a member of G with smaller degree than that of g(x). Our
choice of g(x) now forces r(x) = 0. Thus a(x) = q(x)g(x) is a multiple of g(x),
as desired. Similarly, b(x) is a multiple of g(x), giving (i). 2

The polynomial g(x) of Theorem A.2.16 is called the greatest common divisor greatest common divisor

of a(x) and b(x). In this case we often write g(x) = gcd(a(x), b(x)). Notice
that, for nonzero a(x), gcd(a(x), 0) is the unique monic scalar multiple of a(x).
If a(x) = b(x) = 0, then g(x) = 0 satisfies (1) and (2) trivially, so we set
gcd(0, 0) = 0 (even though it is not monic).

If gcd(a(x), b(x)) = 1, we say that a(x) and b(x) are relatively prime. We relatively prime

have immediately

(A.2.17) Corollary. The polynomials a(x), b(x) ∈ F [x] are relatively prime
if and only if there are s(x), t(x) ∈ F [x] with s(x)a(x) + t(x)b(x) = 1. 2

The corollary implies that

s(x)a(x) = 1 (mod b(x)) ,
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that is, s(x) is the multiplicative inverse of a(x) modulo b(x); and we sometimes
then even write

s(x) = a(x)−1 =
1

a(x)
(mod b(x)) .

To repeat, if a(x) and b(x) are relatively prime, then we can invert a(x) modulo
b(x). Indeed a(x) is invertible modulo b(x) if and only if a(x) and b(x) are
relatively prime.

An argument similar to that of Theorem A.2.16 gives the more general and
fundamental result

(A.2.18) Theorem. Let F be a field and

S = {fi(x) | i ∈ I}

a (possibly infinite) set of polynomials in F [x], not all equal to 0. Consider the
set

G =

{∑
i∈I

aifi(x) | ai ∈ F

}
Here, when the index set I is infinite, it should be understood that all but a finite
number of the ai must be 0 in any particular sum. Then

(1) G contains a unique monic polynomial g(x) of minimal degree;
(2) g(x) has the two properties:

(i) every member of S is a multiple of g(x);
(ii) if n(x) divides every member of S then g(x) is a multiple of n(x). 2

The polynomial g(x) of Theorem A.2.18 is called the greatest common divisorgreatest common divisor

of the set of polynomials S, and we write g(x) = gcd(S). By convention, the
gcd of any empty set of polynomials is 1, and again gcd({0}) = 0.

(A.2.19) Problem. Let F be a field and

S = {f1(x), . . . , fi(x), . . . , fm(x)}

a finite set of polynomials in F [x], not all equal to 0.

Set

L = {f(x) | f(x) is a multiple of fi(x), for i = 1, . . . ,m} ,

and let l(x) be the greatest common divisor of the set L. Prove that l(x) has the two
properties:

(i) l(x) is a multiple of fi(x) for i = 1, . . . , n;

(ii) if n(x) is a multiple of fi(x) for i = 1, . . . , n, then n(x) is a multiple of l(x).

This polynomial l(x) is called the least common multiple of S, written lcm(S).least common multiple

(A.2.20) Lemma. Let F be a field, and let p(x), q(x),m(x) ∈ F [x]. Sup-
pose m(x) divides the product p(x)q(x) but m(x) and p(x) are relatively prime,
gcd(m(x), p(x)) = 1. Then m(x) divides q(x).
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Proof. By Corollary A.2.17 there are polynomials s(x) and t(x) such that
1 = s(x)m(x) + t(x)p(x). Therefore

q(x) = 1 · q(x)

=
(
s(x)m(x) + t(x)p(x)

)
q(x)

=
(
s(x)q(x)

)
m(x) + t(x)

(
p(x)q(x)

)
.

Here m(x) divides both terms of the righthand side, so m(x) divides q(x). 2

Let m(x) be a polynomial in F [x] of degree d > 0. Then m(x) is reducible reducible

in F [x] if there are polynomials a(x) ∈ F [x] with 0 < deg(a(x)) < d and
b(x) ∈ F [x] with 0 < deg(b(x)) < d such that m(x) = a(x)b(x). That is, m(x)
is reducible if it can be written as a product of polynomials of smaller degree.
Otherwise m(x) is irreducible. (Constant polynomials are neither reducible nor irreducible

irreducible.) If irreducible m(x) = a(x)b(x), then one of the factors is a nonzero
constant, say a(x) = a, and the other factor b(x) = a−1m(x) has the same
degree as m(x).

Recall that in Section A.2.3 we defined m(x) to be prime if whenever m(x)
divides the product a(x)b(x), it must in fact divide one of a(x) and b(x). If
prime m(x) = a(x)b(x), then m(x) must divide either a(x) or b(x); so they can
not both have degree less than that of m(x). Thus every prime is irreducible.
We use Lemma A.2.20 to prove the converse.

(A.2.21) Lemma. In F [x] with F a field, every irreducible polynomial is
prime.

Proof. Suppose irreducible m(x) divides the product a(x)b(x). If we have
gcd(m(x), a(x)) = 1, then by Lemma A.2.20 the polynomial b(x) is divisible by
m(x), as required. So we may assume that m(x) and a(x) are not relatively
prime. As m(x) is irreducible, its divisor gcd(m(x), a(x)) 6= 1 must therefore be
c ·m(x), for some constant c. In particular, m(x) = c−1 gcd(m(x), a(x)) divides
a(x). 2

We are now in a position to give the strengthened version of Theorem A.2.14.

(A.2.22) Theorem. Let F be a field and m(x) a nonconstant polynomial of
F [x]. The following are equivalent:

(1) m(x) is irreducible;
(2) F [x] (mod m(x)) is an integral domain;
(3) F [x] (mod m(x)) is a field.

Proof. By Lemma A.2.21 the present (1) is equivalent to that of Theorem
A.2.14.

In Theorem A.2.14 we assumed that the field F was finite; but, as noted
there, the assumption was only used in the proof that (2) implies (3). In par-
ticular from Theorem A.2.14 we know that (3) implies (2) and (2) implies (1).
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We now prove that (1) implies (3), giving the theorem. Let f(x) ∈ F [x]
of degree less than that of m(x). This implies that f(x) and irreducible m(x)
are relatively prime. There exist polynomials s(x) and t(x) with f(x)s(x) +
m(x)t(x) = 1. Therefore f(x)s(x) = 1 (mod m(x)). If g(x) is the remainder
of s(x) upon division by m(x), then again f(x)g(x) = 1 in F [x] (mod m(x)).
That is, f(x) is invertible in F [x] (mod m(x)), as required for (3). 2

In the integers, we have unique factorization into primes. To be precise,
every nonzero integer is plus or minus a product of positive prime numbers,
this factorization being unique up to the order in which the primes appear.
Essentially the same result is true for polynomial rings over fields.

(A.2.23) Theorem. (Unique factorization of polynomials.) Let F be
a field, and f(x) a nonzero member of F [x]. Then f(x) can be written as a
product f(x) = c

∏n
i=1 fi(x) of a nonzero constant c and a collection of monic

irreducible polynomials fi(x). This factorization is unique up to the order in
which the irreducibles fi(x) are taken. 2

We sketch a proof with the details left to Problem A.2.24. The existence of
factorizations into irreducibles is easy to see, as is the uniqueness of factorization
into primes. Since, by Lemma A.2.21, in this situation all irreducibles are
primes, the result follows.

(A.2.24) Problem. Prove Theorem A.2.23.
( Hint: Deal first with existence. Every nonzero polynomial f(x) is a product

cg(x) with c a nonzero constant and g(x) monic, so assume that f(x) is monic. If
f(x) is not irreducible, then it can be factored as a product g1(x)g2(x) of two monic
polynomials of smaller degree. Either they are irreducible or they can be split further
as products. Proceed in this fashion; use induction. As the degrees decrease at each
stage, this process must stop with f(x) written as a product of irreducible polynomials.

Now consider uniqueness. Let f(x) = d
Qm

j=1 gj(x) be a second factorization into
monic irreducibles. Then c = d is the coefficient of the highest degree term. The monic
irreducible f1(x) divides the product g1(x)(

Qm
j=2 gj(x)). By Lemma A.2.21 irreducibles

are prime, so either f1(x) = g1(x) or f1(x) divides
Qm

j=2 gj(x). In the second case
f1(x) divides

Qm
j=2 gj(x) = g2(x)(

Qm
j=3 gj(x)); so as before either f1(x) equals g2(x) or

it divides
Qm

j=3 gj(x). Proceeding in this fashion, f1(x) is equal to one of the irreducible
monic factors gj(x); use induction again. A similar argument shows that f2(x) is also
equal to one of the gj(x), and indeed that each fi(x) is equal to one of the gj(x).
Compare degrees to conclude finally that n = m.)

(A.2.25) Problem. Let

S = {f1(x), ..., fi(x), ..., fm(x)}

be a finite set of polynomials, as in Problem A.2.19 above. Suppose there are constants
ci, distinct monic irreducible polynomials pj(x), and nonnegative integers ei,j, 1 ≤ j ≤
n, such that, for each i,

fi(x) = ci

nY
j=1

pj(x)
ei,j .

For each j, let dj = maxi(ei,j). Prove that lcm(S) =
Qn

j=1 pj(x)
dj .
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(A.2.26) Problem. For the polynomial p(x) =
Pk

i=0 pix
i ∈ F [x], define the formal

derivative of p(x), denoted p ′(x), by p ′(x) =
Pk

i=1 ipix
i−1. Prove the usual product formal derivative

rule for derivatives: (a(x)b(x))′ = a(x)b ′(x) + a ′(x)b(x).

(A.2.27) Problem. Consider the polynomial ring F [x], F a field; and let α ∈ F be
a root of p(x) ∈ F [x]. Prove that (x−α)2 divides p(x) if and only if x−α divides the
formal derivative p ′(x).

(A.2.28) Problem. A polynomial f(x) is square free in F [x] if there are no square free
nonconstant polynomials g(x) ∈ F [x] for which g(x)2 divides f(x). Prove that in F [x],
the polynomial f(x) is square free if and only if we have gcd(f(x), f ′(x)) = 1.

In particular, over F2 all derivatives are squares.


