Introduction to Lie Algebras

J.I. Hall

8 December 2017



ii



Contents

[1__Introductionl

Alo D

1.2 Typesofalgebras|. . . .. ... ... .. ... 0.
[1.3  Jordan algebras|. . . . . . ... oo
|1.4  Lie algebras and linear representation| . . . . .. ... ... ...

Examples of Lie algebras|

3

2.1 Abelian algebras| . . . . . ... o oo
2.2 _Generators and relations| . . . . . . . ...,
2.3 Matrix algebras| . . . . . ... oo
[2.3.1 Standard subalgebras of gl, (K)| . . . . ... ... .....
[2.3.2 Lie algebras from forms| . . . . . . ... ... ... ....
2.4 Derivations] . . . . . . . . ...
[2.4.1  Derivations of polynomial algebras| . . . . . .. ... ...
[2.4.2  Derivations of nonassociative algebras| . . . . .. ... ..
2.5 New algebras fromoldf . . . . . .. ... ... ... ........
2.5.1 FExtensions . ... ... ... o L.

ie groups
3.1 Representation theory as spectral theory]. . . . . . . . ... ...
13.2  Lie groups and Hilbert’s Fitth Problem|. . . . . . ... ... ...
I;s,;‘i :‘zszlllsz llli!l l l}s s:i!l!;!llll:il .........................
3.4 One-parameter subgroups| . . . . . . .. ... .. ... ... ...
3.5 The tangent space at the identity|. . . . . . . ... ... ... ..

il



iv CONTENTS
3.6 Equivalence of representation| . . . . .. ... ... 37
BT Problems . . . . . oo 39

I Classificationl 41

4 Lie Algebra Basics| 43
4.1 Solvable and nilpotent Lie algebras| . . . . . . .. .. .. ... .. 43
4.2 Representation and modules|. . . . . ... .. ... .. 46
4.3 Semidirect products| . . . ... ... L oo 48
M4 Problems . . . . . . oo 49

[ The Cartan decomposition| 51
b.1  Engel’s Theorem and Cartan subalgebras . . . ... .. ... .. 51
5.2 Weight spaces and vectors| . . . . . . .. .. ... ... ... ... 55
b.3  The Cartan decomposition|. . . . . . .. ... ... ... ..... 58
p.4 Killing forms| . . ... .. ... ... . 60
BE5 _Problems . . . . oo 63

|6 Semisimple Lie Algebras: Basic Structure| 65
[6.1 Toral subalgebras|. . . . ... ... ... .. ......... ... 66
62 LK) Swbalgobras . . . o o o oo e 69
[6.3 Rootsystems| . . . . ... ... ... .. ... ... ... 70

|7 Classification of root systems| 75
7.1 Abstract root systems| . . . . . ... ..o oL 75
[7.2  Graphs and diagrams|. . . . . . ... .. ... 0oL 80
7.3 Existence of root systems| . . . . . ... ... ... ... ... 83

[7.3.1 The classical root systems—A;, B;, C;, Dy . . . . . .. .. 83
T332 Bd . - - o 84
e 86
o 86
= 87
e P 87
[7.4  The Cartan matrix and uniqueness I| . . . . . . . ... ... ... 88

I8  Semisimple Lie Algebras: Classification| 91
BI Reduction] . . .« « o v oot 92
8.2 The Cartan matrix and uniqueness II| . . . . ... ... ... .. 93
8.3 Uniqueness| . . . . .. . ... .. 95
............................... 99

8.4.1 s (K) . . oo oo 99
42 Spaces with forms| . . . . . .. .. ... .. ... ..... 100
............................ 106
844 goand s .. ... 107

8.5 Semisimple algebras V: Classification| . . . . . . .. .. ... ... 108




CONTENTS v

B6 _Problems . . . . o v oo 109
(III  Important results and constructions| 111
19 PBW and Free Lie Algebras| 113

9.1 The Poncare-Birkhoff-Witt Theoreml. . . . . ... ... ... .. 115

9.2 Consequences| . . . . . ... ... ... ... 119

9.3 Free Lie algebras| . . . . ... ... 0000000 120
10 KM and Serre 123

[10.1 Kac-Moody Lie algebras| . . . ... ... .. ... .. .. ... .. 124

10.2 Generalized Cartan matrices 127

110.3 The Weyl group of a generalized Cartan matrix| . . . . . ... .. 129

[10.4 Serre’s Theoreml . . . . . . . . . . .. ... ... ... 130
IV Appendices| 133
[A"Formsl 135

AT Basicd . . . oo 135

IA.2 Orthogonal geometryl. . . . . . . . ... ... ... ... ..... 136

|A.3 Hyperbolic orthogonal spaces| . . . . .. ... .. .. ... .... 139

[A.4 Canonicalforms . ... .. ... ... ... ... .. ... ... 140
IB Finite Groups Generated by Reflections| 143

IB.1 Coxeter graphs| . . . . . . ... . oo 143

IB.2° Some finite groups generated by reflections| . . . . .. ... ... 146

[B.2.1 'The symmetric group and A . . . . ... ... ... ... 146
2.2 e +1-monomial groups an | 147

2.3 e even monomial groups an 1 147




vi

CONTENTS



Part 1

Introduction






Chapter

Introduction

1.1 Algebras

Let K be a field. A K-algebra (xA,u) is a (left) K-space A equipped with a
bilinear multiplication. That is, there is a K-space homomorphism multiplication
p: A®g A — A. We often write ab in place of u(a ® b). Also we may write A
or (A, ) in place of (xA, 1) when the remaining pieces should be evident from
the context.

If A is a K-algebra, then its opposite algebra A°P has the same underlying
vector space but its multiplication u°P is given by puP(z ® y) = u(y ® z).

(1.1). LEMMA. The map pu: A®g A— A is a K-algebra multiplication if and
only if the adjoint map

ad: z— ad, given by adpa=zxa
is a K-vector space homomorphism of A into Endg(A) . a

IfV ={wv; |i€I}isalkK-basis of A, then the algebra is completely described
by the associated multiplication coefficients or structure constants cfj € K given

by
§ : k
'UZ"U]' = Cijvk s
kel

for all 4, j.

We may naturally extend scalars from K to any extension field E. Indeed
E ®k A has a natural E-algebra structure with the same multiplication coeffi-
cients for the basis V.

Going the other direction is a little more subtle. If the E-algebra B has a
basis V for which all the cfj belong to K, then the K-span of the basis is a K-
algebra A for which B = E®k A. In that case we say that A is a K-form of the

3



4 CHAPTER 1. INTRODUCTION

algebra B. In many cases the E-algebra B has several pairwise nonisomorphic
K-forms.

Various generalizations of the above are available and often helpful. The
extension field E of K is itself a special sort of K-algebra. If C is an arbitrary
K-algebra, then C ®g A is a K-algebra, with opposite algebra A ®x C. The
relevant multiplication is u = pc ® pa:

(1 ® a1) ® (c2 ® az)) = pcle1 @ c2) ®@ palar @ az).

We might also wish to consider R-algebras for other rings R with identity.
For the tensor product to work reasonably, R should be commutative. A middle
ground would require R to be an integral domain, although even in that case
we must decide whether or not we wish algebras to be free as R-module.

Of primary interest to us is the case R = Z. A Z-algebra is a free abelian
group (that is, lattice) L = @, ; Zv; provided with a bilinear multiplication pz
which is therefore completely determined by the integral multiplication coeffi-
cients cfj. From this we can construct K-algebras Lx = K ®z L for any field K,
indeed for any K-algebra. For instance C ®zMat,,(Z) is the K-algebra Mat, (C)
of all n X n matrices with entries from the K-algebra C.

Suppose for the basis V of the K-algebra A all the cfj are integers—that is,
belong to the subring of K generated by 1. Then the Z-algebra L = @, ; Zv;
with these multiplication coefficients can be viewed as a Z-form of A (although
we only have its quotient by char(K) as a subring of A). The original K-algebra
A is then isomorphic to L.

1.2 Types of algebras

As dimg (A @k A) > dimg(A), every K-space admits K-algebras. We focus on
those with some sort of interesting additional structure. Examples are associa-
tive algebras, Jordan algebras, alternative algebras, composition algebras, Hopf
algebras, and Lie algebras—these last being the primary focus of our study. (All
the others will be discussed at least briefly.)

In most cases these algebra types naturally form subcategories of the additive
kAlg of K-algebras, the maps ¢ of Homajg(A, B) being those linear transforma-
tions ¢ € Homg (A, B) with p(zy) = p(z)p(y) for all x,y € A. As the category
kAlg is additive, each morphism has a kernel and image, which are defined as
usual and enjoy the usual properties.

A subcategory will often be defined initially as belonging to a particular
variety of K-algebras. For instance, the associative K-algebras are precisely
those K-algebras satisfying the identical relation

(ry)z = z(y2).

Alternatively, the associative K-algebras are those whose multiplication map p
satisfies

pp(z @ y) @ z) = plr @ ply @ 2)).
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As the defining identical relation is equivalent to its reverse (zy)z = z(yx), the
opposite of an associative algebra is also associative.

Similarly, the subcategory of alternative K-algebras is the variety of K-
algebras given by the weak associative laws

2(zy) = (wa)y and y(az) = (yo)a.

The opposite of an alternative algebra is also alternative.
Varietal algebras like these have nice local properties:

(i) A K-algebra is associative if and only if all its 3-generator subalgebras are
associative.

(ii) A K-algebra is alternative if and only if all its 2-generator subalgebras are
alternative.

The associative identity is linear in that each variable appears at most once
in each term, while the alternative identity is not, since x appears twice in each
term. The linearity of an identity implies that it only need be checked on a
basis of the algebra to ensure that it is valid throughout the algebra. That is,
there are appropriate identities among the various cfj that are equivalent to the
algebra being associative. (Exercise: find them.) This implies the (admittedly
unsurprising) fact that extending the scalars of an associative algebra produces
an associative algebra. It is also true that extending the scalars of an alternative
algebra produces another alternative algebra, but that needs some discussion
since the basic identity is not linear. (Exercise.)

The basic model for an associative algebra is Endg (V') for some K-space
V. Indeed, most associative algebras (including all with an identity) are iso-
morphic to subalgebras of various Endg (V). (See Proposition [(1.3)]) For finite
dimensional V' we often think in matrix terms by choosing a basis for V' and
then using that basis to define an isomorphism of Endg (V) with Mat,, (K) for
n = dimg(V).

Of course, every associative algebra is alternative, but we now construct the
most famous models for alternative but nonassociative algebras. If we start with
K = R, then we have the familiar construction of the complex numbers as 2 x 2
matrices: for a,b € K we set

(“’b):<—ab 2)

with multiplication given by

a b c d\ ac — bd ad + be
b a —d ¢ )]\ =bc—ad —bd+ac

and conjugation given by

(32)-(2)

As R is commutative and conjugation is trivial on R, these can be rewritten:
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For a,b € K and a — a an antiautomorphism of K, we set

a b
(avb)K = ( _ a ) )
a b c d\ _ acf—Jbi da + be
-b a —-d ¢ ) \ —cb—ad -bd+ca

(31)-()

This then gives us the complex numbers C as the collection of all pairs (a, b)r
of real numbers. Feeding the complex numbers back into the machine produces
Hamilton’s quaternions H as all pairs (a,b)c with the multiplication and the
conjugation antiautomorphism described. As C is commutative the quaternions
are associative, but they are no longer commutative.

Finally with K = H, the resulting @ of all pairs (a,b)y is the octonions of
Cayley and Graves. The octonions are indeed alternative but not associative,
although this requires checking. Again conjugation is an antiautomorphism.

In each case, the 2 x 2 “scalar matrices” are only those with b = 0 and
a = a € R, so we have constructed R-algebras with respective dimensions

S

with

and

SN QL

A quadratic form on the K-space V' is a map ¢: V — K for which
q(azx) = a*q(x)

whenever a € K and « € V' and also the associated map b: V x V — K given
by polarization

b(z,y) = q(r +y) —q(x) — q(y)

is a nondegenerate bilinear form. (See Appendix [A| for a brief discussion of
quadratic and bilinear forms.)

The R-algebras R, C, H, and O furnish examples of composition R-algebras.
A composition algebra is a K-algebra A with multiplicative identity, admitting
a nondegenerate quadratic form §: A — K that is multiplicative:

5(x)é(y) = d(zy),

for all z,y € A. The codimension 1 subspace 1+ consists of the pure imaginary
elements of A, and (in characteristic not 2) the conjugation map al + b = al —b,
for b € 11, is an antiautomorphism of A whose fixed point subspace is K1.

In the above R-algebras the form ¢ is given by d(x)1 = zZ:

(5 0)(52)-wrn(}0)
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In O specifically, for a,b,c,d, e, f,g,h € R, we find

(5(((&, b)R7 (Ca d)R)(C7 ((6, f)]Ra(ga h)R)C)H = 6(0‘5 b7 c, dv €, f7 g, h) =
=a’+ b+ +d*+ e+ P+ g+ R

Thus in O (and so its subalgebras R, C, and H) all nonzero vectors have nonzero
norm.

An immediate consequence of the composition law is that an invertible el-
ement of A must have nonzero norm. As §(z)l = zZ in composition algebras,
the converse is also true. Therefore if 0 is the only element of the composition
algebra A with norm 0, then all nonzero elements are invertible and A is a divi-
sion algebra. Prime examples are the division composition R-algebras R, C, H,
and Q. The following remarkable theorem of Hurwitz shows that this situation
is typical

(1.2). THEOREM. (HURwWITZ® THEOREM) If A is a composition algebra over
K, then dimg(A) is 1, 2, 4, or 8. ogd

If the composition K-algebra A is not a division algebra, then it is called split.
It turns out that a split composition algebra over K is uniquely determined up
to isomorphism by its dimension. In dimension 1, the algebra is K itself, always
a division algebra. In dimension 4, a split composition K-algebra is always
Mato(K) with § = det, and the diagonal matrices provide a split subalgebra of
dimension 2.

Composition algebras of dimension 8 are called octonion algebras. The orig-
inal is the real division algebra O presented above and due to Graves (1843,
unpublished) and Cayley (1845) [SpV00, p. 23].

A split octonion algebra O°P(K) over any field K is provided by Zorn’s vector

matrices [Zor31]
m— b
N d

with a,d € K and 5, ¢ € K3. Multiplication is given by

b Ty _ ar+b-7 agﬂ—wg n 40 cxZz

d 7w xC+dZ C-y+dw —-bxy 0
using the standard dot (inner) and cross (outer, exterior, vector) products of
3-vectors. The associated norm is

o

[STERS]

§(m)=ad—b-¢.

For any ¢ with ¥+ ¥ = k # 0 the subalgebra of all

- a bv
M=\ k% d

is a copy of the split quaternion algebra Maty(F') with norm the usual determi-
nant.
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Zorn (and others) gave a slightly different version of the vector matrices,
replacing our entry ¢ with its negative. This gives the more symmetrical norm
form §(m) = ad + b- @ but makes the connection with standard matrix multi-
plication and determinants less clear.

Extending coefficients in a composition algebra produces a composition alge-
bra (although this is more than an exercise). For every composition K-algebra
O, there is an extension [E of degree at most 2 over K with E ®k O a split com-
position E-algebra. In particular every composition algebra over algebraically
closed E is split and so unique up to isomorphism. The split algebra over C
(for instance given by Zorn’s vector matrices) has two isomorphism classes of
R-forms—the class of the split algebra O°P(R) and that of the Cayley-Graves
division algebra Q.

1.3 Jordan algebras

As mentioned above, the basic models for associative algebras are the endomor-
phism algebras Endg (V') for some K-space V' and the related matrix algebras
Mat,, (K). While Jordan and Lie algebras both have abstract varietal definitions
(given below for Jordan algebras and in the next section for Lie algebras), they
are first seen in canonical models coming from Endg (V).

We start with the observation that any pure tensor from V ® V is the sum
of its symmetric and skew-symmetric parts:

1 1
vOw=sWRwtwe )+ (VW - W)

In 1933 P. Jordan [JyNW34] initiated the study of the K-algebra A" =
(A, ut) = (A, o) that is the associative K-algebra A equipped with the Jordan
product

1
u*(x®y)=xoy=§(xy+yx)-

This requires, of course, that the characteristic of the field K not be 2. We
could also consider the algebra without the factor of %, but we keep it for various
reasons—in particular zox = 1(zz+az2) = 2z = 2? and loz = L (lz+21) = z.
The model for all Jordan algebras is then EndE(V), the vector space of all
K-endomorphisms of V' equipped with the Jordan product.
Clearly the algebra End;f (V) is commutative. Not so obvious is the fact that
we also have the identity

(zoz)o(yor)=((woz)oy)o,

for all z,y € Endf (V). (Exercise.)
We are led to the general, varietal definition: the K-algebra A is a Jordan
algebra if it is commutative and satisfies the identical relation

2?(yr) = (¢*y)z.



1.4. LIE ALGEBRAS AND LINEAR REPRESENTATION 9

The canonical models are End;f (V') and so also Mat;! (K) (in finite dimension).

Any subspace of End%(V) that is closed under the Jordan product is cer-
tainly a Jordan subalgebra. Especially if 7 is an automorphism of Endg(V),
then its fixed-point-space is certainly closed under the Jordan product and so
is a subalgebra. More subtly, if 7 is an antiautomorphism of Endg(V), then it
induces an automorphism of EndE(V) whose fixed points are again a Jordan
subalgebra.

For instance, in the K-algebra Mat, (K) the transpose map is an antiauto-
morphism, so the symmetric matrices from Mat,, (K) form a Jordan subalgebra
of Mat,} (K). More generally, if A is a K-algebra with an antiautomorphism
a — a fixing K, then we can try the same trick with the K-algebra Mat,, (A).
The transpose-conjugate map

71 (aiz) v (@)

is then an antiautomorphism of Mat,,(A) (Exercise), and so the associated fixed
space of Hermitian matrices

H,(A) = {M € Mat,(A) | M =M"}

is closed under the Jordan product
1
MoN = 5(MN+NM).

If A is associative then we have a Jordan algebra. Indeed this with A = C
and K = R was the original motivation for the physicist Jordan: in quantum
mechanics the observables for the Hilbert space C™ are characterized by the
hermitian matrices H, (C), an R-space that is not closed under the standard
matrix product but is a real Jordan algebra under the Jordan product.

When A is not associative, there is no reason to assume that this gives
H,,(A) the structure of an (abstract) Jordan algebra. But if we choose A to be
an octonion algebra over K and let n < 3, then this is in fact the case. (Recall
that the alternative law is a weak version of the associative law, so this is not
completely unreasonable.)

For the octonion K-algebra O, the Jordan algebra H3(O) is called an Albert
algebra. Each matrix of H3(O) has the shape

B
Y
c

IR
2 > Q

with a,b,c € K (the fixed field of conjugation in O) and «, 8,7 € O. Thus the
K-dimension of the Albert algebra H3(O) is 3+ 3 x 8 = 27.
1.4 Lie algebras and linear representation

In the previous section we only discussed the symmetric part of the tensor
decomposition displayed at the beginning of the section. But even at the time
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of Jordan, the corresponding skew part had been studied for years, starting with
the Norwegian Sophus Lie and soon followed by Killing and Cartan (see [Bo01]
and [Haw(00]). If A is an associative algebra, then we define a skew algebra
A =(A,u7) = (A,[]) by furnishing A with the multiplication

p(r®ey)=[z,y] =2y —yr.

(Note that the scaling factor % does not appear.) The algebras A~ and in
particular Endg (V) and Mat,, (K) are the canonical models for Lie algebras
over K.

In a given category, a representation of an object M is loosely a morphism of
M into one of the canonical examples from the category. So a linear represen-
tation of a group M is a homomorphism from M to some GLk(V). With this
in mind, we will say that a linear representation of an associative algebra A, a
Jordan algebra J, and a Lie algebra L (all over K), respectively, is a K-algebra
homomorphism ¢ belonging to, respectively, some

Hom, alg(A, Endg (V)), Homyag(J, End%(V)) . Homyaig(L,Endg (V)),
which in the finite dimensional case can be viewed as
Hom, ag (A, Mat,,(K)), Homgae(J, Mat;" (K)), Hom,age(L, Mat;, (K)).

The corresponding image of ¢ is then a linear associative algebra, linear Jordan
algebra, or linear Lie algebra, respectively. The representation is faithful if its
kernel is 0. The underlying space V or K" is then an A-module which carries
the representation and upon which the algebra acts.

It turns out that in each of these categories, many of the important examples
are linear. For instance

(1.3). PROPOSITION. FEwvery associative algebra with a multiplicative identity
element is isomorphic to a linear associative algebra.

PrROOF. Let A be an associative algebra. For each x € A, consider the map
ad: A — Endg(A) of Lemma given by x — ad, where ad, a = za as
before. That lemma states that ad is a vector space homomorphism.

Thus we need to check that multiplication is respected. But the associative
identity

(zy)a = z(ya)

can be restated as
adyya = ad, ady a,

for all z,y,a € A. Hence ad,, = ad, ad, as desired.
The kernel of ad consists of those = with xa = 0 for all a € A. In particular,
the kernel is trivial if A contains an identity element. o

It is clear from the proof that the multiplicative identity plays only a small
role—the result should and does hold in greater generality. But for us the main
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message is that the adjoint map is a representation of every associative algebra.
The proposition should be compared with Cayley’s Theorem which proves that
every group is (isomorphic to) a faithful permutation group by looking at the
regular representation, which is the permutation version of adjoint action.

What about Jordan and Lie representation? Of course we still have not
defined general Lie algebras, but we certainly want to include all the subalgebras
of Endy (V) and Mat,, (K).

As above, the multiplication map p of an arbitrary Lie algebra A = (A4, [+, ‘])
will be written as a bracket, in deference to the commutator product in an
associative algebra:

wz @ y) = [z,y].
In the linear Lie algebras Endy (V') and Mat,, (K) we always have
[z,2] =20 — 22 =0,
so we require that an abstract Lie algebra satisfy the null identical relation
[x,2] =0.

This identity is not linear, but we may “linearize” it by setting z = y 4+ z. We
then find

0=[y+zy+z]=[yyl +yz+[2y +[z2] =y 2] + [z,

giving as an immediate consequence the linear skew identical relation

[y,z] = _[Z’y] :

If charK # 2, these two identities are equivalent. (This is typical of linearized
identities: they are equivalent to the original except where neutralized by the
characteristic.)

Our experience with groups and associative algebras tells us that having
adjoint representations available is of great benefit, so we make an initial hopeful
definition:

A Lie algebra is an algebra (x L, [-,-]) in which all squares [x,x] are
0 and for which the K-homomorphism ad: L — Endy (L) is a rep-
resentation of L.

Are Endg (V) and Mat,, (K) Lie algebras in this sense? Indeed they are:

ady ady a = adg(ya — ay)

= z(ya — ay) — (ya — ay)z
= rya — ray — Yyar + ayx
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hence

lad,, adyle = (ad, ad, —ad, ady)a
= (zya — zay — yaxr + ayzx) — (yra — yar — xay + axy)
= (zya — axy) — (yra — ayx)
= [zy,a] = [yz, d]
= [zy —yz,q]
=ad[zya-
That is, [ad,,ad,] = ad|,,,, as desired.

Let us now unravel the consequences of the identity ad, , = lad,, ad,] for
the algebra (L, [, -]):

12 = [ady, ady]2

[[ﬂﬁ,y],z] (ad, ad, — ad, ad,)z
[[z,y], 2] = (ady ady)z — (ady ad,)z
([z,9], 2] = [, [y, 2] = [y, [, 2]]
[z, 9], 2] = —[ly, 2], =] — [[2, 2], 4] -

That is,
[[.13, y]v Z] + [[yv Z]v x] + HZ7 J)], y] =0.
We arrive at the standard definition of a Lie algebra:

A Lie algebra is an algebra (gL, [-,-]) that satisfies the two identical
relations:

(i) [z,2] = 0;
(ii) (Jacobi Identity) [[z,y], 2] + [y, 2], 2] + [[2, =], y] = 0.
Negating the Jacobi Identity gives us the equivalent identity

[Zv [xvy]] + [fv [yv Z]] + [ya [va]] =0.

In particular, the opposite of a Lie algebra is again a Lie algebraﬂ

The Jacobi Identity and the skew law [y, z] = —[z,y] are both linear, and
these serve to define Lie algebras if the characteristic is not 2. This is good
enough to prove that tensor product field extensions of Lie algebras are still Lie
algebras as long as the characteristic is not 2

In all characteristics the null law [z, 2] = 0 admits a weaker form of linearity.
Assume that we already know [y,y] = 0, [z,2] = 0, and [y, 2] = —[z,y]. Then
for all constants a, b we have

[ay + bz, ay + bz] = [ay, ay] + [ay, bz] + [bz, ay] + [bz, bz]

= a®[y, y] + ab([y, 2] + [z, 9]) + b*[z, ]
—04+0+0=0.

IExercise: the map = + —z is an isomorphism of the Lie algebra L with its opposite
algebra.
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This, together with the linearity of the Jacobi Identity, gives

(1.4). PROPOSITION. Let L be Lie K-algebra and E an extension field over
K. Then E®k L is a Lie E-algebra. o

Our discussion of representation and our ultimate definition of Lie algebras
immediately give

(1.5). THEOREM. For any Lie K-algebra L, the map ad: L — Endg (L) is a
representation of L. The kernel of this representation is the center of L

Z(Ly={z€L|[z,a=0, forallae L}. 0

As was the case in Proposition the small additional requirement that
the center of A be trivial gives an easy proof that A has a faithful representation
which has finite dimension provided A does. Far deeper is:

(1.6). THEOREM.

(a) (PBW THEOREM) Every Lie algebra has a faithful representation as a lin-
ear Lie algebra.

(b) (ADO-IwAaSAWA THEOREM) Every finite dimensional Lie algebra has a faith-
ful representation as a finite dimensional linear Lie algebra. oo

Both these theorems are difficult to prove, although we will return to the
easier PBW Theorem later as Theorem Notice that the Ado-Iwasawa
Theorem is not an immediate consequence of PBW. Indeed the representation
produced by the PBW Theorem is almost always a representation on an infinite
dimensional space.

For Jordan algebras, the efforts of this section are largely a failure. In
particular the adjoint action of a Jordan algebra A on itself does not give a
representation in Endj (A4). (Exercise.)

Jordan algebras that are (isomorphic to) linear Jordan algebras are usually
called special Jordan algebras, while those that are not linear are the exceptional
Jordan algebmsﬂ A.A. Albert [AIb34] proved that the Albert algebras—the
dimension 27 Jordan K-algebras described in Section[l.3}—are exceptional rather
than special. Indeed Cohn [Coh54] proved that Albert algebras are not even
quotients of special algebras. Results of Birkhoff imply that the category of
images of special Jordan algebras is varietal and does not contain the Albert
algebras, but it is unknown what additional identical relations suffice to define
this category.

1.5 Problems

(1.7). PROBLEM.

280, taking a page out of the Montessori book, there are exactly two types of Jordan
algebras: those that are special and those that are exceptional.
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(a)
(b)

CHAPTER 1. INTRODUCTION

Give two linear identities that characterize alternative K-algebras when charK # 2.

Let A be an alternative K-algebra and E an extension field over K. Prove that
E ®k A is an alternative E-algebra.

(1.8). PROBLEM. Let A be an associative K-algebra with multiplicative identity 1,
where K is a field of characteristic not equal to 2.

(a)

(b)

Prove that in general the adjoint action of a Jordan algebra does not give a rep-
resentation. Consider specifically the Jordan algebra AT = (A,0) and its adjoint
map ad : At — Endg (A) where you can compare adaoa and adg 0 adq.

Consider the two families of maps from A to itself:
1
Ly:z—aox = i(aerza)

and
Uy,: z— aza.

Prove that the K-subspace V' of A with 1 € V' is invariant under all L, fora € V,
if and only if it is invariant under all U,, fora € V.

HINT: The two parts of this problem are not unrelated.

REMARK. Observe that saying V is invariant under the L, is just the statement
that V is a Jordan subalgebra of Endﬂg (A), the map Lo being the adjoint. There-
fore the problems tells us that requiring U, -invariance is another way of locating
Jordan subalgebras, for instance the important and motivating spaces of hermitian
matrices H, (C) in Mat,, (C).

The crucial thing about Uq is that division by 2 is not needed. Therefore the maps
U, and their properties can be, and are, used to extend the study of Jordan algebras
to include characteristic 2. The appropriate structures are called quadratic Jordan
algebras, although some care must be taken as the “multiplication” a x x = Uqy(x)
is not bilinear. It is linear in its second variable but quadratic in its first variable;
for instance (aa) x x = o(a * z) for a € K.
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Examples of Lie algebras

We give many examples of Lie algebras (xL, [, -]). These also suggest the many
contexts in which Lie algebras are to be found.

2.1 Abelian algebras

Any K-vector space V is a Lie K-algebra when provided with the trivial product
[v,w] =0 for all v,w € V. These are the abelian Lie algebras.

2.2 Generators and relations

As with groups and most other algebraic systems, one effective way of producing
examples is by providing a generating set and a collection of relations among
the generators. For a K-algebra that would often be through supplying a basis
V = {wv; | i € I} together with appropriate equations restricting the various
associated cfj.

For a Lie algebra, the Jacobi Identity is linear and leads to (Exercise) the
equations:

k m k. m k. m __
Z CiCrl + CiiCr + e =0,
k

for all 4,5,l,m € I.

The law [z, 2] = 0 gives the equations
L0,
Since the null law is not linear, we also must include the consequences of its
linearized skew law [z, y] = —[y, z]; so we also require
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An algebra whose multiplication coefficients satisfy these three sets of equations
is a Lie algebra. (Exercise.)

When presenting a Lie algebra it is usual to leave the non-Jacobi equations
implicit, assuming without remark that the bracket multiplication is null and
skew-symmetric.

For instance, we have the K-algebra L = Kh & Ke & Kf where we state

[hae]:2€7 [hvf]:72f7 [€7f]:h,

but in the future will not record the additional, necessary, but implied relations,
which in this case are

[h’h]:[eve}:[fvf]zov [evh]:_Qea [f,h]ZQf, [fve]:_h'

Of course in order to be sure that L really is a Lie algebra, we must verify the
Jacobi Identity equations for all quadruples (4, j,1,m) € {h,e, f}*. (Exercise.)

2.3 Matrix algebras
2.3.1 Standard subalgebras of gl,(K)

Many Lie algebras occur naturally as matrix algebras. We have already men-
tioned Mat,, (K). This is often written gl,,(K), the general linear algebra, in part
because it is the Lie algebra of the Lie group GLy,(K); see Theorem [(3.7)[(a) be-
low. The Gothic (or Fraktur) font is also a standard for Lie algebras.

A standard matrix calculation shows that tr(MN) = tr(NM), so the subset
of matrices of trace 0 is a dimension n? — 1 subalgebra sl,,(K) of the algebra
gl,,(K), which itself has dimension n?. Indeed the special linear algebra s\, (K)
is the commutator subalgebra [gl, (K), gl,,(K)] spanned by all [M, N] for M, N €
gl,,(K); see Section [4.1] below.

The subalgebras n;} (K) and n;, (K) are, respectively, composed of all strictly
upper triangular and all strictly lower triangular matrices. Both have dimension
(g) Next let 9,,(K) and b, (K) be the abelian subalgebras of, respectively, all
diagonal matrices (dimension n) and all diagonal matrices of trace 0 (dimension
n — 1). We have the triangular decomposition:

91, (K) = n,7(K) & 0, (K) @ n,, (K)

and
s, (K) = n; (K) @ b, (K) © 0y, (K) .

This second decompositions and ones resembling it will be very important later.

).

Within the Lie algebra sl3(K), consider the three elements

1 0 0 1 0
h:(o —1)7 e=<0 0)’ f:(1

o O
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so that hy(K) = Kh, nJ (K) = Ke, and n; (K) = Kf, and
sly(K) = Kh @ Ke ® Kf .
We then have (Exercise)

[h,€]=2€, [h,f}Z—Qf, [evf]:hv

and the algebra presented at the end of the previous section is indeed a Lie
algebra, namely a copy of slo(K). The basis h, e, f of s5l3(K) is called a Chevalley
basis of this algebra.

The isomorphism of Mat,, (K) and Endg(K™) lead to natural isomorphisms
of the above subalgebras of gl, (K) = Mat,, (K) with subalgebras of Endy (K").

2.3.2 Lie algebras from forms

For the basic theory of bilinear forms, see Appendix [A] For bilinear b, the K-
space of endomorphisms

L£(V,b) = {z € Endg(V) | b(zv,w) = —b(v,zw) for all v,w € V' }

is then an Lie K-subalgebra of Endy (V). (Exercise.)

With V' = K" and Endg (V) = Mat, (K) = gl,,(K), we have some special
cases of £(V,b). Let G = (b(es,€j))i,; be the Gram matriz of b on V (with
respect to the usual basis). The condition above then becomes

£(V,b) = {M € Mat,,(K) | MG = -GM " }.
For simplicity’s sake we assume that K does not have characteristic 2.
(i) Orthogonal algebras.

(a) If b is the usual nondegenerate orthogonal form with an orthonormal
basis for V', then £(V,b) = s0,,(K). As matrices,

50,(K) = { M € Mat,,(K) | M = -M"}.
If the field K is algebraically closed, then it is always possible to find
a basis for which the Gram matrix G is in split form as the 2] x 2]
matrix with [ blocks ( (1) (1) ) down the diagonal when n = 2[ is

even, and this same matrix with an additional single 1 on the diagonal
when n =2/ 41 is odd.

For the split form over an arbitrary field K, we may write SUZ(K) in
place of s09;(K).

(ii) Symplectic algebras. If b is the usual nondegenerate (split) symplectic
form on V' = K with symplectic basis S = {v;,w; | 1 < i <1} subject to
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b(v;,v;) = b(w;, w;) = 0 and b(v;,w;) = 0; ; = —b(w;, v;), then £(V,b) =
spo;(K). As matrices,

spoy (K) = { M € Maty(K) | MG = -GM " },

1

where G is the 2] x 2] matrix with n blocks < 1 0

) down the diagonal.

The notation is not uniform. Especially, when K = R the field is sometimes
omitted, hence one may find

gl,(R) =gl(n,R) =gl(n) =gl,, sLR)=sl(n,R)=sl(n)=sl,;
and
50,(R) = s0(n,R) = so(n) = so, .

More confusingly, in the case of symplectic algebras the actual definition can
vary as well as the notation; see [Tulll p. 160].

2.4 Derivations

A derivation D on the K-algebra A is a linear transformation D € Endg(A)
with
D(fg) = fD(g) + D(f)g,

for all f,g € A. This should be recognized as the Leibniz product rule. Clearly
the set Derg (A) is a K-subspace of Endg (A), but in fact this provides an amazing
machine for constructing Lie algebras:

(2.1). THEOREM. Derg(A) < Endg (A). That is, the derivation space is a Lie
K-algebra under the bracket product.

Proor. Let D, E € Derg(A). Then, for all f,g € A,

(D, E|(fg) = (DE — ED)(fg) = DE(fg) — ED(fg)
=D(fEg+ (Ef)g) — E(fDg+ (Df)g)
= D(fEg) + D((Ef)g9) — E(fDg) — E((Df)g))
= fDEg+ DfEg+ EfDg+ (DEf)g
~ fEDg—EfDg— DfEg— (EDf)g
= fDEg— fEDg + (DEf)g — (EDf)g
= f([D, Elg) + ([D, E]f)g. O

The definition of derivations then tells us that the injection of Derg(A) into
Endg (A) gives a representation of the Lie derivation algebra Derg(A) on the
K-space A.

(2.2). COROLLARY. The image of the Lie algebra A under the adjoint repre-
sentation is a subalgebra of Derg (A) and Endg (A).
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ProoFr. The image of A under ad is a K-subspace of Endg(A) by our very
first Lemma |(1.1)l It remains to check that each ad, is a derivation of A.
We start from the Jacobi Identity:

[la, 4], 2] + [ly, 2], a] + [z, 4] = 0,

hence
—[ly, 2], a] = [[a, y], 2] + [[z, al, y] .
That is,
[a, [y, 2]] = [[a,y], 2] + [y, [a, 2]],

adg [y7 Z] = [ada Y, Z] + [yv ad, Z] . ]

The map ad,, is then an inner derivation of A, and the Lie subalgebra InnDerg (A) =
{ad, | @ € A} is the inner derivation algebra.
We have an easy but useful observation:

(2.3). PROPOSITION. Ewery linear transformation of Endg(A) is a derivation
of the abelian Lie algebra A.

Proor. For D € Endg(A) and a,b € A
Dla,b] =0=0+0=[Da,b] + [a, Db] . O

2.4.1 Derivations of polynomial algebras
(2.4). PROPOSITION.
(a) Derg(K) = 0.

(b) If the K-algebra A has an identity element 1, then for each D € Derg(A)
and each ¢ € K1 we have D(c) = 0.

(c) Derx(K[t]) = {p(t)4 | p(t) € K[t]}, a Lie algebra of infinite K-dimension
with basis {t'4 | i€ N}.

PROOF. Part (b) clearly implies (a).
(b) Let ¢ = ¢l € K1. Then for all x € A and all D € Derg(A) we have

D(cx) = ¢D(x)
as D is a K-linear transformation. But D is also a derivation, so
D(cz) = eD(x) + D(c)z .
We conclude that D(c)z =0 for all z € A, and so D(c) = 0.

(c) Let D € Derg(A). By (b) we have D(K1) = 0. As the algebra A is generated
by 1 and ¢, the knowledge of D(t) together with the product rule should give us
everything. Set p(t) = D(t).
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We claim that D(t') = p(t)it"~! for all i € N. We prove this by induction
on 7, the result being clear for ¢ = 0,1. Assume the claim for ¢ — 1. Then

D(t") = D(t"" ') = t'""'D(t) + D(t" Mt
= (1) + p(t) (i — D2 = p(t)it ™,

as claimed.
As D is a linear transformation, if a(t) = Y. a;t’, then

m m m
j i - d
D(a(t)) = ; a; D(') = ; aip(t)it' ™! = p(t) ; iait' ™! = p(t)—a(t),
completing the proposition. O
In Derg (K[t]) there is the subalgebra A = Kh & Ke ® Kf with e = 4%
h=-2t%, f=—t>4 and relations (Exercise)

[eaf]:ha [h,€]=2€, [hvf}:_zfQ

so we have sl (K) again.

We next consider K[z,y]. A similar argument to that of the proposition
proves

Derg (K[z, y]) = {p(x,y)i +q(z,y) 0 (z,9),q(x,y) € K[z, 9] }.

5 y |p
(See Problem [(2.8)l) We examine two special situations—a subalgebra and a

quotient algebra.

(i) Consider the Lie subalgebra that leaves each homogeneous piece of K|z, y]
invariant. This subalgebra has basis
0 0 0 0

h=x—, €

=xr— =y—, hy=y—.
Ox zay’ / Yoz M yay
Set h = hy — hy = x% fya%. Then

[eaf]:ha [hve]:267 [hmﬂ:72f>

giving sly(K) yet again. The 4-dimensional algebra Kh, & Kh, ® Ke @ Kf
is isomorphic to gl,(K) with the correspondences

1 0 0 0
hx—<0 0) and hy—(o 1).

Each homogeneous piece of K[z,y] carries a representation of gly(K) and
sl(K) via restriction from the action of Derg(K[z,y]). The degree m
homogeneous component K|z, y], is then a cyclic Ke- hence sl3(K)-module
My(m+1) of dimension m + 1 with generator y™. This will be important
in Chapter ?77.
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(i) The algebra K[z,y] has as quotient the algebra K[z, 1] of all Laurent
polynomials in x. A small extension of the arguments from Proposition
c) (Exercise) proves that Derg(K[z, 27 !]) has K-basis consisting of
the distinct elements

m+1i formeZ.

Ly, =—x
We write the generators in this form, since they then have the nice pre-
sentation

[Ly, Ln) = (m —n) Ly, -

All the multiplication coeflicients are integers. The Z-algebra with this
presentation has infinite dimension. It is called the Witt algebra over Z,
just as its tensor with K, Derg (K[z, z71]), is the Witt algebra over K.

2.4.2 Derivations of nonassociative algebras

We may also consider derivations of the nonassociative algebras we have en-
countered, specifically the octonion K-algebra O and (in characteristic not 2) its
related Albert algebra—the exceptional Jordan K-algebra H3(O). The deriva-
tion algebra Derg(O) has dimension 14 (when charK # 3) and is said to have
type go while the algebra of inner derivations of the Albert algebra H3(O) has
dimension 52 and is said to have type f4. Especially when K is algebraically
closed and of characteristic 0 we have the uniquely determined algebras go(K)
and f4(K), respectively.

2.5 New algebras from old

2.5.1 Extensions

As we have seen and expect, subalgebras and quotients are ways of constructing
new algebras out of old algebras. We can also extend old algebras to get new
ones. As with groups, central extensions are important since the information
we have about a given situation may come to us, via the adjoint, in projective
rather than affine form.

The Virasoro algebra is a central extension of the complex Witt algebra. If
W is the Witt Z-algebra, then

Vire = (C X7z W) @ Ce
with [w, ] =0 for all w € W and

m(m? — 1
[th Ln} = (m - n)Lm+n + 5m,—n¥c-
The multiplication coefficients are half-integers.
The Virasoro algebra is important in applications to physics and other sit-
uations. As seen after Proposition [(2.4), the Witt and Virasoro algebras both
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contain the subalgebra CL_; & CLy ® CL; isomorphic to sl3(C). As we shall
find in Section large parts of the finite dimensional Lie algebra theory de-
pend upon the construction of Lie subalgebras sly(K). Similarly, the infinite
dimensional Lie algebras that come up in physics and elsewhere are often han-
dled using Witt and Virasoro subalgebras, which are in a sense the infinite
dimensional substitutes for the finite dimensional sl;(K).

Given a complex simple Lie algebra like sl5(C), the corresponding affine Lie
algebra comes from a two step process. First extend scalars to the Laurent
polynomials and second take an appropriate central extension. So:

sly(C) = (C[t,t 1] @c s1o(C)) & Ce

where the precise cocycle on the complex Lie algebra C[t,t~!] ®c sl2(C) that
gives the extension is defined in terms of the Killing form on the algebra sl (C).
(See Section below.)

One often writes the Lie algebra C[t,t~!] ®c sl2(C) instead as slx(C) ®¢
C[t,t71], viewing its elements as “Laurent polynomials” with coefficients from
the algebra sly(C).

It is also possible to form split extensions of Lie algebras, with derivations
playing the role that automorphisms play in group extensions. (See Section )
The canonical derivation % on the Laurent polynomials induces a derivation of
the affine algebra which is then used to extend the affine algebra so that it has

codimension 1 in the corresponding Kac-Moody Lie algebra.

2.5.2 Embeddings

We saw above that derivations of octonion and Jordan algebras give new Lie
algebras. Tits, Kantor, and Koecher [Tit66] used these same nonassociative
algebras to construct (the TKK construction) Lie algebras that are still more
complicated. In particular, the space

Derc(07(C)) @ (O%(C)o @c H3(0™(C))o) & Dere(Hs(0™(C)))

of dimension 14+ (8—1) x (27—1) 452 = 248 can be provided with a Lie algebra
product (extending that of the two derivation algebra pieces) that makes it into
the Lie algebra e¢g(C). Here O°P(C)q is 1+ in O%(C) and H3(Q*P(C)), is a
similarly defined subspace of codimension 1 in H3(Q%P(C)). The Lie algebra
¢g(C) furthermore has the important subalgebras ¢s(C) of dimension 78 and
¢7(C) of dimension 133.

2.6 Other contexts

2.6.1 Nilpotent groups
Let G be a nilpotent group with lower central series

G=LY(G)>L*G)> - >L""HG) =1
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where L™ (@G) is defined as [G, L*(G)]. For each 1 < k < n set
Ly = L*(G)/L"(G),

an abelian group as is the sum

As @ is nilpotent, always
[L'(G). L (@) < L™(G).

This provides the relations that turn the group L = Lg into a Lie ring—we do
not require it to be free as Z-module—within which we have

[Lis Lj] < Liyj -

Certain questions about nilpotent groups are much more amenable to study
in the context of Lie rings and algebras [High8]. A particular important instance
is the Restricted Burnside Problem, which states that an m-generated finite
nilpotent group of exponent e has order less than or equal to some function
f(m,e), dependent only on m and e. Professor E. Zelmanov received a Fields
Medal in 1994 for the positive solution of the Restricted Burnside Problem. His
proof [Zel97] makes heavy use of Lie methods.

2.6.2 Vector fields

We shall see in the next chapter that the tangent space to a Lie group at the
identity is a Lie algebra. As the group acts regularly on itself by translation,
this space is isomorphic to the Lie algebra of invariant vector fields on the group.

Indeed often a wvector field on the smooth manifold M is defined to be a
derivation of the algebra C*°(M) of all smooth functions; for instance, see
[HelO1l p. 9]. Thus the space of all vector fields is the corresponding deriva-
tion algebra and so automatically has a Lie algebra structure.

For instance, the Lie group of rotations of the circle S is the group SO (R)

of all matrices
cos(f) —sin(6)
sin(f)  cos(0) ’

which becomes e when we extend coefficients to the complex numbers. The
corresponding spaces of invariant vector fields have dimension 1.

The space C*(S') of all smooth functions on the circle consists of those
functions that can be expanded as convergent Fourier series

Z G sin(m@) + by, cos(mb) ,

mEZ
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which after extension to C becomes the simpler

g cme™

meZ

This space C°(S') has as a dense subalgebra the space of all Fourier polyno-
mials, whose canonical basis is { e | m € Z}.

The group of all complex orientation preserving diffeomorphisms of the circle
(an “infinite dimensional Lie group”) is an open subset of C2°(S') and has as
corresponding space of smooth vector fields (not just those that are invariant)
all f d% for f smooth. The dense Fourier polynomial subalgebra with basis
L, = ie"m(’% then has

[Lyn, L] = (m —n)Lppgn

giving the complex Witt algebra again.

2.7 Problems

(2.5). PROBLEM. Classify up to isomorphism all Lie K-algebras of dimension 2. (Of
course, the abelian algebra gives the only isomorphism class in dimension 1.)

(2.6). PROBLEM. Prove that over an algebraically closed field K of characteristic not
2, the Lie algebra sl2(K) is isomorphic to so3(K), the orthogonal Lie algebra of 3 x 3
skew-symmetric matrices.

(2.7). PROBLEM. Find all subalgebras of sl2(K) that contain the subalgebra H = Kh.
HINT: Small characteristic can produce anomalous results.

(2.8). PROBLEM. Calculate Derg (K[z1, ... Zx]).

(2.9). PROBLEM. Consider the matriz subgroup UT, (K) of GL,(K), consisting of
the upper unitriangular matrices—those which have 1’s on the diagonal, anything above
the diagonal, and 0’s below the diagonal.

(a) Prove that G = UT,(K) is a nilpotent group.

(b) Starting with this group G, construct the Lie algebra L = Lg as in Section m
Prove that L is isomorphic to the Lie algebra n} (K).

(2.10). PrROBLEM. Consider the subgroup X, (K) of upper unitriangular matrices
that have 1’s on the diagonal, anything in the mondiagonal part of the first row and
last column, and 0’s elsewhere.

(a) By the previous problem X = X, (K) is nilpotent. Prove that for n > 2 it has
nilpotence class exactly 2 and that its center is equal to its derived group and
consists only of those matrices with 1’s down the diagonal and the only other
nonzero entries found in the upper-righthand corner.

(b) Starting with this group X, construct the Lie algebra L = Lx as in Section|2.6.1}
Prove that L is isomorphic to the Lie algebra on the space

n—1

M =Kz o @Kz @ Kyi)

i=1
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with relations given by
[zi,yi] = —[ys, :] = 2,
for all i, and all other brackets among generators equal to 0.

REMARK. This Lie algebra is the Heisenberg algebra of dimension 2n — 1 over K.
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Lie groups

(N. Jacobson [Jac79, p. 1]:) The theory of Lie algebras is an out-
growth of the Lie theory of continuous groups.

(R. Carter [Car0bl, p. xiii]:) Lie algebras were originally introduced
by S. Lie as algebraic structures used for the study of Lie groups.

It would be wrong for us to talk at length about Lie algebras without de-
voting at least some time to the way in which they arise in the theory of Lie
groups. We do that in an abbreviated form in this chapter.

For us, Lie’s work and the work that it motivated contain two basic obser-
vations:

(i) If G is a Lie group, then the tangent space to the identity is a Lie algebra
A(G).

(ii) The representation theory of the Lie group G and of the Lie algebra A(G)
are essentially the same.

The second observation displays genuine progress, since a Lie algebra is a linear
object whereas the Lie group is not. This is the same advantage obtained in the
passage from a nilpotent group to its associated Lie ring in Section

This chapter is included in order to place Lie algebras in one of their most
important contexts, historically and practically. Its material will not be used
in the rest of the notes or course. Therefore for ease of presentation we assume
uniformly throughout that the vector spaces, groups, and algebras we examine
are defined over the real numbers. Given our later focus on algebraically closed
fields of characteristic 0, it might make more sense to restrict to the complex
case; but that would require more sophisticated calculus/analysis than we care
to use.

27
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3.1 Representation theory as spectral theory

The two observations beg the question, “What is so good about representation
theory?” After all, many of our important Lie groups and algebras are already
defined in terms of matrices. Why worry about more representations?

Lie and those who followed him were interested in using Lie theory to solve
problems, and it is often easier to solve a problem in pieces rather than all at
once. An important example is the analysis of the action of a linear transfor-
mation in terms of its eigenspaces. Such decompositions are collected together
under the heading of spectral theory, and they are served by various canonical
form results.

The representation theory of groups (and other algebras) can be thought of
as a general form of spectral or canonical form theory. If the initial, say physical,
statement of a problem has some inherent symmetry, then that symmetry should
also be evident in the space of solutions. Lie noted that this action could be
exploited to decompose the solution space and so perhaps find nice descriptions
for the solutions. At the heart of matrix canonical form results is the feeling
that matrices containing lots of zeros are the easiest to deal with.

Lie was interested in particular in solving differential equations. Dresner
[Dre99, p. 16] shows how, starting from the differential equation

d,_ ' —x)

dz x ’
once one has noticed that the solution set is invariant under the change of
variables

r=xg— T, =T Yy=yo—rys=e"y,
for all s € R, it is relative easy to construct an integrating factor

2 _1
p(z,y) = <$y3 - :C2y>

and so reach the closed form solution set
y =2z +c)/?.

The displayed symmetry group {e® | s € R} ~ (R,+) is continuous and
even smooth in its variable. This type of symmetry is evident in many physical
situations, and this led Lie (and others) to the study of smooth groups and
their representations. We shall see in Section that the most basic Lie group
(R, +) is also one of the most important.

3.2 Lie groups and Hilbert’s Fifth Problem

A Lie group is a smooth manifold G that is also a group. These two conditions
are linked by the requirements that the group multiplication m: G x G — G
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given by m(z,y) = xzy and the group inverse map i: G — G given by i(x) =
=1 are smooth maps on the manifold. Here (recalling that we are speaking
of real manifolds) by smooth we mean C*. (For a complex manifold, smooth
means holomorphic.)

Examples are provided by the closed subgroups of GL,,(R): those subgroups
containing the limit of every sequence of group matrices for which that limit
exists and is invertible. This already might be a surprise, since closure is a
topological property, determined only by examining C° continuity issues. The
C° condition is very weak when compared to the smooth C> assumptions of
the manifold definition.

If G is a Lie group, then certainly
(i) G is a topological group (that is, the maps m and ¢ are continuous) and
(ii) G is locally a finite dimensional Euclidean space.

One reading of Hilbert’s Fifth Problem is that, in fact, the Lie groups are exactly
the locally Euclidean topological groups. Once made precise, this version of the
Fifth Problem was proven by Montgomery and Zippin [MoZi55] and Gleason
[Gle52] in 1952. (See [Taold] for more.)

Cartan first proved that closed subgroups of GL,(R) are Lie groups. As
such, it is reasonable to focus on such examples when initially discussing Lie
groups. This is the approach take by several modern introductions to Lie groups
[EId15] Hall5 How83l vNe29, Ros02] [Sti08| [Tap05] and is largely what we do
here. In particular, those not comfortable with manifolds need not worry—just
focus on closed subgroups of GL,, (R).

Essentially everything we prove (or state) goes over to the general case, al-
though some of the definitions and proofs would require more subtlety. In par-
ticular, in place of the concrete functions exp and log provided by convergent
power series of matrices, one appeals to the uniqueness of solutions for appro-
priate ordinary differential equations and to the Inverse Function Theorem; see
[CSM93], pp. 69-74].

3.3 Some matrix calculus

For the matrix M = (m;;)i; € Maty(R), set |[M| = i m3;. This is the
standard Euclidean norm on R*; especially for k = | = 1 we have the usual
|(m)| = |m|. We can then define limits of matrix functions, using this norm to

determine “closeness.” In turn, this gives meaning to statements that a function
from one matrix space to another is continuous, for instance in our discussion
above of multiplication and inversion in Lie groups.

For smoothness we need derivatives as well. The usual derivative of f(x) at
T = a is given by

=jw=2

t—s0 t T odx | T
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If we rewrite this as

L ft ) = (@) + ()t

t—s0 t

:07

we are observing that near a (near ¢ = 0), the line f(a) + f'(a)t is a good
approximation to the function f(¢ + a). This motivates the following definition
of the derivative of a matrixz function; see [Spi65, p. 16].

The linear transformation D: Maty, ;(R) — Mat,, ,(R) is the deriva-
tive at A of the matriz function F: Maty ;(R) — Mat,, ,(R) pro-
vided

(T 4) - P(4) - D)

=0.
T—0 |T|

As derivatives are locally determined, to calculate the derivative of F' at A we
only need to know F' on some neighborhood of A in Maty, ;(R).

This definition is the appropriate one for checking properties, but our appli-
cations later in this chapter will only be concerned with the special case k = [ =
1 and m = n. That is, we will consider matrix functions F': (—r,r) — Mat,, (R)
for some positive r with @ € (—r,r). There we will use the equivalent but more
familiar formulation

F'(a) = lim F(t+a) - Fla)

t—0 t

€ Mat, (R).

Once we have checked that matrix limits and derivatives behave as hoped
and expectedﬂ (see, for instance, [Eld15],[Halld]), we have

(3.1). PROPOSITION.
(a) If the power series A(t) = > po Aith converges for all |t| < r, then its
derivative A'(t) = > po o kAxt*~1 also converges for all |t| < r.

(b) exp(A) = Y52, HA" com}erge for all A € Mat,,(R). For A, B € Mat, (R)
with [A,B] = 0 we have exp(A + B) = exp(A)exp(B). Especially I =
exp(A) exp(—A), indeed exp(kB) = exp(B)* for integral k.

(¢c) For all A € Mat, (R) the unique solution of the matriz Initial Value Problem
ffey=rmA, f0)=1
is f(t) = exp(tA).
(d) log(1 + X) = Y52, (=1)* '+ X* converges for all X with |X| < 1. For
|X| < 1, we have exp(log(l+ X)) =1+ X.

'Exercise: Check the matrix versions of Leibniz’ £ (p(t)q(t)) = p(t)q’ (t) + p'(t)q(t) and of
the chain rule.

21t may be of psychological and/or actual help to realize that G(exp A)G~! = exp GAG ™!,
so that Jordan Canonical Form can be used to reduce the limit parts of this calculation to
the standard 1-dimensional case.
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It is important that we can only guarantee exp(A + B) = exp(A) exp(B)
when the matrices A and B commute. When they do, the corresponding power
series multiplication goes through exactly as in the standard case. But if they
do not commute, then things like BAB and AB? on the lefthand side can be
different, so collecting of like terms is greatly restricted.

Also note that we are defining the logarithm via its Taylor series, rather
than the usual calculus definitions that use an integral or that legislate it to be
the inverse function for the exponential. Thus for us it is only defined (conver-
gent) near the identity. This will be good enough. (See the proof of the next
proposition.)

The next proposition is an extension of the familiar result/definition from
calculus

o) =i (1+2)"

which is the special case n =1 and ¢(¢) = 1 4 at of the proposition.

(3.2). PROPOSITION.  Let g: (—r,7) —> GL,(R) be differentiable at 0 with
9(0) =1 and ¢’'(0) = A. Then limy_, g(%)k = exp(A).

PROOF. Set ¢(t) =log(g(t)) (for t small enough so that |g(¢t) — I| < 1). By
the chain rule, ¢/(t) = ¢'(t)g(t)~* (again for small t), so ¢(0) = 0 and ¢’(0) = A.
Therefore by the definition of the matrix derivative

. logg(t) —logg(0
4= 10) = iy 28010~ 1050

i g1
—}1_{%1? log g(t) .

Setting k =t~ we gain A = limy_,o klog g(k~—!). As exponentiation is every-
where continuous,

exp(A) = exp <klir£10 klogg(k‘l)) = kl;rr;o exp (k logg(k_l))

~im o L)
T Ik )

as desired. O

3.4 One-parameter subgroups

If G is a Lie group, then a one-parameter subgroup of G is a continuous homo-
morphism ¢: (R,+) — G. This links the weakest C° continuity property of
G (and R) with group theoretic structure. We shall see that this forces very
strong continuity—mnot just C* but C* (analytic). For every A € Mat,, (R), the
analytic map ¢ 4: R — Mat,, (R) given by ¢ 4(t) = exp(tA) is a one-parameter
subgroup of GL,(R) by Proposition Surprisingly, the converse is true.
This can be viewed as an important special case of Hilbert’s Fifth Problem.
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(3.3). THEOREM. Let ¢: (R,+) — G be a one-parameter subgroup of the
closed subgroup G of GL,,(R). Then there is a unique matriz A € Mat,, (R) with
o(t) = exp(tA) for all t € R. In particular ¢ is C and indeed analytic. We
have A = ¢'(0) = %<P|t=o-

PROOF. Our proof follows [EId15]. It has two parts. We first prove that ¢
is differentiable and then prove that it is an exponential.

Set F(t) = f(f o(u) du. As ¢ is continuous, F is differentiable with F(0) =0
and F'(t) = ¢(t), hence F'(0) = I. We use the fact that ¢ is a homomorphism
and make the change of variable v = u — t to find

t+s
F(t+s) :/0 o(u) du
= /Otw(u) du+/tt+s o(u) du

t+s
o(u) du + /t ot)o(u—t)du

I

S~— ~6
—
&

QU

e

+

S
N =<
N—

N

S
—

(4
N—
IS

<

Next note that

F
I =F'(0) = lim

5—0 S T 550 S

hence

1=detI =det <lim F(S)> = lim (s " det F(s)) ,

s—0 S s—0

as det is continuous. Especially, for some small sg we must have det F'(sg) # 0
and so F'(sg) is invertible. But then the above tells us that

p(t) = (F(t+s0) — F(t)F(s0)”"

is differentiable, as desired for the first part of our argument.

We now have ¢ differentiable with ¢(0) = I. As ¢ is a homomorphism

o' (t) = }{%w — %%w
= fllli% @(t)% = o(t) }1&% M

= p(t)¢'(0)



3.5. THE TANGENT SPACE AT THE IDENTITY 33

That is, for ¢'(0) = A the function ¢(t) solves the Initial Value Problem
O(t)=pt)A and (0)=1.
By the omnibus Proposition [(3.1)[c) we have ¢(t) = exp(tA), as claimed. O
(3.4). COROLLARY. det (exp(tA)) = ett(A4),

PROOF. The map t — detexp(tA) is a one-parameter subgroup of GL;(R).
(Exercise.) Therefore there is a nonzero a € R with detexp(tA) = €' for a =
4 det exp(tA)|i=o-

We have exp(tA) = I +tA + t2B(t) (for an appropriate convergent power
series B(t)), hence with A = (a;;);; the standard expansion of the determinant
gives

detexp(tA) = 14 t(a1 + - - + ann) + t2c(t) = 1 4 ttr(A) + t3c(t) .

Therefore a = < det exp(tA)|;—o = tr(A). |

3.5 The tangent space at the identity

Let G be a closed subgroup of GL,(R). There are several ways of defining
the tangent space at the identity element I of the group G. We offer two—
a relatively weak C' (differentiable) version and a very strong C* (analytic)
condition.

A curve in G is a differentiable map c¢: J — G, for some open interval J in
R. In particular, a one-parameter subgroup is a special type of curve. Set

(i) T7(G) ={(0) | curve c: (—r,7) — G, some 7 € RT, ¢(0) =1};
(ii) A(G) ={A|exp(tA) <G},

Clearly these tangent space candidates have the property A(G) C T;(G), but
we will prove in Theorem below that we have equality. Again, this is in
the spirit of Hilbert’s Fifth Problem.

We first show that the tangent space is indeed a subspace.

(3.5). LEMMA. T;(G) is a subspace of Mat, (R).

ProOOF. Let A,B € T;(G) and a,b € R. We must show that aA + bB €
T1(G). Let differentiable

9: (—¢,9) — G, g(0) =1, ¢'(0)=A

and

A

h: ,s) — G, h(0)=1, h'(0)=1B

testify to A, B € T;(G).

First consider ¢(t) = h(bt) on (—r,r) with r = [b=1s| (= oo for b = 0). Then
) =

c(0)=h(0)=1 and (' (0)=0>bh(0)="0B,
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so T7(G) is closed under scalar multiplication.
It remains to prove A+B € T((G). Forr =  min(q, s), the curve c: (—r,7) —
G given by

olt) = 5 (9(20) + h(20)),

has 1 1
c(0) = i(g(O) + h(0)) = 5([—&-1) =1.
and 1 )
d(0) = 5(2g’(0) +21'(0)) = 5(2A +2B)=A+ B.
Thus A+ B € T1(G) as desired. a

(3.6). THEOREM. A(G) =T;(G).

PRrROOF. We have already pointed out that A(G) C T;(G). Now, for fixed
but arbitrary ¢t € R and for each B € T;(G), we must prove that the matrix
exp(tB) is in G, as then t — exp(tB) will be a one-parameter subgroup of G,
exhibiting B € A(G) and providing the reverse containment A(G) 2 T;(G). By
the previous lemma T (G) is a R-space, so it is enough to prove that exp(4) € G
for all A € T;(G).

For some r € RT, let the curve g: (—r,7) — G have ¢g(0) = I and ¢’(0) = A.
Then for all integral k greater than some N we have g(%) € G. As G is a group,
. 1k . . . 1k Lo
in turn Q(E) € G. Proposition gives hrnk_mog(z) = exp(A), which is
always invertible. As G is a closed subgroup of GL,,(R), we conclude exp(A) € G
as desired. a

It is now appropriate for us to define the tangent space at the identity element
I of the group G, closed in GL,,(R), to be the R-space A(G) = T;(G).

Of course GL,, (R) is closed in itself. Additionally SL,,(R) is closed in GL,, (R)
as it consists of all matrices X with det(X) —1=0.

(3.7). THEOREM.

(a) A(GL,(R)) = gl,,(R) and (exp(tA) | A € gl,(R)) = GL,(R)", the subgroup
of index 2 in GL,(R) of all matrices with positive determinant.

(b) A(SL,(R)) = sl,,(R) and (exp(tA) | A € s[,,(R)) = SL, (R).

PRrROOF. The equality A(GL,(R)) = Mat,(R) = gl,,(R) is clear from Propo-

sition [(3.1)[(b).
We next consider A € A(SL,(R)). By Corollary for the one-parameter
subgroup exp(tA) of SL,(R) we have

1 = det (exp(tA)) = ™A

That is, tr(A) = 0 and A € sl,(R). Conversely, for A € s[,(R), by the same
corollary
1 =) = det (exp(tA)) .
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This is true for arbitrary ¢, so t — exp(tA) is a one-parameter subgroup of
SL,(R). Thus A € A(SL,(R)), hence A(SL,(R)) = s, (R).

For each elementary matrix unit e;; € Mat,,(R) with ¢ # j, we have e;; €
sl,(R) and ef; = 0. Thus exp(te;;) = I + te;;, an elementary transvection
subgroup. By Gaussian elimination,

(exp(tA) | A € sl,(R)) < SLn(R) = (I +tey; |i#j, t €R)
< (exp(tA) | A € sl,(R)).

Therefore (exp(tA) | A € s1,,(R)) = SL,, (R).

If D = diag(dy1,...,di,...,dnyn) is a diagonal matrix, then exp(D) is also
diagonal with entries e%i. Every diagonal matrix with positive entries on
the diagonal can be found this way, and these together with SL, (R) generate
GLR(R)+. By Corollary every matrix exponential has positive determi-
nant; so (exp(tA) | A € gl,(R)) = GL,(R)". O

(3.8). COROLLARY. Although GL,(R)" has index 2 in GL,(R), the two groups
have the same tangent space at the identity

A(GL,(R)") = A(GL,(R)) = gl, (R). m

n

In the remaining results of this subsection, we set L = A(G) = T1(G) for
our closed subgroup G of Mat, (R).

(3.9). LEMMA. Ifg€ G and A€ L, then gAg=' € L.
PROOF. As g € G and A € L, the group G contains exp(tA) and

o Lk 4k o k gk
glexp(tA))g~' =g (Z t]:!l ) gr=> 9 (25];1 )g_l

k=0 k=0

= t(gARgTh) It (gAgT P
=2 il - !
P pars

= exp(t(gAg™)).

Therefore gAg™! € L. a

Thus we have the adjoint representation of the group G on its Lie algebra
L:
Ad: G — GLg(L) given by Ad,(A)=gAg".

It should come as no surprise that in general a Lie group acts on its Lie algebra,
the corresponding representation always being called adjoint.

(3.10). LEMMA. For A,B€ L,
Adexp(tB) (A) =A+ t(BA - AB) + tQD(t)

with D(t) = Ek,leN dlekABltk'H for di; € R.
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PRrROOF.

Adepen)(A) = (I +tB + 2By (t))A(I — tB + t*Bs(t))
= A+ t(BA— AB) +t°D(t). O
As written, the adjoint representation appears to involve matrix calculation
of degree dimg(L). On the other hand already L < Mat,, (R); so the next result,
among other things, makes the calculation more manageable.

(3.11). THEOREM. For B € L, Adexp(p) = exp(adp).

PrOOF. Clearly ¢ — Adcxp¢p) is a one-parameter subgroup of GLg(L), so
there is an X € Endg (L) with Adex,¢p) = exp(tX). By the lemma

Adexp(tB) (A) = (I +tadp +t2E(t))(A) )
for E(t) = Zk,leN dk;lLBkRBltk-H. Thus

d d
X = 7 Adexp(tB) lt=0 = s (I +tadp +1E(t)) |i=o = adp . O

(3.12). THEOREM. L is a Lie subalgebra of Mat,, (R) = gl,,(R).
ProoOF. Let A, B € L. By Lemma for all t € R,
F(t)=A+t(BA— AB) +t*D(t)
is in the R-space L. Therefore, for each nonzero t € R,
t~1(F(t) — A) = (BA — AB) + tD(t)

is also in L.
The Lie algebra L is a subspace of Mat,, (R) and especially is closed, hence

lim (BA— AB) +tD(t) = [B, A]

t—0
is in L. We conclude [A, B] = —[B, A] € L. O

Thus we have the matrix version of Lie’s first observation from the beginning
of the chapter:

(i) If G is a closed subgroup of GL,,(R), then the tangent space to the identity
is a Lie algebra A(G).

In this case we say that A(G) is the Lie algebra of G.
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3.6 Equivalence of representation
In this section we discuss Lie’s second basic observation:

(ii) The representation theory of the Lie group G and of the Lie algebra A(G)
are essentially the same.

Even in the case of closed subgroups of GL,,(R), the results are more difficult
than those of the previous subsections. We offer them without proof, but see
[CSM95] pp. 75-81] and [Kir08, §3.8] for nice discussions of the general results
and their proofs. In the closed group case, each of [Hall5l [Ros02, [Sti08] proves
the first two theorems of this section. Serre’s notes [Ser(6] contain a proof of
Lie’s Third Theorem, which makes use of Ado’s Theorem [(L.6)|(b).

Theorem |(3.11)| could be summarized by the commutative diagram

A(G) =4 A(GLg(L))

exp JKEXP

G —24 5 GLp(L)

The next theorem provides an important extension of this.

(3.13). THEOREM. If f: G — H is a Lie group homomorphism, then there
is a unique Lie algebra homomorphism df : A(G) — A(H) with fexp = expdf.
That is, we have the following commutative diagram:

exp lexp ot

This is the easiest theorem of the present section. As in our proof of Theorem
the candidate for the differential df of f is relatively evident. In the
matrix case, if A € A(G) then ¢(t) = exp(tA) is a one-parameter subgroup of
G. After we compose it with f, the map fo(t) = f(exp(tA)) is a one-parameter
subgroup of H. Therefore there is a unique B € A(H) with fy(t) = exp(tB).
We set df(A) = B. The remaining verification (in the matrix case) that this
gives a Lie algebra homomorphism is achieved through calculations similar to
those of the previous two sections; see [E1d15].

artan’s theorem? Jremark

A functor F from the category A to the category B is an equivalence if it is
faithful, full, and dense [Jac89]:

(i) F is faithful if the maps F: Homa(X,Y) — Homg(F(X), F(Y)) are
always injections.
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(ii) F'is full if the maps F': Homa(X,Y) — Homg(F(X), F(Y)) are always
surjections.

(iil) F'is denseﬂif for every object Z of B there is an object X of A with F(X)
isomorphic to Z in B.

There is a natural concept of isomorphism for categories, but a more useful
equivalence relation is that of equivalence. Formally, two categories are equiva-
lent if they have isomorphic full, faithful, and dense subcategories. One should
think of category equivalence as saying that the two categories are essentially the
same, although the names of the isomorphism classes may have been changed.
For instance, the category of all finite sets is equivalent to the category of all
finite subsets of the integersﬂ In particular, equivalent categories have the same
representation theory (subject to some changing of names).

Theorem |(3.13)| could be restated to say that A with A(f) = df is a faithful
functor from the category of Lie groups rLieGp to the category of Lie algebras
rLieAlg. The next two results say that, given appropriate restrictions, A is also
full and dense.

(3.14). THEOREM. (LIE’S SECOND THEOREM) If G and H are Lie groups
with G simply connected, then for each Lie algebra homomorphism d: A(G) —
A(H) there is a Lie group homomorphism f: G — H with d = df . m]m]

We must restrict to simply connected G. This is a stronger requirement than
path connectivity, which requires that, for every group element, there is a curve
containing the identity and that element. Path connectivity makes sense, since
our discussion of the tangent space can only reach those elements of GG joined to
the identity by some curve. Indeed the Lie algebra of any Lie group is equal to
that of the connected component of its identity element. As we saw in Corollary
the two groups GL,,(R)" and GL, (R) have the same Lie algebra gl (R).
That is because any continuous path from the identity I of positive determinant
1 to a matrix of negative determinant would have to pass through a matrix of
determinant 0; the path would have to leave the group GL,,(R).

A simply connected group must be path connected but also satisfy an addi-
tional requirement, which we do not give precisely. It asserts that all paths from
the identity to a given element are fundamentally the same. For example, the
path connected Lie groups (R, +) and S' ~ SO3(R) have the same Lie algebra,
abelian of dimension 1, but they are clearly not isomorphic. The problem is that
the circle S! is not simply connected—going from the identity 1 to the opposite
pole —1 via a clockwise path is fundamentally different from traveling via a
counter-clockwise path. The group (R, +) is simply connected, so Lie’s Second
Theorem guarantees a Lie group homomorphism from it to S!, for instance

. ( cos(r) —sin(r) ) |

sin(r)  cos(r)

3This is not standard terminology.
4S. Awodey nicely describes category equivalence as “isomorphism up to isomorphism.”
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but this map has no inverse.

(3.15). THEOREM. (LI1E’S THIRD THEOREM) For each finite dimensional Lie
algebra L, there is a Lie group G with A(G) isomorphic to L. og

The new hypothesis that the Lie algebra be finite dimensional is necessary
since the Lie group G is a manifold.

(3.16). THEOREM. The functor A gives a category equivalence of the category
of simply connected Lie groups gLieGp®S and the category of finite dimensional
Lie algebras RLieAlgfd.

ProoF. We have already observed that Theorem says that A is
faithful. By Lie’s Second Theorem |(3.14)| it is full on gLieGp*“, and by Lie’s
Third Theorem it is dense to pLieAlg’?. a

In particular, we now know that the (appropriately restricted) Lie group G
and Lie algebra A(G) have essentially the same representation theory.

3.7 Problems

(3.17). PROBLEM.

(a) In GL,(R) prove that exp(tA) exp(tB) = exp(t(A+ B)), for allt € R, if and only
if [A,B] = 0.
HINT: The function exp(t(A + B)) — exp(tA) exp(tB) is smooth on R.

(b) Let A = e12 and B = ez3 be matriz units in Matz(R). Do the calculations in
SL3(R) and sl3(R) that exhibit A+ B € sl3(R) but exp(A) exp(B) # exp(A + B).

REMARK. For small enough values of t, the smooth curve exp(tA)exp(tB) has norm
less than 1, so log(exp(tA) exp(tB)) exists. Its precise calculation in terms of A and
B is the content of the Campbell-Baker-Hausdorff Theorem, which begins

log(exp(tA) exp(tB)) = t(A+ B) + %tQ [A,B] +t3(---).

As such, it also provides a proof of (a). Fven at this level it is more sophisticated than
what we have done up to now.

(3.18). PrROBLEM. Consider the group X = X,(R) of Problem|(2.10) Prove that
its Lie algebra is a Heisenberg algebra isomorphic to Lx .

(3.19). PROBLEM. Let G be a closed subgroup of GLy,(R). Prove that if ¢ : I —»
A(G) is a curve, differentiable on the open interval I, then c'(t) € A(G) for allt € I.
HINT: Examine the proof of Theorem|(3.12)
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Chapter

Lie Algebra Basics

The previous chapters were, in a sense, introduction and justification. The
actual work starts here. We repeat our basic definition: a Lie algebra is a
K-algebra (gA,[-,-]) that satisfies the two identical relations:

(i) [z, 2] = 0;

(ii) (Jacobi Identity) [[z,y], z] + [y, 2], ] + [[2, z],y] = 0.

Our overall goals are to classify and understand Lie algebras and their repre-
sentations under suitable additional hypotheses. We will focus on finite dimen-
sional Lie algebras over algebraically closed fields of characteristic 0, but various
parts of what we say are valid in a more general context. In particular, in this
chapter we make no restriction on dimension or field, except where expressly
noted.

4.1 Solvable and nilpotent Lie algebras

By definition, the subspace A is an ideal of the Lie algebra L precisely when it is
invariant under all inner derivations ad, for x € L. The ideal A is additionally
characteristic in L if it is invariant under all derivations of L, not just the inner
derivations. If J is a characteristic ideal of the ideal A in the Lie algebra L,
then J is an ideal of L. (Exercise.)

For subspaces A and B of L we let the commutator [A, B] be the subspace
of L spanned by [a,b] for all a € A and b € B. As [a,b] = —[b,a] always
[A,B) = [B, A.

(4.1). LEMMA. Let L be a Lie K-algebra.
(a) If A and B are ideals of L, then [A, B] is an ideal of L.

(b) If A and B are characteristic ideals of L, then [A, B] is a characteristic
ideal of L.

43
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PROOF. For each derivation D, we have D([a,b]) = [D(a),b] + [a, D(b)]. O

Especially [L, L] is a characteristic ideal, and L/[L, L] is the largest abelian
quotient of L:

(4.2). LEMMA.  For the Lie algebra L, the quotient L/[L, L] is abelian. If
w: L — A is a homomorphism from L to abelian A, then [L, L] < ker ¢ so that
@ factors through L/[L, L] via

x—x+[L, L] — o(x). O
The derived series L®), k € N, of the Lie algebra L is then given by
LO =, [t = [L(”),L(”)].

By Lemma b) each L®) is characteristic in L, and each subquotient

L(k)/L(kH) is abelian. The algebra L is solvable provided there is a k € N

with L) = 0, in which case the smallest such k is the derived length of L.
Similarly the lower central series L*, kinZ*, of L is given by

L'=rL, L""t'=[L",L"].

Again each L* is characteristic in L, and each subquotient L* / L*+1 is abelian.
The algebra L is nilpotent provided there is a k € N with L*+1) = 0, in which
case the smallest such k is the nilpotence class of L.

As examples, consider the Borel algebra in Mat,, (K)

b=0&n,

which is the direct sum of its abelian diagonal subalgebra 0 and the ideal n of
strictly upper-triangular matrices.

[b,b] = [0,0] + [0,n] + [n,0] + [n,n] <

As seen earlier (in Problem ) the ideal n is nilpotent hence solvable (by the next
proposition). Therefore the Borel algebra is solvable.

(4.3). PROPOSITION. Let L be a Lie K-algebra.

(a) [L™, L") < L™m+n,

(b) L™ < 12",

(¢) If L is nilpotent, then L is solvable.

PROOF. Part (a) follows from induction on n, with n = 1 given by the defi-
nition of L™*!. The induction step comes from combining the Jacobi Identity
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with the definition (twice) and induction (twice):

[, LH—H] = [L™,[L", L]
<[L" [L, L™+ [L,[L™, L"]]
< L™ L™+ [L, L)
< tml +L1+m+n

< Lm+n+1 .

Now (b) follows from (a) and (c) follows from (b). O
(4.4). LEMMA. Let L be a Lie K-algebra.

(a) Subalgebras and quotient algebras of solvable L are solvable.

(b

The sum of solvable ideals in L is a solvable ideal of L

(¢) If dimg (L) is finite, then L has a unique mazimal solvable ideal.

)
)
)
(d) If the ideal I and the quotient L/I are solvable, then L is solvable. O
(4.5). LEMMA. Let L be a Lie K-algebra.

(a) Subalgebras and quotient algebras of nilpotent L are nilpotent.

(b) The sum of nilpotent ideals in L is a nilpotent ideal of L.

(¢) If dimg (L) is finite, then L has a unique mazimal nilpotent ideal. o

As is always true for finite dimensional L, when L has a unique maximal
solvable ideal, then it is the radical or solvable radical of L. Similarly when L
has a unique maximal nilpotent ideal, it is the nilpotent radical of L.

By the proposition, the nilpotent radical is contained in the solvable radical.
On the other hand, the last term in the derived series of a solvable ideal is an
abelian ideal and so is nilpotent. Therefore the solvable radical is 0 if and only
if the nilpotent radical is 0.

A Lie algebra is semisimple if its (solvable) radical is 0. By Lemma [(4.4)[(d)
the quotient of L by its radical is then always semisimple.

The last part of the lemma on solvable extensions does not have a nilpo-
tent counterpart—the extension of a nilpotent Lie algebra by a nilpotent Lie
algebra need not be nilpotent. (Otherwise, all solvable Lie algebras would
also be nilpotent.) In the following proposition we do get a nilpotent exten-
sion algebra under an additional Engel condition, requiring the vanishing of an
appropriate iterated commutator. Define [A; B,n] by [A;B,1] = [A, B] and
[A; B,k + 1] = [[4; B, k], B].

(4.6). PROPOSITION. Let the Lie algebra L contain an ideal I such that I and
L/I are nilpotent. Further assume L has a subalgebra M such that L =1+ M.
Then L is nilpotent if and only if there is a positive m with [I; M, m] = 0.
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PROOF. See [Ste70, Lemma 2.1].
If L is nilpotent, then letting m be the class of L gives the required condition.
Now consider the converse. We first claim that for all positive n and r

[ Lyr] < 1" 4 (1" M, 7).

As I™ is characteristic in the ideal I, it is an ideal of L; so at least we have
[I™; L,r] < I™.

We prove the claim by induction on r, the result being clear for r = 1 as
L =1+ M. Assume the result for . Then

[I™; L,r+1)=[I";L,r], L]
(1" 4+ (I M, r], 1 + M)

<
< [T+ M)+ [[I7 M), 1)+ (17 M ], M.
The first two summands are in I"*1 (as I"*! and I™ are ideals of L) and the
last is equal to [I™; M, r + 1]. This gives the claim.

Let k be the maximum of m and the nilpotence class of L/I. We prove
LF? < I" by induction on n, with the case n = 1 valid by the definition of k.
By definition, induction, the claim, and hypothesis

LAtk — [LFn Lok < (I Lok < TP 4 (1 M) < TP 4 [ M K] = 1L

as desired.
For large enough n, nilpotent I has I™ = 0. Thus L*" = 0, and L is
nilpotent. O

4.2 Representation and modules

that a K-representation of the Lie K-algebra L is a Lie homomorphism ¢: L —
A~ for some associative K-algebra A. Often ¢: L — Endg (V) for a K-space
V. The space V is then an M -module and the action L x V — V of L on that
module is characterized by

[a, bl = ¢([a, b]) (v) = ¢(a)(p(b)(v)) — () (¢(a)(v)) = a(bv) — b(av)

fora,be Landv e V.

The modules for the Lie algebra L form a category pMod. There is a natu-
ral bridge between this context and that of module categories over associative
algebras.

Let V be a K-space. For f € N, let V®/ be the f'" tensor power of the
module V (with V®? = K and V®! = V). The tensor algebra T(V) is the
associative K-algebra

T(V)=ver

neN
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with multiplication determined by the linear extension of
M(U1®"'®”Uk,w1®"'®wm):v1®"'®vk®wl®"'®wm~

If V happens to be the Lie algebra L over K, then its universal enveloping
algebra U(L) is the quotient T(L)/I where I is the ideal in T(L) generated by
all the elements * ® y — y ® « — [z,y] for ,y € L. The construction gives
us a natural representation tr: L — U(L)~. Especially U(L)-modules are
L-modules. This correspondence is readily seen to be universal in at least two
senses. (See Chapter [J] for further discussion.)

(4.7). THEOREM.

(a) If for associative A the map p: L — A~ is a representation of L, then there
is a unique associative algebra morphism @a: U(L) — A with ¢ = paLr.

(b) The two module categories yMod and y(ryMod are isomorphic. o

That is, L-modules and U(L)-modules are the same thing.

One advantage is immediate. For associative algebras A, every cyclic A-
module is a quotient of 4A. As irreducible modules are always cyclic, every
cyclic and irreducible L- and U(L)-module is a quotient of U(L). This is an
improvement. For instance in Section we found that 3-dimensional sly(K)
has irreducible modules of arbitrarily large finite dimension. (Among other
things, this implies that the universal enveloping algebra for sls(K) is infinite
dimensional.) This also demonstrates a downside—the algebra slz(K) is very
small and manageable, while we have just seen that its universal algebra has
numerous distinct quotients.

Large portions of standard terminology and results module theory for asso-
ciative algebras go over to Lie algebras effortlessly via the universal enveloping
algebra. For instance, two L-modules are isomorphic precisely when they are
isomorphic as U(L)-modules.

The L-submodules and quotient modules of an L-module V over K will be
exactly those spaces that are U(L)-submodules and quotient modules. A module
will then be irreducible or simple if it has no proper and nontrivial L-submodule,
which is to say U(L)-submodule. The dual of the L-module V is its dual V* as
U(L)-module.

Finite dimensional L-modules have composition series, and these satisfy the
Jordan-Holder Theorem, in that the multiset of composition factors is the same
for any two composition series of the module.

Indecomposable modules for L are those for U(L). The Krull-Schmidt The-
orem remains valid, saying that any two decompositions into indecomposable
summands are essentially the same.

The concept of complete reducibility for modules remains relevant:

(4.8). THEOREM. LetV be a finite dimensional module for the Lie algebra L.
Then the following are equivalent:
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(1) for every submodule W of V', there is a complementary submodule W' with
V=WeWw;

(2) V is a sum of irreducible submodules;
(3) V is a direct sum of irreducible submodules. a
Particularly important is Schur’s Lemma:

(4.9). THEOREM. (SCHUR’'S LEMMA) Let L be a Lie algebra and V a finite
dimensional, irreducible L-module over the algebraically closed field K. Then

the scalars of K are the only endomorphisms of V' that commute with the action
of L on'V. |

4.3 Semidirect products

The next lemma describes the elementary internal semidirect product for Lie
algebras. The corresponding external semidirect product or split extension of
Lie algebras is then the construction of the proposition that follows.

(4.10). LEMMA. Let Lie K-algebra L = M @© I where M is a subalgebra and
I is an ideal. Then for m,n € M and i,j € I we have

[m+i7n+j] - [man] + [17.7] + [ma]] + [Z',Tl},
where [m,n] € M and [i,j] + [m, j| + [i,n] = [¢, j] + [m, j] — [n,4] € . a

(4.11). PrROPOSITION. Let M and I be Lie K-algebras, and let 6: M —
Derg(I) be a Lie homomorphism of M into the derivation algebra of I given by
m > . Then M ® I with bracket multiplication

[(m7i)a (nv])] = ([mvn]v [Zvj] + 5m(]) - 5n(2))

1s a Lie K-algebra in which 0 ® I is an ideal isomorphic to I and M & 0 is a
subalgebra isomorphic to M. Furthermore, for each m € M, ad(,, o) induces
(0,0,,) on 0 I.

PROOF. Exercise: the only difficulty is the verification of the Jacobi Identity.
In doing that, the corresponding calculation from the lemma can be used as a
guide. O

We emphasize two cases.
(4.12). EXAMPLE.

(a) If ¢ is a derivation of the Lie algebra A, then with M =K§ and I = A we
make L = Kd & A into a Lie algebra as in the proposition. Here A is an
ideal of codimension 1 upon which the derivation 0 is now induced by the
inner derwation ads of the new algebra L.
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(b) Let V be a module for the Lie algebra M. As in the proposition L = M &V
becomes a Lie algebra after we declare V(= I) to be an abelian Lie algebra:
[V,V] =0. (Any endomorphism of an abelian Lie algebra is a derivation by

Proposition|(2.3).)

The original definition of modules is extrinsic—the module arrives as an
accessory to a representation. But modules often arise intrinsically—the module
itself is the focal point and gives rise to a representation. The most basic of such
situations is the adjoint action of M on itself. This generalizes to the action of
M on the subquotient A/B where A and B are ideals of M with A > B. The
theory of solvable and nilpotent algebras in the previous section comes from the
study of abelian subquotients.

These remarks and the second example above suggest some useful notation.
Let ¢: M — Endg (V) be a Lie representation of M. As the action of ¢ on
V is induced in L = M @& V by the restriction of L-adjoint action to the ideal
0@V, we sometimes write ad" for ¢ and ad? for p(z). In particular ad” is the
usual adjoint action ad, of z on L in the adjoint representation.

4.4 Problems

(4.13). PROBLEM. ?? lower central series; Z is kernel of ad
(4.14). PROBLEM. For L = n calculate L* and L™,

(4.15). PROBLEM. Flield indep exp(d) auto; see [Ros02, p. 51].
(4.16). PROBLEM. mnilpotent derivations and automorphisms
(4.17). PROBLEM. Jordan-Chevalley decomposition

(4.18). PROBLEM. Lie algebra central extension.

(4.19). PROBLEM. Action of L on'V Qg W.

(4.20). PROBLEM. Action of L on V*, given action on V.
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Chapter 5

The Cartan decomposition

5.1 Engel’s Theorem and Cartan subalgebras

We begin with a helpful calculation.

(5.1). PROPOSITION. Let 6 be a derivation of the Lie algebra L. For x,y € L
and a,b € K:

(6 —al =b1)"[x,y] = Z (7) [(6 — a1)"—i(x), (6 — bl)l(y)} .

PRrROOF. We prove this by induction on n with the case n = 0 being trivial
and the case n = 1 following from the definition of a derivation.

(6 —al —b1)"[x,y] = (6 —al —b1)((d — al —b1)" *z,y])

=@ —al—b1)Y (“ ; 1) [(6 —al)” 1" (x), (6 — b1)"(y)]
1=0

=> (” B 1)6[(6 —al)" i (a), (5 — b1 ()]
1=0

Fal )Y (“ B 1) (6 = al)" ' (@), (5 — b1)'(y)]
=0

=3 ("7 )6 - a6 - o))
1=0
n—1 n—1 . )
+ "6 = a1)" i (), 6(6 — b1)
(") a6 o)

o1
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(
> ("7 1)1 e ). -o06 - 1))
-5 (n ; 1) (8= a1)""(@), (6 = b1)'(y)]
S (n J 1) (6= a2)" ™ (z), (4 = b1)" (v)]

0
=3 ("6 - a6 - )

3 (72116 - a1y, 6 - 1)
- _ ()10 = a1+ 6 - 0. 0

(5.2). PROPOSITION.  Let N be a nilpotent Lie algebra and V' a K-module.
For each element x of N and each A € K, the generalized eigenspace

V2={veV|(x—-A)fv=0,s0mek =k, », €N}
for x on'V is an N-submodule of V.

ProOF. Let N have nilpotence class [. For v € Vz/\ set n =104 kzxo. Asin
Example((4.12)[b), we calculate within the semidirect product L = N &V with
N acting on V. By Proposition with y € N, d =ad,, a=0,and b=\,

(z = A1)"(yv) = (ads —A1)" [y, v]

- ; (") a2 (), (ady ~A1)'(0)] = 0.

since ad’(y) = 0 for j > 1 and (ad, —A1)*(v) = 0 for i > ky x...
This shows that yV,} < V,}, hence the subspace V;} of V is in fact a sub-
module. a

An endomorphism is nil if some power of it is 0, and a nil representation of
the Lie algebra N is one in which each element of N acts as a nil endomorphism.

(5.3). PROPOSITION. Ifo: N — Endg (V) is a nil irreducible representation
of the nilpotent Lie algebra N, then o is the trivial 1-dimensional representation.

PROOF. Certainly N™V = 0, where n is the nilpotence class of N. Suppose
N¥V =0. If k = 1, then NV = 0 and irreducible V has dimension 1, as desired.
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For k > 1let x € N*~1. As the representation is nil, for nonzero u € V there
is a positive n, with 2"*u = 0. For minimal such n,, the element w = z"* 1y
is nonzero with zw = 0. Thus W = {v € V | v = 0} is nonzero. For all y € N
and w e W

z(yw) = y(aw) — [z,yjlw =0-0=0
as w € W and [r,y] € N¥. Therefore yw € W, which is thus a nonzero
submodule. By irreducibility W = V', hence £V = 0. But this implies N¥~1V =
0, and we are done. O

(5.4). COROLLARY. If o is a nil representation of the nilpotent Lie algebra N
on the finite dimensional module V', then V' has an N-composition series with
all factors of dimension 1 and trivial. a

(5.5). THEOREM. (ENGEL’S THEOREM) If the adjoint representation of the
finite dimensional Lie algebra L is nil, then L is nilpotent.

PROOF. We prove this by induction on dimg (L) with the result clearly true
in dimensions 0 and 1. Assume dimg (L) > 2.

Let I be a maximal proper subalgebra of L. As adi = adg% |; for x € I, the
adjoint representation of I is nil. Therefore by induction I is nilpotent.

By Corollarythere is a 1-dimensional submodule P/I for the nil action
of nilpotent I on L/I. Let x € P\ I and M = Kz. Then

[P,P]=[M+1,M+1]

= [M, M] + [M, 1] + [I, M] + [1,1]
= [M, 1] + [, M] + [I,1]
<T

)

so P is a subalgebra of L in which [ is an ideal of codimension 1. By maximality
of I, L=P.

We now have L = M @& I with M = Kz ~ L/I an abelian algebra and
I a nilpotent ideal. Furthermore by hypothesis ad)’ = 0 for some m, hence
[I; M, m] = [I;z,m] = 0. By Proposition [(4.6)] the algebra L is nilpotent. O

If A is a subspace of the Lie algebra L, then the normalizer of A in L, N (A),
is{xz e L|[z,A] < A}. The subspace A is then self-normalizing if A = Np(A).

(5.6). LEMMA.
(a) If A is a subspace of the Lie algebra L, then N1 (A) is a subalgebra.

(b) If A is a self-normalizing subspace of the Lie algebra L, then A is a subal-
gebra.

PROOF. For z,y € N(A) and a € A, the Jacobi Identity gives
[z, 9], a] = —[ly. a], 2] — [[a,2],y] € A

so the vector space N1 (A) is a subalgebra. The second part then follows from
the first. |
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(5.7). LEMMA. Let L be a Lie algebra, x € L, and
L = {y | ad®(y) = 0 for some k = kzo,y €N}

be the generalized eigenspace for x acting on L in the adjoint representation
with eigenvalue 0. Then LY is a self-normalizing subalgebra of L.

PROOF. Let a € NL(LY). As [z,2] = 0, we have z € LY, hence [z,a] € LY.
Therefore ad”([z, a]) = 0 for k = Kz,0,[z,a)- But then ad*"!(a) = ad”([z, a]) = 0,
whence a € L9m, and the subspace LY is self-normalizing. By the previous
lemma it is then a subalgebra. o

The element w of the finite dimensional Lie algebra is said to be reqular in
L if the dimension of the subalgebra LY is minimal. This dimension is then the
rank of L. As long as L # 0 this is positive since always w € L2.

(5.8). THEOREM. Assume K has characteristic 0. Let w be a regular element
of the finite dimensional Lie algebra L and set H = LY. Then H is a nilpotent
and self-normalizing subalgebra of L.

ProoF. We follow [EId15].

By the previous lemma, H is a self-normalizing subalgebra. We must prove
it to be nilpotent. Let n be the dimension of L and r = dimg(H), its rank.

For fixed but arbitrary h € H and all o € K, the element w + ah belongs
to H. Consider the linear transformation ady4an (= ady +aady,) of L, which
leaves the subspace H invariant and so also acts on the quotient space L/H. Its
characteristic polynomial x5, ., (z) € K[z] is then ¢4 (2)7a(z) where

r—1
valz) = Xngah(Z) =z2"+ Z fi(a)zi
i=0

is the characteristic polynomial of ad, 4, on H and

n—r—1

-
L/H _ ;
Yo(2) = Xl () = 2"+ > gj(a)?
=0
is the characteristic polynomial of adyar on L/H. The standard calculation
of the characteristic polynomial as a determinant reveals the polynomials f;(x)
of K[z] to have degree at most r while the g;(z) have degree at most n —1r .
As H = L% we have 40(0) # 0 hence go(0) # 0. Especially the polynomial
go(z) of degree at most n — r is not identically 0. As K has characteristic 0 we
have |K| > n, so there are distinct elements a, ..., ar+1 of K with go(ay) # 0
for 1 <k <r+1. In particular L21+aw < H for each k. As w is regular, this
forces L?U_mkh = H, which is to say ¢q,(z) = 2" for 1 <k <r+ 1. But then
each of the polynomials f;(x), for 0 < ¢ < r, vanishes at aq,...,ar41. As these
polynomials have degree at most 7, they must be identically 0.
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Therefore ¢, (z) = 2" for all values of o € K, and every w + ah is nil on H.
As h was fixed but arbitrary, we find that every element of H is nil on H. By
Engel’s Theorem |(5.5)] H is nilpotent as desired. i

A Cartan subalgebra of the Lie algebra L is a nilpotent, self-normalizing
subalgebra. The theorem tells us that Cartan subalgebras always exist in finite
dimension and characteristic 0. More is true: for finite dimensional Lie alge-
bras over algebraically closed fields of characteristic 0, the automorphism group
of L is transitive on the Cartan subalgebras (so all arise as in the theorem);
see [JacT9l p. 273]. At times we may abuse notation or terminology by not
mentioning the specific Cartan subalgebra being used. Indeed often they are
all essentially equivalent; we shall address conjugacy of Cartan subalgebras of
finite dimensional semisimple algebras in Corollary

There are many characterizations of Cartan subalgebras. The following is
important here.

(5.9). PROPOSITION. Suppose H is a nilpotent subalgebra of the finite dimen-
sional Lie algebra L. Then H is a Cartan subalgebra if and only if in the action
of H on L via the adjoint we have

H=L% =)L)
heH
={z e L|ad}(z) =0 for allh € H and some k = kj 0, € N},

the largest subspace of L upon which H is nil.

PROOF. The nilpotent algebra H is certainly contained in L}. We show
that H is proper in LY if and only if H is not self-normalizing. As the Cartan
subalgebras are by definition the self-normalizing nilpotent subalgebras, this
will give the result.

Let x € NL(H) \ H. Then, for each h € H we have [h,z] € H. As H is
nilpotent, adf[h,z] is 0 for sufficiently large k& = k. But then adffl(x) =0
and x is in LY but not in H.

Suppose LY > H. By Corollary [(5.4)] there is a trivial H-submodule P/H
of dimension 1 in LY /H. For z € P\ H, we have [z, H] < H. That is, z is in
the normalizer of H but not in H. O

5.2 Weight spaces and vectors

(5.10). THEOREM. Assume K is algebraically closed of characteristic 0. Let
V' be an indecomposable KN -module for the nilpotent Lie algebra N with 0 <
n = dimg (V). Then there is a 1-dimensional Lie homomorphism A\: N — K
with

V={veV]|(x—-Az)1)"v=0 forallz € N}.

PrROOF. We may replace N with its image in Endy (V) ~ Mat,, (K). As
K is algebraically closed, all # € N have eigenvalues in their action on V.
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By standard linear algebra (say, Jordan Canonical Form), for each € N the
module V is the direct sum of its generalized eigenspaces

V2={veV|(x—-A)v=0,s0omek ="k, €N}.
Indeed max, (kg ) < n, SO
V2={veV|(x—-A)"v=0}.

By Proposition|(5.2)l indecomposability, and the above remarks, each x € N
has a unique eigenvalue A\(z) on V, and for every z the whole space V' is equal

to the generalized x-eigenspace VIA(E):
V=V ={peV|(x-\Nz))"v=0}.

In particular tr(x) = nA(x). As K has characteristic 0, we find that A(z) =
n~ltr(z) is a linear map A: N — K. Furthermore

Mz, y]) = n~tr(zy — yz) =0,

for all z,y € N; that is, Ay, n) = 0. Therefore the linear transformation
A: N — Kis a 1-dimensional representation of the abelian Lie algebra N/[N, N]
and so of N itself. |

A 1-dimensional representation of a Lie algebra L is called a weight of the
algebra. All weights of L belong to the dual of the K-space L/[L,L]. For an
L-module V and weight A of L,

‘/'A = Vg\ = m VIA(QT)
reL
={veV|(x—Xz)1)*v=0 for all z € L and some k =k, 5, € N}

is the corresponding generalized weight space in V. These are the generalized
eigenspaces for the action of L. A nonzero vector v € V? is a weight vector if it
is an actual eigenvector for all L (kg < 1 for all € L). The corresponding
eigenspace of weight vectors is then the weight spaceﬂ

Vi=Via=((Vea={veV|(@—Az)l)v=0forallzecL}.
x€L

Notice that V) is nonzero if and only if V* is nonzero.

For every nonzero Lie algebra, the trivial representation is the trivial weight
or zero weight. We have already encountered a generalized weight space in
Proposition where the Cartan subalgebra H was characterized among
all nilpotent subalgebras of L by being equal to its corresponding generalized
weight space LY.

n the older literature it is often the generalized eigenspaces VLA that are termed weight
spaces.
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(5.11). THEOREM. Assume K is algebraically closed of characteristic 0. For
the nilpotent Lie algebra N and the N-module V' of finite dimension n, N has
only finitely many weights on V' ; each generalized weight space

V=V ={veV|(x-Az))"v=0 forallz € N}
1s a submodule; and V is the direct sum of its generalized weight spaces.

ProoF. As V is finite dimensional, we can write V as a direct sum of
finitely many nonzero indecomposable submodules. By the previous theorem,
each of these summands is contained in one of the the generalized weight spaces
V# for some weight p of N. Let the submodule V(i) be the sum of those
indecomposable summands with weight . The previous theorem gives

Vip) <{veV|(x—p)l)"v=01frallz € N} <V#.

Now we have

V=PV,

neJ

where J is a finite set of weights for N on V. In particular, every v € V' can be
uniquely written v =3 5, v, with v, € V(p).
Let A\ be an arbitrary weight of N on V, and consider 0 # v € V*. We
claim:
vy #0 = u=A.

As the various nonzero v,, are linearly independent and each V'(x) is a submod-
ule, (z — A(z)1)™v = 0 implies (z — A(z)1)™v, = 0 and so v, € VANV (u) <
VAnvh

Assume v, # 0. For fixed but arbitrary x € N, choose k (= k; z(z),0) € N
minimal with (z — A(z)1)*v, = 0. Set u = (z — A(z)1)*~tv, # 0, so that
(x — Mx))u = 0; that is, zu = A(z)u. As V(p) is a submodule, u € V(p) < VH#;
so there is an m € Z* with (z — p(z)1)™u = 0. But

(2 — p(@)L)u = 2 — ple)u = Ma)u — pla)u = (M) — p(@)u,

hence

0= (z—p@)1)"u= A=) - p(z)"u.
Now u # 0 forces A(z) — p(xz) = 0. That is, for all x € N we have A(z) = p(x),
hence A\ = p as claimed.

For every weight A, each nonzero v € V* must project nontrivially onto at
least one of the summands V() for p € M. By the claim, there is only one
such summand, namely V()), and v € V(A). Thus A € J and there are only
finitely many weights for N on V. Also V* < V()\) < V*, hence

VI ={veV|(@—-Az))"v=0forallz € N} =V>.

Finally V is the direct sum of the submodules V(u), so it is equally well the
direct sum of the generalized weight spaces V*, each a submodule. a
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5.3 The Cartan decomposition

We can use the results of the previous sections to consider a Lie algebra as a
module for any of its nilpotent subalgebras.

(5.12). THEOREM. Let L be a finite dimensional Lie algebra over the alge-
braically closed field K of characteristic 0. Let o and 3 be weights of L for the
nilpotent subalgebra N. Then the generalized weight spaces satisfy

(L%, L] < Ly,

where L for A € (N/[N, N])* is taken to be 0 when X is not a weight. For the
corresponding weight spaces we have

[LN,a,Lngl < Lna+s-

Proor. Let x € N, y € L%, and z € L’?\,. Then, for n = 2dimg(N), by

Proposition |(5.1)| and Theorem |(5.11)|

~ (n —i i
(ad ~a1 = 3170y = Y- (1) (0 ~a1)" ™ (9), ad, 1) ()] = 0.
=0
Therefore, [y, 2] € L.
If additionally ¥ € Ly, and z € Ly g, then the identity holds with n =1,

hence [Ly,a; Lngl < L,a+p- o

The most important case is that where N = H is a Cartan subalgebra of L.

Theorem |(5.11)| tells us that
L@ - @
A A

where A runs over the finite set of weights of H(= L%) on L. This is a Cartan
decomposition of the Lie algebra L—the decomposition of L as the direct sum
of its generalized weight spaces for a Cartan subalgebra H.

A nonzero weight for the action of H on L is a root. Therefore the Cartan
decomposition is often written

L=He L,
AED

where A runs over the finite set ® of roots of H on L.

Here and above we see the common abuse of notation and terminology that
refers to the weights and weight spaces of L without specifying the Cartan
subalgebra H being used, say, writing L* in place of L}. Usually H (= LY =
L%) will be clear from the context, and in the cases of most interest to us all
Cartan algebras are equivalent; see the remarks on page and see Corollary

on semisimple algebras.

By the theorem [L¥, L=%] < L° = H, clearly a special situation. Right now
we do not even know that —« is a root for every root a. It will turn out that
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this is the case and that subalgebras generated by elements z € L® and y € L=
and the related action on submodules of L are extremely important. We begin
with a technical lemma of that nature, which we then use for the first of several
times.

(5.13). LEMMA. Let L be a finite dimensional Lie algebra over the algebraically
closed field K of characteristic 0. Assume that o and —« are roots.

Let M = @, cp M, for A C ®, be a K-subspace of L that is invariant under
ad, and ady for x € L® and y € L™% and has M* = M N L* for each X € A.
Then h = [x,y] is in H and

0= dimg(M)A(h).
AEA

PROOF. As z and y are in the subalgebra N, (M), so is h = [z,y]. Here h is
an element of H by the previous theorem; indeed by the theorem h normalizes
each M* = M N L.

The linear transformation ad, = [ad,, ad,] is a commutator and so has trace
0 on the subspace M normalized by x and y. That is,

b b
0= tr(ady [p) = Y _tr(ady ) = dimg (M )A(R),

i=a
as desired. O

(5.14). PROPOSITION.  Let L be a finite dimensional Lie algebra over the
algebraically closed field K of characteristic 0, and let o and B be roots of L.
Then S is a rational multiple of o when restricted to the subspace [L®, L™%].

ProOF. This is [Ste70, Lemma 3.2].

The result is trivial if —« is not a root, so we may assume it is.

Choose nonnegative integers s and ¢ so that neither §—(s+1)a nor +(t+1)a
is a root. As there are only finitely many roots, such s and ¢ certainly exist.
Define M to be the corresponding subspace

t
M:Lﬁ—sa@@Lﬁ@@Lﬁ-i-ta: @ Lﬁ"ri(x.
Set d; = dimg (LA1®), so that d; > 0 with dy > 0 as f3 is a root.
Our choice of s and ¢t and Theorem give [M,L=% < M and [M, L*] <

M. That is, L% and L* normalize M. Let x € L® and y € L%, and set
h = [z,y]. By the technical lemma above

0= di(B+ia)(h),

i=—s
hence

B(h) = a(h)

e
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ford=—3'__ id; and e =>.'___d; # 0. By linearity, this holds for all & in

1=—s5 1=—s5

[Le, L. O

5.4 Killing forms

Let L be a Lie K-algebra and V a finite dimensional L-module. The Killing
form of L on V, kY : L x L — K is is a bilinear form given by

kY (z,y) = tr(ad) ad?‘;) )

where we recall our convention that ad;/ is the image of x € L in Endg (V). For
the basic theory of bilinear forms, refer to Appendix [A]

If the relevant Lie algebra L should be evident from the context, then we
write kY. Finally, if V = L, the representation being the adjoint, we may drop
reference to V as well, since we then have the usual definition of the Killing
form

k(z,y) = tr(ads ady) .
(5.15). PROPOSITION.
(a) The Killing form kY is a symmetric, bilinear form on L.

(b) If W is an L-submodule of V', then

V/W
HXZ/{EV—FKL/ .

(¢) The Killing form is an invariant form (or associative form): for all z,y,z €
L

ki ([2,y)2) = w1 (2, [y, 2])

(d) If I is an ideal of L, then I+ = {z € L | kY (x,y) =0, forally € I} is
also an ideal of L. Especially L+ = Rad (L, k) is an ideal.

PROOF.

(a) The trace is linear in its argument with target K, and multiplication in
Endg (V) is bilinear; so Iig is a bilinear form on L. It is symmetric since
tr(ab) = tr(ba) in Endg (V).

(b) This is evident if we write the module action in matrix form, using a basis
that extends a basis of W to one for all V.
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(c)
kY ([z,y], 2) = tr(adE; o] adY)
(

= tr((adY adv — adV adY)ad)

= tr(ady adV ady — adV adY ad?)

= tr(ad) adv ady) — tr(adv adY ad?)
= tr(ad) adv ad)) — tr(adY ad? adv)
= tr(ad) (adv ad) —ad! adv))

= tr(a dp, 2])

= rp (2, [y7 7).

(d) Foralla €I,y € L, and b € I+ we have by (c)

0= ry ([a,],6) = w7 (a, [y,0]) -
That is, [y,b] € I+ for all y € L and b € I'+; so I+ is an ideal. O

(5.16). COROLLARY. Let I be an ideal of the finite dimensional Lie algebra
L. Then I <Rad(k} L/t ) and Kt = kL |1xr = kE 1«1

PROOF. From the second part of the proposition

oL -

L
kY = KL + K]

As I acts as 0 on L/I, we certainly have I < Rad(néﬂ). Thus on I x I we have
L

kE =kl +0=rL. As T is anideal of L also k! = L |7y;. O

Some care must be taken in the use of this result. In sl,(K) the Borel
algebra b, (K) = n;} (K) & bh,,(K) is the split extension of its derived subalgebra
nf(K) = [b,,(K), b,(K)] by the Cartan subalgebra b, (K). Let L = b, (K) and
I =1} (K). Then nilpotent I consists of strictly upper triangular matrices, so 1
is identically 0; L/I ~ §,,(K) is abelian and so /ii% is identically 0. Nevertheless

L _ I L/I

ki = Kk, + k" is not identically 0 on solvable b, (K) provided n > 2.

(5.17). THEOREM. Let L(# 0) be a finite dimensional Lie algebra over the
field K of characteristic 0. If L = [L, L] then the Killing form k is not identically
0.

PRrOOF. For any extension field E of K, if x” is identically 0, then so is k@«

Therefore in proving the theorem we may assume that K is algebraically closed.
Let L = D yeq, L* be the Cartan decomposition for L relative to the Cartan
subalgebra H = L° and finite set of weights ®;. Thus

b r.Ppr|= g e

AED, nedo A u€®o
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In particular
H= L.
AED,
As nonzero nilpotent H > [H, H] and L = [L, L], we have H < L; so the set of
roots ® = @, \ {0} is nonempty.

Let A € ®. By the definition of roots, A|g # 0 but Az g = 0. Therefore
there is an a € &g with Az -] # 0. Furthermore a is not the zero weight
as again Az, g) = A|jzo,z-0) = 0. Thus by Propositionthere is a rational
number 7y o, with

AMiLe,L-o] = "X a0 [pe, o] -

For some fixed 8 € ®, choose an z € [L* L™ < H with 8(x) # 0, hence

rg,a 7 0 and a(z) # 0. Then

k(z,z) = tr(ad, ady)

= > A=)* dimg (L")
AeD
=0+ ) Ax)*dimg (L)
A€D

= a(2)? ) 1} o dimg (L),
AED

which is not equal to 0—as above a(z) # 0; 75,4 is not zero; and all dimg(L*)
are positive integers. Since k(z,x) # 0, the form « is not identically 0 on L, as
desired. 0O

(5.18). COROLLARY. (CARTAN’S SOLVABILITY CRITERION) Let L be a finite
dimensional Lie algebra over the field K of characteristic 0. If the Killing form
1s identically 0, then L is solvable.

PRrROOF. Assume the Killing form & is identically 0. The proof is by induction
on dimg (L), with the dimension 0 and 1 cases clear. By the Theorem L # [L, L].
By Corollary the Killing form for [L, L] comes from restriction of the
Killing form for L and so is also identically 0. Therefore by induction [L, L] is
solvable, and then L is as well by Lemma O

A slightly more complicated condition on k is both necessary and sufficient
for solvability; see [EId15]: L is solvable if and only if x|z [,z is identically 0.
A case in point is that of the Borel algebras b, (K), mentioned above, which, are
solvable with a nonzero Killing form whose restriction to the derived subalgebra
[6,,(K), b,,(K)] is identically 0.

We then have the natural result that lives at the opposite end of the solv-
ability and degeneracy spectrum.

(5.19). THEOREM. (CARTAN’S SEMISIMPLICITY CRITERION) Let L be a fi-
nite dimensional Lie algebra over the field K of characteristic 0. Then L is
semisimple if and and only if its Killing form is nondegenerate.
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PrOOF. Let k = k¥ be the Killing form of L and R = Rad(L, ), an ideal
by Proposition But k|gpxr = mg is identically 0, so R is solvable by
Cartan’s Solvability Criterion Assuming L to be semisimple, we find
R = 0 so that x is nondegenerate.

Now let S be a nonzero solvable ideal of L, and take I to be the last nonzero
term in its derived series. As I is characteristic in .S, it is an abelian ideal of L.
Therefore ad} = 0, and I < Rad(x}). Also I < Rad(/-eé/l) by Corollary m

Hence by Proposition
0#1<Rad(si)n Rad(nf/l) = Rad (k! + Kjé/I) = Rad(k)

and k is degenerate. O

We also have a result that resolves a possible confusion involving terminology.

(5.20). THEOREM. Let L be a finite dimensional Lie algebra over the field
K of characteristic 0. Then L is semisimple if and only if, as L-module, it is
completely reducible with no trivial 1-dimensional ideals.

In this case all minimal ideals (irreducible submodules) are nontrivial simple
subalgebras, and they are pairwise perpendicular with respect to the Killing form.

PRroOF. Let k be the Killing form on L, and let I be an ideal in semisimple
L. Then I NI+ is an ideal by Proposition and the restriction of k to
it is identically 0. Therefore by Cartan’s Solvability Criterion the ideal
I NI+t is solvable and hence 0 in semisimple L. Therefore finite dimensional
L =1@ I+, and every ideal I is complemented in L.

By Theorem L is completely reducible as L-module. In particular,
minimal ideals and irreducible submodules are the same and are simple. If any
of these were trivial simple ideals, they would be solvable ideals, which is not the
case. Finally for the minimal ideal I, the complement I+ must be the sum of
all other minimal ideals, so these simple summands are pairwise perpendicular.

Conversely, assume that L is completely reducible with the decomposition
L= @?;0 S; into simple ideals with no summand trivial. Any solvable ideal I
projects onto each summand S; as a solvable ideal. Since no summand is trivial,
each of these projections is onto the zero ideal; I itself must be zero. Therefore
L is semisimple. O

5.5 Problems

(5.21). PROBLEM. Prove that any subalgebra of the Lie algebra L that contains L2
is self-normalizing.

dd exercise: |associative/invariant forms and properties

(5.22). PROBLEM. Let L be a finite dimensional Lie algebra in characteristic 0.
Prove that L is solvable ifn\LX[L,L] is identically 0.
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Chapter

Semisimple Lie Algebras: Basic
Structure

We take the view that the classification of finite dimensional, semisimple Lie
algebras over algebraically closed fields of characteristic 0 has four basic parts:

(i) for each algebra, the construction of a root system that functions as a
skeleton;

(i) the classification of root systems;
(iii) the uniqueness of Lie algebras corresponding to the various root systems;
(iv) the existence of Lie algebras corresponding to the various root systems.

In this chapter we handle the first part.

We first set some notation to be used throughout. Especially

L is a nonzero, finite dimensional, semisimple Lie algebra over the
algebraically closed field K of characteristic 0.

By Theorem [(5.8)| we may choose and fix a Cartan subalgebra H in L. By
Proposition we have H = LY = L°, the zero generalized weight space. Let

® be the set of all roots for H on L, a finite set by Theorem The set of
all weights is ®g = {0} U ®.

For each A € ®, we have the generalized weight space L* = L}, giving the
Cartan decomposition

L=Ppr=ae@r.
AED Aed

Since L is nonzero and semisimple, the nilpotent Cartan subalgebra H = L° is
proper in L, hence the root set ® is nonempty.

65
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For arbitrary A € (H/[H, H])*, we define L* to be 0 whenever X is not a
weight.
The Killing form x = k% is nondegenerate by Cartan’s Semisimplicity Cri-

terion

6.1 Toral subalgebras

(6.1). PROPOSITION. Let o and B be weights.

(a) K(L*,LP) =0 ifa+ B #0.

(b) For every 0 # x € L™ we have k(x, L~%) # 0. Especially —a € ®.
(¢) klaxu is nondegenerate, and H+ = @, L.

PROOF. (a) Recall that for all weights u,v we have [L¥, L] < LMV by
Theorem and this extends to all A\, u € (H/[H, H])* as we have defined
L* to be 0 whenever \ is not a weight.

For x € L®, y € LP, and v € &,

adgyady L7 = [z, [y, L7]] < [L*,[L7, L7]] < [L*, LAY < LOHPH

Therefore if oo + 3 is not equal to 0, then all diagonal entries of ad, ad, are 0
and tr(ad, ad,) = k(x,y) is 0.
(b) If x € L with x(z, L~%) = 0, then by (a)

xe(@ LA>L:LL:Rad(L,/<):O.
Aed,

As « is a root, a nonzero x in in L* exists. Hence k(x, L~) # 0; this requires
L™ #0,s0 —a € .

(c) By (b) with @ = 0 we have H N H+ = 0, so H is nondegenerate for .
By (a) H™* contains @, .4 L, and now we have equality. O

(6.2). THEOREM.  The Cartan subalgebra H is abelian.

PRrOOF. Let z,y € H. Then

k(z,y) = tr(ad, ady) = Z Az)A(y) dim L .

rcd

If w € [H, H], then A(w) = 0 for all A € ®; so k(w,y) = 0 for all w € [H, H|
and y € H. That is, [H, H] < HN H* = 0 by Proposition b). Therefore
H is abelian. |

The theorem can be restated as L® = Lo (= H); the generalized weight space
for the zero weight of H is equal to its weight space. We shall see below that
this is true for all weight spaces.
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As abelian H (= H/[H, H]) is finite dimensional and nondegenerate under
K, for every linear functional y € H* there is a unique ¢, € H with

kit h) = u(h)
for all h € H. Especially to = 0 and indeed ¢4, = at, for all a € K.
(6.3). PROPOSITION.
(a) H =23 5o Kt
(b) For each a € ® we have a(ty) = k(ta,ta) # 0.

PROOF. (a) Let J = >, 4Kty < H and choose h € J= N H. Then
A(h) = k(ty,h) = 0 for all A € & and indeed for all A € ®q since ty = 0 with
H = L°. Thus for a basis of L consisting of bases for the various L* (ordered
appropriately using Theorem every ad,, for x € H, is represented by a
matrix that is upper triangular and adj itself is strictly upper triangular. But
then adp ad, is always strictly upper triangular, hence h € Rad(H,k) = 0.
Therefore J* N H = 0 with J < H, so J = H because L has finite dimension.

(b) By nondegeneracy of x on H and (a), there is a root S with 0 #

k(tg,ta) = B(ta). Then Proposition yields
0 # B(ta) = 18,00(ta) = 78,0k (ta, ta) ,
80 K(ta,ta) # 0. m|
(6.4). THEOREM.
(a) L® = L, has dimension 1 for each o € ®.
(b) For a € ® we have Ka N ® = {£a}.
(c) Fora € @, x € L, and y € L_,, we have [z,y] = £(z,y)tq.
PROOF. We first prove (c) in the form:
Forae ®, x € L% andy € L_, we have [x,y] = k(z,y)ts.
By Theorem in any event [z,y] € H. We have, for all h € H,

k([z,y], h) = k(z, [y, h]) K is associative
= r(z, a(h)y) y€L_q
= a(h)r(z,y)
= K(ta, h)k(z,y) definition of ¢,
= k(K (2, y)ta h)

Therefore for all h € H

H([Jﬁ,y] - K‘(mvy)tcwh) =0.

By Proposition [(6.1)[(c), the form s is nondegenerate on H; thus [z,y] =
k(z,y)tq, as claimed.

Next we make a start on (b) with the



68 CHAPTER 6. SEMISIMPLE LIE ALGEBRAS: BASIC STRUCTURE

Claim: KanN® = Qan .

By Proposition (b) for y € L_, there is an x € L® with k(z,y) # 0.
Thus by the above we have 0 # t, € [L%, L~%]. Next from Proposition b)
we have a(t,) # 0. We conclude that o[« -« is nonzero.

Let 8 = ra be a root for 0 # r € K, so that

5|[L°‘,L*a] = 7“CV|[La,Lfa]

is nonzero. By Proposition |(5.14)| the scalar r in this equation is rational. We
conclude that Ko N® = Qa N @, as claimed.

We are now in a position to prove (a) and finish (b) simultaneously.
Consider KaN® = QaN®. Replacing a by any of the members of this finite

set does not change the set itself. Therefore we may assume that « is minimal
within QT «, which is to say

[0,1]lanN® = {a}.

As before, choose x € L* and y € L_, with x(x,y) # 0. Define the K-

subspace of L
M=KyeHo P L,
i€Q=1

where the last piece has only finitely many nonzero summands, one of which is
L*. We claim that M is invariant under both ad, and ad,. By Theorem
this is immediately clear for ad, since ad,(L7®) < LUTD® with Ky < L~ and
H=1L°

Similarly ad, (L’*) < LU~Y, Here ad,(Ky) = 0 and ad,(H) < Ky < M as
y € L_,. Finally, since a was chosen to be minimal

ad, (P L)< Pro-ne P L <M.
ieQ21 i€Q=0 icQ>1

This gives our claim that M is invariant under ad, and ad,. Set h = [z, y],
and invoke the Technical Lemma |(5.13)

0 = dim(Ky)(—a(h)) + (dim H)0+ Y dim(L*®)ia(h)

ieQt
- a(h)( —14+0+ Y idim(L”))
i€Qz1?
:a(h)<(—1+dimLa)+ > idim(Li‘”‘))

i€Q>1

The space L* has dimension at least 1 and

a(h) = a(k(@,y)ta) = K(z, y)alta) # 0,
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as observed above. We conclude that dim L* = 1 and so additionally L, = L,
as in (a).

Furthermore dim L'® = 0 for i > 1. Therefore Q=% N ® = {a}. After
swapping —a for a we also find Q=%(—a) N ® = {—a}, which is to say Q<a N
® = {—a}. These combine to Qo N ® = {+a}. We add to this the claim
Kan® = Qan P, verified above, and so conclude Ka N ® = {+a}. This is the
desired (b). O

We have an important corollary:

(6.5). COROLLARY. A nonzero, finite dimensional, semisimple Lie algebra

over the algebraically closed field K of characteristic 0 with rank | and root
system ® has dimension | + |®|.

Proor. L = H & ®Ae¢> L) where H has dimension [ and each L) has
dimension 1. O

6.2 sly(K) subalgebras

(6.6). THEOREM. For each o € ® the subalgebra generated by Lo, and L_, is
isomorphic to sly(K).

More specifically, for each 0 # x € L, (respectively, 0 £y € L_,,) there is a
0+#y e L_, (respectively, 0 # x € L, ) such that (x,y, hy) is a Chevalley basis,
where hy = mtw

PROOF. k(ta,ta) # 0 by Proposition b), so we may define h, =

mtﬂ' First
2
ha, x| = ————[ta,
hase] = 2l
2 2
= ——a(ly = —k(la, la =2 ;
Wt t) VT = it gy e fedr =20
2 —2 -2
hoart] = ———[tay] = ———[t—ary] = ————(—a(t_
[ aay] H(ta,ta)[a7y] H(ta,ta>[ Oévy] K',(ta,ta)( Oé( a))y
) 2
= ta)y = ta,ta)y = —2y.
H(tmta)a( )y n(ta,ta)”( )y y

Also k(x,y) # 0 by the previous theorem, so

0 # lova] = n(z )t = ) (57 Yo

2
Therefore, given x or y the other may be scaled so that k(z,y) = ﬁ,
creating the Chevalley basis (hq,x,y) for
Klz,y) oKz @ Ky = Kt, ® Kz ® Ky = Kh, ® Kz ® Ky .
which is isomorphic to slz(K), as desired. O

We now have a fundamental property of the Cartan decomposition.
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(6.7). COROLLARY. Let L =H ® @, .4 Lo be the Cartan decomposition for
L. For each o € ® the subalgebra S, = S_, generated by L., and L_,, is a copy
of 5l2(K), and L =3 .4 Sa- a

PROOF. Proposition a) tells us that H =) 4 Kto, and the theorem
provides the rest. O

Theorem also has a profound effect on the representation theory of
semisimple Lie algebras.

(6.8). THEOREM. Let L be a semisimple Lie algebra over the algebraically
closed field or characteristic 0. If V = @, VA is a nonzero finite dimensional
L-module, written as the direct sum of its generalized weight modules V> for
the Cartan subalgebra H of L, then @, Vi is a nonzero L-submodule of V.
Especially, if V' is irreducible then V = @, Vx .

PROOF. By Theoremthe algebra L is the direct sum of its weight spaces
@Doco La- If we consider the action of nilpotent H inside the semidirect product
M = L&V, then by Theorem M =@, cqup M™, and furthermore for
alae®and all A € A

LoVy=[La,Va] < [Mo, M\]NV < Maix NV = Voyn.

Thus
H@Pn)- @ rn<@n
A€EA aED AEA AEA
As Vi # 0 if and only if VA # 0 in finite dimensional V', we are done. O

If the L-module V' is equal to @, ., Vi, then V' is said to be a weight module
for L.

6.3 The root system of a semisimple Lie algebra

As h +— tp, is a K-isomorphism of H and H*, we may define on H* the symmetric
bilinear form

(z,y) = £"(2,y) = K(ta ty) -

Set Eg = > ,cp Qa < H*. The Q-space Eg, equipped with the restriction
of the form k* and the special spanning set ®, will provide us with the basic
example of a root system.

Here we develop some of its properties, and then in the next chapter we
classify all spaces that enjoy these properties.

Following Theorem ((6.6)} for each root o € ® we define h, = ﬁtﬂ

(possible since K(tq,ta) = (o, ) # 0 by Proposition b)). Similarly for

each oo € @, we let oV ﬁa, the coroot corresponding to the root a. With
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this definition, for all p € H*

N(ha) =K (Kl(tj ta)toé> = H(tj ta)M(tOé)

2 it te)
= ——K yla) =
K(ta,ta) ="

= ('u’a\/) :

Especially, for all roots a we have a(hy) = (o, ") = 2.
We first see that (Eq,+*|g,) is a rational form of the orthogonal space
(H*,k*). (From now on, we will use the notation (z,y) exclusively in place

of k*(z,vy).)
For «, B € ® the a-string through (3 is the longest string of roots

B—sa,...,B—ia,...,B,...,B+ja,...,0+tcx.

That is, all the maps in the string are roots, but § — (s + 1)a and S+ (t + 1)«
are not roots. As ® is finite, such a string always exists (although it may consist
solely of ).

(6.9). THEOREM. Leta,f € @ with § # ta, and let f—sa,...,[0,...,0+ta
be the a--string of roots through (3.

(a) 5*M01Bf(ﬂ,av)a€¢.

()

(b) Blha) =222 = (3,0") = s —t € L.

(¢) [La,Lg] = Latp-
(d) For j an integer, § + jo is a root if and only if j is in the interval [—s,t].

PROOF. (a) Assume (b); then

is a root in the a-string through 5.
For (b) the definitions and calculations above give 8(hq) 2&35)) = (8,a),
so we must prove that this is equal to the integer s — ¢.

The proofs of (b), (c), and (d) use specializations of one calculation.

By Theorem a) every L. has dimension 0 or 1 with only finitely many
being nonzero. For a finite subset J of the integers, we consider the subspace
My = @jEJ L4 jo within which each Lgy o is required to have dimension 1.

For 0 # 2 € L, and 0 # y € L_,, the element h, is a multiple of [z, y] and
has a(hy) = 2. Suppose that M} is invariant under ad, and ad,. The Technical
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Lemma then gives
0= (dimLpjo)(8 +ja)(ha) = Y (B +ja)(ha)

jeJ JjeJ
= B(ha) + Y jalha) = [J1B(ha) +2> ]
jeJ jeJ jEJT
That is,
[ 7[B(ha) = =2 5.
jed

For (b) we set J = Z N [—s,t] of size s +t + 1. By Theorem [(5.12)| always
ady(Lgtia) < Lpyit1)a and ady(Lgtia) < Lgyi-1)a- Because Lgi(111)a =
0= Lg_(s4+1)a the space M is invariant under ad, and ad,.

Therefore

(s+t+1)B(ha) = - (Z +0+Z>

j=1

which yields B(hy) = s — t, as claimed.

(¢) By Theorem always [La, Lg] < Layg. If [La, Lg] # 0 then v + 3
is a root. But each root space has dimension 1 (again by by Theorem [(6.4)[(a))
SO [LO“ LB] = La+5.

Assume [L,, Lg] = 0 so that ad,;(Lg) = 0. Then for J = Z N [—s,0] the

0
subspace M; = €p,

1=—3S8

proof of (b)). Therefore

(s+1) :—22

so that 8(hy) = s. From (b) we already know S(h,) = s — t, so t = 0. That
is, f 4 « is not in the a-string through . Therefore a + [ is not a root, and
[La,Lg) = 0= Lop in this case as well.

(d) The set of j for which 8 + ja is a root is the disjoint union of finitely
many segments of the integers, one of which is [—s, ], corresponding to the
a-string through 8. To prove (¢) we must show that this is the only interval.

Assume, for a contradiction, that there are nonempty integer intervals [a, b]
and [c,d] with b+ 1 < c and 8+ ja a root for all members of the two intervals
but S+ (a — Do, B+ (b+ 1), B+ (¢ — 1), and B + (d + 1)« not roots.

The set of all roots 8 + ja, for j an integer, is the same as the set of all
roots B8+ (k — b)a, for k an integer. That is, without loss of generality we may
replace 8 by 8 + ba and thereby assume b = 0, hence also 1 < ¢ < d.

Our assumptions imply that M, = Mg and M. 4 are both invariant
under ad, and ad,. Therefore

|[a,0]|8(h =—221

Lgt i is invariant under both ad, and ad, (as in the



6.3. ROOT SYSTEMS 73

is nonnegative, while
d
le.dllB(ha) = =2
j=c

is negative. This is the desired contradiction. O
(6.10). THEOREM.
(a) The form (-,-) is positive definite from Eg to Q.
(b) Any Q-basis of Eqg is a K-basis of H*.
PRrROOF. (a) For every v € Eg we have
(1) = Kltsta) = 3 (L)
Be®

since always dim Lg is 1 by Theorem By Proposition b), for each

acd
0 # K(ta ta) = (@,0) = > B(ta)* = Y (8,0)7,
ped BeP®
hence )
4 >y (2(5701))

(a, @) et (o, @)
which is a positive integer by the previous theorem. Thus (o, ) € Q1 and
furthermore ( ) 28.0)

o, o ,

Therefore on Eg = . Qa the form (-, -) has all its values in Q.
Let v = > cop Yo € Eg with 7, € Q. Then, as above,

) = S B = 3 (me) S (zw,@) >0,

BeP BED \aed BEDP \acd

as it is a sum of rational squares by the previous paragraph. Furthermore if
(7,7v) = 0 then the rational 3(t,) is 0 for all 3 € ®. That is, k(tg,ty) = 0
for all B € ®. Since the tg span H by Proposition this in turn gives
ty € HN H+ = 0 (by Proposition , hence v = 0. The form is positive
definite.

(b) Let {b; | i € I} be a Q-basis for Eg. As ® C Eg, we have H* =
> icr Kb;. Thus there is a finite subset J C I with {b; | j € J} a K-basis of
H*

Suppose h € (EBjGJij)J— N Eg. Then H* = P, ,;Kb; < ht. By
Proposition [(6.1)] and the definition of our form, it is nondegenerate on H*;
so we must have 2 = 0. But now in nondegenerate Eqg = @, ; Qb; we have
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1
&b I Qb;) =0 for the finite dimensional subspace €D jed Qb;. We conclude
that J = I and @, ; Qb; = Eg. Thus its Q-basis {b; |i € [} ={b; |j€ J}
is a K-basis of H*. O



Chapter

Classification of root systems

7.1 Abstract root systems

Let E be a finite dimensional Euclidean space, and let 0 # v € E. The linear

transformation
2(x,v)

(v, )

Ty: XX —

is the reflection with center v.

(7.1). LEMMA. LetO0#v e E.

g(v)-

For the subspace W < E we have W™ < W if and only if x € W or
(x, W) =0. |

(7.2). DEFINITION. Let E be a finite dimensional real space equipped with
a Fuclidean positiveGo definite form (-,-). Let ® be a subset of E with the
following properties:

(i) 0 ¢ ® and finite & spans E;

(ii) for any a € ® we have RaN® = {£a};

(iii) for each o € ® the reflection ro: x — x — 2@.9) o takes ® to itself;

(e,@)

(iv) (CRYSTALLOGRAPHIC CONDITION) for each o, 8 € ® we have % eZ.

(0]
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Then (E, ®) is an abstract root system with the elements of ® the roots. Itsrank
is dimg(F). Go The subgroup W(®) equal to (ro | @ € ®) is the Weyl group
of the system. More generally, for any ¥ C @, we set W(X) = (r, |a € X).

As before, for each o € ® the element oV = (a—?a)a is the corresponding

coroot. Then @V is itself an abstract root system with W(®Y) = W(®). (Exer-
cise.) The Crystallographic Condition takes the form: 28.0) _ (B,a¥)eZ.

a,o

The perpendicular direct sum of abstract root syst(ems) is still an abstract
root system. We say that (E,®) is irreducible if it is not possible to write E
as the direct sum of systems of smaller dimension. That is, we cannot have
E = F, 1 Es, with each F; spanned by nonempty ®; = ® N E;.

We say that two abstract root systems (E, ®) and (E’, ®') are equivalent root
systems if there is an invertible linear transformation ¢ from E to E’ taking
® to ¢’ and such that, for each o, 8 € ® we have (o, 8Y) = (p(a),o(B)Y).
Equivalence does not change the Weyl group. Equivalence is slightly weaker
than isomorphism, where ¢ is an isometry of F and E’. Equivalence respects
irreducibility. Indeed every equivalence becomes an isomorphism after we rescale
each irreducible component of &’ by an appropriate constant. (Exercise.)

The motivation for the current section is:

(7.3). THEOREM. Let L be a finite dimensional semisimple Lie algebra over
the algebraically closed field K of characteristic 0. For ® = ®L the set of roots
with respect to the Cartan subalgebra H, set Eg =Y oo Qv and E¥ = RegEy.
Then (EL, ®%) is an abstract root system.

PrOOF. By Theorem the space EL with its form is positive definite
and spanned by ®. Theorem b) tells us the only roots that are scalar mul-

tiples of the root v are +a. Finally the Crystallographic Condition is Theorem
(6.9)(a). O

We shall often abuse the terminology by talking of a root system rather than
an abstract root system. The more precise terminology is designed to distinguish
between an intrinsic root system (EL, ®%), as in the theorem, and an extrinsic
root system—an abstract root system.

We may also abuse notation by saying that ® is a root system, leaving the
enveloping Euclidean space E implicit.

Let v1,...,v, be a basis of E. We give the elements of E (and so ®) the
lexicographic ordering:
(i) for 0 #x =" xv;, we set 0 <z if and only if 0 < x; and
x; =0 when i < j, for some 1 < j <mn;
(ii) forx # vy, we sety < x if and only if 0 < x — y;
(iii) for x # vy, we set x >y if and only if y < x.

This gives us a partition of ® into the positive roots @+ = {a € ® |0 < a}
and the negative roots @~ = {a € ® | 0 > a} = —®T. The positive root § is
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then a simple root or fundamental root if it is not possible to write § as a + 8
with o, 8 € ®T. We let A = {d1,...,d;} be the set of simple roots in ®*.

(7.4). THEOREM. Let (E,®) be a root system with A = {d1,...,0;} the set of
simple roots in ®T.

!
(a) T =dNY ., No,.
(b) For distinct o, f € A we have (a, 5) < 0.
(¢) A is a basis of E.

PROOF. (a) The lexicographic ordering gives us a total order on ®*, say
ap < - < ap <+ < ay where N = |®F|. We prove ay, € @ﬂZéleéi by
induction on k. If o, 8, and a+/3 are all in &, then o < a+8 > 3. Especially a;
is simple. Now consider . If it is simple, we are done. Otherwise ay, = a; +a;
with ¢,7 < k. By induction o; and «; are both in ® N 22:1 Né;, so ay, is as
well.

(b) Consider

A(a, B)?
(c, @) (8, B)

where 0, g is the angle between the vectors o and (.

As 0 < cos(f,,5)% < 1, this must be one of 0,1,2,3,4 with 4 occurring only
when @ = —f3. We only need consider 1,2,3, so at least one of the integers
(o, BV) and (B, ") is £1. Without loss, we may assume (a, 8V) is +1.

Suppose (o, 8Y) =1, so that " = a — (o, V)8 =a— B isaroot. f a—f
is positive, then o = 8 4 (a — ) contradicts « € A. If o — § is negative, then
B — « is a positive root and 8 = a4 (8 — «) contradicts 5 € A. We conclude
that

(o, 8Y)(B, ") = = 4cos(fa,p)’ € Z,

and so («, ) < 0.

(c) By (a) the set A spans ®* hence ® and so all E (by the definition
(7.2)[(i)). We must show it to be linearly independent.
Suppose Zﬁczl didr = 0 with di € R. We rewrite this as

x=Y di; = ds;

iel jed
where all d; and d} = —d; are nonnegative and {1,...,1} is the disjoint union
of I and J.
First

(z,2) = (Zdiéi,Zdﬁj) = > did;(5;,6;) <0

iel jeJ i€l jeg



78 CHAPTER 7. CLASSIFICATION OF ROOT SYSTEMS

by (b), so we must have = 0. On the other hand, the definition of our ordering
tells us that if any of the nonnegative d; for ¢ € I or d;» for j € J are nonzero,

then © = >, ;did; = > ;c;d;6; > 0. Therefore d; = 0 for all i € I and

d; =dj =0 for all j € J. That is, A is linearly independent. ad

We may describe A as an obtuse basis since (a, §) < 0 for distinct o, 8 € A.
If the root « has its unique expression o = 2221 d;6; for integers d; then the
height of the root « (relative to A) is the integer ht(a) = Zézl d;, positive for
positive roots and negative for negative roots.

The number [ that appears above as the dimension of E' and the cardinality
of the simple basis A is the rank of the root system (E, ®) and the Weyl group
W (®) which we shall see below is equal to W(A).

(7.5). COROLLARY.

(a) ® is the disjoint union of ®+ and ®~ = —®* where, for each ¢ = +, each
sum of roots from ®€ is either not a root or is a root in P°.

(b) For the set A of simple roots in ®*, every root o has a unique representation

Zézl d;6; where all the d; are nonnegative integers when « is a positive root
and all the d; are nonpositive integers when « is negative. O

The original choice of positive system ®T (and so its associated simple basis
A) seemed relatively arbitrary, coming from an ordering determined by a fixed
but arbitrary choice of basis for E. The next theorem puts these into a more
geometric context, characterizing ®* and A in terms of the properties presented
in the corollary.

A basis of E composed of roots is a simple basis if whenever we write a root
as a linear combination of its elements, all coefficients are nonnegative integers
or all coefficients are nonpositive integers. The motivating example is the set A
of simple roots.

In the root system (E,®) if ® is the disjoint union of ' and '™ = —T'"
where, for each € = 4, each sum of roots from I'¢ is either not a root or is a root
in T'¢, then we say that I'" is a positive system in (E,®). The basic example
is ®T, or more generally the set of “positive roots” with respect to any simple
basis, within which the members of that basis are appropriately minimal.

(7.6). THEOREM.

(a) Ford € A, we have (®T\ §)"™ = dT\ 4.

(b) For every positive system T'" in (E,®) there is a w € W(®) with Tt =
(@F)v.

(¢c) For every simple basis 11 in (E,®) there is a w € W(®) with I1 = A™.

PROOF. (a) Let o € &1\ § be given as a« = >___ a,7y. Thus

YEA

a" =a—(a,6")0 = (a5 — (a,6))5 + Z a7y .
S#YEA
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Since & € ®T \ § there is some simple root v other that § with a, > 0, hence
a’ remains in ®* \ § by Theorem a). Thus (T \ §) C &\ §; indeed
(T )\ §)" = T\ § because P is finite.

(b) The finite root set ® is the disjoint union both of ®* and &~ = —&*
and of I't and I'” = —I'*. The proof is by induction on [®* NT~|. If this is 0
then @+ =TT, and we set w =1 € W(®).

Let 0 < k = |[®" NT~|. Then A is not contained in I'", so there is a
de ANnT~. By (a)

E—1= (@) NI~ | =T N ((T7)"]

As (7)™ = —(I'")"s, by induction there is a v € W(®) with (I')™ = (&1).
That is, 't = (®1)v"¢ | as desired.

(c) IT is the set of roots in the positive system I't = ® N (3, .y N7) that
cannot be written as a sum of two other roots in I'", so the w of (b) works here
as well. |

Thus positive systems and simple bases are uniquely determined up to the
action of the Weyl group. Conversely, each simple basis determines the Weyl

group.

(7.7). THEOREM. Let (E,®) be a root system and Il = {my,...,m} a simple
basis. Then W(®) = W(II) is a finite group with every element of {r, | € @}
conjugate to some element of {r, | m € IL }.

PROOF. The Weyl group W(®) permutes the finite set ® and so induces a
finite group of permutations. This permutation group is a faithful representation
of W(®) since ® spans E.

By the transitivity result of the previous proposition, we may assume that
H:Aandwkzék.

As @™ = —a and 19 = 149 (as in Lemma [(7.1)|[b)), it is enough to show
that for each o € @ there is an element w of W(A) with o € A. We do this
by induction on the height ht(«). If ht(a) = 1, then o € A and there is nothing
to prove.

Assume ht(a) > 1. Let a = 22:1 d;6; with d; € N by Theorem a). As

0< (a,a) = (057i2_l;di5i> = iz_l;di(o‘vdi)

there is an j with d; > 0 and («,d;) > 0 hence (a,dy) > 0. Without loss we
may take j = 1.
Since ht(a) > 1 there must be a second index k # 1 with d; > 0. Then

a™ =a— (a,0))8
l
= (d1 — (0, 6Y))61 + Y _ did;

=2
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Because dj, > 0 the root a’*1 remains positive, but since (a, 8y) > 0 its height
is less than that of a. Therefore, by induction there is a v € W(A) with
(a™1)* € A, hence o € A for w =r,,u € W(A). 0

7.2 Graphs and diagrams

(7.8). LEMMA. Let o and 8 be independent vectors in the Fuclidean space E.
Then (rq,7g) is a dihedral group in which the rotation rorg generates a normal
subgroup of index 2 and order mq. g (possibly infinite) and the nonrotation ele-
ments are all reflections of order 2. In particular, the group (rq,rg) is finite, of
order 2mq, g, if and only if the 1-spaces spanned by o and B meet at the acute
angle == o

Ma,g "

The Coxeter graph of the set of simple roots A has A as vertex set, with «
and ( connected by a bond of strength mq g — 2 where (ro,rg) is dihedral of
order 2mg, g. In particular, distinct o and 5 are not connected if and only if
they commute. The Coxeter graph is irreducible if it is connected.

(7.9). LEMMA. If ¥ is an irreducible component of the Cozeter graph of A,
then E =3 cxRo L cn\sRy and

W(@) =W(A)=W(E) o W(A\X) =W(Ps) ©W(Pax)

where @5, = V) = SWE) gnd @o 5 = (A\ D)V = (A\ S)WED) Here
Oy and Pa\x are perpendicular and have union ®.

ProOOF. This is an immediate consequence of Lemmas |(7.1)| and [(7.8)| and
of Theorem |(7.7)| O

We repeat Theorem B{(2.3)| from Appendix

(7.10). THEOREM. The Cozeter graph for an irreducible finite group generated
by the l distinct Euclidean reflections for an obtuse basis is one of the following:

A 0—0—0+0—0—0—0

BC, O—O0—0++0—0—0=0
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O

It is not at all clear which Coxeter graphs actually correspond to root sys-
tems. T'wo properties of root systems, especially the Crystallographic Condition,
play no role in the proof of the previous theorem. We next see that only a few
of the graphs I>(m) can actually occur if the Coxeter graph comes from a root
System.

(7.11). PROPOSITION. Let o, 8 € ® with o # £5. Then, up to order of a,
and admissible rescaling, we have one of

(o, 8Y)(B,0Y) | cos(m/map) | mas | (o, 8Y) | (B,0Y) | (,0) | (B,8) | (o, B)

Q

0 0 2 0 0 * 1 0

1 1
1 ! 3 -1 -1 1 R
2 vz 4 —2 -1 2 1 -1
3 3 6 -3 -1 3 1 —3

PRroor. For all o, 5 € ® we have

This must be an integer factorization (a, 8Y)(8, ") in the range 0 to 4. Indeed
4 could only happen for o« = £, which has been excluded. Therefore we have
the four possibilities of the first column.

In the second column, we then have cos(m/mq. g) = % (o, BY)(B, V), where
we are in the first quadrant since m,, g, the order of r,7g, is at least 2. We then
have mqy g = ﬁos(c), where c is the cosine value from the preceding column.

We have not yet chosen order or scaling for @ and 3, and we do that in
the next two columns while choosing the factorization of («, 8Y)(8,a"). If
necessary, we replace 3 by —f so that both (a, 8Y) and (3,a") are nonpositive.

Next we rescale the pair «, 8 so that (5, 8) = 1 always and note that

(@, 8Y) _ ()

(B,a¥) — (B.8)
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This gives us the next two columns of the table, although in the first line we
have no information about the squared length of «.
Finally as (8, 8) = 1, we have

(20BN 1
@n=3(Gm) 308 o

The Dynkin diagram of A is essentially a directed version of its Coxeter
graph. In accordance with the previous proposition, each two node subgraph of
the Coxeter graph is replaced with a new, possibly directed, edge in the Dynkin
diagram. All A; x A; edges (that is, nonedges) and As edges (single bonds) are
left undisturbed. On the other hand

BC, O=—0 By =Cy; GC==0

becomes
Similarly

4

12(6) o—O Gy, =0

becomes

The arrow (or “greater than”) sign on the edge is there to indicate that the
root at the tail (or “big”) end is longer than the root at the tip (“small”) end.
Also notice that G5 has three bonds rather than four. In all cases the number of
bonds between the notes a and f3 is the integer (v, 3Y)(3, ). This change in
notation reminds us that ion Gy the long root has squared length 3 times that
of the short root, as in the table of the proposition. Similarly in By = C5, the
long root has squared length equal to twice that of the short root. (The roots
at the two ends of As have equal length.)

By the proposition, in classifying Dynkin diagrams we need only consider
Coxeter graphs for which all m, g come from 2,3,4,6. In particular Hs and
Hy do not lead to root systems nor do the Is(m), except for Ay = I5(2), By =
Coy = I5(4), and G2 = I3(6). The need for both names By = C5 becomes clearer
when we combine the previous two results to find:

(7.12). THEOREM. The Dynkin diagram for an irreducible abstract root system
of rank l is one of the following:

A 0—0—0+0—0—0—0
B 0—0—00—0—0==0

¢, O—0—00—0—0=<0

D, O—O—O-
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7.3 Existence of root systems

7.3.1 The classical root systems—A4;, B;, C;, D,

A simply-laced Coxeter graph is its own Dynkin diagram. For the graphs/dia-
grams A; and D; we found (in Appendix Section the groups generated
by reflections to be the symmetric group W(A4;) = Sym(l 4+ 1) (acting on the
l-space R! = R+ N 1+) and W(D;) = 271 : Sym(l) acting monomially on R!.
The corresponding root systems are:

Dy ={F(e;—ej)|1<i<j<I+1}

with simple basis

O—O0—O0O—O0——0—0

€1 — €2 €3 —€3 €3 €4 €1 — € €l — €141

and
<I>Dl:{:|:ei:|:ej| 1§Z<]§l}

with simple basis
€i-1— €

O O O .......... O

€1 —€y €e3—e€3 €3—¢€4 <o €2 —€]—1

Q

e—1+e

In contrast to this, the Coxeter graph BC; admits two Dynkin diagrams,
depending upon whether or not the tail consists of long roots (B;) or short
roots (C;). In both cases the Weyl group consists of all +1-monomial matrices
W(B;) = W(C,,) = 2! :Sym(l). (Again, see Appendix Section ) But the
root systems and simple bases are subtly different.

For B; the simple basis is given by
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O—O0—0O——0——O0—==0

€1 — €2 €2 —€3 €3 — €4 €—-1— € €]

So ®p, is the union fblglng U @53 of long root set
D = {(e;—e;) |1<i<j<I}
with squared length 2 and short root set
PR = {Le; [1<i <1}
with squared length 1.
In contrast, for C,, we have

O——O0—0 - O——O0——0===0

€1 — e2 €g —€3 €3 —e4 €l—1 — €] 261

The root system ®p, is then the union & U @lg?g of short root set
PEO = {£(e; —ej) [1<i<j<I}
with squared length 2 and long root set
O = {42e; | 1<i <1}

with squared length 4.

7.3.2 [y

Our (candidate) root system & is the union ®p, U Peyen of
Bp, ={te;te;|[1<i<j<8}
(a root system of type Dg) and
1
Doven = { i(iel testestestestestertes) | even number of minus signs } .

This set has cardinality
8 7
‘(I)Ds‘+|q)even|:4 9 +2" =112+ 128 = 240.

All the roots have squared length 2 (especially, for each root a = ). To
verify that this is an abstract root system we must check the four conditions of
Definition The first two are trivial: (i) ® spans R® (indeed its subsystem
®p, does already) and (ii) the only scalar multiples of the root « that are roots
are +a (since all roots have squared length 2).
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The reflection in the root o € ® is given by
Ta:v — v — (v,0")a=v— (v,0)
(as o = V). We then see easily that the even monomial group in GLg(R)
W(@p,) = W(Ds) =27 :Sym(8),,

leaves invariant both ®p, (clearly) and ®eyen. Indeed it is transitive on @eyen
(as it contains all even sign changes).

By transitivity, to check iii) invariance under reflections and iv)
the Crystallographic Condition we need only test a single root from ®Peyen, @ =
%(el +eatesteqg+es+es+er+eg) being a good choice. Clearly this has integral
inner product in {—1,0,+1} with each root of W(®p,). Also, since each root
B of ®eyen contains an even number of minus signs, the inner product of o and
B is also an integer, again from {—1,0,+1}. This verifies the Crystallographic
Condition.

To check iii) we must show that for each for root 8 € ®, the vector
ro(B) is also a root of ®. There are five cases:

(
(

a) B € Poyen contains 0 or 8 minus signs;

b) B € ®Peyen contains 2 or 6 minus signs;

(d
(e B :t(ez + 6]) € (I)Dg

In the first case, 8 = £« and there is nothing to prove. In cases (c) and (d) we
have (8, @) = 0 so that ro(8) = 8 € @, as desired.

In case (b) we combine the cases of two and six minus signs together as these
are negatives of each other. If a root with six minus signs is taken to a root,
then its negative (with two minus signs) is also taken to a root—the negative
of the previous result. Similarly under (e) we only need to consider the various
e; +ej. We calculate

)
)
(¢) B € Peoven contains 4 minus signs;
)
)

1
Ta(el—i'eg):5(61+€2—63—€4—€5—66—€7—68> E(I),
hence

1
Ta<§(61+€2—63—64—65—€6—67—68>) =e;+e€d.

All other cases follow by symmetry, as the group W (Dsg) contains Sym(8).

We have now proven ® to be an abstract root system. In R® we order the
orthonormal basis:

€] > €3 >€3 >€4 > €5 > €6 > €7 > €.

This provides us with a unique partition into positive and negative roots ®+TUd~
and a unique simple basis A within ®*. This basis is given by:
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e1 + es

1
5(e1—ex—e3—eq4 —e5 —eg—er+eg)
O O O O O O O

€1 —€y €9 —€3 €3 —€4 €4 — €5 €5 — € € — €7

We see, in particular, that A and ® belong to the Dynkin diagram Fg. We now
can set ® = ®g,, a root system of type Es.

7.3.3 Er

The root system ® g, of type E7 is the intersection ® g, NIRRT of the root system
®p, with the appropriate hyperplane R” = R® N (e7 + eg)® of R®. The number
of its roots is 2 + 4(3) + 26 = 126.

We need not check the conditions for an abstract root system since they are
inherited from ®p,. (Certainly the Crystallographic Condition still holds. And
any of the reflections centered in ®p, fix ®g, but also fix (e7 + es)*.)

The appropriate simple base is now:

e1 + es

1
5(61—62—63—64—65—66—€7+€8)
O A\ \J \J A\ O

€1 —€y €9 —€3 €3 — €4 €4 — €5 €5 — €

7.3.4 Eg

The root system @, of type Ep is the intersection ® g, NR® of the root systems
®p, and ®p, with the appropriate hyperplane R® = R8N (e7 +eg)t N (eg —er)t
of the space R” = R® N (e7 + eg)". The number of its roots is 4(3) +25 =72.

Again the conditions for an abstract root system are inherited from ® g, and
®p.. The appropriate simple base is:

e1 + es

1
s(e1—ex—e3 —eqs —e5 —eg —er +eg)
O O O O O

€1 —€y €9 —€3 €3 — €4 €4 — €5
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7.3.5 I}

The root system ®p, consists of the roots of squared length 1 and 2 in Z* U
Z(%(e1+ ez + e3 + e4)). Thus we have the 8 + 4(;1) + 2% = 48 roots of

1
(I)F4 :{iei, ieiiej, §(i€1i62i63i€4) | 1§’L<]§4}
with Dynkin diagram

%(61 — €2 — €3 — 64)
O———C——0—"-=0

€3 —e4 €9 —e3 €4

The first two defining properties of a root system are immediate, and the
remaining two can be checked easily in a similar manner to our treatment of
®p, above. The second pair of defining properties can also be derived from
those for ®g,, actually ®g,, if we think of Fy as the fixed points of the graph
automorphism for Fg given by

1
5(61—62—63—64—65—66—67+€g) — eq4—e5

e; — e — €3 — eéq

with e; + e and ey — e3 fixed. Summing the orbits of length two, we find the
F; Dynkin diagram and a suitable basis of simple roots:

€1 —eyt+e3—ey

%(61—62—€3+€4—365—€6—67+88) €x —e3 €1+ e
within
R* = RSO(€7+68)J‘ ﬂ(eﬁ —67)J' N (61 —62+€3+364)J' ﬂ(€5 —€g —67+€8)J' .

This system is not isometric to the previous one but is similar, as all roots here
have squared length equal to twice what they have in the previous rendition.

7.3.6 Gy

It is easy to draw the root systems of rank 2—those with dihedral Weyl group.
Here the group is dihedral of order 12, and the root system contains exactly 12
roots. An appropriate simple basis is:

V3 3

3 €136 €

C==0
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As was the case for F}, there is a less direct but very helpful second way of
constructing the G5 root system. Consider the root system

Op, ={Fe;te; |1 <i<j<4}
with Dynkin diagram and simple basis

es + ey
€1 — €2

€2 — €3
€3 — €4

This diagram has a triality graph automorphism of order three which rotates
the diagram clockwise. If, as before, we add the roots from the various orbits,
then the root es — eg is fixed, while the orbit of length three gives us the new
root

(61 — 62) + (61 + 64) + (63 — 64) =e1 —eg + 263

and we have the Dynkin diagram of the new root system of fixed points:

61762+263 €2 — €3

C==0

Again this has type G2 but is now living in the Euclidean space
RZ=R3N(e; —es —e3)t =R*N(e; —ea —e3)t Ney.

These two renditions of the G5 root system are not isometric, but they are
equivalent: in the first, the two square lengths are 3 and 1 while in the second
they are 6 and 2. As must be the case, they both have 3 as the ratio of the
length of a long root to that of a short root.

7.4 The Cartan matrix and uniqueness I

The integers (a, 3Y) with «, 8 in the root system ® are the Cartan integers. For
the simple basis A the Cartan matriz Cart(A) of A is the I x [ integer matrix
with (4, j) entry the Cartan integer ¢; ; = (6;, (5;/) Especially all diagonal entries
are (6,0%) = 2.

We record the fundamental properties of the Cartan matrix:
(7.13). LEMMA.
(a) ¢ij € Z;
(b) ¢y =2 for all i;

(¢) ¢ij <O foralli#j;
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(d) ¢, # 0 if and only if ¢ ; # 0. -
(7.14). THEOREM.

(a) The Dynkin diagram and the Cartan matriz contain exactly the same infor-
mation about the root system (E,®).

(b) The Dynkin diagram and Cartan matriz determine the root system (E,®)
uniquely up to equivalence.

PROOF. (a) By Proposition [(7.11)] in the pair of positions («, 8) and (5, «)
of the Cartan matrix the entries are

{(avﬁv)v (57 av)} € {{070}7 {_17 _1}7 {_27 _1}7 {_37 _1}} :

The number of bonds between the two simple roots in the Dynkin diagram is
the product of the two elements of the pair. An arrow on an edge between «
and (8 is pointed away from « precisely when |(c, 8Y)| > 1.

(b) We may assume the Dynkin diagram to be irreducible. As in (a), once
we choose a squared length for one of the simple roots all the squared lengths
are known (invoking equivalence). The Gram matrix for the simple basis is
thus determined (as the Cartan matrix times the diagonal matrix with entries
(8,8)/2). That is, the simple basis is determined up to an isometry. By Theo-
rem the simple roots determine the reflections of a generating set for the
Weyl group and then the root system itself consists of the images of the simple
roots under that Weyl group. O
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Chapter

Semisimple Lie Algebras:
Classification

We continue to examine finite dimensional semisimple Lie algebras over alge-
braically closed fields of characteristic 0. The previous two chapters effectively
complete the first two steps of the classification, as described at the beginning
of Chapter [6}

(i) for each algebra, the construction of a root system that functions as a
skeleton;

(ii) the classification of root systems.

More precisely, we have shown that each algebra is an amalgamation of subal-
gebras isomorphic to sly(K) with the amalgamation encoded by one of a known
collection of root systems.

It remains to prove that for each root system (Dynkin diagram/Cartan ma-
trix) and each K a corresponding simple Lie algebra does exist and is unique.
This is (largely) accomplished in this chapter.

(8.1). THEOREM. (CLASSIFICATION OF SEMISIMPLE LIE ALGEBRAS) Let L be
a finite dimensional semisimple Lie algebra over the algebraically closed field
K of characteristic 0. Then L can be expressed uniquely as a direct sum of
simple subalgebras. FEach simple subalgebra is isomorphic to exactly one of the
following, where in each case the rank is l:

91
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(e) e6(K) of rank | = 6 and dimension 78;
(f) e7(K) of rank | =7 and dimension 133;
(g) es(K) of rank I =8 and dimension 248;
(h) §4(K) of rank | = 4 and dimension 52;
(i) g2(K) of rank I = 2 and dimension 14.

None of these simple algebras is isomorphic to one from another case or to any
other algebra from the same case. All exist.

8.1 Reduction to the irreducible, simple case

We have encountered various concepts of irreducibility. A reflection group is
irreducible if it acts irreducibly on its underlying space. A Coxeter graph or
Dynkin diagram is irreducible if it is connected. A root system is irreducible
if it is not the perpendicular direct sum of two proper subsystems. A Cartan
matrix (see below) is irreducible if it cannot be written as a direct sum of two
smaller Cartan matrices.

In the context of interest to us, semisimple Lie algebras, all of these concepts
are equivalentﬂ The philosophy is always that in a classification one should
easily reduce to the irreducible case. This remains true with our semisimple Lie
algebras.

(8.2). THEOREM. A finite dimensional semisimple Lie algebra over the alge-
braically closed field K is the perpendicular direct sum of its minimal ideals, all
simple Lie algebras.

A semisimple algebra is simple if and only if its Dynkin diagram is irre-
ducible, and the simple summands of the previous paragraph are in bijection
with with irreducible components of the Dynkin diagram of the algebra.

PRrROOF. The first paragraph is essentially a restatement of Theorem

Let I be an ideal of the semisimple Lie algebra L. As the Cartan subalgebra
H is diagonal in its adjoint action on L (by Theorem a)), the ideal I is
the direct sum of its intersection H NI and the Ly (of dimension 1 by the same
theorem) for A in some subset A; of ®. Furthermore, as L is generated as an
algebra by the Lgs for § € A, we must have A; = A; N A nonempty.

By Theoremthere isanideal J with L =16J. If § € Ay and v € Ay,
then

[LJ,L—Y] <Ly <INJ=0.

Therefore [Ls, L] = 0, so d+~ ¢ ® by Theorem [(6.9)|c). Thus & and ~y are not
connected in the Dynkin diagram of A by Proposition |(7.11)l That is, Ay is a
union of irreducible components of A.

L uckily.
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Conversely, suppose that ¥ is an irreducible component of A and hence of
the corresponding Coxeter graph. Then by Lemma the root system @ is
the union of the perpendicular subsystems &5, = NP, .y, Zo and Pa\x = PN
@Dsca\x Z6. Therefore @y is the root system for the subalgebra Ly generated
by the L, for o € £3, an ideal of L.

We have now shown that ideals come from disjoint unions of irreducible
components of A and that irreducible subdiagrams correspond to (“generate”)
ideals perpendicular to all others. In particular, the simple ideals are in bijection
with the irreducible components of the Dynkin diagram. |

8.2 The Cartan matrix and uniqueness II

We assume the notation of Theorem Additionally, in the root system
(EL,®L) = (E,®) we choose a partition ® = & U ®~ associated with the
simple basis A = {d1,...,0;}. The integers (o, 3") with o,3 € ® are the
Cartan integers.

(8.3). PROPOSITION.  Let aw € ®+. Then with k the height of a there are
aq €A for 1 <a <k with

b k
Zaa€¢+foreach1§b§k and a:Zaa.
a=1 a=1
PROOF. The proof is by induction on k = ht(«). If k = 1, then o = a1 € A,

and we are done. Assume k > 1. Let a = 22:1 d;0;.

‘We have l

0< (a,a) = Zdi(ohéi)a

i=1
so some (a, d;) is positive as is the integer (c, 5JV) . Without loss we may assume
j=1.

The root

l
an = a— (0, 0Y)81 = (di — (0, 6Y))01 + Y did;
=2

belongs to the d;-string through «, as does « itself. By Theorem

l
B=a—0=(d—1)d + Y did;

=2

is also a root in that string and has height £k — 1 > 0. Especially it is positive.
Therefore by induction there are 8, € A for 1 < a < k — 1 with

b k—1
Zﬁa€<1>+foreach1§b§k—1 and 5225a~

a=1 a=1
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As a = (46, with ag, =, for 1 <a <k—1 and oy = d1, we have the result.
O

(8.4). COROLLARY.  Let vy € ®~. Then with k the height of v there are
Yo € —A for 1 <a < —k with

b _
Z%E@_ foreach 1 <b< —k and 7:2%,

a=1

PROOF. Set a = —v and then v, = —ay,. ]

Recall that the integers (a, 3Y) with a, 8 € ® are the Cartan integers. For
the simple basis A the Cartan matriz Cart(A) of A is the [ x [ integer matrix
with (4, 5) entry the Cartan integer ¢; ; = (d;, 5JV) so that diagonal entries are
(0,6¥) = 2. The Cartan matrix of A is often called the Cartan matrix of L,
although this terminology is currently loose for us since we have not shown that
all Cartan subalgebras are equivalent (but see Corollary .

Choose e; € Ls, and e_; € L_g5, and set h; = [e;,e_;]. Do this in accordance
with Theorem [(6.6)| so that S; = Kh; ® Ke; & Ke_; is isomorphic to sl (K)
with the standard relations, which we record along with others in the next
proposition.

For 6;,6; € A let ¢; j = (s, 5j ) be the associated Cartan integer.

(8.5). PROPOSITION. The Lie algebra L is generated by the elements e;,e_;
for 1 <i<I. We have the following relations in L:

(i) [hiyhj] =0 for all 1 <i,j <1;

(ii) [hi,ej] = cjiej and [hi,e_j] = —c¢je—; for all 1 <i4,j <I;

(iv) [es,e—;] =0 for alli # j;

)
)

(iii) [e:,e_i] = hs for all 1 < i < 1;
)

(v)

ad}” i (e;) =0 and adi~“(e—;) =0 for 1 <i,j <1 with i # j.

PrROOF. We have the Cartan decomposition

L=Heo @ La

acd

By Proposition and Theorem c), the L, have dimension 1 and the
h; generate H. By Theorem a) always [Lq,Lg] = Loip for o,8 € ®.
Therefore by induction on the height of v € ® and using Proposition
and its corollary, we find that L. is in the subalgebra generated by the various
ei,e_;. That subalgebra is therefore L itself.

Parts (i) and (iii) are part of the definitions for the generating set. Part (d)
holds as d; — d; is never a root for 9;,6; € A.
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For part (ii) with e = &+
[hiyecs] = 0cj(hi)ec; = €(6;,6; )ec; = ecjiecs -
Finally in (v), for ¢;,0; € A the §;-string through ¢; is
8; 8+ 06i, ..., 05— (85,6);
by Theorem a). Noting that ¢;; = c_; _;, we have

adii_c]',i(ej) S L(1*(5j,52/))+5j = L(5j*(5j,5iv))+l =0. O

The following remarkable result gives uniqueness and existence at the same
time for Lie algebras over K and every abstract root system (E,®). We do notﬂ
prove this difficult theorem, but we do use its relations (from the proposition)
as the entry to our uniqueness proof for L.

(8.6). THEOREM. (SERRE’S THEOREM) Let K be an algebraically closed field
of characteristic 0, and let C = (¢; ;)i ; be the Cartan matriz of the abstract
root system (E,®). Then the generators and relations of Proposition give
a presentation of a semisimple Lie algebra L over K with Cartan matrix C and
root system equivalent to (E,®). og

Serre’s Theorem thus reduces the existence and uniqueness question to the
easier existence and uniqueness problem for root systems, which we solved in
the previous chapter.

8.3 Uniqueness

Some of the arguments here are incomplete. This section will be
dropped or changed dramatically at some point.

(8.7). THEOREM. Let L1 and Ly be finite dimensional semisimple Lie algebras
over the algebraically closed field K of characteristic 0. Then the following are
equivalent.

(1) Ly and Ly are isomorphic;

(2) the associated root systems (E1,®1) and (Ea, ®3) are equivalent;

(3) the associated simple bases Ay and Ay have isomorphic Dynkin diagrams;

(4) the associated simple bases Ay and Az have equivalent Cartan matrices;
that is, there is a permutation matriz P with Cart(Ag) = P Cart(A;)PT.

2at least for now
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Parts (3) and (4) are equivalent and both imply (2); see Theorem[(7.14)] On
the other hand (2) implies (3) and (4) by Theorem-

That (1) implies (2) requires the result (already mentloned) that two Cartan
subalgebras are equivalent under an automorphism of L. We will prove this later
in Corollary in an ad hoc and after-the-fact manner. See page for
our ultimate proof of the theorem.

At present we will deal with the crucial (2) = (1) part of the theorem
above:

(8.8). THEOREM. Let L and L' be finite dimensional semisimple Lie algebras
over the algebraically closed field K of characteristic 0. Let the associated root
systems (E,®) and (E',®") be equivalent. Then L and L' are isomorphic.

Indeed the isomorphism of (E,®) and (E',®') extends to an isomorphism
of L and L' that takes the Cartan subalgebra H associated with (E,®) to the
Cartan subalgebra H' associated with (E', ®').

Of course, this is a direct consequence of Serre’s Theorem [(10.15)] but we
have not proved that yet.
Before proving this, we point out an interesting and helpful corollary.

(8.9). COROLLARY. Any nontrivial automorphism of the Dynkin diagram of
semisimple L extends to a nontrivial automorphism of L. O

Such automorphisms are usually referred to as graph automorphisms.

Our uniqueness proof is motivated by that of [EId15]. The basic observation
is that, with respect to the Cartan basis { hj,eq | 1 <7 <1, a € @}, most of the
adjoint actions are nearly monomial. We then show (starting as in Proposition
that, for an appropriate choice of the basis vectors, the actual multipli-
cation coeflicients are rational and depend somewhat canonically upon the root
system .

An example is the following working lemma.

(8.10). LEMMA. Let § € AU—-A and 8 € ® with B # £, and let § —
$0,..., B, ..., B+td be the §-string of roots through B. Let Ss = Khs®KesDKe_s
be isomorphic to sla(K) with the standard relations from Proposition . Then
for x € Lg we have [es, [e_s,x]] = t(s + 1)z.

PROOF.

0O

We could rephrase this to say: there is a nonzero rational constant (4, 5)
depending only on ¢ and § with

ade_, ade, eg = x(0, B)es .
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This is the model for our uniqueness results below, in particular Theorem

For each § € AU —A, set as = ad.,;. Consider words w = wy, ... w; in the
alphabet

A=ATUA for AT ={as|6€ A}, A- ={as|de€-A}.

k
If w=as, - as, , then we define |lw|| = >_7_, 6.
For each such word w we set

e(w) = wg -+ - wa e(wy),

where we initialize with e(as) = es. Note that e(w) € L.

By Proposition and its corollary, for every a € ®€¢ there is a word w
in the alphabet A° with Ke(w) = L,. Indeed it is possible to do this with
k = | ht(a)|. For each a, choose and fix one such word w, and set e, = e(w,).
If below we say that something “depends on «” we may actually mean that it
depends upon « and the fixed choice of representative word w,.

(8.11). LEMMA. For each word w from the alphabet A there is a constant
Xw € Q with e(w) = Xwe|jw| -

PROOF. SKETCH: Let w = wiwg_1 -+ w1 and set wi = as. Use Lemma
(8.10)[ and induction on k, with & = 1 being immediate. For 4,7 € €A always
—0+v ¢ ®. Thus as endomorphisms a_sa, = a,a_s unless y = 4. o

(8.12). THEOREM. We have L = @i:l Kh; & D ,cp Keo with

acd
(ii) [hi,ea] = (a, 6 )eq;
(iii) [eaaeﬁ] = Xa,8€a+8r Xa,8 € Qifa 7£ —B;

. l
(iv) lease—a] = 2251 Xjaljs Xja € Q.

Here the constants xx only depend upon the appropriate configuration (that is,
Wa, Wg, j) from the root system (EL, ®L).

PrROOF. The first two are immediate. Now we consider the various [eq, eg],
which we verify by induction on min(| ht(a)|,|ht(8)]). As [eq,es] = —leg, €a]
we may assume | ht(«)| < |ht(8)]).

First suppose 1 = |ht(a)|; that is, @ € €A (e € ). If B = o then [eq, e5] =
Ocq, and if 8 = —a € —€A then [eq, e5] = hy = 2321 Xj,oh; (with all but one
of the constants equal to 0). For 8 # +a, we have [eq, eg] = e(w) for w = a,wg;
S0 [€a, €8] = XwCatps = Xa,8€a+s by the lemma.

Now assume 1 < k = |ht(«)| < |ht(8)|. Let wy = wpwy—1 - w1, and set
wg = as and w = wy_1---wi(# P). Furthermore let v = ||w||. Note that
1< [ht(v)] < |ht(a)] < [ht(8)], and especially  # —§ £ 6.
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We calculate (using induction and the lemma)

[eases] = [e(wa), eg]
= [[es, e(w)], es]
= [es, [e(w), eg]] — [e(w), [es, e5]]
= Xw([e57 [677 65]] - [e’yv [653 eﬁ”)
= Xw(X~,8le€s, €y+8] — Xo,8[€4, €545]) -

At this point, there are two cases to consider, depending upon whether or
not

a+B=6+y+B=7+0+4

is equal to 0.
If @+ 8 # 0 then by induction

[ea, ea] = Xw(X~,8les, ev48] — Xs,8ley, €515])
= Xw(X~,8X8.4+BE5+~v+8 — X6,8X~,6+8C+6+5)
= Xw(X,8X6,7+8 — X6,8X~,6+8)€xy+6+5
= Xa,B €a+p

where the rational constant
Xa,8 = Xw(X~,8X6,7+8 — X5,8X~,6+8)

depends only on « and S (and the associated w, = asw with v = ||w]|).
If a4+ p =0 then —§ =v+ p and —y = J + 8. By induction again

[eare—a] = [eme@]
= Xw(X~,8(€s, €4+58] — Xo,8(€, €545])
= Xw (X'y,—a[eéa 6—6] - X&,—a[e'ya e—'yD

l l
= Xw (X’y,—oz ( Z Xjﬁhj) — Xé,—a < Z ij’th))
j=1

Jj=1

= Xu Y (Xr-aXjs = Xs,-aXjn )y
=1

l
=Y Xjahy,
j=1
where the rational constants

Xja = Xw(Xvy,—aXjs = X6,—aXjy)
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are entirely determined by j, a, and the associated w, = asw with v = ||w]||. O

PROOF OF THEOREM [(8.8)|

The isomorphism between the root systems (F, ®) and (E’, ') gives rise (by
Theorem b)) to a map h; — h; (1 <i <) and e, — €/, (o € ) that by
the theorem extends to an isomorphism of the Lie algebras L and L'. o

8.4 Existence

8.4.1 sl (K)

(8.13). ExAMPLE. Let L = slj11(K), the Lie algebra of trace 0 matrices in
Mat;y1(K) forl e Z*.

(a) L is simple of type a;(K) and dimension 1> + 2I.

(b) All Cartan subalgebras have rank | and are conjugate under SLit1(K) <
Aut(L) to H, the abelian and dimension | subalgebra of all diagonal matrices
with trace 0.

(c) The H-root spaces are the various Ke; ; for 1 < i # j <1+ 1 with corre-
sponding root €; — &; within H* and its rational form Q' (= Q"*1 N 1+).

(d) The simple roots of A are 6; = &; — ;41 = 6, for 1 < i <, and so the
Dynkin diagram is A;.

(e) The Weyl reflection re,_c, induces on R' = R N1+ <R the permuta-
tion (i,7) of the Weyl group W (A4;) ~ Sym(l + 1).

PROOF. (a) The dimension is (I + 1)? — 1, as the only restriction is on the
trace. Indeed, at least as vector space L is H @ P, £ Ke; ;. The rest of this
part then follows from (d) and Theorem |(8.2)]

(b) L is irreducible on the natural module V' = K!*! (for instance, because
the range of e; ; is the basis subspace Ke;). Therefore by Theorem the
module V is a weight module, which is to say that every Cartan subalgebra C' of
L can be diagonalized. Thus there is a g € GL;+1(K) and indeed in SL; 41 (K) (as
[ > 1) with the Cartan subalgebra CY in H. But a self-normalizing subalgebra of
L within abelian H must be H itself, so H is a Cartan subalgebra and CY = H.

(C) If h = diag(hl, .. .7hl+1) S H, then [h,ei7j] = (hl — hj)em-. Therefore
Ke; ; is a root space L,. When we let the canonical basis of Q! < V* = K/+1
be €;,...,e141, we find a(h) = (¢; — €;)(h); that is, o becomes the root &; — ¢;
in the Euclidean I-space R N1+,

(d) The lexicographic order induced by &1 > €9 > -+ > g4 yields the
simple base A described. Note that all roots a have oV = a. If i < j then



100 CHAPTER 8. SEMISIMPLE LIE ALGEBRAS: CLASSIFICATION

(04, 5]v) is 0 unless j = i+ 1 where it is —1. Thus the Dynkin diagram of A and
Lis Al.
() For1<k<Il+1

Tei—e; (en) = ex — (ex, (e — 7)) (g0 — &)
=cp — (eg, i —€5)(ei —€5) .
Thusre, o, (ex) = ep if kb & {4,7} whiler., ., (e;) = &5 and ., ¢, () = ;. That

is, rc, ¢, induces the 2-cycle (e;,¢;) on the set {e1,...,6141}. These generate
the symmetric group. O

8.4.2 Spaces with forms

(8.14). THEOREM. Let b be the nondegenerate n-symmetric form on finite
dimensional space V' over algebraically closed K of characteristic 0. The Lie
algebra L consists of those © € Endg (V) ~ Mat,, (K) with

b(xv,w) = —b(v, zw)

for all v,w € V. Assume additionally that L is semisimple and irreducible on
V.
Let C' be a Cartan subalgebra of L. Then we are in one of three cases:

(a) L =s09(K) with (n,n) = (21,+1);
(b) L = spy(K) with (n,n) = (21,-1);
(C) 5021+1(K) with (TL, 77) = (2l + 1, +1)

In all cases, there is a basis consisting of C-weight vectors possessing a split

Gram matrix l
D),
n 0

k=1
in the two even dimensional cases and

l
0 1
wed( ) ;)
k=1

in the odd dimensional case.

(8.15). THEOREM. Let L be one of the Lie algebras s09(K) with (n,n) =
(21, +1) or spy(K) with (n,n) = (21, —1) or s09;+1(K) with (n,n) = (214+1,+1).
Set V. =K" to be the natural module for L. Let C be a Cartan subalgebra for
L. Then, in the action of L on V, there is a basis of C-weight vectors with
Gram matriz in split form as the 21 x 21 matriz with [ blocks 2 (1) down
the diagonal when n = 2l is even, and this same matrix with an additional single
1 on the diagonal when n =20+ 1 is odd.
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PROOF. In all cases L is irreducible on V', so by Theorem the module
V' is a weight module for all choices of Cartan subalgebra C.

Let b be the nondegenerate n-symmetric form on V for n = £1 with L equal
to those x € Endg (V) ~ Mat,, (K) with

b(zv,w) = —b(v, zw)
for all v,w € V. Let v € Vg, and w € V. Then for all h € C
A(R)b(v,w) = b(hv,w) = =b(v, hw) = —p(h)b(v, w) .

That is, (A+p)(h) b(v, w) is identically 0 for h € C. In particular, if A # —u then
b(v,w) = 0 and V¢ \ and Vi, are perpendicular. The space V' is nondegenerate,
so for all weights A of C' on V' we must have (Vo x, Vo,—a) # 0.

Let A # 0, and choose 0 # v € Vo x. As v ¢ Rad(V,b) there is a w € Vi _y
with b(v,w) # 0. We have b(v,v) = 0 = b(w,w) (as A # —\). Therefore we
may rescale one of the pair {v,w} so that the Gram matrix of the nondegenerate
(1) ) As C leaves W = W
invariant, it also acts on V; = W+. Continuing in this fashion we leave V written
as a perpendicular direct sum Wy @ Wo @ - - - W,,, & Vy where the basis {v;, w; }
of W; consists of \;- and —\;-weight vectors for \; # 0 and V; is the 0-weight
space, nondegenerate if nonzero. If V) has dimension 0, then m = [, n = 2[, and
we are done. If Vj = Kv has dimension 1, then m =1, and n =2l + 1. As b is
nondegenerate and K is algebraically closed, we may rescale to b(v,v) = 1, and
again we are done.

If dimg(Vp) > 2, then for any nondegenerate 2-space Wy of Vp, by Lemma
A (of Appendix [A]) there is again a basis {vg, wp} of weight vectors in Wy

2-space W = Kv @ Kw has the stated form < 2

with the same Gram matrix 2 (1) . We continue in this fashion within VVOL
until we exhaust Vo (n = 2[) or reach a subspace of dimension 1 (n = 2[ + 1),
and we are done. O

(8.16). EXAMPLES. Forn € {£} = {£1}, let the K-space V =V,, = K* have
basis {e;,e—; | 1 < i <1} and be is equipped with the split n-symmetric form
b= b, given by

blej,e—;) =1,ble_;,e;) =n, otherwise b(eq,ep) =0.
The Lie algebra L = L,, is then composed of all x € Endx (V') ~ Maty (K) with
by (zv,w) = —by (v, zw)

for allv,w € V. Thus Ly is the orthogonal Lie algebra s09;(K), and L_ is the
symplectic Lie algebra sp,;(K)

(i) s09;(K): orthogonal case n = +1.

(a) The algebra Ly = s09,(K) is simple of type 9,(K) and dimension 21> —I.
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(b) All Cartan subalgebras have rankl and are conjugate under Aut(s09;(K))
to H, the abelian and dimension | subalgebra of all diagonal matrices
with basis e;; —e_; —; for 1 <i <.

(¢) For h = 22:1 hi(ep —e—k—r) € H we let e h — hy give the
chosen basis for H* and Q'. The H-root spaces are spanned by the
following weight vectors and have the corresponding roots:

Vector ‘ Root
€ij —€—j—i € —E&j
ei—j — i | —(&i — &)
€i—j —€j—i | EitTE;
eij —e—ji| —(& &)

(d) The simple roots of A are 6; = e; — €41 =0 for 1 <i<1—1 and
8 =¢ei—1+e =9, and so the Dynkin diagram is D;.

(e) The Weyl reflection re,—.,,, induces on R' the permutation (i,i+ 1)
while re,_,1+¢, fizes e for k <1 —1 but has re,_,4¢,(€1-1) = —&; and
Te,_ y1e,(61-1) = —&1. So the Weyl group W (D) is 2!=1: Sym(1).

(ii) spyy(K): symplectic case n = —1.

(a) The algebra L_ = sp,,(K) is simple of type ¢;(K) and dimension 21> +1.

(b) All Cartan subalgebras have rank and are conjugate under Aut(spy; (K))
to H, the abelian and dimension | subalgebra of all diagonal matrices
with basis €;; —e_; —; for 1 <i <.

(¢c) For h = 22:1 hi(exr —e—k—k) € H we let 2 h — hy give the
chosen basis for H* and Q'. The H-root spaces are spanned by the
following weight vectors and have the corresponding roots:

Vector Root
€ij —€—j—i | EiEj
ei—j = €, | —(&i —&j)

€ij,—j T €j—i g t¢j

eijteji| —(&+¢g)
€i,—i 2e;
e—iyi —2¢;

(d) The simple roots of A are §; = e; —ei41 =6, for 1 <i<Il—1 and
8 = 2¢; (with 6 = ¢;), and so the Dynkin diagram is Cj.
(e) The Weyl reflection re,_.,,, induces on R' the permutation (i,i+ 1)
while roz, is the diagonal reflection taking €, to —e;. So the Weyl group
W (C)) is 2% Sym(1).
PROOF. (a) It is helpful to consider the 2{ x 2] matrices of Matg;(K) as I x

. ) . . a; i bi_;
matrices whose entries are the various 2 x 2 submatrices ( 7 a ©d )
—i,J —i,—J
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The requirements for such a matrix to be in L,, are then

Qs 5 bi,fj 0 1 — 0 1 ;i bfj,i
boij a—i—j n 0 n 0 bj—i a_j_; )’

which is to say then

nbi—j  aij \ _( —bi-i —a—j
na—i—j b_i; —naji —nb_ji

Thus
nbi,—j = —bj,—i
Qjj = —0—j—i
na—i,—j = —Naj,;
boij = —nb—ji-

We rewrite and view these as four separate equations subject to the restriction
1<i<j<i

aiyj = —a,j,,i
a_iy_j = 7CL]'7Z'
bi,—j = —nbj,—i
b,i’j = —nb,j,i .

Thus the matrices of L, can have anything above the diagonal 2 x 2 blocks
(where i < j), these entries determining those below the diagonal blocks. This
contributes 4(I(I —1)/2) = 2I% — 2l to the dimension, the relevant basis elements
being, for 1 <i < j </,

€ij = €—j—is €—i—j = Cjis €i—j ~MNCj—i, €—ij ~Ne—ji.

In the diagonal blocks ¢ = j we must have

Qii = —Q—4,—i
A—i,—i = — Qi
i,—i = —10i,—i
boii=—nb_i;.

The first two equations are equivalent and contribute [ to the overall dimension,
the corresponding basis elements being e; ; —e_; _; for 1 < ¢ <[. In the second
two equations, if 7 = +1 there are no nonzero solutions (as K has characteristic

0), while if n = —1 the equations are trivially valid and so contribute a full 2[ to
the dimension, the additional basis elements being e; _; and e_; ; for 1 <14 <.
Therefore

dimg(Ly) = (21> = 2) +1=2* -1
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and
dimg (L_) = (21> = 21) + 1+ 20 = 20> +1.

The rest of (a) then will follow from (d) and Theorem [(8.2)|

(b) Theorem proves that any Cartan subalgebra is conjugate under
Aut(L,) into the diagonal subalgebra of the algebra. But this diagonal subal-
gebra is abelian, so the self-normalizing Cartan subalgebra within it must be
the whole diagonal subalgebra. As we saw under (a) it has basis e; ; — e_; ; for
1<i<I.

(c) The basis we described under (a) turns out (unsurprisingly) to be a basis
of weight vectors. For instance:

l l

[ § by (e — e—k,—k) s €i,—j — 776;',—1} = E hilex —e—k,—k, €i,—j — nej,—i]
k=1 k=1

hi((erkx — e—k,—k)(ei—j —nej—i) — (€i—j —nej—i)(err — e—k,—k))

- 10~

hi((erkei—j — exxne;j,—i) — (—e; —je_p —p +1nej —i_p —k))

—

k=
= (hiei—j — hjnej —i) — (=hjei —j +nhiej ;)
= (hi + hj)ei—; — (hi + hj)nej—i

= (hi + hj)(ei,—j —nej—i) -

Therefore e;,_; — nej —; is a weight vector for the root €; + €.
The other entries in the tables follow by similar calculations. For instance:

1 1
[th(ek,k —e_k—k), €¢,i] = Z hiler e — €k —k, €—is)

=1 =1
!
= E hi(€rke_ii— €k —k€—ii — €—;i i€k k + €—ii€_f _k)

k=1
= —hje_;,—ie_ii — hie_ie;;
= _2hie—i,i .
Thus in the symplectic (n = —1) case e_;; is a weight vector for the root —2e;.

(d) Lexicographic order is induced by €1 > €3 > -+ > g;. The simple roots
are then evident. Note that in the symplectic case €;_1 + £; remains a positive
root, but it is no longer simple as €;_1 + ¢, = (5,1 — 1) + 2¢.

(e) The reflections in ; — ¢; were calculated under Example |(8.13)|(e), and
the reflection in 2¢; is clear. All that needs checking is

Tepi4e(€1m1) = €1 —(gi—,eim1 +e)(eimr+e) =1 — (611 +&) = —g. O
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(8.17). EXAMPLE. Let the K-space V =V, = K¥*1 (for n = +1) have the
basis { eg,ei,e—; | 1 < i <1} and be equipped with the split orthogonal form b
given by

bleo,e0) =1, b(ei,e—;) =ble—i,e;) =1, otherwise b(eq,ep) =0.

The Lie algebra L is the orthogonal Lie algebra 50911 (K), composed of all x €
Endg (V) ~ Matg; 41 (K) with

b(zv,w) = —b(v, zw)
for allv,w e V.
(a) The algebra L = s09;11(K) is simple of type b;(K) and dimension 21 + 1.

(b) All Cartan subalgebras have rank | and are conjugate under Aut(sog41(K))
to H, the abelian and dimension | subalgebra of all diagonal matrices with
basis e;; —e—_; —; for 1 <i < 1.

(¢c) For h = 22:1 hi(err — e—k—k) € H we let e: h — hy give the chosen
basis for H*. The H-root spaces are spanned by the following weight vectors
and have the corresponding roots:

Vector Root
€ij —€—j—i | EiTEj
ei—j — € | (& — &)

Ci—j T Cj—i| EiTEj
eijteji| —(&+¢g)
€i,0 — €0,—i &

€—i,0 — €0,i —&;

(d) The simple roots of A are §; =¢; — ;41 =0, for 1 <i<l—1 and §; =¢
(with &) = 2¢;) and so the Dynkin diagram is B.

(e) The Weyl reflection 7-,_.,,, induces on R' the permutation (i,i+ 1) while
re, is the diagonal reflection taking €, to —e;. So the Weyl group W (B;) is
2! Sym(1).

PROOF. As the Gram matrices indicate, the algebra sog41(K) can be
thought of as an extension of s09;(K). As such, most of the arguments from
the previous example (case n = +1) are valid here. Furthermore the ultimate
similarity of the root systems means that the symplectic case n = —1 of the
previous example is also relevant here. (Perhaps all three algebras should be
handled at once.)

(a) We think of the Gram matrix Gg;41 as the Gram matrix Go; for s09;(K)
with a new row and column indexed 0, corresponding to the basis element ey of
V = K21 the diagonal entry being b(eg,eo) = 1 and all other entries in the
new row and column being 0. Then MGoyy1 = —Gor 1M T if and only if
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1 MO,O = 0;

(1)

(2) the rest of row My . contains any vector v € K2;
(3) the rest of column M, o contains —vGay;
(4)

4) deleting row 0 and column 0 from M leaves a matrix of s04;(K), as described
in Example [(8.16)(i).

Thus a basis for L is that for s09;(K) from Example|(8.16)(1), supplemented with
the 2[ elements e; o —ep,—; and e_; o —ep ;. The dimension is then 221420 =
2% + 1. The rest of (a) will then follow from (d) and Theorem as before.

(b) Again by Theorem a Cartan subalgebra is conjugate under Aut (L)
into and then to the abelian diagonal subalgebra of the algebra, which remains
the rank [ space with basis e; ; —e_; _; for 1 <14 <.

(¢) The weight vectors and roots for the subalgebra sos;(K) are unchanged.
We must additionally calculate:

1 1
[th(ek,k —e_k—k), €0 — 60,1} = Z hilexe — €e—k,—k s €i,0 — €0,

k=1 k=1
1
= Z hi(ek k€0 — €0,—i€—k,—k)
k=1
= hie;,0 — hieo,—;
= hi(ei,o — €o,—i) -
Parts (d) and (e) follow, as in Example |(8.16)(ii). a

8.4.3 €g, €74 €4

(8.18). PROPOSITION.

(a) If es(K) exists, then it has dimension 248 and a proper subalgebra e7(K).
(b) If e7(K) exists, then it has dimension 133 and a proper subalgebra es(K).
(c) If eg(K) exists, then it has dimension 78.

PROOF. If I is a subsystem of the root system ® of L = H®& @4 La, then
M = H © @,cr La is a subalgebra by Theorem Indeed by Proposition
the subspace @, Lo generates a semisimple subalgebra My = (H N
My) ® B, cr La with root system I'. Thus the containments are clear from our
construction of the root systems Fg O E7 D Fg in Section

We know by Corollary that the rank [ semisimple Lie algebra with root
system (EL, ®%) has dimension [ + |®|. From the same section, we then find:

(a) dimK(eg(K)) = 8 4+ 240 = 248;
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(b) dimg(e7(K)) =7+ 126 = 133;
(¢) dimg(eg(K)) =6+ 72 = 78; |

We leave unproven:
(8.19). THEOREM. The Lie algebra es(K) exists.

As we have shown that the root system FEjg exists, this theorem is in fact a

consequence of Serre’s Theorem |(10.15)

8.4.4 do and f4

In the previous chapter we constructed certain root systems by examining the
fixed points of automorphisms of related Dynkin diagrams. Serre’s Theorem
(10.15)| or the uniqueness Theorem tell us that this extends to the con-
struction of appropriate Lie algebras:

(8.20). THEOREM. Any automorphism of the Dynkin diagram of semisimple
L extends to a nontrivial automorphism of L acting in the same manner on the
Cartan subalgebra and associated root spaces. m]

(8.21). THEOREM. The Lie algebra 04(K) has a graph automorphism of order
3. Its fized points contain a Lie algebra of type g2(K). Especially go2(K) of
dimension 14 exists.

PROOF. In Section [7.3.6] beginning with the root system of type D, with
Dynkin diagram and simple basis

e3 + ey
€1 — €2

€y — €3
€3 — €4

we used the triality graph automorphism to construct in R? = R3N(e; —ez—e3)*
a G root system of fixed points:

e1 —ex+2e3 ey —es

Co==0

By Theorem this leads to a triality automorphism of the Lie algebra 9,4 of
dimension 28 = 4+4-24. The fixed points correspond to the fixed subalgebra H of
the Cartan subalgebra (as dictated by the fixed root subsystem), the root spaces
for the six fixed roots, and the fixed spaces on the diagonal of the six nontrivial
orbits on root spaces. The fixed space thus has dimension 2 +6 + 6 = 14. In
view of its root system (G and inherited Cartan decomposition, this algebra
must of type gs. O

In Section we saw that the root system of type Eg has a graph auto-
morphism that fixes a root system of type Fy, which contains 48 roots. Theorem
(8.20)| and arguments similar to those above for gs then yield
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(8.22). THEOREM. If eg(K) exists then it has a proper subalgebra f4(K) of
dimension 52 = 4 + 48. a

8.5 Semisimple algebras V: Classification

We now can prove almost all of:

(8.23). THEOREM. (CLASSIFICATION OF SEMISIMPLE LIE ALGEBRAS) Let L
be a finite dimensional semisimple Lie algebra over the algebraically closed field
K of characteristic 0. Then L can be expressed uniquely as a direct sum of
simple subalgebras. Each simple subalgebra is isomorphic to exactly one of the
following, where in each case the rank is (:

(a) a;(K) ~ sl 1(K), for rank | > 1, of dimension 1> + 2I;
b1(K) ~ 509,41(K), for rank 1 > 3, of dimension 21% + ;
(

¢ (K) ~ spy, (K), for rank 1 > 2, of dimension 212 + I;

~

| l

<o

! 021(K), for rank | > 4, of dimension 21* — [;

(

(

¢7(K) of rank I =7 and dimension 133;

¢s(K) of rank | = 8 and dimension 248;
(

)

)

)

) u(K)

e) ¢(K) of rank | = 6 and dimension T8;

)

(&)

(h) §4(K) of rank | = 4 and dimension 52;
)

None of these simple algebras is isomorphic to one from another case or to any
other algebra from the same case. All exist.

PROOF. A simple algebra must be of one of these eight types by Theorems
and (The rank restrictions in the first four classic cases are made
to avoid diagram duplication such as B, = C3 and A3 = D3.) In each case there
is, up to isomorphism, at most one example by Theorem

In the four classical cases, each exists by Examples|(8.13)] |(8.16) and |(8.17)|
with the given rank and dimension. These results also show that no algebra from
any one classical case is isomorphic to any other from its own case or from any
other case. Indeed all Cartan subalgebras have rank [ and are conjugate under
the corresponding automorphism groups, so the rank and dimension reveal the
only possible collisions to be b;(K) and ¢;(K) (for I > 3) and also possibly eg
(when [ = 6). But the root systems B; and C; are distinct for [ > 3, and both
possess roots of two different lengths, while Fg has only one root length.

The rank 2 algebra g2(K) exists and has dimension 14 by Theorem

Leaving aside existence for the moment, by Proposition the excep-
tional algebras eg(K), e7(K), ¢s(K), and f4(K) all (if they exist) have different
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dimensions and so cannot in any case be isomorphic to each other. Furthermore,
none is isomorphic to a classical algebra (as mentioned above) or to gs(K) of
dimension 14.

Existence for the algebra ¢g(K) is stated in Theorem (our main un-
proven result). Given this, existence for e7(K), ¢6(K), and f4(K) come from

Proposition |(8.18)| and Theorem |(8.22)] O

As mentioned in the proof, the only part of the theorem that we have left
unproven is the existence of es(K) as in Theorem|(8.19)] (Although the existence
of eg is used to confirm existence of the other exceptional algebras.) For the
following corollary the theorem is not necessary as Proposition suffices.

(8.24). COROLLARY. Let L be a finite dimensional semisimple Lie algebra over
the algebraically closed field K of characteristic 0. Then all Cartan subalgebras
of L are conjugate under the action of Aut(L).

PRrROOF. By Theorem or Serre’s Theorem if two Cartan subal-
gebras of semisimple L give rise to isomorphic root systems, then the subalgebras
are conjugate under Aut(L). Therefore if L contains two nonconjugate Cartan
subalgebras, this must arise from one of the simple algebras in the theorem be-
ing isomorphic to another simple algebra with a different root system and hence
in a different case. But, as the theorem states, this does not happen. O

PROOF OF THEOREM [(8.7)]

Directly after the statement of the theorem we observed that its parts (2),
(3), and (4) are equivalent. Serre’s Theorem or Theorem then
prove that (2) implies (1). Now that we know that all Cartan subalgebras are
conjugate via an automorphism, we cannot have two isomorphic algebras with
nonisomorphic root systems; that is, (1) implies (2). |

8.6 Problems

(8.25). PROBLEM. Prove: ®" is a root system with simple basis A and W (®") =
W(®).

(8.26). PROBLEM. We may consider a-strings in the more general context of abstract
root systems (E,®). Let a and B (# La) be roots in ®. Prove that the integers k
for which B+ ka is a root are those from an interval [—s,t] with s,t € N and that
(B,a") =s5—t.

REMARK. Compare this with Theorem ‘

(8.27). PROBLEM. Totally positive word or totally negative word is the same as
minimal word.

(8.28). PrROBLEM. Highest root. & — &~ .
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Chapter

PBW and Free Lie Algebras

For the set X, the K-space Vx = @, x Kz has the property

Given any K-space V and set map f: X — V, there is a unique
K-linear transformation fyv: Vx — V such that f factors through
Vx. That is, f = fvix, where 1x is the natural map taking X to

Vx.
Vx
The appropriate commutative diagram is: V i 'y
x—1v

Thus in Vx we easily find both the constructive and conceptual versions of the
notion “free on X” in the category of K-spaces. More impressively, but not a
lot harder to prove, is that the tensor algebra T(Vy) = @, cy(Vx)®" is free on
X in the category of associative K-algebras (always with identity).

The tensor algebra is also the constructive solution to the conceptual problem
raised by a second universal property:

Given any associative K-algebra A and any K-linear transformation
f:V — A, there is a unique K-algebra map fa: T(V) — A such
that f factors through T(V). That is, f = faty, where vy is the
natural linear transformation taking V to T(V):

V ' fa
f

V—— A

Here the initial map f is not just a set map but has “decoration”—it is a linear
transformation. So we might phrase this by saying “T(V) is the free associative

113
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algebra on the K-space V.” (But we will avoid such terminology.)

In this chapter we deal with two related problems regarding Lie algebras.
The first is the natural issue of free Lie algebras. Given the set X, the pair
(Lx,tx), consisting of a Lie K-algebra Lx and a set map tx: X — Lx, is free
on X provided it has the following universal property:

Given any Lie K-algebra L and set map f: X — L, there is a
unique Lie algebra homomorphism fr: Lx — L such that f factors
through Lx. That is, f = frix:

This conceptual definition is elegant enough to prove two of the standard results
(Exercise) on universal objects:

(9.1). LEMMA.

(a) If (L(};),L(l)) and (Lg?),b(z)) are two free Lie algebras on X then they are
isomorphic via a map o2 with (2 = (1,2),(1)

(b) If (Lx,tx) is a free Lie algebra on X then tx(X) generates Lx as Lie
algebra. O

As there are arbitrarily large Lie K-algebras,

(9.2). LEMMA. If(Lx,tx) is a free Lie algebra on X then vx is an injection.
O

Crucially, these say nothing regarding the actual existence of such a free
algebra. The constructive aspect is missing and will be provided below in Section
9.9l

Our second universal object is the universal enveloping algebra for the Lie
algebra L over K. This is an associative K-algebra U(L) equipped with a Lie
homomorphism ¢y, : L — U(L)~. (That is, ¢, is a homomorphism from L to the
linear Lie algebra U(L)~.) The universal enveloping algebra is conceptualized
by:

Given any associative K-algebra A and any Lie algebra homomor-
phism f: L — A~, there is a unique associative algebra homomor-

phism fa: U(L) — A such that f factors through U(A). That is,
= faw:
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The universal property again gives uniqueness up to isomorphism and generation
by the image of ¢y, but here does not immediately address injectivity of ¢p,.

The universal enveloping algebra U(L) was introduced in Section where
we constructed it as the quotient of the tensor algebra T(L) by the ideal Iy, in
T(M) generated by all the elements * @ y —y ® x — [x,y] for z,y € L. This
construction is not a great deal of immediate help, since we know little of the
structure of U(L). We will describe it more carefully below in the Poincaré-
Birkhoff-Witt (PBW) Theorem and Section including injectivity for
Lr,.

This does at least suggest that tensor algebras—the solutions to universal
problems in the associative context—can also be of use in solving universal
problems in the Lie context. We might make the wild guess that the Lie algebra
T(Vx)~ is free on X. And we would be (essentially) right! But it is not at all
clear that this Lie algebra solves the universal problem. The proof of this in
Section [9.3] will invoke the PBW Theorem in a nontrivial way.

9.1 The Poincaré-Birkhoff-Witt Theorem

(9.3). THEOREM. (POINCARE-BIRKHOFF-WITT THEOREM) Let the Lie al-
gebra L have the K-basis {v; | i € I} for some totally ordered set (I,<). For
each v;, let v; be its image in U(L).

(a) (WEAK PBW) The universal enveloping algebra U(L) has as K-spanning

set the collection of all monomials vy, ---v;, form € N and ©; < -+ < i
(where n = 0 corresponds to the monomial 1).

(b) (STRONG PBW) The universal enveloping algebra U(L) has as K-basis the
collection of all monomials v;, -+-0;, forn € N and i; < --- < i, (where
n =0 corresponds to the monomial 1).

As universal U(L) is generated by the image of L as an associative algebra,
it is clear that the set of all monomials @;, ---7;,, for all n € N, spans U(L).
Therefore the Weak PBW Theorem a) follows directly from the following
proposition:

(9.4). PROPOSITION. Let o € Sym(n). Then in U(L) the element

vil e vin - Uig(l) e via(n)
is a linear combination of various monomials v;, - - - U;, , each having k less than
n.

PROOF. Let [vq,vs] = > ¢ cé7bvl in L. Then

Vky ~ 'rUij71 Va Vb vij+2 cr Uk, T Uky o ’Uijflvbva Uij+2 c Uk,

5 5, (S ) o 5
= ’Ukl e Ulj71 ( Ca,bvl) Ulj+2 e Uk?m
lel

1 - _ _ _
= g CapVky Uiy U0y + Uk, -
lel
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Thus the result is true for 0 = (4,7 4+ 1). The full symmetric group is generated
by such 2-cycles. O

Our proof of the PBW Theorem, in its strong version Theorem (b) is
motivated by that of Serre [Ser06) §3.4]. The basic idea is to construct a module
for L, with nondecreasing monomials as basis, that is ultimately revealed as the
adjoint module for associative U(L) acting on itself.

We let M(I) be the set of all finite multisets chosen from the totally ordered
set Il The connection with the discussion above is that each n-multiset M has
a unique nondecreasing representation i; < .-+ < 4,. In this situation we will
write oy for the nondecreasing monomial [];_, o;, (with vy = 1). The PBW
Theorem [(9.3)[(b) states that these form a K-basis for U(L).

For each M € M(I) we let xp be a basis vector in the K-space X =
@MGM(I) Kzpr. If M is the multiset represented by i; < --- < i,, then n
is the degree of M and of xj;. For each degree d € N, we define the subspaces
Xd = @deg(M):d Kz and X, = @?:1 X4, Here the vectors of X4\ X4_; are
said to have degree d. Especially, the only vectors of degree 0 are those of Kxy.

We use the term degree because as K-space X is isomorphic to the K-space
K[z;, i € I] of polynomials in the indeterminates x;. The isomorphism is given
by xar < [l;cps i and preserves degree. We largely avoid polynomials, since
for us their algebra structure plays only a notational role. For each j € I and
M € M(I) we will write x;ps in place of xy;30un < 2 [ [icps @i

We begin our proof of the PBW Theorem by defining, for each i € I, a linear
transformation a; € Endg(X). (The notation is to suggest the adjoint action
of ; on U(L).) These linear transformations are given by their action on the
canonical basis of X.

For each ¢ € I the action of a4 on z¢ is defined recursively by degree—
assuming that, for all ¢ € I and all T € M(I) of degree less than deg(Q), the
vector a;zr has already been defined:

(9.5). DEFINITION. For g €I and @ € M(I) we set
GqTQ = Tqq + yZQ

where

(a) ¥y, =0 ifq<min(Q);

(d) ¥4 = aryf +agrrr if ¢ > min(R) =r with Q =rR.

Here we define afq,) to be Y, ¢, .a; when [vg,v,] =3, ¢b vy in L.

For @Q = () we are always in case (a) with a,zg = x4 as ¢ < min(()) for all
q € I (by convention). Furthermore, we always have deg(yk) < deg(T'): this is
clear for (a), while under (b) we have

deg(yg) < 1+ max(deg(y}), deg(zr)) < deg(Q)

!Thus M(I) equals @D, Zi, the set of all functions F from I to Z having only finitely
many nonzero coordinate values Fj, the multiplicity of 7 in the multiset F'.
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by induction on degree. Especially the recursion can proceed as given.
It is also helpful to realize that (b) holds for ¢ > min(R). (Exercise.)

On its own, this definition lacks motivation. It says in part that a,zqo and
Zqq are equal, modulo terms of smaller degree. This fits with Proposition
since a4 is designed to mimic the adjoint action of U(L) on itself. Part (a) is
consistent, while the next lemma rephrases and motivates (b).

(9.6). LEMMA. Let g,r € I and R € M(I) with ¢ > r < min(R). Then
(agar — araq)TRr = afg TR -

PROOF. AqUrTR = GgTrR
= ZgrR + 0rYh + Qg TR
= a,TqR + arYh + Q[q,r]TR
ar(zqr +yh) + Qlq,r]TR

= ar(agTR) + afg 2R - a

Having defined the various a;, we now extend them to a linear transformation
a: L — Endg(X) via

a(v) = Zaiai when v = Zaivi with o; € K.
i€l i€l

Especially a(v;) = a; and a([v;,v;]) = ay; j), as defined above. We shall also use
the notation a(([[vs, v;], v]) = aji k-

(9.7). THEOREM.  The linear transformation a: L — Endg(X) is a Lie
homomorphism a: L — Endy (X). That is,

[a(v), a(w)] = a([v, w])
for allv,w € L.
PRrROOF. For this we need only show
(aiaj — aja;)rn = ap jTm

for all i,j € I and all M € M(I).
We break this verification into two cases:

(i) min(M) > mini, )
(ii) min(M) < min(i, ).

Case (i) comes immediately from the motivational Lemma when we set
R =M, r =min(i,j), and ¢ = max(s, j).

To complete the proof we must handle Case (ii). This we do by induction
on deg(M), assuming that

[a(v), a(w)]zr = a([v, w])zr
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for all v,w € L and for all T of degree smaller than that of M. Especially
[a[d,e], agleT = aya,q), 27 for all d,e, f € I and such T'. (Exercise.)

As min(M) < i, Case (ii) is vacuous when M is empty. This gets the
induction started and also allows us to set M = kN for k¥ = min(M) and
deg(N) = deg(M) — 1. We thus must verify

;a0 TN — GjQ;0 TN = a[i,ﬂakxN

for all 4,5,k € I and N € M(I), subject to &k < min(i,j, N) and deg(N) <

deg(M).
With these restrictions, consider the related

a;a0; TN —0Ea;0; TN
= [ajaak]ail'N
i
= laj, aglwin + [ag, ar]yy
= ajk)TiN + K YN by Case (i) and induction
= Q[j k] TN
= aiafj ) TN + [ag k), ailon
= @00k TN — Q;Qka; TN + Q[[jk],i) TN by induction.
That is,
a;AE0; TN — QpA;0; TN = ;A0 TN — QA5 TN + a[[j,k})i]zN .
Symmetry in ¢ and j gives
aj0ra; TN — QpQiQ; TN = GjQ;Q) TN — GjQ0; TN + a[[i’k],j]xN .

After subtracting the second of these from the first and dropping common terms,
we are left with

aka;a; TN — Aka;a; TN = G;Qj0x TN — Aj0;0k TN + Q[ k],qTN — Q[[i,k],j]TN -
That is,
aglaq, aj] TN — aj k)TN + Qi k), jJTN = GiG;0r TN — QjGi0k TN -
By induction and the Jacobi identity in L on the lefthand side
Ak j) TN + Q[ ], f) TN = Q;0jax TN — Aj0;a TN
which is the desired
ap ;10K TN = GjQjax TN — AjQ;Ak TN -
This completes Case (ii) and so our proof of the theorem. a

Theorem provides the Lie homomorphism a from L to Endy (X). Uni-
versality then provides a unique associative algebra homomorphism a: U(L) —
Endg (X) with a = acr,, where ¢, is the canonical map from L to U(L), which
we have rendered v — ¢ (v) = 0. Recall that for the multiset M represented by
i; < -+ <y, the element 0y of U(L) is the monomial [}, v;; with 0p = 1.
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(9.8). PROPOSITION. As U(L)-module, X is isomorphic to the adjoint module
ur) U(L) via an isomorphism taking each xpr to vy for M € M(T).

PrOOF. We have a(v;) = a(v;) = a4, for all i € I, and @(H?Zl v;,) =
H?Zl a;,. BEspecially a(v;)zyp = z;. By induction on degree, for the multiset M
with representation i1 < --- < iy,

n
a(vpr)xg = EL( H @ij)x@ =T

j=1

indeed the action of each a(v;, ) = a;,, on EL(H?:,H_l v;, ) is calculated under (a)
of Definition since the representation is nondecreasing. We conclude that
X is a cyclic U(L)-module generated by zp. That is, there is a U(L)-module
homomorphism A: U(L) — X given by 1 — zp hence @; — z;, for all 4, and
Up — xpr as displayed.

Suppose ZMGM(I) cpUp is in the kernel of A. Then in X

0:A< Z cM@M): Z e Aoy ) = Z CAMTM -

MeM(I) MeM(I) MeEM(I)

By definition the z; are linearly independent in X, so ¢y = 0 for all M. Thus
the kernel is trivial, and A is a module isomorphism whose inverse is described
in the statement of the proposition. O

PROOF OF PBW THEOREM [(9.3)]

By universality U(L) is generated by the ;, for i € I, so it is spanned by
the set of all monomials H?=1 v;; for all n € N (where we include 1 of degree
n = 0). Therefore by Proposition the nondecreasing monomials vy, span
U(L). By Proposition these are in turn linearly independent since their
images s in the isomorphic U(L)-module X are. Therefore they form a basis.
This completes the proof of the PBW Theorem ]

9.2 Consequences for universal enveloping alge-
bras

(9.9). THEOREM.  For the Lie algebra L, the map vr,: L — U(L) is an

injection. Especially i1, is a faithful representation of L in U(L)™.

PROOF. By design and definition, the map ¢,: L — U(L)~ is a Lie ho-
momorphism. For the basis {v; | ¢ € I} of L, the images tr(v;) = ¥; are
linearly independent in U(L) by the PBW Theorem Thus the kernel of
the homomorphism ¢y, is trivial, and it is an injection. O

(9.10). THEOREM.

(a) If A is a subalgebra of the Lie algebra L then the injection of A into L
induces an injection of U(A) into U(L).
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(b) If the Lie algebra L is the vector space direct sum A @ B of two subalgebras
A and B, then U(L) is isomorphic as vector space to the tensor product
U(A) ®k U(B) of the two subalgebras given by (a).

PROOF. (a) Choose a totally ordered basis {v; | € I} for L that includes
(say, as its initial segment) the totally ordered basis {u; | j € J} for A with
J C I. Then the universal property of U(A) gives a homomorphism ¢y from
U(A) to U(L) taking each nondecreasing monomial @,; to the corresponding
element v);. By the PBW Theorem this basis of U(A) is mapped to a
linearly independent set in U(L). The kernel of ¢y is therefore trivial, and ¢y
is an injection.

(b) Choose bases {u; | j € J} for A and {wy | k € K} for B with the
totally ordered set I the disjoint union of J and K and with j < k for all j € J
and k € K. Then by the PBW Theorem the algebra U(A) has the basis
{anp | M € M(J) }; U(B) has the basis {wy | N € M(K) }; and U(L) has the
basis {aywy | M € M(J), N € M(K) }. This reveals U(L) as a copy of the
K-space U(A) ®k U(B). a

9.3 Free Lie algebras

(9.11). THEOREM. Let X be a set, and define Vx = @,y Kz, the K-space
with X as basis. Let Lx be the Lie subalgebra of T(Vx)™ generated by X. If
tx is the inclusion of X in Lx, then (Lx,tx) is a free Lie K-algebra on X.

PRrROOF. We must prove that for any Lie K-algebra L and set map f: X —
L there is a unique Lie homomorphism fr with f = frix:

By definition Lx is generated by tx(X), so if such a map fy, exists then it has
to be unique.

Let j, be the injection of Lx into T(Vx) and g the canonical map from L to
U(L). As T(Vx) is free associative on X, there is a unique map gy from T(Vx)
to U(L) with ngXiX = gf:

Lx L) T(Vx)

o

x 114 uw

The image of gf is clearly in g(L). As the diagram commutes, this is also true
of gujxix and gyjx. Therefore we may truncate the diagram to:
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Lx
f

X 1L 25 gL

By the PBW Theorem |(9.3)| and especially Theorem the map ¢ is an
injection of L into U(L) that is a Lie isomorphism of L and g(L) (as subalgebra

of U(L)™). Thus g has a left inverse h that is a Lie isomorphism when restricted
to g(L). But then hgyjxix = hgf = f, and f;, = hgyjx is the desired Lie
homomorphism:
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o 10

Kac-Moody Lie Algebras and

Serre’s Theorem

Let L be a finite dimensional semisimple Lie algebra over the algebraically closed
field K of characteristic 0 with Cartan subalgebra H having basis {h; € H |
1 <j <1} Further let {a; € H* | 1 <1i <1} be a basis of simple roots of the
root system ® contained in H* (a largely cosmetic change in terminology and
notation). The [ x [ matrix C(®) = (¢; 5);,; with entries from K (indeed from
Z) is the associated Cartan matrix where ¢; ; = a;(h;) (= (i, af); see Section
53).
From Proposition we have:

(10.1). PROPOSITION. The Lie algebra L is generated by elements h;, e;,e_;
for 1 < i < that satisfy the relations:

(a) [hi,hj] =0 foralll <i,j <I;

ad}”“(e;) =0 and ad} =% (e—;) = 0 for 1 <i,j <1 withi # j. O

As discussed in Section these relations are those that were used by
Serre to prove simultaneously the uniqueness and existence of a semisimple Lie
algebras for each Cartan matrix arising from a root system. But the impor-
tance of the first four of these relations had been noted earlier, going back to
Weyl even, and had been used by Chevalley, Harish-Chandra, and Jacobson—
to study uniqueness and existence issues regarding these algebras and their
representation—before Serre’s observation that the final relation pair is a criti-
cal addition.

123
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10.1 Kac-Moody Lie algebras

An interesting fact, noted by both Kac and Moody, is that the final Serre
relation is the only one dependent upon C(®) being integral with nonpositive
entries off the diagonal. They investigated the following algebras, generalizing
those studied earlier:

(10.2). PRESENTATION.  Given C € Mat;(K), the Lie K-algebra Ch/(C) is
generated by the elements h;,e;,e_; for 1 <i <1 subject to the relations:

(a) [hi,hy] =0 for all 1 <i,j <lI;

(b) [ei,e_s] = i zh; for all1 <i,j <I;
(€) [hi,ej] =cjiej foralll <i,5 <I;

() [hise_j] = —cjie_j forall1 <i j<I.

We call these algebras (and the related Ch(C) below) Chevalley algebras
because Chevalley (at least according to Harish-Chandra) was the first to notice
their value is situations more general than that of C arising from a root system.

In C(®) the matrix entries ¢; ; are the entries a;(h;) of a Gram matrix for
a pairing of a K-space H and its dual. But for every matrix C € Mat;(K) there
is a basis {a; | 1 <i <1} for (K')* and a subset of vectors {h; | 1 <j <1} in
K! with C' = (a;(hj));,;. (For instance, let a; be the the standard basis of (K')*
and let h; be the 4 column of C.) The problem is that when C is singular, the
set {hj | 1 <j <1} cannot be linearly independent; it is not a basis. The cure
is to pass to a bigger space K" and its dual in order to find bases whose Gram
matrix has C' as a submatrix. For this to happen, we must have n > 2] — r,
where r is the rank of C, and for n = 2] — r there is an essentially unique
solution. (Exercise.)

A second more general presentation is now given by:

(10.3). PRESENTATION.  Let H be a K-space containing the linearly inde-
pendent set {h; € H |1 < j <1}. Furtherlet {o; € H* | 1 < i <1} be
linearly independent in H*. Set C' = (i(h;))i; € Mat;(K) (and assume that
dimg (H) = 21 — rank(C)).

The Lie algebra Ch(C') is generated by the K-space H and the elements e;, e_;
for 1 < i <1 subject to the relations:

(a) [g,h] =0 for all g,h € H;
(b) [ei,e,j] = (Si,jhj fOT all 1 g i,j S l,'
(c) [h,ej] = aj(h)ej forallh € H and 1 < j <;

(d) [he—j] = —aj(h)e_; forallh € H and 1 < j <.
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In dealing with these algebras, we will follow the usual abuse of notation,
using the same notation for the elements of the generating set as for their images
in the presented algebra. In the previous chapter we saw that for the appropriate
free algebras the mappings tcps and tcy, were injective on the generating sets, but
that does imply the same for those free algebras modulo their relation ideals Icy/
and Icyp. For instance h € H might become 0 as vcn(h) + Icn € Ch(C). Luckily
in Theorem below we shall see that the induced maps are injections on
generators in all cases.

Further notice that in Presentation the statement “generated by the
K-space H” indicates that we are assuming (without statement) all the relations
required for the image of H in Ch(C') to retain its natural structure as K-space:

a(ten(9)) + Been(h)) = ten(ag + Bh),
for all a, 8 € K and g,h € H.
(10.4). PROPOSITION.

(a) The map given by e; — —e_; and h — —h, for all h € H, induces an order
2 automorphism of Ch(C') and of Ch/(C), the Cartan involution w.

(b) Always Ch'(C) < [Ch(C),Ch(C)]. Indeed we have equality provided C' has
no row consisting only of 0’s. Furthermore Ch'(C) = Ch(C) if C is non-
singular.

(¢) Ch(C) and CW(C) are determined up to isomorphism by C.

(d) The map tc:e; — e; to:e—; — e_; and Lo h; = hj extends to a Lie
algebra short eract sequence

1 —— Ch(C) = Ch(C) — K —— 1

whose restriction to H is

1 D5 H K 1

with D = HNCW(C) = @,_ Kh; and H=D & K.

PROOF. (a) This is clear from the defining relations.

(b) This is clear from the defining relations.

(c) This is clear for Ch/(C'). For Ch(C) it is a consequence of the “essential
uniqueness” mentioned before the presentation.

(d) One direction is clear. The map e; — 0, h = d+ k — k extends to a Lie
homomorphism of Ch(C) onto K. The kernel is clearly an image of Ch’(C).

More work shows that the kernel is isomorphic to Ch/(C). This is done by
showing that there is a split extension Ch’(C) x K that is a homomorphic image
of and so isomorphic to Ch(C). m

While the Chevalley algebras Ch(C) and Ch’(C) need not be the same, it
is clear from the proposition that there is very little difference between them.



126 CHAPTER 10. KM AND SERRE

It turns out that Ch(C) is slightly easier to deal with, so we focus on it. We
now (and for the remainder of this chapter) adapt the notation of Presentation
(10.3)] While many of the results are valid more generally, we make the uniform
assumption that K is algebraically closed of characteristic 0.

We also let the root lattice Ac = Z§=1 Zoy (< H*), and set Af, = Zi'=1 ZF o
and A = 22:1 Z~ «;. For a subspace W and a € Ao

Wo={weW]|h(w)=a(h)w, he H}.

Let NT be the subalgebra of Ch(C) (and Ch’/(C)) generated by the e; for
1 <14 <, and let N~ be the corresponding subalgebra generated by the e_; for
1<i<l.

The main result of the current section is:

(10.5). THEOREM.
(a) Ch(C)=N-"@HaNT
(b) N~ is free on {e_; | 1<i <1}, and N* is free on {e; | 1 <i <1}.

() NT = ZaeAg N and N~ = ZaeAg N; . Always NE has finite dimension.
Each NF and N . has dimension 1, while if k is an integer with k| > 2

always N,jai =0=DN, .

(d) Ch(C) contains a unique ideal R that is such mazimal subject to RNH = 0.
This ideal is left invariant by w.

Before discussing the proof of this, we make a fundamental definition. The
algebra KM(C') = Ch(C)/R is the Kac-Moody Lie algebra with Cartan matrix
C.

By the previous proposition and the last part of the theorem, the ideal R is
contained in the subalgebra Ch/(C). In the literature KM(C) = Ch’(C)/R is
often called a Kac-Moody Lie algebra. Again the distinction between the two is
not large.

The proof of the structure theorem for Chevalley algebras is based upon the
following representation theoretic construction:

(10.6). THEOREM. LetV = @2:1 Kuv; be a K-space of dimension . Choose
X € H*. Then Ch(C) has a representation x on T(V) such that:

(a) For 1 <i <1 and for each k € N we have xx(e_;): T(V)F — T(V)F+1,
given by e_;(a) = v;a for all a € T(V).

(b) For each k € N we have xx(h): T(V)¥ — T(V)* acting diagonally; for
instance h(1) = A(h)1 and h(v;) = (A — a;)(h)v;.

(c) For each k € N we have xx(e;): T(V)F — T(V)k~1, especially e;(1) = 0.

PROOF. ...
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(a)

(d)

PROOF OF THEOREM |(10.5)|

Under (c) we will see that Ch(C') = N~ + H + N, so here we must prove
this sum to be direct.

Suppose u =n~ +h+nt is 0 in Ch(C). Then for all A we get
0=xx(u)(1)=n"(1) + A(h).

The constant (degree < 0) part of the righthand side is A(h), so this is 0 for
all A\. This implies that h = 0. Especially, the algebra H is embedded iso-
morphically in Ch(C'). Furthermore n~ (1) = 0. Under (b) we will see that
N~ acts freely on T(V) in all the representations x . Therefore n= (1) =0
gives n~ = 0, hence n* = 0 as well.

Via e_; <> v; we can view V as the free vector space Vx on the set X =
{e_i |1 <i<l}, soT(V)=T(Vx) becomes the free associative algebra
on X with yx(e_;).a = v;a describing the left action of T(Vx) on itself. As
in the previous chapter, N_ then is identified with the corresponding free
Lie algebra on X within T'(Vx)~.

As N~ is the free Lie algebra on {e_; | 1 < i <1}, the action of the Cartan
involution w tells us that Nt is the free Lie algebra on {e; | 1 <i <1}.

(ZaeAg NG )+H+( EaeAé N[) is left invariant under all ad(e_;), ad(e;),
and ad(h), and it contains all these generators. Therefore the sum is equal
to Ch(C), whence N~ and N are as described (except for the remarks on
dimension).

Standard linear algebra tells us that each ideal I in Ch(C) = @, Ch(C)a
is equal to @, ey lo- Especially, those that meet H trivially are all in
Doacn Ch(C)a and generate a unique maximal such ideal R. O

(10.7). LEMMA. Cpn<(N™) =0.

PrOOF. ...

10.2 Generalized Cartan matrices

To

say more about the Kac-Moody algebra KM(C), we make additional as-

sumptions about the Cartan matrix C' = (¢; ;)i,; = (@i(h;))i,;, all of which hold
when C = C(®) for a root system ®.

10.8). DEFINITION. A matriz C = (¢; ;); ; € Mat;(K) is a generalized Cartan
3 ),g g
matrix provided:

(1) ¢i=2 foralll <i<l;

(ii) ¢;,; is a nonpositive integer for all 1 < i,j <1 with i # j;

(iii) ¢ ; # 0 if and only if ¢;,; # 0.
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We continue with the notation of the notation and terminology of the pre-
vious section.such Additionally from now on we assume that C' is a generalized
Cartan matrix. For the following result we only need Condition [(10.8)(i).

(10.9). THEOREM. In Ch(C) and KM(C), for each i the subspace Kh; ®Ke; ®
Ke_; of Ch(C) and KM(C) is a subalgebra isomorphic to sly(K).

PROOF. We have the appropriate relations for sy (K):
lei,e—il =hi, [hies] =ciie; =2e;, |hie—i] =—cie—; = —2e_;,

therefore these three elements generate an image of sly(K) which is nontrivial
by Theorem As s15(K) is simple, we have the result. a

The next result requires Condition |(10.8)(ii) in order to make sense. Its

proof also makes use of |(10.8)|{iii).

(10.10). THEOREM. In the Kac-Moody algebra KM(C') we have the Serre
relations

adl “i(e;) =0 and ad. “i(e_;)=0
for all 1 <, j <1 withi# j.

PROOF. By the action of the Cartan involution and Lemma it is
enough to prove

e~k ade 5 (e;)] =0

for all k,i,5. If k ¢ {i, 7}, then this is clear by relation [(10.3)(b).
If j = k # i then e_; commutes with e;, so

[e—ja adé:cj‘i (6]’)] = adii_cjﬂ [e—jv ej}
= ad;_c“ [ei, —hj]

=ad" % ¢ e
=ad,, 7" ¢; je; .

If ¢;; is not equal to 0, then this is 0 as ad(e;)e; = 0. If ¢j; = 0 then by

Condition (iii) above also ¢; ; = 0, and again we find 0.
It remains to consider the case i = k # j. This is done by looking at the
action of the sly(K) subalgebra Kh; + Ke; + Ke_; provided by Theorem
O

Define the Serre algebra Se(C) to be the quotient of Ch(C') by the ideal Ige
generated by all ad};cﬂ'*i (ej) and adi;cf’i(e_j) for 1 <i,57 <1 with i # j. We
defined the Kac-Moody algebra KM(C) to be the quotient of Ch(C') by its ideal
ITxn, unique maximal subject to intersecting H trivially. Thus Ixn > Ise and
Se(C) has KM(C) as the quotient by its unique maximal ideal I'xn/Ise meeting
H trivially. The algebra Se(C) admits the Cartan automorphism w. In most
situations of interest Se(C) = KM(C).
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10.3 The Weyl group of a generalized Cartan
matrix

Continuing with the notation and terminology of this chapter, we extend the
definition of the Weyl group for a root system (see Section to arbitrary
generalized Cartan matrices. On the K-space H* define, for each 1 < i <[, the
linear transformation
rit B B — B(hi)a .

This acts trivially on the annihilator of h; in H* and it takes «; to —ay; as
a;(h;) = ¢;; = 2; that is, r; is a reflection on H* with center «;. We define the
Weyl group of C, W(C), to be the subgroup of GL(H*) generated by reflections
r; for 1 <14 <. It is in general not finite, and it can only be irreducible if C' is
nonsingular. On the positive side, for each 1 < j <[, we have

ri(o‘j) = a5 = aj(hi)ai =q; — ¢ € o + Loy,

so that W(C) leaves invariant the root lattice Ac = 22:1 Za;.
We next use the two theorems of the previous section to embed the Weyl
group W (C) naturally in the Kac-Moody Lie algebra KM(C).

An endomorphism c of V' is locally nilpotent if for every v € V thereis ann €
N with ¢"(v) = 0. As we are in characteristic 0, this allows to define exp(c) =
Z,zio %ck . This exponentiation process can be thought of as “integrating” a
derivation to produce an automorphism, as in Chapter

(10.11). LEMMA. If the derivation d of the Lie algebra L over K is locally
nilpotent, then exp(ad(d)) is an automorphism of L.

PrOOF. This is a relatively easy consequence of the Leibniz Proposition
O

An immediate consequence of Theorem is that the Serre and Kac-
Moody Lie algebras coming from a generalized Cartan matrix is integrable: the
endomorphisms ad., and ad._, are locally nilpotent and so can be integrated to
give automorphismes:

(10.12). COROLLARY. The invertible linear transformations exp(ad(e;)) and
exp(ad(e—;)) are automorphisms of Se(C) and KM(C). |

PROOF. By Presentation |(10.3)(b) the endomorphism ad,, is nilpotent on
e_; as long as j # ¢. In that case ad,,(e—;) € H; for each h € H we have
ade, (h) € Ke;. Therefore adgi(h) =0 and ad‘zi(e,j) = 0. Theorem [(10.10)| then
completes the proof that ad,, is locally nilpotent. The Cartan involution reveals
ad(e_;) to be locally nilpotent as well, and the lemma completes the argument.

O

Let us pause to do some calculations with 2 x 2 matrices. The standard
rendering of slp(K) = Kh; + Ke; + Ke_; is as

(10 (01 (00
(2 O _1 9 € = 0 O 9 €_i = 1 0 9
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exp(eq;)—<(1) }) exp(e_i)—(i ‘1)>

An instance of Whitehead’s Lemma then gives
1 1 1 0 1 1)\ 0 1
0 1 -1 1 0 1) \ =10
0 1
exp(eq exp(—e-dexnie) = ( Oy § ).

Therefore at this level the Weyl reflection r; (see Section is induced
by the linear transformation exp(e;)exp(—e_;)exp(e;). This remains true if
we move to the 3-dimensional adjoint representation of sly(K) and the corre-
sponding map exp(ad., ) exp(ad(—e_;)) exp(ade,). (Here, as in Theorem [(3.11)]
exp(—a) b exp(a) = exp(ad,)(b).)

We now return to the Lie algebras Se(C) and KM(C). For each 1 < i <
set

so that

or

pi = exp(ad,,) exp(ad(—e_;)) exp(ade,) ,

an automorphism by Corollary |(10.12)] which the previous paragraph suggests
might emulate the Weyl reflection r;. This is indeed the case. Set W, (C) =
(pi| 1<i<1l) < Aut(Se(C)).

(10.13). PROPOSITION.

(a) pi(h) =h for each h € H.
(b) pi(Se(C)a) = Se(C)yy(a-
(©) p(KM(C)a) = KM(C)y, oy

(d) The map p; — 1; extends to a homomorphism from W, (C) onto W(C).
ProOF. Parts (a) and (b) come from calculation and then imply (c). a
The proposition and Theorem (c) immediately give

(10.14). COROLLARY. Letw € W(C).

(a) dimSe(C)y = dim Se(C)y(a)- Especially, dim Se(C)y(a,) = 1.

(b) dim KM(C)qo = dim KM(C)y(a)- Especially, diim KM(C)y(qa,) = 1. O

10.4 Serre’s Theorem

(10.15). THEOREM. (SERRE’S THEOREM) Let K be an algebraically closed field
of characteristic 0, and let C = (¢; ;)i,; be the Cartan matriz of the abstract root
system (E,®). Then the generators and relations of Proposition give a
presentation of a semisimple Lie algebra L over K with Cartan matriz C and
root system equivalent to (E,®).
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Indeed, in this case L is isomorphic to Se(C) = KM(C).
As C' is invertible we have Ch(C) = Ch/(C) and H = D in Proposition

Corollary and (ii) below tell us that H @& @, .o KM(C), is a
C

subspace of KM(C') of dimension dim H + |®|, which we know is the target
dimension for L. Thus we want to prove that this is all of Se(C) and KM(C).

The main thing that needs to be proven is that Se(C)s = 0 for all g €
A\ ®. This is done by showing that for any S in the root lattice but not
in ®, there is a w € W(C) = W(®) such that w(f), when written as an
integral linear combination of the various «;, has some positive coefficients and

some negative coefficients. By Theorem [(10.5)] and Corollary |(10.14)| we get
0 = dim Se(C'),(5) = dim Se(C), as desired.

The steps in the proof:

(i) Using the sl3(K) of Theorem we prove that Se(C) and KM(C) are
semisimple and H is a Cartan subgroup.

(ii) Each Se(C)q, is in Se(C) \ Ixnm (again via sly(K)).

k3

(iii) By Theorem [(10.5)| we have Ch(C)kqa, # 0 for k € Z if and only if k €
{-1,0,1}

(iv) Let 8 € A\ (Ui:l Zeoy;). Then is a w € W(C) = W(®) such that w(8),
when written as an integral linear combination of the various ¢;, has some
positive coefficients and some negative coefficients. Thus Ch(C)z = 0 by

Theorem [(10.5)(c).
(v) Se(C) = KM(C) of dimension dim H + |®| and C = C(®).
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Appendix

Forms

A.1 Basics

Let o be an automorphism of K with fixed field F. For the K-space V', the map
b: V xV — K is a o-sesquilinear form provided it is biadditive and

b(pv, qu) = pb(v,w)q”

for all v,w € V and p,q € K. The case 0 = 1 is that of bilinear forms.
The form is reflexive if

bv,w) =0 < blw,v)=0.

Important examples are the (o, n)-hermitian forms: those o-sesquilinear forms
with always

b(v,w) = nb(w,v)’
for some fixed nonzero 7. Observe that

2

b(’l}, ’LU) = nb(wa v)7 = 77(77b(U7 w)o)g =1 b(v, w)g .

Assuming that b is not identically 0, there are v, w with b(v,w) = 1; so nn? = 1.
But then for all ¢ € K

a = blav,w) = b(cw,w)"2 =a” ,
and o2 = 1.
For a (o, n)-hermitian form that is bilinear we have 0 = 1, and so 1 = nn? =
n?, giving n = +£1. The case (0,n) = (1,1) is that of symmetric bilinear forms
or orthogonal forms, while (o,n) = (1, —1) gives alternating forms or symplectic
forms.

135



136 APPENDIX A. FORMS

For S C V write S* for the subspace {v € V | b(v,s) =0, for all s € S}
and say that V' and b are nondegenerate provided its radical

Rad(V,b) = Rad(V) = Rad(b) = V*

is equal to {0}. If E < R and b is an orthogonal form, we say that b is positive
definite if it has the property

b(xz,x) > 0 always and b(z,z) =0 <= z=0.

This is stronger than nondegeneracy.
The form b restricts to a form on each subspace U of V', and U is a nondegen-
erate subspace provided its radical under this restriction is 0; that is, UNU+ = 0.

(1.1). LEMMA.  For the (Id,n)-hermitian form b: V x V. — E the map
P’ w s b(-,w) is a E-homomorphism of V into V* and the map \°: v + b(v,-)
is a E-homomorphism of V into V*. Here ker p® = V+ = ker \°. |

(1.2). LEMMA. For the nondegenerate (Id, n)-hermitian form b: V. xV — E
let U be a finite dimensional subspace of V.

(a) The codimension of UL in'V is equal to the dimension of U, and U++ = U.

(b) The restriction of h to U is nondegenerate if and only if V. =U @ U+. O

Write the vector v =), viz; for the basis X = {x; [ i € I } as the column
I-tuple v = (..., v;,...). The Gram matric G = G, of the form b is the I x I
matrix (b(z;,;))s,;, and we have a matrix representation of the form b:

blv,w) =v' Gw.

If YV is a second basis and A is the I x I base change matrix that takes vectors

written in the basis ) to their corresponding representation in the basis X', then
Gy =ATGyA.

(1.3). COROLLARY. The nondegenerate (1d, n)-hermitian formb: VxV — E
on the finite dimensional space V' is nondegenerate if and only if its Gram matrix
is invertible. O

This point of view makes it clear that if b: V x V' — E is nondegenerate
and F is and extension field of E, then we have an induced nondegenerate form
bF (F@EV) X (F@EV) — .

A.2 Orthogonal geometry
Throughout this chapter F' will be a commutative field and V' will be a finite

dimensional vector space over F. For any subset W of V, we let (W) <V be
the F-subspace of V' spanned by W.
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Let q: V — F be a quadratic form on the F-space V. That is,
g(azx) = a’q(z),

for all o € F' and = € V, and the associated form h = hy: V x V. — F, given
by

h(z,y) = a(z +y) —q(x) —q(y),
is bilinear (and symmetric). For any subspace W of V, the restriction of ¢ to
W is a quadratic form on W. We call (V, q) an orthogonal space or a quadratic
space. The associated bilinear form h, will typically be abbreviated to h.

Always h(x,x) = 2¢(x). So in characteristic other than 2, the bilinear form
h determines g. That is not the case in characteristic 2 where h(z,x) is always
0: h is a symplectic form.

If K is an extension of F, then ¢ extends naturally to a quadratic form q|%
on the tensor product K @ V = V|¥. Indeed for any totally ordered set (I, <)
and basis Z = {x; | i € I} of the E-space W, any map ¢;: Z — FE and Gram
matrix { h(z;,2;) € E | i < j} extends by “linearity” to a unique quadratic
form ¢V on W.

For W CV, welet Wt = {z € V|h(z,w) =0, w € W}, an F-subspace of
V. The form q is nondegenerate if V- = 0.

(1.4). LEMMA. Let g be a quadratic form on the finite dimensional F-space
V' with associated bilinear form h.

(a) For eachx € V, let \p: V — F be given by y** = h(x,y). Then \: V —
V* given by x — A is an homomorphism of F-vector spaces. It is an
isomorphism if and only if (V,q) is nondegenerate.

(b) If (V,q) is nondegenerate then dimp U + dimp U+ = dimp V for each sub-
space U.

(c) If (V,q) is nondegenerate and U N UL = 0, then V. = U @ U+ (which we
may write as U 1L UL ).

(d) (V,q) is nondegenerate if and only if (K @p V, q|%) is nondegenerate.

PROOF. The first part is routine, given the definitions. The rest then follows
directly. O

A subset S of V is singular (or sometimes even totally singular) if the re-
striction of ¢ to S is identically 0. If U is a singular subspace, then ¢ induces a
quadratic form on the quotient space UL /U, nondegenerate if (V,q) is nonde-
generate.

A vector that is not singular is nonsingular, and a space (V,q) in which all
nonzero vectors are nonsingular is an asingular space.

Let (V,qv) and (W, qw) be quadratic spaces over F. An isometry from
(V,qv) to (W, qw) is an invertible g € Homp(V, W) with

qgw (v?) = qv(v), forallv e V.
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Thus two quadratic F-spaces are essentially the same precisely when they are
1s0metric.

One dimensional quadratic spaces Fx are easy to describe: for all y = ax €
Fx we have q(y) = da? for the constant d = g(z). (Characteristic 2 quadratic 1-
spaces are always degenerate.) The structure of 2-dimensional spaces is crucial.

(1.5). PrOPOSITION. Let (V,q) be a quadratic F-space of dimension 2.

(a) If 0 # = € V is singular with x+ =V, then (V,q) is degenerate and, for
y € V\ Fx, we have q(Bz + vy) = ey? where e = q(y) is a constant.

(b) If 0 # x € V is singular with x* # V, then (V,q) is nondegenerate and
there are exactly two 1-spaces in V' consisting of singular vectors. In this
case, we have a basis of singular vectors x and y with h(x,y) = 1, hence
q(Bx+~y) = By. Especially, for each « € F there are z € V with q(z) = a.

(¢) If all nonzero vectors of V' are nonsingular, then there is a quadratic exten-
sion K of F for which the extension q|¥ of ¢ to K®@rV = V|¥ has nonzero
singular vectors and so falls under (a) or (b).

In this case (V, q) is isometric to K (as F-space) provided with the quadratic
form qi (k) = dkR, where the bar denotes Galois conjugation in K over F
and d € F is fixed and nonzero. If K is separable over F then (V,q) is
nondegenerate; if K is inseparable over F (which forces charF = 2) then
V=Vt

PROOF. (a) This is immediate from the remarks about spaces of dimension
1.

(b) As q(z) = 0, h(z,x) = 0; so for w ¢ (z) = x+ we have h(z,w) # 0.
If necessary, replace w by a scalar multiple so that h(z,w) = 1. Consider
y = Pz + w. Then

h(z,y) = h(z,w) =1, and q(y) = q(Bzx) + q(w) + h(Bx,w) = g(w) + 3.

Therefore = —q(w) gives a second 1-space (y) of singular vectors and all other
nonzero vectors are nonsingular. Finally

q(Bx +vy) = q(Bz) + q(vy) + h(Bz,vy) =0+ 0+ By = Bv.

In particular g(az + y) = a.

(c) Choose a basis {u,v} of V with ¢(u) = d, q(v) = f, and h(u,v) = e.
Then q(Bu+~yv) = dB? + eBy+ fv2. As there are no singular vectors in V, the
polynomial dz? + ez + f is irreducible of degree 2 in F[z] but has a root « in
the quadratic extension K = F(«) of F.

When we identify V' with the F-space K via the linear isomorphism given
by u+— 1 and v = —a, so that fu + yv — 8 — ay = k, we find

qx (k) = q(fu +yv) =
dB* + efy + fv* =d(B — a)(B — ay) = d(B — av)(B — ay) = dkFk.
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The space (V|X, ¢|%) contains the singular 1-space spanned by au+v and so
comes under (a) or (b). We have V|¥ = K (au+v)®Kv with h([, ) K]au + vau + v =
0. We calculate

(1, DKo+ v—0 = g (o + v — v) — g (au+v) = g (~0)
= a%q(u) 0~ g(~v)

=do® - f
=da® — f — (do® + ea + f)
=—ea—2f.

As dz? +ez+ f is irreducible of degree 2 in F[2], necessarily d # 0 # f € F. But
a ¢ F, so the quantity —eaw — 2f is zero if and only if e = 0 and char(F) = 2.
This is in turn the case if and only if the polynomial and K are both inseparable
over F.

Thus if K is separable over F then (V|¥,q|%X) is nondegenerate as in (b),
and (V, ¢) is also nondegenerate by Lemma [(1.4)(d). If K is inseparable over F,
then V|¥ = K(au+v) L Kv with h([, ) K]ov = h(v,v) = 2q(v) = 0. Thus h|¥
and h as well are identically 0, and V = V. O

A.3 Hyperbolic orthogonal spaces

The orthogonal space (V,q) admits the hyperbolic basis H = {..., fi,gi,--. }
(1 <i < m) provided for all 4, j,l:

q(fi) = a(g;) = h(fi, fi) = h(gj,q1) =0, h(fi,g;) = i -

Especially the dimension 2m of V is even and ¢ is nondegenerate. The integer
m is the indez of the form.

A hyperbolic 2-space of course provides an example, but so does the 4-di-
mensional F-space Mato(F') of 2 x 2 matrices over F with ¢ the determinant
function There the four matrix units form a hyperbolic basis (up to sign).

If (V, q) has a hyperbolic basis, then we say that ¢ and V are split or hyper-
bolic.

(1.6). PROPOSITION. If q is a nondegenerate quadratic form on the F-space
V' of finite dimension, then the following are equivalent:
(1) V has a hyperbolic basis.
2) V is a perpendicular direct sum of hyperbolic 2-spaces.
) Every mazimal singular subspace has dimension dimp (V') /2.
) There are mazimal singular subspaces M and N with V =M ® N.
) There is a singular subspace of dimension at least dimp(V')/2.
) For any basis x of the totally singular subspace X, V has a hyperbolic
basis containing x.

(

(3
(4
(5
(6

PrOOF. (1) and (2) are clearly equivalent, and both are consequences of
(6). (5) is a consequence of all the others. If the hyperbolic basis of (1) is the
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one given above, then the spaces M = (..., f;...) and N = (..., g;,...) are
maximal singular with V.= M @ N, as in (4).

Also (6) implies (3) as every singular subspace spanned by a subset of a
hyperbolic basis is contained in such a maximal singular subspace of dimension
dimp(V)/2.

It remains to prove that (5) implies (6), which we do by induction on dim(V)
with Propositionproviding the initial step. (The case of dimension 1 being
trivial since nondegenerate 1-spaces contain no nonzero singular vectors.) If M
is a singular subspace of dimension at least dim(V)/2 and z is singular, then
2+ N M contains a hyperplane of M and singular (z, 2z N M) has dimension
at least that of M. Thus, if necessary replacing M or enlarging y, we may
assume that M N x is nonempty. Let 2 € M N. Then, for any y in (x \ {z})*
but not its hyperplane x=, the 2-space (z,y) is hyperbolic by Proposition ﬁ‘
)" contains M Nyt and x \ {z}. By induction y \ {z}
embeds in a hyperbolic basis of (z, y)J‘, and therefore y is in a hyperbolic basis
of V. |

Nondegenerate (z,y

A.4 Canonical forms

One natural example of an orthogonal form on V is one that has an orthonormal
basis; that is, the Gram matrix is the identity matrix.

In many situations, particularly over algebraically closed fields, other bases
are of interest. We next define the split forms of orthogonal and symplectic

type:
For n € {+} = {£1}, the K-space V = V,, = K* has basis {e;,e_; |
1 <i <1} and is equipped with the split (Id, n)-form b = b, given
by

bles,e—;) =1,b(e—;,e;) =n, otherwise b(eq,ep) =0.

The form is split orthogonal when 1 = +1 and split symplectic when
n=-—1.
The K-space V = V,, = K2/*! has basis { eg,e;,e—; | 1 <i <[} and
is equipped with the split orthogonal form b given by

bleo,e0) =1, b(ej,e—;) =ble—;,e;) =1, otherwise b(eq,ep) =0.

(1.7). LEMMA. Consider the (Id,n)-hermitian formb: V. xV — E on the E-
space V' of dimension 2 with charE # 2. Suppose b(x,x) =0 but x ¢ Rad(V,b).

Then V is nondegenerate, and there is a second vector y with b(y,y) = 0,
b(z,y) = 1, and V = Ex ® Ey. That is, the Gram matriz for b in the basis
. 0 1
O
{z,y} of V is ( N0 )

(1.8). THEOREM. Consider the nondegenerate symplectic formb: VxV — E
on the finite dimensional E-space V. The form is split.
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Proor. For a symplectic for b(z,x) = 0 always. Use the lemma and induc-
tion. O

(1.9). THEOREM. Consider the nondegenerate orthogonal form b: V x V. —
E on the finite dimensional E-space V' over the algebraically closed field E of
characteristic not 2.

(a) If dimg(V) > 2, then V contains nonzero vectors x with b(x,x) = 0.
(b) The form is split.

PRrROOF. The first part allows the second part to be proved by induction
using the lemma. |
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Appendix

Finite Groups Generated by
Reflections

Let E be a finite dimensional Euclidean space, and let 0 # v € E. The linear

transformation
2(z,v)
v

(v,0)

To: X > X —

is the reflection with center Ruv.
(2.1). LEMMA. Let0#v € E.
(a) r2=1.
(b) If a € E* then rqp =T1y.

(d) If g € O(E) then rd = rgq.

(e) For the subspace W < E we have W™ < W if and only if v € W or
(z, W) = u]

)
)
(c) 1, € O(E), the orthogonal group of isometries of E.
)
)

(2.2). LEMMA. Let o and 8 be independent vectors in the Euclidean space E.
Then (rq,7g) is o dihedral group in which the rotation rorg generates a normal
subgroup of index 2 and order mq g (an integer at least two or infinite) and
the nonrotation elements are all reflections of order 2. In particular, the group
(ra,rg) is finite, of order 2my g, if and only if the 1-spaces spanned by o and

B meet at the acute angle m:ﬁ. a

B.1 Coxeter graphs

We are concerned in this appendix with finite subgroups of O(E) generated by
aset {r, | v € A} of reflections (necessarily finite itself).
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The Cozeter graph of this reflection set has A as vertex set, with a and 8
connected by a bond of strength mg, 3 — 2 where (ry,7g) is dihedral of order
2mq, g, for the positive integer mq g > 2. In particular, distinct o and 8 are not
connected if and only if m, g = 2 if and only if they commute.

(2.3). THEOREM. The Cozxeter graph for an irreducible finite group generated
by the | distinct Euclidean reflections for an obtuse basis is one of the following:

A 0—0—0+0—0—0—0

BC, O—O0—0+0—0—0=0

(2.4). PROPOSITION.  Let G be the Gram matriz associated with one of the
graphs below. Then the positive vector x whose coordinate entries are under or
adjacent to the corresponding node of the graph has Gxr = 0. FEspecially, the
associated form is not positive definite.
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145
¢, 0=—0—00—0—0=0
V22 2 2 2 2 A
1 1
Dy 2)0—0 ----- o—o—o<2
1 2 2 2 2 2 1
1
2
Es
1 2 3 2 1
2
E;
1 2 3 4 3 2 1
3
Eg
2 4 6 5 4 3 2 1
F, O—O0=—0—"0—0
V2 2v2 3 2 1
Gy = I,(6) O=0—0
V32 1
O

(2.5). PROPOSITION.  Let G be the Gram matriz associated with one of the

two graphs below. Then the positive vector x whose coordinate entries are under
the corresponding node of the graph has ' Gx < 0.

Note that cos(%) = LtV5
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B.2 Some finite groups generated by reflections

We describe the three “classical” families of finite groups generated by reflec-
tions.

The center Rv of the reflection r,: z — = — %v is characterized as the

range [ry,, E] of the linear transformation r, — 1 in its action on E. Indeed,
the only linear isometry r of F with one dimensional range [r, E] = Ruv is
the reflection r,, since E = Rv L vt with r trivial on v+ (r-invariant but
not containing the range) and taking v to —v (r-invariant with r inducing a
nontrivial isometry).

B.2.1 The symmetric group and A4,

The 2-cycle permutation (1,2) acting on the permutation module @fg Re; has
corresponding matrix

0 1 0
1 0 0
T =
0 0 14
so that
-1 1 0
1 -1 0
r—1I1 =

0 0 0

with range R(e; — ez2). Similarly the 2-cycle (i,7 + 1) is a reflection with center
R(e; — ej+1). As the symmetric group Sym(l + 1) is generated by the [ distinct
2-cycles (1,2) through (I,1 + 1), it is a finite group generated by [ reflections
having Coxeter graph A;:

oO—O0—0+O—0—0—20

€1 —€ez €3 —€3 €3 €4 €l—1— € €l — €141

This representation is reducible, since in R!*! the symmetric group leaves in-
variant the 1-space R1 of constant vectors and its complement R‘** N1+ (with
respect to the standard dot product) consisting of vectors with sum 0.
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B.2.2 The +1-monomial groups and B(C;

All reflections on R! are conjugate to

-1 0 0

0 1 0
T =

0 0 I,

with center spanned by e;. The symmetric group Sym(l) (as described above)
acts on this space via permutation matrices and normalizes the diagonal sub-
group and especially its subgroup D having all diagonal entries £1. The sub-
group D ~ 2! has as Fy-basis the reflections with centers e;, these being per-
muted by Sym(l). Therefore the +1-monomial group D : Sym(l) = 2! : Sym(l)
is a finite group generated by [ reflections having the Coxeter graph BCj :

O—O0—0+O—O0——0—0

eg1—ey ey —e3 ez —eq - g1 —e €

B.2.3 The even monomial groups and D,

Similarly to the action of Sym(l + 1) on R*! discussed above, the subgroup
Sym(() of the group of type BC; is reducible on its Fo-module D—it leaves in-
variant the subgroup +1 and its “perp” F consisting of all +-1-diagonal matrices
containing an even number of —1’s. The subgroup F :Sym(l) = 2/~ : Sym(!)
is again a finite group generated by [ reflections. Its Coxeter graph is D; with
generating centers given by:

€i—-1— €

O O O .......... O O

€1 —€2 €3 —€3 €3 €4 cer €2 — €11

e—1+e
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