REVIEW OF LINEAR ALGEBRA (CHP 8)

Section Objective(s):

- Why do we need Linear Algebra?
- An Overview of Matrix Algebra.
- Eigenvalues and Eigenvectors of a Matrix.
- Diagonalizable Matrices.
- The Exponential of a Matrix.

Why Do We Need Linear Algebra?				
Because we are going to study _		of linear differential equations.		
ecall: In section 1.1 we found out that,				
Now we want to solve	of equa	tions:		
		,		
We write this	of equations as			

Remark: We need to understand what is the ______ of a matrix.

An Overview of Matrix Algebra.

Definition 8.1.2. An $m \times n$ matrix, A, is an

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}, \quad \begin{array}{c} & m \text{ rows,} \\ & n \text{ columns,} \end{array}$$

A *square matrix* is an ____

Remarks:

(a) The 3×3 matrix A below is _____

and
$$B$$
 is _______.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{bmatrix}.$$

- (b) The particular case of an _____ matrix is called an m-vector, $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ \end{bmatrix}$.
- (c) The ______ of matrices is defined for matrices of the same size, ______

(d) The matrix multiplication is defined for matrices such that the numbers of columns in the first matrix ______ the numbers of rows in the second matrix.

Example 8.2.12: Compute
$$AB$$
, where $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix}$. Solution:

Example 8.2.14: Compute AB and BA, where $A=\begin{bmatrix}4&3\\2&1\end{bmatrix}$ and $B=\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}$. Solution:

⊲

 \triangleleft

Example 8.2.15: Compute AB and BA, where $A=\begin{bmatrix}1&2\\1&2\end{bmatrix}$ and $B=\begin{bmatrix}-1&1\\1&-1\end{bmatrix}$. Solution:

 \triangleleft

Definition 8.2.8. I_n is the $n \times n$ *identity matrix* iff for every n-vector x holds

Remark: The cases n = 2, 3 are given by

Definition 8.2.9. A square matrix A is *invertible* iff there is a matrix A^{-1} so that

_____·

EXAMPLE 8.2.16: Verify that the matrix and its inverse are given by

$$A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}, \qquad A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}.$$

SOLUTION:

 \triangleleft

Theorem 8.2.10. Given a 2×2 matrix A, let Δ be the number

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \qquad \underline{\hspace{1cm}}.$$

Then, A is invertible iff $\Delta \neq 0$. Furthermore, if A is invertible, its inverse is

.

Remarks:

- (a) The number Δ is called the ______ of A.
- (b) Δ _____ whether A is invertible or not

Example 8.2.17: Compute the inverse of matrix $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$, given in Example 8.2.15.

Example 8.2.19: Find a matrix X such that AXB = I, where

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \qquad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Definition 8.2.11. The *determinant of a*
$$2 \times 2$$
 matrix $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ is

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \underline{\qquad}.$$

Definition 8.2.11. The *determinant of a*
$$3 \times 3$$
 matrix $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ is

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

Example 8.2.23: Compute the determinant of the 3×3 matrix,

$$\begin{bmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$

SOLUTION:

 \triangleleft

Exercise: Show that the determinant of upper or lower triangular matrices is the product of the diagonal coefficients.

Eigenvalues and Eigenvectors of a Matrix.

Definition 8.3.1. A number λ and a nonzero *n*-vector \boldsymbol{v} are an *eigenvalue* and *eigenvector* (eigenpair) of a square matrix A iff they satisfy the equation

Remarks:

- (a) An eigenvector \boldsymbol{v} determines a particular _____ in the space that remains ____ under the action of the matrix A.
- (b) That is, if \boldsymbol{v} is an eigenvector, so is _____.

EXAMPLE 8.3.1: Verify that the pair λ_1 , v_1 and the pair λ_2 , v_2 are eigenvalue and eigenvector pairs of matrix A given below,

$$A = egin{bmatrix} 1 & 3 \ 3 & 1 \end{bmatrix}, \qquad egin{cases} \lambda_1 = 4 & m{v_1} = egin{bmatrix} 1 \ 1 \end{bmatrix}, \ \lambda_2 = -2 & m{v_2} = egin{bmatrix} -1 \ 1 \end{bmatrix}. \end{cases}$$

Remark: How do we find the eigenvalues and eigenvectors of a square matrix?

Theorem 8.3.2. (Eigenvalues-Eigenvectors)

- (a) All the eigenvalues λ of an $n \times n$ matrix A are the solutions of
- (b) Given an eigenvalue λ of an $n \times n$ matrix A, the corresponding eigenvectors \boldsymbol{v} are the nonzero solutions to the homogeneous linear system

Remark: An eigenvalue λ is a number such that $A - \lambda I$ is ______.

Example 8.3.4: Find the eigenvalues λ and eigenvectors \boldsymbol{v} of the matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Remark: We start with a preliminar concept: diagonal matrices.

Definition 8.3.5. An $n \times n$ matrix A is $\operatorname{\textit{diagonal}}$ iff

Notation:

are

Theorem 8.3.6. If D =_____, then eigenpairs of D

,...,

Remark: Now we can introduce diagonalizable matrices.

Definition 8.3.7. An square matrix A is diagonalizable iff there exists an invertible matrix P and a diagonal matrix D such that

Remarks:

- (a) A is diagonalizable iff ______, diagonal.
- (b) e^A is _____ for A diagonalizable.

Example 8.3.10: Show that matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable, with $P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$. Find D.

SOLUTION:

 \triangleleft

Remarks:

enarks:
$$(1) \ A = PDP^{-1} \text{ with } P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \text{ and}$$

$$v^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad v^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad \lambda_1 = 4, \quad \lambda_2 = -2,$$

EXAMPLE 8.3.11: Show that $A =$	$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$, is diagonalizable.	
SOLUTION:		
		\triangleleft
Remark: Matrix P is	, since the eigenvectors are	
mother choice is		
	,	
Show that	with	

Theorem 3.8.8. (Diagonalizable Matrix) An $n \times n$ matrix A is diagonalizable iff A

The Exponential of a Matrix.

Definition 8.4.1. The exponential of a square matrix A is the infinite sum

Remark: It can be shown that the infinite sum above converges for all square matrices.

Example 8.4.1: Compute e^A , where $A = \begin{bmatrix} 2 & 0 \\ 0 & 7 \end{bmatrix}$.

Theorem 8.4.3. If $D = \text{diag}[d_1, \dots, d_n]$, then

Remark: The exponential of a _____ matrix is simple to compute.

Theorem 8.4.5. If a square matrix A is diagonalizable, with $A = PDP^{-1}$ and D diagonal, then

Remark: To compute the exponential of a diagonalizable matrix we need to compute the of that matrix.

Proof of Theorem 8.4.5:

Example 8.4.2: Compute e^{At} , where $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ and $t \in \mathbb{R}$.

SOLUTION:

Remark: Check that e^{At} above has the following property:

 \triangleleft