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Review of Linear Algebra (Chp 8)

Section Objective(s):

• Why do we need Linear Algebra?
• An Overview of Matrix Algebra.
• Eigenvalues and Eigenvectors of a Matrix.
• Diagonalizable Matrices.
• The Exponential of a Matrix.

Why Do We Need Linear Algebra?

Because we are going to study systems of linear differential equations.

Recall: In section 1.1 we found out that,

y′ = a y + b ⇒ y(t) = c eat − b

a
, c ∈ R .

Now we want to solve systems of equations:

y′1 = a11y1 + a12y2 + b1 ,

y′2 = a21y1 + a22y2 + b2 .

We write this system of equations as

y′ = Ay+ b, y(0) = y0

where

A =

⎡

⎢⎣
a11 a12

a21 a22

⎤

⎥⎦ , y =

⎡

⎢⎣
y1

y2

⎤

⎥⎦ , b =

⎡

⎢⎣
b1

b2

⎤

⎥⎦ .

We will see that the solution is

y(t) = eAtc−A−1b, c ∈ R2.

Remark: We need to understand what is the exponential of a matrix.
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An Overview of Matrix Algebra.

Definition 8.1.2. An m× n matrix, A, is an array of numbers

A =

⎡

⎢⎣
a11 · · · a1n
...

...
am1 · · · amn

⎤

⎥⎦ ,
m rows,

n columns,
,

A square matrix is an n× n matrix .

Remarks:

(a) The 3× 3 matrix A below is upper triangular ,

and B is lower triangular .

A =

⎡

⎣
1 2 3
0 4 5
0 0 6

⎤

⎦ , B =

⎡

⎣
1 0 0
2 3 0
4 5 6

⎤

⎦ .

(b) The particular case of an m× 1 matrix is called an m-vector, v =

⎡

⎢⎣
v1
...
vm

⎤

⎥⎦.

(c) The linear combination of matrices is defined for matrices

of the same size, component by component .

aA+ bB = a

[
a11 a12
a21 a22

]
+ b

[
b11 b12
b21 b22

]

=

[
(a a11 + b b11) (a a12 + b b12)
(a a21 + b b21) (a a22 + b b22)

]
.

(d) The matrix multiplication is defined for matrices such that the numbers of columns in

the first matrix matches the numbers of rows in the second matrix.

A
m× n

times B
n× ℓ

defines AB
m× ℓ

AB =

[
a11 a12
a21 a22

] [
b11 b12
b21 b22

]

=

[
(a11b11 + a12b21) (a11b12 + a12b22)
(a21b11 + a22b21) (a21b12 + a22b22)

]
.
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Example 8.2.12: Compute AB, where A =

[
2 −1

−1 2

]
and B =

[
3 0
2 −1

]
.

Solution: ⎡

⎢⎣
2 −1

−1 2

⎤

⎥⎦

⎡

⎢⎣
3 0

2 −1

⎤

⎥⎦ =

⎡

⎢⎣
4 1

1 −2

⎤

⎥⎦ ,

⊳

Example 8.2.14: Compute AB and BA, where A =

[
4 3
2 1

]
and B =

[
1 2 3
4 5 6

]
.

Solution: The product AB is

AB =

[
4 3
2 1

] [
1 2 3
4 5 6

]
⇒ AB =

[
16 23 30
6 9 12

]
.

The product BA is not possible.

⊳
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Example 8.2.15: Compute AB and BA, where A =

[
1 2
1 2

]
and B =

[
−1 1
1 −1

]
.

Solution: We find that

AB =

⎡

⎢⎣
1 2

1 2

⎤

⎥⎦

⎡

⎢⎣
−1 1

1 −1

⎤

⎥⎦ =

⎡

⎢⎣
1 −1

1 −1

⎤

⎥⎦ ,

BA =

⎡

⎢⎣
−1 1

1 −1

⎤

⎥⎦

⎡

⎢⎣
1 2

1 2

⎤

⎥⎦ =

⎡

⎢⎣
0 0

0 0

⎤

⎥⎦ .

Notice that in this case AB ∕= BA.

Notice that BA = 0 but A ∕= 0 and B ∕= 0.

⊳

Definition 8.2.8. In is the n× n identity matrix iff for every n-vector x holds

Inx = x .

Remark: The cases n = 2, 3 are given by

I2 =

[
1 0
0 1

]
, I3 =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .
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Definition 8.2.9. A square matrix A is invertible iff there is a matrix A−1 so that

(
A−1

)
A = In A

(
A−1

)
= In .

Example 8.2.16: Verify that the matrix and its inverse are given by

A =

[
2 2
1 3

]
, A−1 =

1

4

[
3 −2

−1 2

]
.

Solution: We have to compute the products,

A
(
A−1

)
=

⎡

⎢⎣
2 2

1 3

⎤

⎥⎦
1

4

⎡

⎢⎣
3 −2

−1 2

⎤

⎥⎦ =
1

4

⎡

⎢⎣
4 0

0 4

⎤

⎥⎦ ⇒ A
(
A−1

)
= I2.

It is simple to check that the equation
(
A−1

)
A = I2 also holds.

⊳

Theorem 8.2.10. Given a 2× 2 matrix A, let ∆ be the number

A =

[
a b
c d

]
, ∆ = ad− bc .

Then, A is invertible iff ∆ ∕= 0. Furthermore, if A is invertible, its inverse is

A−1 =
1

∆

[
d −b

−c a

]
.

Remarks:

(a) The number ∆ is called the determinant of A.

(b) ∆ determines whether A is invertible or not

Example 8.2.17: Compute the inverse of matrix A =

[
2 2
1 3

]
, given in Example 8.2.15.

Solution: We first compute ∆ = 6− 4 = 4. Since ∆ ∕= 0, then A−1 exists and

A−1 =
1

4

⎡

⎢⎣
3 −2

−1 2

⎤

⎥⎦ .

⊳
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Example 8.2.19: Find a matrix X such that AXB = I, where

A =

[
1 3
2 1

]
, B =

[
2 1
1 2

]
, I =

[
1 0
0 1

]
.

Solution:

Is A invertible? det(A) =

∣∣∣∣∣∣∣

1 3

2 1

∣∣∣∣∣∣∣
= 1− 6 = −5 ∕= 0, so Yes.

Is B invertible? det(B) =

∣∣∣∣∣∣∣

2 1

1 2

∣∣∣∣∣∣∣
= 4− 1 = 3 ∕= 0, so Yes.

We then compute their inverses,

A−1 =
1

−5

⎡

⎢⎣
1 −3

−2 1

⎤

⎥⎦ , B =
1

3

⎡

⎢⎣
2 −1

−1 2

⎤

⎥⎦ .

We can now compute X,

AXB = I ⇒ A−1(AXB)B−1 = A−1IB−1 ⇒ X = A−1B−1.

Therefore,

X =
1

−5

⎡

⎢⎣
1 −3

−2 1

⎤

⎥⎦
1

3

⎡

⎢⎣
2 −1

−1 2

⎤

⎥⎦ = − 1

15

⎡

⎢⎣
5 −7

−5 4

⎤

⎥⎦

so we obtain

X =

⎡

⎢⎣
−1

3

7

15
1

3
− 4

15

⎤

⎥⎦ .

⊳
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Definition 8.2.11. The determinant of a 2× 2 matrix A =

[
a11 a12
a21 a22

]
is

det(A) =

∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21 .

Definition 8.2.11. The determinant of a 3× 3 matrix A =

⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦ is

det(A) =

∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= a11

∣∣∣∣
a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣
a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣
a21 a22
a31 a32

∣∣∣∣ .

Example 8.2.23: Compute the determinant of the 3× 3 matrix,
⎡

⎣
1 3 −1
2 1 1
3 2 1

⎤

⎦

Solution:

∣∣∣∣∣∣∣∣∣∣

1 3 −1

2 1 1

3 2 1

∣∣∣∣∣∣∣∣∣∣

= (1)

∣∣∣∣∣∣∣

1 1

2 1

∣∣∣∣∣∣∣
− 3

∣∣∣∣∣∣∣

2 1

3 1

∣∣∣∣∣∣∣
+ (−1)

∣∣∣∣∣∣∣

2 1

3 2

∣∣∣∣∣∣∣

= (1− 2)− 3 (2− 3)− (4− 3)

= −1 + 3− 1

= 1.

⊳

Exercise: Show that the determinant of upper or lower triangular matrices is the product
of the diagonal coefficients.
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Eigenvalues and Eigenvectors of a Matrix.

Definition 8.3.1. A number λ and a nonzero n-vector v are an eigenvalue and
eigenvector (eigenpair) of a square matrix A iff they satisfy the equation

Av = λv .

Remarks:

(a) An eigenvector v determines a particular direction in the space that

remains invariant under the action of the matrix A.

(b) That is, if v is an eigenvector, so is av for a ∈ R .

A(av) = aAv = aλv = λ(av) .

Example 8.3.1: Verify that the pair λ1, v1 and the pair λ2, v2 are eigenvalue and eigen-
vector pairs of matrix A given below,

A =

[
1 3
3 1

]
,

⎧
⎪⎪⎨

⎪⎪⎩

λ1 = 4 v1 =

[
1
1

]
,

λ2 = −2 v2 =

[
−1
1

]
.

Solution: We just must verify the definition of eigenvalue and eigenvector given above.

We start with the first pair,

Av1 =

⎡

⎢⎣
1 3

3 1

⎤

⎥⎦

⎡

⎢⎣
1

1

⎤

⎥⎦ =

⎡

⎢⎣
4

4

⎤

⎥⎦ = 4

⎡

⎢⎣
1

1

⎤

⎥⎦ = λ1v1 ⇒ Av1 = λ1v1.

A similar calculation for the second pair implies,

Av2 =

⎡

⎢⎣
1 3

3 1

⎤

⎥⎦

⎡

⎢⎣
−1

1

⎤

⎥⎦ =

⎡

⎢⎣
2

−2

⎤

⎥⎦ = −2

⎡

⎢⎣
−1

1

⎤

⎥⎦ = λ2v2 ⇒ Av2 = λ2v2.

⊳
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Remark: How do we find the eigenvalues and eigenvectors of a square matrix?

Theorem 8.3.2. (Eigenvalues-Eigenvectors)

(a) All the eigenvalues λ of an n× n matrix A are the solutions of

det(A− λI) = 0 .

(b) Given an eigenvalue λ of an n× n matrix A, the corresponding eigenvectors v are
the nonzero solutions to the homogeneous linear system

(A− λI)v = 0 .

Remark: An eigenvalue λ is a number such that A− λI is not invertible .

Example 8.3.4: Find the eigenvalues λ and eigenvectors v of the matrix A =

[
1 3
3 1

]
.

Solution: We first find the eigenvalues as the solutions of the Eq. (??). Compute

A− λI =

⎡

⎢⎣
1 3

3 1

⎤

⎥⎦− λ

⎡

⎢⎣
1 0

0 1

⎤

⎥⎦ =

⎡

⎢⎣
1 3

3 1

⎤

⎥⎦−

⎡

⎢⎣
λ 0

0 λ

⎤

⎥⎦ =

⎡

⎢⎣
(1− λ) 3

3 (1− λ)

⎤

⎥⎦ .

Then we compute its determinant,

0 = det(A− λI) =

∣∣∣∣∣∣∣

(1− λ) 3

3 (1− λ)

∣∣∣∣∣∣∣
= (λ− 1)2 − 9 ⇒

⎧
⎪⎨

⎪⎩

λ+ = 4,

λ- = −2.

We have obtained two eigenvalues, so now we introduce λ+ = 4 into Eq. (??), that is,

A− 4I =

⎡

⎢⎣
1− 4 3

3 1− 4

⎤

⎥⎦ =

⎡

⎢⎣
−3 3

3 −3

⎤

⎥⎦ .

Then we solve for v+ the equation

(A− 4I)v+ = 0 ⇔

⎡

⎢⎣
−3 3

3 −3

⎤

⎥⎦

⎡

⎢⎣
v+1

v+2

⎤

⎥⎦ =

⎡

⎢⎣
0

0

⎤

⎥⎦ .

The solution can be found using Gauss elimination operations, as follows,

⎡

⎢⎣
−3 3

3 −3

⎤

⎥⎦ →

⎡

⎢⎣
1 −1

3 −3

⎤

⎥⎦ →

⎡

⎢⎣
1 −1

0 0

⎤

⎥⎦ ⇒

⎧
⎪⎨

⎪⎩

v+1 = v+2 ,

v+2 free.
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Al solutions to the equation above are then given by

v+ =

⎡

⎢⎣
v+2

v+2

⎤

⎥⎦ =

⎡

⎢⎣
1

1

⎤

⎥⎦ v+2 ⇒ v+ =

⎡

⎢⎣
1

1

⎤

⎥⎦ ,

where we have chosen v+2 = 1. A similar calculation provides the eigenvector v- associated

with the eigenvalue λ- = −2, that is, first compute the matrix

A+ 2I =

⎡

⎢⎣
3 3

3 3

⎤

⎥⎦

then we solve for v- the equation

(A+ 2I)v- = 0 ⇔

⎡

⎢⎣
3 3

3 3

⎤

⎥⎦

⎡

⎢⎣
v-1

v-2

⎤

⎥⎦ =

⎡

⎢⎣
0

0

⎤

⎥⎦ .

The solution can be found using Gauss elimination operations, as follows,

⎡

⎢⎣
3 3

3 3

⎤

⎥⎦ →

⎡

⎢⎣
1 1

3 3

⎤

⎥⎦ →

⎡

⎢⎣
1 1

0 0

⎤

⎥⎦ ⇒

⎧
⎪⎨

⎪⎩

v-1 = −v-2 ,

v-2 free.

All solutions to the equation above are then given by

v- =

⎡

⎢⎣
−v-2

v-2

⎤

⎥⎦ =

⎡

⎢⎣
−1

1

⎤

⎥⎦ v-2 ⇒ v- =

⎡

⎢⎣
−1

1

⎤

⎥⎦ ,

where we have chosen v-2 = 1. We therefore conclude that the eigenvalues and eigenvectors

of the matrix A above are given by

λ+ = 4, v+ =

⎡

⎢⎣
1

1

⎤

⎥⎦ , λ- = −2, v- =

⎡

⎢⎣
−1

1

⎤

⎥⎦ .

⊳
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Diagonalizable Matrices.

Remark: We start with a preliminar concept: diagonal matrices.

Definition 8.3.5. An n× n matrix A is diagonal iff

A =

⎡

⎢⎣
a11 · · · 0
...

. . .
...

0 · · · ann

⎤

⎥⎦ .

Notation:

⎡

⎢⎣
a11 · · · 0
...

. . .
...

0 · · · ann

⎤

⎥⎦ = diag
[
a11, · · · , ann

]
.

Theorem 8.3.6. If D = diag[d11, · · · , dnn] , then eigenpairs of D

are

λ1 = d11, v
(1) =

⎡

⎢⎢⎢⎣

1
0
...
0

⎤

⎥⎥⎥⎦
, · · · ,λn = dnn, v

(n) =

⎡

⎢⎢⎢⎣

0
...
0
1

⎤

⎥⎥⎥⎦
.

Remark: Now we can introduce diagonalizable matrices.

Definition 8.3.7. An square matrix A is diagonalizable iff there exists an invertible
matrix P and a diagonal matrix D such that

A = PDP−1 .

Remarks:

(a) A is diagonalizable iff P−1AP = D , diagonal.

(b) eA is simple to compute for A diagonalizable.



12

Example 8.3.10: Show that matrix A =

[
1 3
3 1

]
is diagonalizable, with P =

[
1 −1
1 1

]
.

Find D.

Solution: That matrix P is invertible, since det(P ) = 1 − (−1) = 2. Then its inverse is

P−1 =
1

2

⎡

⎢⎣
1 1

−1 1

⎤

⎥⎦. Now, from A = PDP−1 we get the formula for D, D = P−1AP . So

we compute D.

P−1AP =
1

2

⎡

⎢⎣
1 1

−1 1

⎤

⎥⎦

⎡

⎢⎣
1 3

3 1

⎤

⎥⎦

⎡

⎢⎣
1 −1

1 1

⎤

⎥⎦

=
1

2

⎡

⎢⎣
1 1

−1 1

⎤

⎥⎦

⎡

⎢⎣
4 2

4 −2

⎤

⎥⎦

=

⎡

⎢⎣
1 1

−1 1

⎤

⎥⎦

⎡

⎢⎣
2 1

2 −1

⎤

⎥⎦

=

⎡

⎢⎣
4 0

0 −2

⎤

⎥⎦

= D.

So we conclude that A is diagonalizable and D =

⎡

⎢⎣
4 0

0 −2

⎤

⎥⎦ .

⊳

Remarks:

(1) A = PDP−1 with P =

[
1 −1
1 1

]
and D =

[
4 0
0 −2

]
.

(2) Notice that P = [v(1), v(2)] andD = diag[λ1,λ2] , where

v(1) =

[
1
1

]
, v(2) =

[
−1
1

]
, λ1 = 4, λ2 = −2,

eigenvectors and eigenvalues of A .
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Theorem 3.8.8. (Diagonalizable Matrix) An n × n matrix A is diagonalizable iff A
has n eigenvectors linearly independent. If λi, vi, for i = 1, · · · , n, are eigenpairs of A,
then A = PDP−1, where

P = [v1, · · · , vn] , D = diag
[
λ1, · · · ,λn

]
.

Example 8.3.11: Show that A =

[
1 3
3 1

]
, is diagonalizable.

Solution: We know that the eigenvalue-eigenvector pairs are

λ1 = 4, v1 =

⎡

⎢⎣
1

1

⎤

⎥⎦ and λ2 = −2, v2 =

⎡

⎢⎣
−1

1

⎤

⎥⎦ .

Introduce matrix P ,

P = [v1, · · · , vn] =

⎡

⎢⎣
1 −1

1 1

⎤

⎥⎦ ⇒ P−1 =
1

2

⎡

⎢⎣
1 1

−1 1

⎤

⎥⎦ .

And now we introduce matrix D,

D = diag

[
λ1, · · · ,λn

]
=

⎡

⎢⎣
4 0

0 −2

⎤

⎥⎦ .

In the previous example we showed that A = PDP−1.

⊳
Remark: Matrix P is not unique , since the eigenvectors are not unique .
Another choice is

λ1 = 4, ṽ(1) =

[
2
2

]
, λ2 = −2, ṽ(2) =

[
−3
3

]
,

Show that A = P̃ D̃P̃−1 with

P̃ =

[
−3 2
3 2

]
D̃ =

[
−2 0
0 4

]
.
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The Exponential of a Matrix.

Definition 8.4.1. The exponential of a square matrix A is the infinite sum

eA =

∞∑

n=0

An

n!
.

Remark: It can be shown that the infinite sum above converges for all square matrices.

Example 8.4.1: Compute eA, where A =

[
2 0
0 7

]
.

Solution: We start with the definition of the exponential

eA =

∞∑

n=0

An

n!
=

∞∑

n=0

1

n!

⎡

⎢⎣
2 0

0 7

⎤

⎥⎦

n

.

But, ⎡

⎢⎣
2 0

0 7

⎤

⎥⎦

2

=

⎡

⎢⎣
2 0

0 7

⎤

⎥⎦

⎡

⎢⎣
2 0

0 7

⎤

⎥⎦ =

⎡

⎢⎣
22 0

0 72

⎤

⎥⎦ .

It is simple to see that, since the matrix A is diagonal,

⎡

⎢⎣
2 0

0 7

⎤

⎥⎦

n

=

⎡

⎢⎣
2n 0

0 7n

⎤

⎥⎦ .

Therefore,

eA =

∞∑

n=0

1

n!

⎡

⎢⎣
2n 0

0 7n

⎤

⎥⎦ =

∞∑

n=0

⎡

⎢⎣
2n

n! 0

0 7n

n!

⎤

⎥⎦ =

⎡

⎢⎣
∑∞

n=0
2n

n! 0

0
∑∞

n=0
7n

n!

⎤

⎥⎦ .

Since

∞∑

n=0

an

n!
= ea, for a = 2, 7, we obtain that

e

⎡

⎣2 0

0 7

⎤

⎦

=

⎡

⎢⎣
e2 0

0 e7

⎤

⎥⎦ .

⊳
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Theorem 8.4.3. If D = diag
!
d1, · · · , dn

"
, then

e
diag

!
d1, · · · , dn

"

= diag
!
ed1 , · · · , edn

"
.

Remark: The exponential of a diagonalizable matrix is simple to compute.

Theorem 8.4.5. If a square matrix A is diagonalizable, with A = PDP−1 and D
diagonal, then

eA = PeDP−1 .

Remark: To compute the exponential of a diagonalizable matrix we need to compute the
eigenpairs of that matrix.

Proof of Theorem 8.4.5: Notice that

A2 = AA = (PDP−1)(PDP−1) = PD2P−1.

In the same way, we get

An = PDnP−1.

We then compute the exponential of A as follows,

eA =

∞#

k=0

1

k!
An =

∞#

k=0

1

k!
(PDP−1)n =

∞#

k=0

1

k!
(PDnP−1),

On the far right we can take common factor P on the left and P−1 on the right,

eA = P
$ ∞#

k=0

1

k!
Dn

%
P−1.

The sum in between parenthesis is eD,

eA = PeDP−1.

This establishes the Theorem.

□
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Example 8.4.2: Compute eAt, where A =

[
1 3
3 1

]
and t ∈ R.

Solution: To compute eAt we need the decomposition A = PDP−1, which in turns im-

plies that At = P (Dt)P−1. Matrices P and D are constructed with the eigenvectors and

eigenvalues of matrix A. We computed them in the previous examples.

λ1 = 4, v1 =

⎡

⎢⎣
1

1

⎤

⎥⎦ and λ2 = −2, v2 =

⎡

⎢⎣
−1

1

⎤

⎥⎦ .

Introduce P and D as follows,

P =

⎡

⎢⎣
1 −1

1 1

⎤

⎥⎦ ⇒ P−1 =
1

2

⎡

⎢⎣
1 1

−1 1

⎤

⎥⎦ , D =

⎡

⎢⎣
4 0

0 −2

⎤

⎥⎦ .

Then, the exponential function is given by

eAt = PeDtP−1 =

⎡

⎢⎣
1 −1

1 1

⎤

⎥⎦

⎡

⎢⎣
e4t 0

0 e−2t

⎤

⎥⎦
1

2

⎡

⎢⎣
1 1

−1 1

⎤

⎥⎦ .

Usually one leaves the function in this form. If we multiply the three matrices out we get

eAt =
1

2

⎡

⎢⎣
(e4t + e−2t) (e4t − e−2t)

(e4t − e−2t) (e4t + e−2t)

⎤

⎥⎦ .

⊳
Remark: Check that eAt above has the following property:

d

dt
eAt = AeAt = eAt A .


