7.2. Overview of Fourier series

Section Objective(s):

- Fourier Expansion of Vectors.
- Fourier Expansion of Functions.
- Odd or Even Functions.
- Sine and Cosine Series.

7.2.1. Fourier Expansion of Vectors.

Remark: We review basic concepts about vectors in \mathbb{R}^3 .

- (a) The _____ product of two vectors.
- (b) _____ set of vectors.
- (c) Fourier _____ (or orthonormal expansion) of vectors.
- (d) Vector _____.

Definition 7.2.1. The ______ of two vectors $oldsymbol{u}, \ oldsymbol{v} \in \mathbb{R}^3$ is

with |u|, |v| the magnitude of the vectors, and $\theta \in [0, \pi]$ the angle in between them.

Remarks:

 \bullet A vector u is a unit vector iff

$$\boldsymbol{u} \cdot \boldsymbol{u} = 1.$$

 \bullet The magnitude of a vector \boldsymbol{u} can be written as

$$|u| = \sqrt{u \cdot u}$$
.

Remark: The dot product above satisfies the following properties.

Theorem 7.2.2. For every $u, v, w \in \mathbb{R}^3$ and every $a, b \in \mathbb{R}$ holds,

- (a) $\mathbf{u} \cdot \mathbf{u} = 0$ iff $\mathbf{u} = 0$; and $\mathbf{u} \cdot \mathbf{u} > 0$ for $\mathbf{u} \neq 0$.
- (b) $\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v} \cdot \boldsymbol{u}$.
- (c) $(a\mathbf{u} + b\mathbf{v}) \cdot \mathbf{w} = a(\mathbf{u} \cdot \mathbf{w}) + b(\mathbf{v} \cdot \mathbf{w}).$

Theorem 7.2.3. The vectors \mathbf{u} , \mathbf{v} are iff $\mathbf{u} \cdot \mathbf{v} = 0$.

Example 7.2.1: The set $\{i, j, k\}$ is an _____ of \mathbb{R}^3 .

 $Orthonormal\ means:$

 \bullet Orthogonality.

• Normality.

 \triangleleft

Theorem 7.2.4. (Fourier Expansion) The orthonormal set $\{i, j, k\}$ is an orthonormal _____, that is, every $v \in \mathbb{R}^3$ can be _____ as

The orthonormality of the vector set implies a formula for the vector components

Remark: The decomposition above allow us to introduce vector approximations.

Vector Approximations:

7.2.2. Fourier Expansion of Functions.

Remark: The ideas described above for vectors in \mathbb{R}^3 can be extended to functions.

Definition 7.2.5. The ______ of two functions f, g on [-L, L] is _____

Theorem 7.2.6. For every functions f, g, h and every $a, b \in \mathbb{R}$ holds,

- (a) $f \cdot f = 0$ iff f = 0; and $f \cdot f > 0$ for $f \neq 0$.
- (b) $f \cdot g = g \cdot f$.
- (c) $(a f + b g) \cdot h = a (f \cdot h) + b (g \cdot h)$.

Remarks:

ullet The _____ of a function f is

ullet A function f is a unit function iff ______.

Definition 7.2.7. Two functions f, g are ______ iff _____

Theorem 7.2.8. An ______ in the space of continuous functions on [-L, L] is

Remark: Orthogonality: Remark: Normality:

Example 7.2.2: For $n \ge 1$ holds

Remark: The orthogonality of the set above is a consequence of the following:

Theorem 7.2.9. (Orthogonality) The following relations hold for all $n, m \in \mathbb{N}$,

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = \begin{cases} - & n \neq m, \\ - & n = m \neq 0, \\ - & n = m = 0, \end{cases}$$

$$\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = \begin{cases} - & n \neq m, \\ - & n = m, \end{cases}$$

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = - .$$

Proof:

emark: Often in the l	iterature is used the following	set:
		. (7.2
Theorem 7.2.10. (Fe	ourier Expansion) The orthogonal se	rt
		·
is an orthogonal	of the space of	functions on $[-L, L]$
that is, any continuou	as function on $[-L, L]$ can be	as
Moreover, the coefficient	ents above are given by the formulas	
		,
		,
Furthermore, if f is _		, then the function
satisfies	for all x where f is _	, while
	for all x where f is it holds	, whil
	for all x where f is it holds	, whil

6

Example 7.2.3: Find the Fourier expansion of
$$f(x) = \begin{cases} \frac{x}{3}, & \text{for } x \in [0,3] \\ 0, & \text{for } x \in [-3,0). \end{cases}$$

Solution:

7.2.3. Odd or Even Functions.

Definition 7.2.11. A function f on [-L, L] is:

- $\bullet \ \underline{\hspace{1cm}} \text{ for all } x \in [-L, L];$
- _____ iff _____ for all $x \in [-L, L]$.

Example 7.2.4: The function $y = x^2$ is _____, while the function $y = x^3$ is _____.

Theorem 7.2.12. If f_e , g_e are even and h_o , ℓ_o are odd functions, then:

- (1) $a f_e + b g_e$ is _____ for all $a, b \in \mathbb{R}$.
- (2) $a h_o + b \ell_o$ is _____ for all $a, b \in \mathbb{R}$.
- (3) $f_e g_e$ is ______.
- (4) $h_o \, \ell_o$ is _____.
- (5) $f_e h_o$ is .
- (6) $\int_{-L}^{L} f_e \, dx =$ ______.
- (7) $\int_{-L}^{L} h_o \, dx =$ ______.

Remark:

7.2.4. Sine and Cosine Series.

Theorem 7.2.13. Let f be a function on $[-L, L]$ with a Fourier expansion		
(a) If f is, then	The series	
is called a		
(b) If f is, then	The series	
is called a		

Proof:

Example 7.2.5: Find the Fourier expansion of $f(x) = \begin{cases} 1, & \text{for } x \in [0,3] \\ -1, & \text{for } x \in [-3,0). \end{cases}$ Solution: 10

Example 7.2.6: Find the Fourier series expansion of the function

$$f(x) = \begin{cases} x & x \in [0,1], \\ -x & x \in [-1,0). \end{cases}$$

SOLUTION:

Example 7.2.7: Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1 - x & x \in [0, 1] \\ 1 + x & x \in [-1, 0). \end{cases}$$

SOLUTION: