7.1. Eigenfunction Problems

Section Objective(s):

- Two-Point Boundary Value Problems.
- Comparing IVP vs BVP.
- Eigenfunction Problems.

7.1.1. Two-Point Boundary Value Problems.

Definition. A two-point boundary value problem (BVP) is the following: Find solutions to the differential equation

$$y'' + a_1(x) y' + a_0(x) y = b(x)$$

satisfying the boundary conditions (BC)

where b_1 , b_2 , \tilde{b}_1 , \tilde{b}_2 , y_1 , y_2 , x_1 , x_2 are given and $x_1 \neq x_2$.

Remarks:

(a) The two boundary conditions are held at different points,

(b) Both may appear in the boundary condition.

EXAMPLE: We now show four examples of boundary value problems that differ only on the boundary conditions: Solve the different equation

$$y'' + a_1 y' + a_0 y = e^{-2t}$$

with the boundary conditions at $x_1 = 0$ and $x_2 = 1$ given below.

(a)

Boundary Condition:
$$\begin{cases} y(0) = y_1, \\ y(1) = y_2, \end{cases}$$
 which is the case
$$\begin{cases} b_1 = \underline{\hspace{0.5cm}}, b_2 = \underline{\hspace{0.5cm}}, \\ \tilde{b}_1 = \underline{\hspace{0.5cm}}, \tilde{b}_2 = \underline{\hspace{0.5cm}}. \end{cases}$$

(b)

Boundary Condition:
$$\begin{cases} y(0) = y_1, \\ y'(1) = y_2, \end{cases}$$
 which is the case
$$\begin{cases} b_1 = \underline{\ }, & b_2 = \underline{\ }, \\ \tilde{b}_1 = \underline{\ }, & \tilde{b}_2 = \underline{\ }. \end{cases}$$

(c)

Boundary Condition:
$$\begin{cases} y'(0) = y_1, \\ y(1) = y_2, \end{cases}$$
 which is the case
$$\begin{cases} b_1 = \underline{\ }, & b_2 = \underline{\ }, \\ \tilde{b}_1 = \underline{\ }, & \tilde{b}_2 = \underline{\ }. \end{cases}$$

(d)

Boundary Condition:
$$\begin{cases} y'(0) = y_1, \\ y'(1) = y_2, \end{cases}$$
 which is the case
$$\begin{cases} b_1 = \underline{\quad}, & b_2 = \underline{\quad}, \\ \tilde{b}_1 = \underline{\quad}, & \tilde{b}_2 = \underline{\quad}. \end{cases}$$

7.1.2. Comparing IVP vs BVP.

Definition 7.1.1. (IVP) Find a solution of $y'' + a_1 y' + a_0 y = 0$ satisfying the initial condition (IC)

Remarks:

- The variable t represents _____.
- \bullet The variable y represents .
- The IC are _____ and ____ at the initial time.

Definition 7.1.2. (BVP) Find a solution y of $y'' + a_1 y' + a_0 y = 0$ satisfying the boundary condition (BC)

Remarks:

- \bullet The variable x represents _____.
- ullet The variable y may represent _____.
- The BC are _____ at two different _____.

Theorem. The equation $y'' + a_1 y' + a_0 y = 0$ with IC $y(t_0) = y_0$ and $y'(t_0) = y_1$ has a ______ for each choice of the IC.

Theorem 7.1.3. (BVP) The equation $y'' + a_1 y' + a_0 y = 0$ with BC $y(0) = y_0$ and $y(L) = y_1$, with $L \neq 0$ and with r_{\pm} roots of $p(r) = r^2 + a_1 r + a_0$ satisfy the following:

- (A) If $r_{+} \neq r_{-}$, reals, then the BVP above has a
- (B) If r_{\pm} are complex, then the solution of the BVP above belongs to only one of the following three possibilities:
 - (i) There exists ____
 - (ii) There exists ______.
 - (iii) There exists ______.

Proof of Theorem 7.1.3:

4

Example: Find all solutions to the BVPs
$$y'' + y = 0$$
 with the BCs:
 (a)
$$\begin{cases} y(0) = 1, \\ y(\pi) = 0. \end{cases}$$
 (b)
$$\begin{cases} y(0) = 1, \\ y(\pi/2) = 1. \end{cases}$$
 (c)
$$\begin{cases} y(0) = 1, \\ y(\pi) = -1. \end{cases}$$

7.1.3. Eigenfunction Problems.

Remark: Let us recall the *eigenvector* problem of a square matrix: Given a square matrix A, find a number λ and a nonzero vector v solution of

Remarks:

- Notice that _____ is always _____ of the BVP above.
- Eigenfunctions are the ______ of the BVP above.
- The eigenfunction problem is a BVP with solutions.
- So, we look for ___ such that the operator ____ has characteristic polynomial with ____.
- So, ___ is such that _____ has ____ solutions.
- We focus on the linear operator ______.

EXAMPLE: Find all numbers λ and nonzero functions y solutions of the BVP $y'' + \lambda y = 0$, with y(0) = 0, y(L) = 0, L > 0.

Example: Find the numbers λ and the nonzero functions y solutions of the BVP $y''+\lambda y=0, \qquad y(0)=0, \qquad y'(L)=0, \qquad L>0.$

Example: Find the numbers λ and the nonzero functions y solutions of the BVP $x^2\,y''-x\,y'=-\lambda\,y, \qquad y(1)=0, \quad y(\ell)=0, \quad \ell>1.$