5.3. 2×2 Constant coefficients systems

Section Objective(s):

- Diagonalizable systems.
 - Real Distinct Eigenvalues.
 - Complex Eigenvalues.
- Non-Diagonalizable systems.

5.3.1. Diagonalizable Systems.

Remark: We review the solutions of 2×2 diagonalizable systems.

Theorem 5.3.1. (Diagonalizable Systems) If the 2×2 constant matrix A is diagonalizable with eigenpairs λ_{\pm} , $v^{(\pm)}$, then the general solution of x' = A x is

Remark: We have three cases: (i) The eigenvalues λ_+ , λ_- are _____ (a) ______, (b) _______, (ii) The eigenvalues $\lambda_{\pm} = \alpha \pm \beta i$;

(iii) The eigenvalues $\lambda_+ = \lambda_- = \lambda_0$ ______.

Remark: The case (i) was studied in the previous section.

Example 5.3.1: Find the general solution of the 2×2 linear system

$$x' = A x, \qquad A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}.$$

SOLUTION:

<1

Remark: We now focus on case (ii).

- A real matrix can have complex eigenvalues.
- But in this case, the eigenvalues—and the eigenvectors—come in pairs, $\lambda_{+} = \overline{\lambda}_{-}$.

Theorem 5.3.2. (Conjugate Pairs) If A is a square matrix with real coefficients and λ , v is an eigenpair, then so is their complex conjugate $\overline{\lambda}$, \overline{v} .

Example: If a 2×2 matrix A has eigenpairs

$$\lambda = 7 + 2i, \quad \mathbf{v} = \begin{bmatrix} 2 + 3i \\ 5 - i \end{bmatrix},$$

then A also has the eigenpairs

 \triangleleft

Proof of Theorem 5.3.2:

Theorem 5.3.3. (Complex and Real Solutions) If a 2×2 matrix A has eigen	pairs
$\lambda_{\pm} = \alpha \pm i eta, \qquad oldsymbol{v}^{(\pm)} = oldsymbol{a} \pm i oldsymbol{b},$	
where α , β , \boldsymbol{a} , and \boldsymbol{b} real, then the equation $\boldsymbol{x}' = A\boldsymbol{x}$ has fundamental solution	ns
but it also has <i>real-valued</i> fundamental solutions	
but it also has rear-variated fundamental solutions	
	,

Proof of Theorem 5.3.3:

Example 5.3.2: Find real-valued fundamental solutions to the differential equation

$$x' = Ax, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

SOLUTION:

Remark: The case (iii), 2×2 diagonalizable matrices with a repeated eigenvalue.

Theorem 5.3.4. Every 2×2 diagonalizable matrix with repeated eigenvalue λ_0 has the form

Proof of Theorem 5.3.4:

Remark: : The differential equation
$$x' = \lambda_0 I x$$
 is already **decoupled**.
$$x'_1 = \lambda_0 x_1 \\ x'_2 = \lambda_0 x_2$$
 \Rightarrow too simple.

7

5.3.2. Non-Diagonalizable Systems.

Remark: In this case is not so easy to find two fundamental solutions.

EXAMPLE: Find fundamental solutions to the system

$$\mathbf{x'} = A \mathbf{x}, \qquad A = \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$$

SOLUTION:

with only one associated ei	ed Eigenvalue) If a 2×2 matrix A has a repeated eigenvalue λ gen-direction given by the eigenvector v , then the differential a linearly independent set of solutions	
where the vector	is one solutions of the algebraic linear system	

Remark: For the proof see the Lecture Notes.

Example Similar to 5.3.3: Find the fundamental solutions of the differential equation

$$x' = Ax$$
, $A = \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

SOLUTION: