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5.3. 2× 2 Constant coefficients systems

Section Objective(s):

• Diagonalizable systems.
– Real Distinct Eigenvalues.
– Complex Eigenvalues.

• Non-Diagonalizable systems.

5.3.1. Diagonalizable Systems.

Remark: We review the solutions of 2× 2 diagonalizable systems.

Theorem 5.3.1. (Diagonalizable Systems) If the 2× 2 constant matrix A is diagonal-
izable with eigenpairs λ±, v

(±), then the general solution of x′ = Ax is

xgen(t) = c+ e
λ+t v(+) + c- e

λ-t v(-) .

Remark: We have three cases:

(i) The eigenvalues λ+, λ- are real and distinct .

(a) 0 < λ- < λ+ ,

(b) λ- < 0 < λ+ ,

(c) λ- < λ+ < 0 .

(ii) The eigenvalues λ± = α±βi are distinct and complex ;

(iii) The eigenvalues λ+ = λ- = λ0 is repeated and real .
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Remark: The case (i) was studied in the previous section.

Example 5.3.1: Find the general solution of the 2× 2 linear system

x′ = Ax, A =

[
1 3
3 1

]
.

Solution: We have computed in a previous example the eigenpairs of the coefficient matrix,

λ+ = 4, v+ =

⎡

⎢⎣
1

1

⎤

⎥⎦ , and λ- = −2, v- =

⎡

⎢⎣
−1

1

⎤

⎥⎦ .

This coefficient matrix has distinct real eigenvalues, so the general solution is

xgen(t) = c+ e
4t

⎡

⎢⎣
1

1

⎤

⎥⎦+ c- e
−2t

⎡

⎢⎣
−1

1

⎤

⎥⎦ .

⊳

Remark: We now focus on case (ii).

• A real matrix can have complex eigenvalues.
• But in this case, the eigenvalues—and the eigenvectors—come in pairs, λ+ = λ-.

Theorem 5.3.2. (Conjugate Pairs) If A is a square matrix with real coefficients and
λ, v is an eigenpair, then so is their complex conjugate λ, v.

Example : If a 2× 2 matrix A has eigenpairs

λ = 7 + 2i, v =

[
2 + 3i
5− i

]
,

then A also has the eigenpairs

λ = 7− 2i, v =

[
2− 3i
5 + i

]
.

⊳

Proof of Theorem 5.3.2: Complex conjugate the eigenvalue eigenvector equation for λ

and v, and recall that matrix A is real-valued, hence A = A. We obtain,

Av = λv ⇔ Av = λ v, ⇔ Av = λ v,

This establishes the Theorem. □
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Theorem 5.3.3. (Complex and Real Solutions) If a 2× 2 matrix A has eigenpairs

λ± = α± iβ, v(±) = a± ib,

where α, β, a, and b real, then the equation x′ = Ax has fundamental solutions

x(+)(t) = eλ+t v(+) , x(-)(t) = eλ-t v(-) ,

but it also has real-valued fundamental solutions

x(1)(t) =
!
a cos(βt)− b sin(βt)

"
eαt ,

x(2)(t) =
!
a sin(βt) + b cos(βt)

"
eαt .

Proof of Theorem 5.3.3: We know that the solutions x(±) are linearly independent.

The new information in the theorem above is the formula for the real-valued fundamental

solutions. They are obtained from x(±) as follows:

x(±) = (a± ib) e(α±iβ)t

= eαt(a± ib) e±iβt

= eαt(a± ib)
!
cos(βt)± i sin(βt)

"

= eαt
!
a cos(βt)− b sin(βt)

"
± ieαt

!
a sin(βt) + b cos(βt)

"
.

Therefore, we get

x+ = eαt
!
a cos(βt)− b sin(βt)

"
+ ieαt

!
a sin(βt) + b cos(βt)

"

x− = eαt
!
a cos(βt)− b sin(βt)

"
− ieαt

!
a sin(βt) + b cos(βt)

"
.

Since the differential equation x′ = Ax is linear, the functions below are also solutions,

x(1) =
1

2

!
x+ + x-

"
=

!
a cos(βt)− b sin(βt)

"
eαt,

x(2) =
1

2i

!
x+ − x-

"
=

!
a sin(βt) + b cos(βt)

"
eαt.

This establishes the Theorem.

□
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Example 5.3.2: Find real-valued fundamental solutions to the differential equation

x′ = Ax, A =

[
2 3

−3 2

]
.

Solution: Fist find the eigenvalues of matrix A above,

0 =

∣∣∣∣∣∣∣

(2− λ) 3

−3 (2− λ)

∣∣∣∣∣∣∣
= (λ− 2)2 + 9 ⇒ λ± = 2± 3i.

Then find the respective eigenvectors. The one corresponding to λ+ is the solution of the

homogeneous linear system with coefficients given by

⎡

⎢⎣
2− (2 + 3i) 3

−3 2− (2 + 3i)

⎤

⎥⎦ =

⎡

⎢⎣
−3i 3

−3 −3i

⎤

⎥⎦ →

⎡

⎢⎣
−i 1

−1 −i

⎤

⎥⎦ →

⎡

⎢⎣
1 i

−1 −i

⎤

⎥⎦ →

⎡

⎢⎣
1 i

0 0

⎤

⎥⎦ .

Therefore the eigenvector v(+) =

⎡

⎢⎣
v+1

v+2

⎤

⎥⎦ is given by

v
(+)
1 = −iv

(+)
2 ⇒ v

(+)
2 = 1, v

(+)
1 = −i, ⇒ v(+) =

⎡

⎢⎣
−i

1

⎤

⎥⎦ , λ+ = 2 + 3i.

The second eigenvector is the complex conjugate of the eigenvector found above, that is,

v(-) =

⎡

⎢⎣
i

1

⎤

⎥⎦ , λ- = 2− 3i.

Notice that

v(±) =

⎡

⎢⎣
0

1

⎤

⎥⎦±

⎡

⎢⎣
−1

0

⎤

⎥⎦ i.

Then, the real and imaginary parts of the eigenvalues and of the eigenvectors are given by

α = 2, β = 3, a =

⎡

⎢⎣
0

1

⎤

⎥⎦ , b =

⎡

⎢⎣
−1

0

⎤

⎥⎦ .
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So a real-valued expression for a fundamental set of solutions is given by

x(1) =
(
⎡

⎢⎣
0

1

⎤

⎥⎦ cos(3t)−

⎡

⎢⎣
−1

0

⎤

⎥⎦ sin(3t)
)
e2t ⇒ x(1) =

⎡

⎢⎣
sin(3t)

cos(3t)

⎤

⎥⎦ e2t,

x(2) =
(
⎡

⎢⎣
0

1

⎤

⎥⎦ sin(3t) +

⎡

⎢⎣
−1

0

⎤

⎥⎦ cos(3t)
)
e2t ⇒ x(2) =

⎡

⎢⎣
− cos(3t)

sin(3t)

⎤

⎥⎦ e2t.

⊳
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Remark: The case (iii), 2× 2 diagonalizable matrices with a repeated eigenvalue.

Theorem 5.3.4. Every 2× 2 diagonalizable matrix with repeated eigenvalue λ0 has
the form

A = λ0I .

Proof of Theorem 5.3.4: Since matrix A diagonalizable, there exists a matrix P invertible

such that A = PDP−1. Since A is 2× 2 with a repeated eigenvalue λ0, then

D =

⎡

⎢⎣
λ0 0

0 λ0

⎤

⎥⎦ = λ0 I2.

Put these two fatcs together,

A = Pλ0IP
−1 = λ0P P−1 = λ0I.

□

Remark: : The differential equation x′ = λ0I x is already decoupled.

x′
1 = λ0 x1

x′
2 = λ0 x2

}
⇒ too simple.
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5.3.2. Non-Diagonalizable Systems.

Remark: In this case is not so easy to find two fundamental solutions.

Example : Find fundamental solutions to the system

x′ = Ax, A =

[
−6 4
−1 −2

]

Solution: We start computing the eigenvalues of A.

p(λ) =

∣∣∣∣∣∣∣

−6− λ 4

−1 −2− λ

∣∣∣∣∣∣∣
= (λ+ 6)(λ+ 2) + 4 = λ2 + 8λ+ 16 = (λ+ 4)2.

We have a repeated eigenvalue λ0 = −4. The eigenvector v is the solution of (A+4I)v = 0,

⎡

⎢⎣
−6 + 4 4

−1 −2 + 4

⎤

⎥⎦

⎡

⎢⎣
v1

v2

⎤

⎥⎦ =

⎡

⎢⎣
0

0

⎤

⎥⎦ . ⇒

⎡

⎢⎣
−2 4

−1 2

⎤

⎥⎦

⎡

⎢⎣
v1

v2

⎤

⎥⎦ =

⎡

⎢⎣
0

0

⎤

⎥⎦ .

So we have only one equation

v1 = 2v2 ⇒ v =

⎡

⎢⎣
v1

v2

⎤

⎥⎦ =

⎡

⎢⎣
2

1

⎤

⎥⎦ v2

and choosing v2 = 1 we get the eigenpair λ0 = −4, v =

⎡

⎢⎣
2

1

⎤

⎥⎦. So one fundamental solution is

x(1) =

⎡

⎢⎣
2

1

⎤

⎥⎦ e−4t.

However, we do not know what is a second fundamental solution in this case.

⊳
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Theorem 5.3.5. (Repeated Eigenvalue) If a 2×2 matrix A has a repeated eigenvalue λ
with only one associated eigen-direction given by the eigenvector v, then the differential
system x′(t) = Ax(t) has a linearly independent set of solutions

x1(t) = eλt v , x2(t) = eλt
(
v t+w

)
,

where the vector w is one solutions of the algebraic linear system

(A− λI)w = v .

Remark: For the proof see the Lecture Notes.

Example Similar to 5.3.3: Find the fundamental solutions of the differential equation

x′ = Ax, A =

[
−6 4
−1 −2

]
.

Solution: We already know that an eigenpair of A is

λ = −1, v =

⎡

⎢⎣
2

1

⎤

⎥⎦ .

Any other eigenvector associated to λ = −1 is proportional to the eigenvector above. The

matrix A is not diagonalizable, so we solve for a vector w the linear system (A+ 4I)w = v,

⎡

⎢⎣
−2 4

−1 2

⎤

⎥⎦

⎡

⎢⎣
w1

w2

⎤

⎥⎦ =

⎡

⎢⎣
2

1

⎤

⎥⎦ ⇒ −w1 + 2w2 = 1 ⇒ w1 = 2w2 − 1.

Therefore,

w =

⎡

⎢⎣
w1

w2

⎤

⎥⎦ =

⎡

⎢⎣
2w2 − 1

w2

⎤

⎥⎦ ⇒ w =

⎡

⎢⎣
2

1

⎤

⎥⎦ w2 +

⎡

⎢⎣
−1

0

⎤

⎥⎦ .

So, given any solution w, the cv+w is also a solution for any c ∈ R. We choose w2 = 0,

w =

⎡

⎢⎣
−1

0

⎤

⎥⎦ .

Therefore, a fundamental set of solutions to the differential equation above is formed by

x(1)(t) = e−4t

⎡

⎢⎣
2

1

⎤

⎥⎦ , x(2)(t) = e−4t
(
t

⎡

⎢⎣
2

1

⎤

⎥⎦+

⎡

⎢⎣
−1

0

⎤

⎥⎦
)
.

⊳


