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5.2. Solution Formulas

Section Objective(s):

• Homogeneous Systems.
• Homogeneous Diagonalizable Systems.
• Non-Homogeneous Systems.

5.2.1. Homogeneous Systems.

Remark: The integrating factor method works for linear systems.

Theorem 5.2.1. (Homogeneous Systems) If A is an n × n constant matrix, then the
initial value problem

x′ = Ax, x(0) = x0 ,

has a unique solution for all n-vectors x0 and all t ∈ R, given by

x(t) = eAt x0 .

Remark: Recall that eAt, for a constant square matrix A, satisfies:

d

dt
eAt = AeAt = eAtA ,

!
eAt

"−1
= e−At , eAseAt = eA(s+t) .

Proof of Theorem 5.2.1: Write the equation as x′−Ax = 0, where 0 is the zero n-vector,

and then multiply it on the left by e−At,

e−Atx′ − e−AtAx = 0 ⇒ e−Atx′ −Ae−At x = 0,

since e−AtA = Ae−At. The properties of the matrix exponential imply

e−Atx′ +
!
e−At

"′
x = 0 ⇒

!
e−Atx

"′
= 0.

If we integrate in the last equation above, and we denote by c a constant n-vector, we get

e−Atx(t) = c ⇒ x(t) = eAtc,

where we used
!
e−At

"−1
= eAt. If we now evaluate at t = 0 we get the constant vector c,

x0 = x(0) = eA0c = c ⇒ x(t) = eAtx0.
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Example 5.2.1: Compute the exponential function eAt and use it to express the vector-
valued function x solution to the initial value problem

x′ = Ax, A =

[
1 2
2 1

]
, x(0) = x0 =

[
x01

x02

]
.

Solution: We compute the eigenpairs of A. The result is:

λ+ = 3, v+ =

⎡

⎢⎣
1

1

⎤

⎥⎦ , and λ- = −1, v- =

⎡

⎢⎣
−1

1

⎤

⎥⎦ .

Then, the matrix A is diagonalizable, that is A = PDP−1, where

P =

⎡

⎢⎣
1 −1

1 1

⎤

⎥⎦ , D =

⎡

⎢⎣
3 0

0 −1

⎤

⎥⎦ , P−1 =
1

2

⎡

⎢⎣
1 1

−1 1

⎤

⎥⎦ .

Now, the exponential of At is given by

eAt = PeDtP−1 =

⎡

⎢⎣
1 −1

1 1

⎤

⎥⎦

⎡

⎢⎣
e3t 0

0 e−t

⎤

⎥⎦
1

2

⎡

⎢⎣
1 1

−1 1

⎤

⎥⎦ ,

so we conclude that

eAt =
1

2

⎡

⎢⎣
(e3t + e−t) (e3t − e−t)

(e3t − e−t) (e3t + e−t)

⎤

⎥⎦ . (5.2.1)

Finally, we get the solution to the initial value problem above,

x(t) = eAtx0 =
1

2

⎡

⎢⎣
(e3t + e−t) (e3t − e−t)

(e3t − e−t) (e3t + e−t)

⎤

⎥⎦

⎡

⎢⎣
x01

x02

⎤

⎥⎦ .

⊳
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5.2.2. Homogeneous Diagonalizable Systems.

Example Similar to 5.2.2: Find functions x1, x2 solutions of the first order, 2 × 2,
constant coefficients, homogeneous differential system

x′
1 = x1 + 3x2,

x′
2 = 3x1 + x2.

Solution: Add the equations, and subtract the equations,

(x1 + x2)
′ = 4x1 + 4x2 ⇒ (x1 + x2)

′ = 4(x1 + x2).

(x2 − x1)
′ = 2x1 − 2x2 ⇒ (x2 − x1)

′ = −2(x2 − x1).

Introduce the new variables y1 = x2 + x1, and y2 = x2 − x1,

y′1 = 4y1, y′2 = −2y2.

We have decoupled the original system. The solution is

y′1 = 4y1 ⇒ y1 = c1 e
4t,

y′2 = 2y2 ⇒ y2 = c2 e
−2t,

with c1, c2 ∈ R. Now we go back to the original valriables

x1 =
1

2
(y1 − y2), x2 =

1

2
(y1 + y2).

So the general solution is

x1(t) =
1

2
(c1 e

4t − c2 e
−2t), x2(t) =

1

2
(c1 e

4t + c2 e
−2t).

In vector notation we get

x =

⎡

⎢⎣
x1

x2

⎤

⎥⎦ =

⎡

⎢⎣
1
2 (c1 e

4t − c2 e
−2t)

1
2 (c1 e

4t + c2 e
−2t)

⎤

⎥⎦ =
1

2
c1

⎡

⎢⎣
1

1

⎤

⎥⎦ e4t +
1

2
c1

⎡

⎢⎣
−1

1

⎤

⎥⎦ e−2t

.

⊳
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Theorem 5.2.2. (Homogeneous Diagonalizable Systems) If an n × n constant ma-
trix A is diagonalizable, with linearly independent eigenvectors

{
v(1), · · · , v(n)

}
and

corresponding eigenvalues {λ1, · · · ,λn}, then the general solution of x′ = Ax is

xgen(t) = c1 e
λ1t v(1) + · · ·+ cn e

λnt v(n) .

Remark: Each function x(i) = eλit v(i) is solution of the system x′ = Ax, because

x(i)′ = λi e
λit v(i) ,

Ax(i) =
(
A v(i)

)
eλit =

(
λ v(i)

)
eλit = λi e

λit v(i) .

Proof of Theorem 5.2.2: Matrix A is diagonalizable, A = PDP−1, with

P =

[
v(1), · · · , v(n)

]
, D = diag[λ1, ·,λn].

Since A = PDP−1, then D = P−1AP . now multiply the differential equation by P−1,

P−1x′ = P−1Ax = P−1A(PP−1)x = (P−1AP )(P−1x) ⇒ (P−1x)′ = D(P−1x).

We have decoupled the system. Introduce the variable y =
(
P−1x

)
, then

y′ = D y.

The solution of this decoupled system is simple to find,

y′1(t) = λ1 y1(t),

...

y′n(t) = λn yn(t),

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y1(t) = c1 e
λ1t,

...

yn(t) = cn e
λnt,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⇒ y(t) =

⎡

⎢⎢⎢⎢⎣

c1 e
λ1t

...

cn e
λnt

⎤

⎥⎥⎥⎥⎦
.

Once y is found, we transform back to x,

x(t) = P y(t) =

[
v(1), · · · , v(n)

]

⎡

⎢⎢⎢⎢⎣

c1 e
λ1t

...

cn e
λnt

⎤

⎥⎥⎥⎥⎦
= c1 e

λ1t v(1) + · · ·+ cn e
λnt v(n).

This establishes the Theorem. □
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Example Similar to 5.2.3: Use the theorem above to find the general solution of

x′ = Ax, A =

[
3 −2
10 −6

]
.

Then find x satisfying the initial condition x(0) =

[
1
3

]
.

Solution: Find the eigenpairs of A. The solution is

λ+ = −1, v+ =

⎡

⎢⎣
1

2

⎤

⎥⎦ , and λ- = −2, v- =

⎡

⎢⎣
2

5

⎤

⎥⎦ .

So the general solution is

x(t) = c+ e
−t

⎡

⎢⎣
1

2

⎤

⎥⎦+ c- e
−2t

⎡

⎢⎣
2

5

⎤

⎥⎦ .

Now we find the coefficients c+ and c- that satisfy the initial condition

⎡

⎢⎣
1

3

⎤

⎥⎦ = x(0) = c+

⎡

⎢⎣
1

2

⎤

⎥⎦+ c-

⎡

⎢⎣
2

5

⎤

⎥⎦ ⇒

⎡

⎢⎣
1 2

2 5

⎤

⎥⎦

⎡

⎢⎣
c+

c-

⎤

⎥⎦ =

⎡

⎢⎣
1

3

⎤

⎥⎦

The inverse of the coefficient matrix is

⎡

⎢⎣
1 2

2 5

⎤

⎥⎦

−1

=
1

5− 4

⎡

⎢⎣
5 −2

−2 1

⎤

⎥⎦

−1

Therefore, the constants c+, c- are given by

⎡

⎢⎣
c+

c-

⎤

⎥⎦ =

⎡

⎢⎣
5 −2

−2 1

⎤

⎥⎦

⎡

⎢⎣
1

3

⎤

⎥⎦ =

⎡

⎢⎣
−1

1

⎤

⎥⎦

We conclude that c+ = −1 and c- = 1, hence

x(t) = −e−t

⎡

⎢⎣
1

2

⎤

⎥⎦+ e−2t

⎡

⎢⎣
2

5

⎤

⎥⎦ ⇔ x(t) =

⎡

⎢⎣
−e−t + 2 e−2t

−2 e−t + 5 e−2t

⎤

⎥⎦ .

⊳
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Example : Follow the proof of the theorem above to find the general solution of

x′ = Ax, A =

[
3 −2
10 −6

]
.

Solution: Find the eigenpairs of A. The solution is

λ+ = −1, v+ =

⎡

⎢⎣
1

2

⎤

⎥⎦ , and λ- = −2, v- =

⎡

⎢⎣
2

5

⎤

⎥⎦ .

Therefore, matrix A is diagonalizable with

P =

⎡

⎢⎣
1 2

2 5

⎤

⎥⎦ , D =

⎡

⎢⎣
−1 0

0 −2

⎤

⎥⎦ , P−1 =

⎡

⎢⎣
5 −2

−2 1

⎤

⎥⎦ .

So multiply the differential equation x′ = Ax by P−1,

(P−1x)′ = (P−1AP )(P−1x),

so introduce y = P−1x, that is,

y =

⎡

⎢⎣
y1

y2

⎤

⎥⎦ =

⎡

⎢⎣
5 −2

−2 1

⎤

⎥⎦

⎡

⎢⎣
x1

x2

⎤

⎥⎦ =

⎡

⎢⎣
5x1 − 2x2

−2x1 + x2

⎤

⎥⎦ ⇒

⎧
⎪⎨

⎪⎩

y1 = 5x1 − 2x2

y2 = −2x1 + x2

.

The differential equation for y is y′ = D y, hence

⎡

⎢⎣
y1

y2

⎤

⎥⎦

′

=

⎡

⎢⎣
−1 0

0 −2

⎤

⎥⎦

⎡

⎢⎣
y1

y2

⎤

⎥⎦ ⇒

⎧
⎪⎨

⎪⎩

y′1 = −y1

y′2 = −2y2

⇒

⎧
⎪⎨

⎪⎩

y1 = c1 e
−t

y2 = c2 e
−2t

.

We now transform back to x = Py,

x =

⎡

⎢⎣
x1

x2

⎤

⎥⎦ =

⎡

⎢⎣
1 2

2 5

⎤

⎥⎦

⎡

⎢⎣
c1 e

−t

c2 e
−2t

⎤

⎥⎦ =

⎡

⎢⎣
c1 e

−t + 2c2 e
−2t

2 c1 e
−t + 5c2 e

−2t

⎤

⎥⎦ =

⎡

⎢⎣
c1 e

−t

2 c1 e
−t

⎤

⎥⎦+

⎡

⎢⎣
2c2 e

−2t

5c2 e
−2t,

⎤

⎥⎦

that is,

x = c1 e
−t

⎡

⎢⎣
1

2

⎤

⎥⎦+ c2 e
−2t

⎡

⎢⎣
2

5

⎤

⎥⎦ .

⊳
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Remark: The example above is similar to the homework problem below.
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5.2.3. Nonhomogeneous Systems.

Theorem 5.2.5. (Nonhomogeneous Systems) If A is a constant n× n matrix and b is
a continuous n-vector function, then the initial value problem

x′(t) = Ax(t) + b(t), x(0) = x0 ,

has a unique solution for every initial condition x0 ∈ Rn given by

x(t) = eAtx0 + eAt

∫ t

0

e−Aτb(τ) dτ .

Remark: The proof is based on the integrating factor method and follow the ideas of the
proof for non-homogeneous scalar equations in Section 2.1.

Example 5.2.9: Find the vector-valued solution x to the differential system

x′ = Ax+ b, x(0) =

[
3
2

]
, A =

[
1 2
2 1

]
, b =

[
1
2

]
.

Solution: In an example above we have found the eigenvalues and eigenvectors of the

coefficient matrix, and the result is

λ1 = 3, v(1) =

⎡

⎢⎣
1

1

⎤

⎥⎦ , and λ2 = −1, v(2) =

⎡

⎢⎣
−1

1

⎤

⎥⎦ .

The eigenvectors above say that A is diagonalizable,

A = PDP−1, P =

⎡

⎢⎣
1 −1

1 1

⎤

⎥⎦ , D =

⎡

⎢⎣
3 0

0 −1

⎤

⎥⎦ .

We also know how to compute the exponential of a diagonalizable matrix,

eAt = PeDtP−1 =

⎡

⎢⎣
1 −1

1 1

⎤

⎥⎦

⎡

⎢⎣
e3t 0

0 e−t

⎤

⎥⎦
1

2

⎡

⎢⎣
1 1

−1 1

⎤

⎥⎦ ,

so we conclude that

eAt =
1

2

⎡

⎢⎣
(e3t + e−t) (e3t − e−t)

(e3t − e−t) (e3t + e−t)

⎤

⎥⎦ ⇒ e−At =
1

2

⎡

⎢⎣
(e−3t + et) (e−3t − et)

(e−3t − et) (e−3t + et)

⎤

⎥⎦ .

The solution to the initial value problem above is,

x(t) = eAtx0 + eAt

∫ t

0

e−Aτb dτ.
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Since

eAtx0 =
1

2

⎡

⎢⎣
(e3t + e−t) (e3t − e−t)

(e3t − e−t) (e3t + e−t)

⎤

⎥⎦

⎡

⎢⎣
3

2

⎤

⎥⎦ =
1

2

⎡

⎢⎣
5e3t + e−t

5e3t − e−t

⎤

⎥⎦ ,

in a similar way

e−Aτb =
1

2

⎡

⎢⎣
(e−3τ + eτ ) (e−3τ − eτ )

(e−3τ − eτ ) (e−3τ + eτ )

⎤

⎥⎦

⎡

⎢⎣
1

2

⎤

⎥⎦ =
1

2

⎡

⎢⎣
3e−3τ − eτ

3e−3τ + eτ

⎤

⎥⎦ .

Integrating the last expresion above, we get

∫ t

0

e−Aτb dτ =
1

2

⎡

⎢⎣
−e−3t − et

−e−3t + et

⎤

⎥⎦+

⎡

⎢⎣
1

0

⎤

⎥⎦ .

Therefore, we get

x(t) =
1

2

⎡

⎢⎣
5e3t + e−t

5e3t − e−t

⎤

⎥⎦+
1

2

⎡

⎢⎣
(e3t + e−t) (e3t − e−t)

(e3t − e−t) (e3t + e−t)

⎤

⎥⎦
[1
2

⎡

⎢⎣
−e−3t − et

−e−3t + et

⎤

⎥⎦+

⎡

⎢⎣
1

0

⎤

⎥⎦
]
.

Multiplying the matrix-vector product on the second term of the left-hand side above,

x(t) =
1

2

⎡

⎢⎣
5e3t + e−t

5e3t − e−t

⎤

⎥⎦−

⎡

⎢⎣
1

0

⎤

⎥⎦+
1

2

⎡

⎢⎣
(e3t + e−t)

(e3t − e−t)

⎤

⎥⎦ .

We conclude that the solution to the initial value problem above is

x(t) =

⎡

⎢⎣
3e3t + e−t − 1

3e3t − e−t

⎤

⎥⎦ .

⊳


