5.2. SOLUTION FORMULAS

Section Objective(s):

- Homogeneous Systems.
- Homogeneous Diagonalizable Systems.
- $\bullet\,$ Non-Homogeneous Systems.

linear systems
rix, then the

Proof of Theorem 5.2.1:

2

Example 5.2.1: Compute the exponential function e^{At} and use it to express the vector-valued function \boldsymbol{x} solution to the initial value problem

$$x' = A x$$
, $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, $x(0) = x_0 = \begin{bmatrix} x_{01} \\ x_{02} \end{bmatrix}$.

5.2.2. Homogeneous Diagonalizable Systems.

EXAMPLE SIMILAR TO 5.2.2: Find functions x_1 , x_2 solutions of the first order, 2×2 , constant coefficients, homogeneous differential system

$$x_1' = x_1 + 3x_2,$$

$$x_2' = 3x_1 + x_2.$$

$$x_2' = 3x_1 + x_2.$$

Theorem 5.2.2. (Homogeneous Diagonalizable Systems) If an $n \times n$ constant matrix A is diagonalizable, with linearly independent eigenvectors $\{v^{(1)}, \dots, v^{(n)}\}$ and corresponding eigenvalues $\{\lambda_1, \dots, \lambda_n\}$, then the general solution of x' = A x is

Remark: Each function $\mathbf{x}^{(i)} = e^{\lambda_i t} \mathbf{v}^{(i)}$ is solution of the system $\mathbf{x}' = A \mathbf{x}$, because

Proof of Theorem 5.2.2:

Example Similar to 5.2.3: Use the theorem above to find the general solution of

$$x' = A x$$
, $A = \begin{bmatrix} 3 & -2 \\ 10 & -6 \end{bmatrix}$.

Then find \boldsymbol{x} satisfying the initial condition $\boldsymbol{x}(0) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

6

EXAMPLE: Follow the proof of the theorem above to find the general solution of

$$\mathbf{x}' = A \mathbf{x}, \qquad A = \begin{bmatrix} 3 & -2 \\ 10 & -6 \end{bmatrix}.$$

Remark: The example above is similar to the homework problem below.

Consider the system $\mathbf{x'}=A\mathbf{x}$, with $A=\left[egin{array}{cc} 7 & -2 \ 12 & -3 \end{array} ight]$
a. (1/10) Find the eigenvalues $\lambda_+ $ and $\lambda $, larger and smaller or equal or conjugate, respectively, of the matrix $A $,
$\lambda_+ = $ $\lambda = $
b. (1/10) Find corresponding eigenvectors ${f v}^+ $ and ${f v}^- $, such that ${f v}^+ $ has component $v_1^+=1 $, and similarly for ${f v}^- $.
$\mathbf{v}^+ = oxed{\left[}$
$\mathbf{v}^- = 1$
c. (2/10) Compute the matrix $P=[{f v}^+,{f v}^-]$ and then introduce the new unknown
function $\mathbf{y}=P^{-1}\mathbf{x}$, and denote its components as $\mathbf{y}=\begin{bmatrix}y_1\\y_2\end{bmatrix}$.
Find the vector components $y_1 $ and $y_2 $ in terms of $x_1 $ and $x_2 $.
$egin{aligned} y_1 &= & igcap & x_1 + igcap & x_2 \ & & & & & & & & & & & & & & & & & & $
$y_2 = ert egin{equation} x_1 + ert egin{equation} x_2 ert \end{pmatrix}$
d. (2/10) Find the differential equations satisfied by the vector function ${f y}$, written in the form ${f y}'=B{f y}$
B =
e. (2/10) Find the general solution $\mathbf{y}(t)=\begin{bmatrix}c_1\tilde{y}_1(t)\\c_2\tilde{y}_2(t)\end{bmatrix}\Big $ of the equation above, where c_1 , c_2 are constants, and \tilde{y}_1 , \tilde{y}_2 are fundamental solutions satisfying $\tilde{y}_1(0)=1$ and $\tilde{y}_2(0)=1$.
${ ilde y}_1(t)= \mid$
${ ilde y}_2(t)= \ $
f. (2/10) Transform back to the unknown function $\mathbf{x}=P\mathbf{y}$, Write the solution as $\mathbf{x}(t)=c_1\mathbf{x}_1(t)+c_2\mathbf{x}_2(t)$, where c_1 and c_2 are the constants introduced above.
$\mathbf{x}_1(t) = ig igg[$
$\mathbf{x}_2(t) = egin{bmatrix} oxed{bmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

5.2.3. Nonhomogeneous Systems.

Theorem 5.2.5. (Nonhomogeneous Systems) If A is a constant $n \times n$ matrix and \boldsymbol{b} is a continuous n-vector function, then the initial value problem

has a unique solution for every initial condition $\boldsymbol{x}_0 \in \mathbb{R}^n$ given by

Remark: The proof is based on the integrating factor method and follow the ideas of the proof for non-homogeneous scalar equations in Section 2.1.

Example 5.2.9: Find the vector-valued solution \boldsymbol{x} to the differential system

$$\mathbf{x}' = A \mathbf{x} + \mathbf{b}, \quad \mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$