Section Objective(s):

- The Dirac's Delta.
- Main Properties.
- Applications.
- The Impulse Response Function.

4.4.1. The Dirac Delta.

Definition 4.4.1. The *Dirac delta* generalized function is the limit

for every fixed $t \in \mathbb{R}$ of the sequence functions $\{\delta_n\}_{n=1}^{\infty}$,

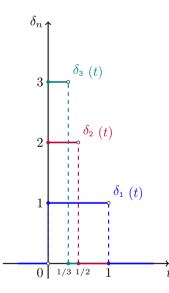
Remark: The sequence of bump functions introduced above can be rewritten as follows,

$$\delta_n(t) = \begin{cases} \underline{\hspace{1cm}}, & t < 0 \\ \underline{\hspace{1cm}}, & 0 \leqslant t < \frac{1}{n} \\ \underline{\hspace{1cm}}, & t \geqslant \frac{1}{n}. \end{cases}$$

We then obtain the equivalent expression,

$$\delta(t) = \begin{cases} \underline{} & \text{for } t \neq 0, \\ \underline{} & \text{for } t = 0. \end{cases}$$

Remark: There are infinitely many sequences $\{\delta_n\}$ of functions with the Dirac delta as their limit as $n \to \infty$.



1

Remarks:

- (a) The Dirac delta is _____ on the domain .
- (b) The Dirac delta is _____ on ____.

Theorem. Every function in the sequence $\{\delta_n\}$ above satisfies

4.4.2. Main Properties.

Remark: We use ______ to define operations on Dirac's deltas.

Definition 4.4.2. We introduce the following operations on the Dirac delta:

$$f(t) \, \delta(t-c) + g(t) \, \delta(t-c) = \underline{\hspace{2cm}}.$$

$$\int_{a}^{b} \delta(t-c) dt = \underline{\hspace{2cm}}$$

$$\mathcal{L}[\delta(t-c)] = \underline{\hspace{1cm}}.$$

Theorem 4.4.3. For every $c \in \mathbb{R}$ and $\epsilon > 0$ holds,

•

Proof of Theorem 4.4.3:

Theorem 4.4.4. If f is continuous on (a,b) and $c \in (a,b)$, then

•

Proof of Theorem 4.4.4:

Theorem 4.4.5. For all $s \in \mathbb{R}$ holds

$$\mathcal{L}[\delta(t-c)] = \begin{cases} -c & \text{for } c \ge 0, \\ & \text{for } c < 0. \end{cases}$$

Proof of Theorem 4.4.5:

4.4.3. Applications of the Dirac Delta.

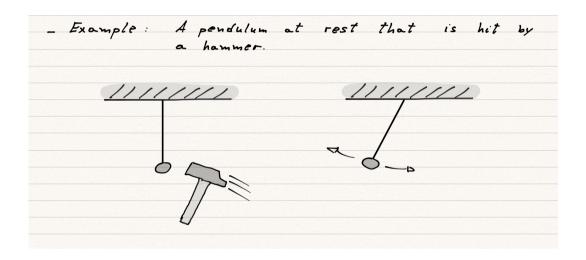
Remarks:

(a) Dirac's delta generalized function is useful to describe

(b) An impulsive force transfers a _____

in an

(c) For example, a pendulum at rest that is hit by a hammer.



EXAMPLE 4.4.3: Use Newton's equation of motion and Dirac's delta to describe the change of momentum when a particle is hit by a hammer.

SOLUTION:

4.4.4. The Impulse Response Function.

Definition 4.4.6. The <i>impulse response function</i> at the point $c \ge 0$ of the linear operator			
with a_1 , a_0 constan	ats, is the solution y_{δ} of		
	,	,	· · ·

Theorem 4.4.7. The function y_{δ} is the impulse response function at $c \ge 0$ of the constant coefficients operator $L(y) = y'' + a_1 y' + a_0 y$ iff holds

.

where

of L.

Remark: The impulse response function y_{δ} at c=0 satisfies

.

Proof of Theorem 4.4.7:

Example Similar to 4.4.6: Find the solution y to the initial value problem $y''-y=\delta(t-3), \qquad y(0)=0, \qquad y'(0)=0.$

SOLUTION: