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4.4. Generalized Sources

Section Objective(s):

• The Dirac’s Delta.
• Main Properties.
• Applications.
• The Impulse Response Function.

4.4.1. The Dirac Delta.

Definition 4.4.1. The Dirac delta generalized function is the limit

δ(t) = lim
n→∞

δn(t) ,

for every fixed t ∈ R of the sequence functions {δn}∞n=1,

δn(t) = n
[
u(t)− u

(
t− 1

n

)]
.

Remark: The sequence of bump functions intro-
duced above can be rewritten as follows,

δn(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 , t < 0

n , 0 ! t <
1

n

0 , t " 1

n
.

We then obtain the equivalent expression,

δ(t) =

{
0 for t ∕= 0,

∞ for t = 0.

Remark: There are infinitely many sequences
{δn} of functions with the Dirac delta as their limit
as n → ∞.

δn

t0

1

2

3

11/21/3

δ1 (t)

δ2 (t)

δ3 (t)

Remarks:

(a) The Dirac delta is the function zero on the domain R− {0} .

(b) The Dirac delta is not a function on R .

Theorem . Every function in the sequence {δn} above satisfies

∫ c+1

c

δn(t− c) dt = 1 .
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4.4.2. Main Properties.

Remark: We use limits to define operations on Dirac’s deltas.

Definition 4.4.2. We introduce the following operations on the Dirac delta:

f(t) δ(t− c) + g(t) δ(t− c) = lim
n→∞

!
f(t) δn(t− c) + g(t) δn(t− c)

"
,
#

.

$ b

a

δ(t− c) dt = lim
n→∞

$ b

a

δn(t− c) dt ,

L[δ(t− c)] = lim
n→∞

L[δn(t− c)] .

Theorem 4.4.3. For every c ∈ R and ϵ > 0 holds,

$ c+ϵ

c−ϵ

δ(t− c) dt = 1 .

Proof of Theorem 4.4.3: The integral of a Dirac’s delta generalized function is computed

as a limit of integrals,

$ c+ϵ

c−ϵ

δ(t− c) dt = lim
n→∞

$ c+ϵ

c−ϵ

δn(t− c) dt

= lim
n→∞

$ c+ 1
n

c

ndt, for
1

n
< ϵ,

= lim
n→∞

n
%
c+

1

n
− c

&

= lim
n→∞

1

= 1.

This establishes the Theorem.

□
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Theorem 4.4.4. If f is continuous on (a, b) and c ∈ (a, b), then

! b

a

f(t) δ(t− c) dt = f(c) .

Proof of Theorem 4.4.4: We again compute the integral of a Dirac’s delta as a limit of

a sequence of integrals,

! b

a

δ(t− c) f(t) dt = lim
n→∞

! b

a

δn(t− c) f(t) dt

= lim
n→∞

! b

a

n
"
u(t− c)− u

#
t− c− 1

n

$%
f(t) dt

= lim
n→∞

! c+ 1
n

c

n f(t) dt,
1

n
< (b− c).

To get the last line we used that c ∈ [a, b]. Let F be any primitive of f , so F (t) =
&
f(t) dt.

Then we can write,

! b

a

δ(t− c) f(t) dt = lim
n→∞

n
'
F
#
c+

1

n

$
− F (c)

(

= lim
n→∞

1#
1
n

$
'
F
#
c+

1

n

$
− F (c)

(

= F ′(c)

= f(c).

This establishes the Theorem.

□
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Theorem 4.4.5. For all s ∈ R holds

L[δ(t− c)] =

⎧
⎪⎨

⎪⎩

e−cs for c ! 0,

0 for c < 0.

Proof of Theorem 4.4.5: We use the previous Theorem on the integral that defines a

Laplace transform,

L[δ(t− c)] =

∫ ∞

0

e−st δ(t− c) dt =

⎧
⎪⎨

⎪⎩

e−cs for c ! 0,

0 for c < 0,

This establishes the Theorem.

□
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4.4.3. Applications of the Dirac Delta.

Remarks:

(a) Dirac’s delta generalized function is useful to describe

impulsive forces .

(b) An impulsive force transfers a finite momentum

in an infinitely short time .

(c) For example, a pendulum at rest that is hit by a hammer.
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Example 4.4.3: Use Newton’s equation of motion and Dirac’s delta to describe the change
of momentum when a particle is hit by a hammer.

Solution: A point particle with mass m, moving on one space direction, x, with a force F

acting on it is described by

ma = F ⇔ mx′′(t) = F (t, x(t)),

We use the particle momentum, p = mv, to write the Newton’s equation,

mx′′ = mv′ = (mv)′ = F ⇒ p′ = F.

So the force F changes the momentum, P . If we integrate on an interval [t1, t2] we get

∆p = p(t2)− p(t1) =

! t2

t1

F (t, x(t)) dt.

Suppose that an impulsive force is acting on a particle at t0 transmitting a finite momentum,

say p0. This is where the Dirac delta is uselful for, because we can write the force as

F (t) = p0 δ(t− t0),

then F = 0 on R− {t0} and the momentum transferred to the particle by the force is

∆p =

! t0+∆t

t0−∆t

p0 δ(t− t0) dt = p0.

The momentum tranferred is ∆p = p0, but the force is identically zero on R−{t0}. We have

transferred a finite momentum to the particle by an interaction at a single time t0.

⊳
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4.4.4. The Impulse Response Function.

Definition 4.4.6. The impulse response function at the point c ! 0 of the linear
operator

L(y) = y′′ + a1 y
′ + a0 y ,

with a1, a0 constants, is the solution yδ of

L(yδ) = δ(t− c) , yδ(0) = 0 , y′δ(0) = 0 .

Theorem 4.4.7. The function yδ is the impulse response function at c ! 0 of the
constant coefficients operator L(y) = y′′ + a1 y

′ + a0 y iff holds

yδ = L−1
!e−cs

p(s)

"
.

where p is the characteristic polynomial of L.

Remark: The impulse response function yδ at c = 0 satifies

yδ = L−1
! 1

p(s)

"
.

Proof of Theorem 4.4.7: Compute the Laplace transform of the differential equation for

for the impulse response function yδ,

L[y′′] + a1 L[y′] + a0 L[y] = L[δ(t− c)] = e−cs.

Since the initial data for yδ is trivial, we get

(s2 + a1s+ a0)L[y] = e−cs.

Since p(s) = s2 + a1s+ a0 is the characteristic polynomial of L, we get

L[y] = e−cs

p(s)
⇔ y(t) = L−1

!e−cs

p(s)

"
.

We notice that all the steps in this calculation are if and only ifs. This establishes the

Theorem.

□
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Example Similar to 4.4.6: Find the solution y to the initial value problem

y′′ − y = δ(t− 3), y(0) = 0, y′(0) = 0.

Solution: The source is a generalized function, so we need to solve this problem using the

Lapace Transform. So we compute the Laplace Transform of the differential equation,

L[y′′]− L[y] = L[δ(t− 3)] ⇒ (s2 − 1)L[y] = e−3s,

where in the second equation we have already introduced the initial conditions y(0) = 0,

y′(0) = 0. We arrive to the equation

L[y] = e−3s 1

(s2 − 1)

Recalling the translation identity

e−cs L[f(t)] = L[u(t− c) f(t− c)],

we get that

L[y] = L[u(t− 3) sinh(t− 3)],

which leads to the solution

y(t) = u(t− 3) sinh(t− 3).

⊳


