4.3. Discontinuous Sources

Section Objective(s):

- Review: Step Functions.
- Laplace Transform of Steps.
- Translation Properties of the LT.

4.3.1. Step Functions.

Definition 4.3.1. The *step function* at t = 0 is

$$u(t) = \begin{cases} \underline{\qquad} & t < 0, \\ \underline{\qquad} & t \geqslant 0. \end{cases}$$

Example 4.3.1: Graph the step u, $u_c(t) = u(t-c)$, and $u_{-c}(t) = u(t+c)$, for c > 0. Solution:

 \triangleleft

Example 4.3.2: Graph the bump function b(t) = u(t-a) - u(t-b), for a < b. Solution:

4.3.2. The Laplace Transform of Steps.

Theorem 4.3.2. For every number $c \in \mathbb{R}$ and and every s > 0 holds

$$\mathcal{L}[u(t-c)] = \begin{cases} & \text{for } c \ge 0, \\ & \text{for } c < 0. \end{cases}$$

Proof of Theorem 4.3.2:

Example 4.3.4: Compute $\mathcal{L}[3u(t-2)]$.

SOLUTION:

 \triangleleft

Remarks:

- (a) The LT is ______ transformation on the set of functions we work on.
- (b)

Example 4.3.5: Compute $\mathcal{L}^{-1}\left[\frac{e^{-3s}}{s}\right]$.

4.3.3. Translation Identities.

Theorem 4.3.3. (Translation Identities) If $\mathcal{L}[f(t)](s)$ exists for s > a, then

$$\mathcal{L}[u(t-c)f(t-c)] = \underline{\qquad}, \quad s > a, \qquad c \geqslant 0 \quad (4.3.1)$$

$$\mathcal{L}[e^{ct}f(t)] = \underline{\qquad}, \quad s > a + c, \quad c \in \mathbb{R}. \quad (4.3.2)$$

Example 4.3.6: Take $f(t) = \cos(t)$ and write the equations given the Theorem above. Solution:

Remarks:

(a) We can highlight the main idea in the theorem above as follows:

$$\mathcal{L}[\text{right-translation } (uf)] = (\exp) (\mathcal{L}[f]),$$

$$\mathcal{L}[(\exp) (f)] = \text{translation} (\mathcal{L}[f]).$$

 \triangleleft

(b) Denoting $F(s) = \mathcal{L}[f(t)]$, then

(c) The inverse form of Eqs. (4.3.1)-(4.3.2) is

Example 4.3.11: Find the function f such that $\mathcal{L}[f(t)] = \frac{e^{-4s}}{s^2 + 5}$.

SOLUTION:

 \triangleleft

EXAMPLE 4.3.12: Find the function f(t) such that $\mathcal{L}[f(t)] = \frac{(s-1)}{(s-2)^2 + 3}$.

4.3.4. Solving Differential Equations.

Example 4.3.16: Use the LT to find the solution to the initial IVP

$$y'' + y' + \frac{5}{4}y = b(t), y(0) = 0, y'(0) = 0, b(t) = \begin{cases} 1 & 0 \le t < \pi \\ 0 & t \ge \pi. \end{cases}$$
 (4.3.3)

Example 4.3.17: Use the LT to find the solution to the IVP
$$y'' + y' + \frac{5}{4}y = g(t), \qquad y(0) = 0, \qquad y'(0) = 0, \qquad g(t) = \left\{ \begin{array}{cc} \sin(t) & 0 \leqslant t < \pi \\ 0 & t \geqslant \pi. \end{array} \right. \tag{4.3.4}$$

