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4.3. Discontinuous Sources

Section Objective(s):

• Review: Step Functions.
• Laplace Transform of Steps.
• Translation Properties of the LT.

4.3.1. Step Functions.

Definition 4.3.1. The step function at t = 0 is

u(t) =

{
0 t < 0,

1 t ! 0.

Example 4.3.1: Graph the step u, uc(t) = u(t− c), and u−c(t) = u(t+ c), for c > 0.

Solution:

⊳
Example 4.3.2: Graph the bump function b(t) = u(t− a)− u(t− b), for a < b.

Solution: The bump function b is nonzero only on a finite interval [a, b], because

b(t) = u(t− a)− u(t− b) ⇔ b(t) =

⎧
⎪⎨

⎪⎩

0 t < a,

1 a # t < b

0 t ! b.

⊳
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4.3.2. The Laplace Transform of Steps.

Theorem 4.3.2. For every number c ∈ R and and every s > 0 holds

L[u(t− c)] =

⎧
⎪⎪⎨

⎪⎪⎩

e−cs

s
for c ! 0,

1

s
for c < 0.

Proof of Theorem 4.3.2: Consider the case c ! 0. The Laplace Transform is

L[u(t− c)] =

∫ ∞

0

e−stu(t− c) dt =

∫ ∞

c

e−st dt,

where we used that the step function vanishes for t < c. Now compute the improper integral,

L[u(t− c)] = lim
N→∞

−1

s

(
e−Ns − e−cs

)
=

e−cs

s
⇒ L[u(t− c)] =

e−cs

s
.

Consider now the case of c < 0. The step function is identically equal to one in the domain

of integration of the Laplace Transform, which is [0,∞), hence

L[u(t− c)] =

∫ ∞

0

e−stu(t− c) dt =

∫ ∞

0

e−st dt = L[1] = 1

s
.

This establishes the Theorem.

□
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Example 4.3.4: Compute L[3u(t− 2)].

Solution: The Laplace Transform is a linear operation, so

L[3u(t− 2)] = 3L[u(t− 2)],

and the Theorem ?? above implies that L[3u(t− 2)] =
3 e−2s

s
.

⊳

Remarks:

(a) The LT is an invertible transformation on the set of functions we work on.

(b) L[f ] = F ⇔ L−1[F ] = f .

Example 4.3.5: Compute L−1
!e−3s

s

"
.

Solution: Theorem ?? says that
e−3s

s
= L[u(t− 3)], so L−1

!e−3s

s

"
= u(t− 3).

⊳
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4.3.3. Translation Identities.

Theorem 4.3.3. (Translation Identities) If L[f(t)](s) exists for s > a, then

L[u(t− c)f(t− c)] = e−cs L[f(t)] , s > a, c ! 0 (4.3.1)

L[ectf(t)] = L[f(t)](s− c) , s > a+ c, c ∈ R. (4.3.2)

Example 4.3.6: Take f(t) = cos(t) and write the equations given the Theorem above.

Solution:

L[cos(t)] = s

s2 + 1
⇒

⎧
⎪⎨

⎪⎩

L[u(t− c) cos(t− c)] = e−cs s

s2 + 1

L[ect cos(t)] = (s− c)

(s− c)2 + 1
.

⊳
Remarks:

(a) We can highlight the main idea in the theorem above as follows:

L
[
right-translation (uf)

]
= (exp)

(
L[f ]

)
,

L
[
(exp) (f)

]
= translation

(
L[f ]

)
.

(b) Denoting F (s) = L[f(t)], then

L[u(t− c)f(t− c)] = e−cs F (s) ,

L[ectf(t)] = F (s− c) .

(c) The inverse form of Eqs. (4.3.1)-(4.3.2) is

L−1[e−cs F (s)] = u(t− c)f(t− c) ,

L−1[F (s− c)] = ectf(t) .
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Example 4.3.11: Find the function f such that L[f(t)] = e−4s

s2 + 5
.

Solution: Notice that

L[f(t)] = e−4s 1

s2 + 5
⇒ L[f(t)] = 1√

5
e−4s

√
5

s2 +
!√

5
"2 .

Recall that L[sin(at)] = a

(s2 + a2)
, then

L[f(t)] = 1√
5
e−4s L[sin(

√
5t)].

But the translation identity e−cs L[f(t)] = L[u(t− c)f(t− c)] implies

L[f(t)] = 1√
5
L
#
u(t− 4) sin

!√
5 (t− 4)

"$
⇒ f(t) =

1√
5
u(t− 4) sin

!√
5 (t− 4)

"
.

⊳

Example 4.3.12: Find the function f(t) such that L[f(t)] = (s− 1)

(s− 2)2 + 3
.

Solution: We first rewrite the right-hand side above as follows,

L[f(t)] = (s− 1− 1 + 1)

(s− 2)2 + 3

=
(s− 2)

(s− 2)2 + 3
+

1

(s− 2)2 + 3

=
(s− 2)

(s− 2)2 +
!√

3
"2 +

1√
3

√
3

(s− 2)2 +
!√

3
"2 ,

= L[cos(
√
3 t)](s− 2) +

1√
3
L[sin(

√
3 t)](s− 2).

But the translation identity L[f(t)](s− c) = L[ectf(t)] implies

L[f(t)] = L
#
e2t cos

!√
3 t

"$
+

1√
3
,L

#
e2t sin

!√
3 t

"$
.

So, we conclude that

f(t) =
e2t√
3

%√
3 cos

!√
3 t

"
+ sin

!√
3 t

"&
.

⊳
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4.3.4. Solving Differential Equations.

Example 4.3.16: Use the LT to find the solution to the initial IVP

y′′ + y′ +
5

4
y = b(t), y(0) = 0, y′(0) = 0, b(t) =

!
1 0 ! t < π
0 t " π.

(4.3.3)

Solution: The source function b can be written as b(t) = u(t)−u(t−π). The last expression

for b is particularly useful to find its Laplace Transform,

L[b(t)] = L[u(t)]− L[u(t− π)] =
1

s
+ e−πs 1

s
⇒ L[b(t)] = (1− e−πs)

1

s
.

Now Laplace Transform the whole equation,

L[y′′] + L[y′] + 5

4
L[y] = L[b].

Since the initial condition are y(0) = 0 and y′(0) = 0, we obtain

"
s2 + s+

5

4

#
L[y] =

$
1− e−πs

% 1
s

⇒ L[y] =
$
1− e−πs

% 1

s
"
s2 + s+ 5

4

# .

Introduce the function

H(s) =
1

s
"
s2 + s+ 5

4

# ⇒ y(t) = L−1[H(s)]− L−1[e−πs H(s)].

We use partial fractions to simplify H. We first find the roots of the denominator,

s2 + s+
5

4
= 0 ⇒ s± =

1

2

&
−1±

√
1− 5

'
,

so the roots are complex valued. An appropriate partial fraction decomposition is

H(s) =
1

s
$
s2 + s+ 5

4

% =
a

s
+

(bs+ c)$
s2 + s+ 5

4

%

Therefore, we get

1 = a
"
s2 + s+

5

4

#
+ s (bs+ c) = (a+ b) s2 + (a+ c) s+

5

4
a.

This equation implies that a, b, and c, satisfy the equations

a+ b = 0, a+ c = 0,
5

4
a = 1.
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The solution is, a =
4

5
, b = −4

5
, c = −4

5
. Hence, we have found that,

H(s) =
1!

s2 + s+ 5
4

"
s
=

4

5

#1
s
− (s+ 1)

$
s2 + s+ 5

4

"
%

Complete the square in the denominator,

s2 + s+
5

4
=

#
s2 + 2

!1
2

"
s+

1

4

%
− 1

4
+

5

4
=

!
s+

1

2

"2

+ 1.

Replace this expression in the definition of H, that is,

H(s) =
4

5

#1
s
− (s+ 1)

&$
s+ 1

2

'2
+ 1

(
%

Rewrite the polynomial in the numerator,

(s+ 1) =
!
s+

1

2
+

1

2

"
=

!
s+

1

2

"
+

1

2
,

hence we get

H(s) =
4

5

#1
s
−

!
s+ 1

2

"

&$
s+ 1

2

'2
+ 1

( − 1

2

1
&$
s+ 1

2

'2
+ 1

(
%
.

Use the Laplace Transform table to get H(s) equal to

H(s) =
4

5

#
L[1]− L

&
e−t/2 cos(t)

(
− 1

2
L[e−t/2 sin(t)]

%
,

equivalently

H(s) = L
#4
5

!
1− e−t/2 cos(t)− 1

2
e−t/2 sin(t)

"%
.

Denote

h(t) =
4

5

#
1− e−t/2 cos(t)− 1

2
e−t/2 sin(t)

%
. ⇒ H(s) = L[h(t)].

Recalling L[y(t)] = H(s) + e−πs H(s), we obtain L[y(t)] = L[h(t)] + e−πs L[h(t)], that is,

y(t) = h(t) + u(t− π)h(t− π).

⊳
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Example 4.3.17: Use the LT to find the solution to the IVP

y′′ + y′ +
5

4
y = g(t), y(0) = 0, y′(0) = 0, g(t) =

!
sin(t) 0 ! t < π
0 t " π.

(4.3.4)

Solution: Rewrite the source function g using step functions, as follows,

g(t) =
"
u(t)− u(t− π)

#
sin(t),

since u(t) − u(t − π) is a box function, taking value one in the interval [0,π] and zero on

the complement. Finally, notice that the equation sin(t) = − sin(t − π) implies that the

function g can be expressed as follows,

g(t) = u(t) sin(t)− u(t− π) sin(t) ⇒ g(t) = u(t) sin(t) + u(t− π) sin(t− π).

The last expression for g is particularly useful to find its Laplace Transform,

L[g(t)] = 1

(s2 + 1)
+ e−πs 1

(s2 + 1)
.

With this last transform is not difficult to solve the differential equation. As usual, Laplace

Transform the whole equation,

L[y′′] + L[y′] + 5

4
L[y] = L[g].

Since the initial condition are y(0) = 0 and y′(0) = 0, we obtain

$
s2 + s+

5

4

%
L[y] =

&
1 + e−πs

' 1

(s2 + 1)
⇒ L[y] =

&
1 + e−πs

' 1$
s2 + s+ 5

4

%
(s2 + 1)

.

Introduce the function

H(s) =
1$

s2 + s+ 5
4

%
(s2 + 1)

⇒ y(t) = L−1[H(s)] + L−1[e−πs H(s)].

That is, we only need to find the Inverse Laplace Transform of H. We use partial fractions

to simplify the expression of H. We first find out whether the denominator has real or

complex roots:

s2 + s+
5

4
= 0 ⇒ s± =

1

2

"
−1±

√
1− 5

#
,
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so the roots are complex valued. An appropriate partial fraction decomposition is

H(s) =
1!

s2 + s+ 5
4

"
(s2 + 1)

=
(as+ b)!

s2 + s+ 5
4

" +
(cs+ d)

(s2 + 1)
.

Therefore, we get

1 = (as+ b)(s2 + 1) + (cs+ d)
#
s2 + s+

5

4

$
,

equivalently,

1 = (a+ c) s3 + (b+ c+ d) s2 +
#
a+

5

4
c+ d

$
s+

#
b+

5

4
d
$
.

This equation implies that a, b, c, and d, are solutions of

a+ c = 0, b+ c+ d = 0, a+
5

4
c+ d = 0, b+

5

4
d = 1.

Here is the solution to this system:

a =
16

17
, b =

12

17
, c = −16

17
, d =

4

17
.

We have found that,

H(s) =
4

17

% (4s+ 3)!
s2 + s+ 5

4

" +
(−4s+ 1)

(s2 + 1)

&
.

Complete the square in the denominator,

s2 + s+
5

4
=

%
s2 + 2

#1
2

$
s+

1

4

&
− 1

4
+

5

4
=

#
s+

1

2

$2

+ 1.

H(s) =
4

17

% (4s+ 3)
'!
s+ 1

2

"2
+ 1

( +
(−4s+ 1)

(s2 + 1)

&
.

Rewrite the polynomial in the numerator,

(4s+ 3) = 4
#
s+

1

2
− 1

2

$
+ 3 = 4

#
s+

1

2

$
+ 1,

hence we get

H(s) =
4

17

%
4

!
s+ 1

2

"
'!
s+ 1

2

"2
+ 1

( +
1

'!
s+ 1

2

"2
+ 1

( − 4
s

(s2 + 1)
+

1

(s2 + 1)

&
.
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Use the Laplace Transform Table in ?? to get H(s) equal to

H(s) =
4

17

!
4L

"
e−t/2 cos(t)

#
+ L

"
e−t/2 sin(t)

#
− 4L[cos(t)] + L[sin(t)]

$
,

equivalently

H(s) = L
! 4

17

%
4e−t/2 cos(t) + e−t/2 sin(t)− 4 cos(t) + sin(t)

&$
.

Denote

h(t) =
4

17

!
4e−t/2 cos(t) + e−t/2 sin(t)− 4 cos(t) + sin(t)

$
⇒ H(s) = L[h(t)].

Recalling L[y(t)] = H(s) + e−πs H(s), we obtain L[y(t)] = L[h(t)] + e−πs L[h(t)], that is,

y(t) = h(t) + u(t− π)h(t− π).

⊳


