Section	Objective	(\mathbf{s})):
---------	-----------	----------------	----

- Overview of the LT Method.
- Homogeneous IVP.
- Non-Homogeneous IVP.
- Higher Order IVP.

4.2.1. Overview of the LT Method.

Overview: The Laplace transform (LT) can be used to solve differential equations:

$C \mid$	rential eq. (1)	L) →	Algebraic eq. for $\mathcal{L}[y(t)]$.	$\xrightarrow{(2)}$	Solve the algebraic eq. for $\mathcal{L}[y(t)]$.	$\stackrel{(3)}{\longrightarrow}$	Transform back to obtain $y(t)$. (Use the table.)
-	-				$\mathcal{L}[g(\iota)].$		(Ose the table.)

When the LT Method works:

- (a) The LT method works with ______ equations only.
- (b) The LT method works with ______ sources and ______ sources.

Why the LT Method works: Because it satisfies the One-to-One Property.

The One-to-One Property: When we Laplace transform the differential equation and solve for $\mathcal{L}[y]$ we get an expression of the form

We then used a Laplace transform table to find a function ______ such that

So we arrive to an equation of the form

Does the expression above imply that y(t) = h(t)? The answer is .

Theorem 4.2.1. (One-to-One) If f, g are continuous on $[0, \infty)$ and bounded by an exponential, then

4.2.2. Homogeneous IVP.

EXAMPLE 4.2.2: Use the Laplace transform to find the solution y to the initial value problem

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

SOLUTION:

3

4.2.3. Non-Homogeneous IVP.

EXAMPLE 4.2.4: Use the Laplace transform to find the solution y to the initial value problem

$$y'' - 4y' + 4y = 3e^t$$
, $y(0) = 0$, $y'(0) = 0$.

SOLUTION:

5

 \triangleleft

4.2.4. Higher Order IVP.

EXAMPLE 4.2.6: Use the Laplace transform to find the solution y to the initial value problem

$$y^{(4)} - 4y = 0,$$
 $y^{(0)} = 1,$ $y'(0) = 0,$
 $y''(0) = -2,$ $y'''(0) = 0.$

SOLUTION: