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4.2. The Initial Value Problem

Section Objective(s):

• Overview of the LT Method.
• Homogeneous IVP.
• Non-Homogeneous IVP.
• Higher Order IVP.

4.2.1. Overview of the LT Method.

Overview: The Laplace transform (LT) can be used to solve differential equations:

L
!
differential eq.

for y(t).

"
(1)−→

Algebraic eq.

for L[y(t)].
(2)−→

Solve the

algebraic eq.

for L[y(t)].

(3)−→
Transform back

to obtain y(t).

(Use the table.)

When the LT Method works:

(a) The LT method works with constant coefficients equations only.

(b) The LT method works with discontinuous sources

and Dirac’s deltas sources.

Why the LT Method works: Because it satisfies the One-to-One Property.

The One-to-One Property: When we Laplace transform the differential equation and
solve for L[y] we get an expression of the form

L[y(t)] = H(s) ,

We then used a Laplace transform table to find a function h such that

L[h(t)] = H(s) .

So we arrive to an equation of the form

L[y(t)] = L[h(t)] .

Does the expression above imply that y(t) = h(t)? The answer is “yes” .

Theorem 4.2.1. (One-to-One) If f , g are continuous on [0,∞) and bounded by an
exponential, then

L[f ] = L[g] ⇒ f = g .
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4.2.2. Homogeneous IVP.

Example 4.2.2: Use the Laplace transform to find the solution y to the initial value
problem

y′′ − y′ − 2y = 0, y(0) = 1, y′(0) = 0.

Solution: First, compute the Laplace transform of the differential equation,

L[y′′ − y′ − 2y] = L[0] = 0.

The Laplace transform is a linear operation,

L[y′′]− L[y′]− 2L[y] = 0.

We know that the LT relates derivatives to multiplications,

[
s2 L[y]− s y(0)− y′(0)

]
−
[
sL[y]− y(0)

]
− 2L[y] = 0,

which is equivalent to the equation

(s2 − s− 2)L[y] = (s− 1) y(0) + y′(0).

The differential equation for y is now an algebraic equation for L[y]. The initial condition,

(s2 − s− 2)L[y] = (s− 1).

Solve for the unknown L[y] as follows,

L[y] = (s− 1)

(s2 − s− 2)
.

The function on the right-hand side above does not appear in our LT Table, so we use

partial fractions to simplify it. First find the roots of the polynomial in the denominator,

s2 − s− 2 = 0 ⇒ s± =
1

2

[
1±

√
1 + 8

]
⇒

⎧
⎪⎨

⎪⎩

s+ = 2,

s− = −1,

that is, the polynomial has two real roots. In this case we factorize the denominator,

L[y] = (s− 1)

(s− 2)(s+ 1)
.
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The partial fraction decomposition of the right-hand side in the equation above is the

following: Find constants a and b such that

(s− 1)

(s− 2)(s+ 1)
=

a

s− 2
+

b

s+ 1
.

A simple calculation shows

(s− 1)

(s− 2)(s+ 1)
=

a

s− 2
+

b

s+ 1
=

a (s+ 1) + b (s− 2)

(s− 2)(s+ 1)
.

Hence constants a and b must be solutions of the equations

(s− 1) = a (s+ 1) + b (s− 2)

Evaluate the equation above at s = 2 and s = −1. We get

If s = 2 ⇒ (2− 1) = a (2 + 1) + 0 ⇒ a =
1

3
,

If s = −1 ⇒ (−1− 1) = 0 + b (−1− 2) ⇒ a =
2

3
.

Hence,

L[y] = 1

3

1

(s− 2)
+

2

3

1

(s+ 1)
.

From the list of Laplace transforms given in § 4.1, Table ??, we know that

L[eat] = 1

s− a
⇒ 1

s− 2
= L[e2t], 1

s+ 1
= L[e−t].

So we arrive at the equation

L[y] = 1

3
L[e2t] + 2

3
L[e−t] = L

!1
3

"
e2t + 2e−t

#$

We conclude that

y(t) =
1

3

"
e2t + 2e−t

#
.

⊳
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4.2.3. Non-Homogeneous IVP.

Example 4.2.4: Use the Laplace transform to find the solution y to the initial value
problem

y′′ − 4y′ + 4y = 3 et, y(0) = 0, y′(0) = 0.

Solution: First, compute the Laplace transform of the differential equation,

L[y′′ − 4y′ + 4y] = L[3 et] = 3
! 1

s− 1

"
.

The Laplace transform is a linear operation,

L[y′′]− 4L[y′] + 4L[y] = 3

s− 1
.

The Laplace transform relates derivatives with multiplication,

#
s2 L[y]− s y(0)− y′(0)

$
− 4

#
sL[y]− y(0)

$
+ 4L[y] = 3

s− 1
,

But the initial conditions are y(0) = 0 and y′(0) = 0, so

(s2 − 4s+ 4)L[y] = 3

s− 1
.

Solve the algebraic equation for L[y],

L[y] = 3

(s− 1)(s2 − 4s+ 4)
.

We use partial fractions to simplify the right-hand side above. We start finding the roots

of the polynomial in the denominator,

s2 − 4s+ 4 = 0 ⇒ s± =
1

2

%
4±

√
16− 16

&
⇒ s+ = s− = 2.

that is, the polynomial has a single real root, so L[y] can be written as

L[y] = 3

(s− 1)(s− 2)2
.

The partial fraction decomposition of the righthand side above is

3

(s− 1)(s− 2)2
=

a

(s− 1)
+

b s+ c

(s− 2)2
=

a (s− 2)2 + (b s+ c)(s− 1)

(s− 1)(s− 2)2
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From the far right and left expressions above we get

3 = a (s− 2)2 + (b s+ c)(s− 1) = a (s2 − 4s+ 4) + b s2 − b s+ c s− c

Expanding all terms above, and reordering terms, we get

(a+ b) s2 + (−4a− b+ c) s+ (4a− c− 3) = 0.

Since this polynomial in s vanishes for all s ∈ R, we get that

a+ b = 0,

−4a− b+ c = 0,

4a− c− 3 = 0.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a = 3

b = −3

c = 9.

So we get

L[y] = 3

(s− 1)(s− 2)2
=

3

s− 1
+

−3s+ 9

(s− 2)2

One last trick is needed on the last term above,

−3s+ 9

(s− 2)2
=

−3(s− 2 + 2) + 9

(s− 2)2
=

−3(s− 2)

(s− 2)2
+

−6 + 9

(s− 2)2
= − 3

(s− 2)
+

3

(s− 2)2
.

So we finally get

L[y] = 3

s− 1
− 3

(s− 2)
+

3

(s− 2)2
.

From our Laplace transforms Table we know that

L[eat] = 1

s− a
⇒ 1

s− 2
= L[e2t],

L[teat] = 1

(s− a)2
⇒ 1

(s− 2)2
= L[te2t].

So we arrive at the formula

L[y] = 3L[et]− 3L[e2t] + 3L[te2t] = L
[
3(et − e2t − te2t)

]

So we conclude that y(t) = 3(et − e2t − te2t). ⊳
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4.2.4. Higher Order IVP.

Example 4.2.6: Use the Laplace transform to find the solution y to the initial value
problem

y(4) − 4y = 0,
y(0) = 1, y′(0) = 0,

y′′(0) = −2, y′′′(0) = 0.

Solution: Compute the Laplace transform of the differential equation,

L[y(4) − 4y] = L[0] = 0.

The Laplace transform is a linear operation,

L[y(4)]− 4L[y] = 0,

and the Laplace transform relates derivatives with multiplications,

!
s4 L[y]− s3 y(0)− s2 y′(0)− s y′′(0)− y′′′(0)

"
− 4L[y] = 0.

From the initial conditions we get

!
s4 L[y]−s3−0+2s−0

"
−4L[y] = 0 ⇒ (s4−4)L[y] = s3−2s ⇒ L[y] = (s3 − 2s)

(s4 − 4)
.

In this case we are lucky, because

L[y] = s(s2 − 2)

(s2 − 2)(s2 + 2)
=

s

(s2 + 2)
.

Since

L[cos(at)] = s

s2 + a2
,

we get that

L[y] = L[cos(
√
2t)] ⇒ y(t) = cos(

√
2t).

⊳


