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4.1. Introduction to the Laplace Transform

Section Objective(s):

• Overview of the Method.
• The Laplace Transform.
• Main Properties.
• Solving a Differential Equation.

4.1.1. Overview of the Method.

Remark: The Laplace transform (LT) is a transformation: It changes a function into

another function .

Example :

LT transforms f(x) = sin(ax) into F (x) =
a

x2 + a2
.

Convention variable → t into variable → s.

So LT transforms f(t) = sin(at) into F (s) =
a

s2 + a2
.

⊳

Remark: Properties of the Laplace transform:

(a) The LT is a linear transformation .

(b) The LT transforms derivatives into multiplications .

Remark: The Laplace transform (L) can be used to solve differential equations.

L
!
differential

eq. for y(t).

"
(1)−→

Algebraic

eq. for L[y(t)].
(2)−→

Solve the

algebraic

eq. for L[y(t)].

(3)−→
Transform back

to obtain y(t).

(Use the table.)
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4.2.2. The Laplace Transform.

Definition 4.1.1. The Laplace transform of a function f on Df = [0,∞) is

F (s) =

! ∞

0

e−stf(t) dt ,

defined for all s ∈ DF ⊂ R where the integral converges .

Remarks:

(a) Transformation notations for the Laplace transform: L[f ] = F .

L[ ] =

! ∞

0

e−st ( ) dt .

(b) Recall the definition of improper integrals:

! ∞

0

g(t) dt = lim
N→∞

! N

0

g(t) dt .

Example 4.1.2: Compute L[eat], where a ∈ R.

Solution: We start with the definition of the Laplace transform,

L[eat] =
! ∞

0

e−st(eat) dt

=

! ∞

0

e−(s−a)t dt
(s=a)⇒

! ∞

0

1 dt = ∞,

= lim
N→∞

! N

0

e−(s−a)t dt, s ∕= a,

= lim
N→∞

" (−1)

(s− a)
e−(s−a)t

###
N

0

$

= lim
N→∞

" (−1)

(s− a)
(e−(s−a)N − 1)

$
.

Now we have to remaining cases. The first case is:

s− a < 0 ⇒ −(s− a) > 0 ⇒ −(s− a)N > 0 ⇒ lim
N→∞

e−(s−a)N = ∞,

so the integral diverges for s < a. The other case is:

s− a > 0 ⇒ −(s− a) < 0 ⇒ −(s− a)N < 0 ⇒ lim
N→∞

e−(s−a)N = 0,
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so the integral converges only for s > a and the Laplace transform is given by

L[eat] = 1

(s− a)
, s > a.

⊳
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Example 4.1.4: Compute L[sin(at)], where a ∈ R.

Solution: In this case we need to compute

L[sin(at)] =
! ∞

0

e−st sin(at) dt

= lim
N→∞

! N

0

e−st sin(at) dt

The definite integral above can be computed integrating by parts twice,

! N

0

e−st sin(at) dt = −1

s

"
e−st sin(at)

#$$$
N

0

− a

s2
"
e−st cos(at)

#$$$
N

0

− a2

s2

! N

0

e−st sin(at) dt,

which implies that

%
1 +

a2

s2

&! N

0

e−st sin(at) dt = −1

s

"
e−st sin(at)

#$$$
N

0

− a

s2
"
e−st cos(at)

#$$$
N

0

.

then we get

! N

0

e−st sin(at) dt =
s2

(s2 + a2)

'
−1

s

"
e−st sin(at)

#$$$
N

0

− a

s2
"
e−st cos(at)

#$$$
N

0

(
.

and finally we get

! N

0

e−st sin(at) dt =
s2

(s2 + a2)

'
−1

s

"
e−sN sin(aN)− 0

#
− a

s2
"
e−sN cos(aN)− 1

#(
.

One can check that the limit N → ∞ on the right hand side above does not exist for s ! 0,

so L[sin(at)] does not exist for s ! 0. In the case s > 0 it is not difficult to see that

! ∞

0

e−st sin(at) dt =
% s2

s2 + a2

&'1
s
(0− 0)− a

s2
(0− 1)

(

so we obtain the final result

L[sin(at)] = a

s2 + a2
, s > 0.
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⊳
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In Table 2 we present a short list of Laplace transforms. They can be computed in the
same way we computed the the Laplace transforms in the examples above.

f(t) F (s) = L[f(t)] DF

f(t) = 1 F (s) =
1

s
s > 0

f(t) = eat F (s) =
1

(s− a)
s > a

f(t) = tn F (s) =
n!

s(n+1)
s > 0

f(t) = sin(at) F (s) =
a

s2 + a2
s > 0

f(t) = cos(at) F (s) =
s

s2 + a2
s > 0

f(t) = sinh(at) F (s) =
a

s2 − a2
s > |a|

f(t) = cosh(at) F (s) =
s

s2 − a2
s > |a|

f(t) = tneat F (s) =
n!

(s− a)(n+1)
s > a

f(t) = eat sin(bt) F (s) =
b

(s− a)2 + b2
s > a

f(t) = eat cos(bt) F (s) =
(s− a)

(s− a)2 + b2
s > a

f(t) = eat sinh(bt) F (s) =
b

(s− a)2 − b2
s− a > |b|

f(t) = eat cosh(bt) F (s) =
(s− a)

(s− a)2 − b2
s− a > |b|

Table 2. The Laplace transform of a few functions.
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4.1.3. Main Properties.

Remark: We summarize three main properties of the Laplace transform.

Theorem 4.1.3. (Convergence of LT) If f on [0,∞) is piecewise continuous and
bounded by an exponential, that is, there is k, a > 0 such that

|f(t)| ! k eat ,

then the L[f ] exists on s ∈ (a,∞) .

Remark: An example of a function that is not bounded by an exponential is

f(t) = et
2

.

Theorem 4.1.4. (Linearity) If L[f ] and L[g] exist, then for all a, b ∈ R holds

L[af + bg] = aL[f ] + bL[g] .

Theorem 4.1.5. (Derivative into Multiplication) If a function f is continuously dif-
ferentiable on [0,∞) and |f(t)| ! k eat, then L[f ′] exists for s > a and

L[f ′] = sL[f ]− f(0), s > a .

Exercise: Use the formula above to compute the LT of higher derivatives,

L[f ′′] = s2 L[f ]− s f(0)− f ′(0) .

...

L[f (n)] = sn L[f ]− s(n−1) f(0)− · · ·− f (n−1)(0) .

Proof of Theorem 4.1.5: The main calculation in this proof is to compute

L[f ′] = lim
N→∞

! N

0

e−st f ′(t) dt.

We start computing the definite integral above. Since f ′ is continuous on [0,∞), that definite

integral exists for all positive N , and we can integrate by parts,

! N

0

e−stf ′(t) dt =
"#

e−stf(t)
$%%%

N

0

−
! N

0

(−s)e−stf(t) dt
&

= e−sNf(N)− f(0) + s

! N

0

e−stf(t) dt.
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We now compute the limit of this expression above as N → ∞.

L[f ′] = lim
N→∞

e−sNf(N)− f(0) + s lim
N→∞

! N

0

e−stf(t) dt.

But f is continuous on [0,∞) and bounded by an exponential, so

lim
N→∞

! N

0

e−stf(t) dt = L[f ], s > s0.

so we get

L[f ′] = lim
N→∞

e−sNf(N)− f(0) + sL[f ].

To see what is the limit in the first term on the right-hand side above, recall that

−|f(N)| ! f(N) ! |f(N)| ⇒ −e−sN |f(N)| ! e−sN f(N) ! e−sN |f(N)|.

Now, let us use one more time that f is bounded by an exponential,

|f(N)| ! k eaN ⇒ −|f(N)| " −k eaN .

Combining these inequalities with the previous ones,

−k e−sN eaN ! −e−sN |f(N)| ! e−sN f(N) ! e−sN |f(N)| ! k e−sN eaN .

The far left, middle, and far right inequalities say that

−k e−(s−a)N ! e−sN f(N) ! k e−(s−a)N .

But for s > a we have that lim
N→∞

e−(s−a)N = 0, hence lim
N→∞

e−sN f(N) = 0. Therefore,

L[f ′] = sL[f ]− f(0), s > a.

This establishes the Theorem.

□
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4.1.4. Solving a Differential Equation.

Remark: The Laplace transform (L) can be used to solve differential equations.

L
!
differential

eq. for y(t).

"
(1)−→

Algebraic

eq. for L[y(t)].
(2)−→

Solve the

algebraic

eq. for L[y(t)].

(3)−→
Transform back

to obtain y(t).

(Use the table.)

Example 4.1.8: Use the Laplace transform to find y solution of

y′′ + 9 y = 0, y(0) = y0, y′(0) = y1.

Remark: We know what the solution of this problem is.

Following Section 2.3 we need to find the roots of

p(r) = r2 + 9 ⇒ r+- = ±3 i,

and then we get the general solution

ygen(t) = c+ cos(3t) + c- sin(3t).

Then the initial condition will say that

y(t) = y0 cos(3t) +
y1
3

sin(3t).

We now solve this problem using the Laplace transform method.

Solution: We now use the Laplace transform method:

L[y′′ + 9y] = L[0] = 0.

The LT is a linear transformation,

L[y′′] + 9L[y] = 0.

But the LT converts derivatives into multiplications,

s2 L[y]− s y(0)− y′(0) + 9L[y] = 0.
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This is an algebraic equation for L[y]. It can be solved by rearranging terms and using the

initial condition,

(s2 + 9)L[y] = s y0 + y1 ⇒ L[y] = y0
s

(s2 + 9)
+ y1

1

(s2 + 9)
.

But from the Laplace transform table we see that

L[cos(3t)] = s

s2 + 32
, L[sin(3t)] = 3

s2 + 32
,

therefore,

L[y] = y0 L[cos(3t)] + y1
1

3
L[sin(3t)].

Once again, the LT is a linear transformation,

L[y] = L
!
y0 cos(3t) +

y1
3

sin(3t)
"
.

We obtain that

y(t) = y0 cos(3t) +
y1
3

sin(3t).

⊳


