4.1. INTRODUCTION TO THE LAPLACE TRANSFORM

Section Objective(s):

- Overview of the Method.
- The Laplace Transform.
- Main Properties.
- Solving a Differential Equation.

4.1.1. Overview of the Method.

Remark: The Laplace transform (LT) is a transformation: It changes a function into

EXAMPLE:

LT transforms		into	
Convention	variable $\rightarrow t$	into	variable $\rightarrow s$.
So LT transforms		into	
			<
Remark: Properties of the	e Laplace transform:		
(a) The LT is a			
(b) The LT transforms	i	nto	

Remark: The Laplace transform (\mathcal{L}) can be used to solve differential equations.

$$\mathcal{L}\begin{bmatrix} \hline \\ eq. \text{ for } y(t). \end{bmatrix} \xrightarrow{(1)} eq. \text{ for } \mathcal{L}[y(t)]. \xrightarrow{(2)} eq. \text{ for } \mathcal{L}[y(t)]. \xrightarrow{(2)} eq. \text{ for } \mathcal{L}[y(t)]. \xrightarrow{(3)} to obtain y(t).$$
(Use the table.)

4.2.2. The Laplace Transform.

Definition 4.1.1. The *Laplace transform* of a function f on $D_f = [0, \infty)$ is , defined for all $s \in D_F \subset \mathbb{R}$ where the ______.

Remarks:

- (a) Transformation notations for the Laplace transform: ______.
- (b) Recall the definition of improper integrals:

$$\int_0^\infty g(t) \, dt = \underline{\qquad}.$$

•

EXAMPLE 4.1.2: Compute $\mathcal{L}[e^{at}]$, where $a \in \mathbb{R}$.

SOLUTION:

 \lhd

EXAMPLE 4.1.4: Compute $\mathcal{L}[\sin(at)]$, where $a \in \mathbb{R}$.

SOLUTION:

 \triangleleft

f(t)	$F(s) = \mathcal{L}[f(t)]$	D_F
f(t) = 1	$F(s) = \frac{1}{s}$	s > 0
$f(t) = e^{at}$	$F(s) = \frac{1}{(s-a)}$	s > a
$f(t) = t^n$	$F(s) = \frac{n!}{s^{(n+1)}}$	s > 0
$f(t) = \sin(at)$	$F(s) = \frac{a}{s^2 + a^2}$	s > 0
$f(t) = \cos(at)$	$F(s) = \frac{s}{s^2 + a^2}$	s > 0
$f(t) = \sinh(at)$	$F(s) = \frac{a}{s^2 - a^2}$	s > a
$f(t) = \cosh(at)$	$F(s) = \frac{s}{s^2 - a^2}$	s > a
$f(t) = t^n e^{at}$	$F(s) = \frac{n!}{(s-a)^{(n+1)}}$	s > a
$f(t) = e^{at}\sin(bt)$	$F(s) = \frac{b}{(s-a)^2 + b^2}$	s > a
$f(t) = e^{at}\cos(bt)$	$F(s) = \frac{(s-a)}{(s-a)^2 + b^2}$	s > a
$f(t) = e^{at}\sinh(bt)$	$F(s) = \frac{b}{(s-a)^2 - b^2}$	s-a > b
$f(t) = e^{at}\cosh(bt)$	$F(s) = \frac{(s-a)}{(s-a)^2 - b^2}$	s-a > b

In Table 2 we present a short list of Laplace transforms. They can be computed in the same way we computed the the Laplace transforms in the examples above.

TABLE 2. The Laplace transform of a few functions.

4.1.3. Main Properties.

Remark: We summarize three main properties of the Laplace transform.

Theorem 4.1.3. (Convergence of LT) If f on $[0,\infty)$ is piecewise continuous and bounded by an exponential, that is, there is k, a > 0 such that

 then

Remark: An example of a function that is not bounded by an exponential is

Theorem 4.1.4. (Linearity) If $\mathcal{L}[f]$ and $\mathcal{L}[g]$ exist, then for all $a, b \in \mathbb{R}$ holds

Theorem 4.1.5. (Derivative into Multiplication) If a function f is continuously differentiable on $[0, \infty)$ and $|f(t)| \leq k e^{at}$, then $\mathcal{L}[f']$ exists for s > a and

Exercise: Use the formula above to compute the LT of higher derivatives,

$$\mathcal{L}[f''] = _$$

 $\mathcal{L}[f^{(n)}] =$

Proof of Theorem 4.1.5:

4.1.4. Solving a Differential Equation.

Remark: The Laplace transform (\mathcal{L}) can be used to solve differential equations.

$$\mathcal{L}\begin{bmatrix} \hline \\ eq. \text{ for } y(t). \end{bmatrix} \xrightarrow{(1)} eq. \text{ for } \mathcal{L}[y(t)]. \xrightarrow{(2)} eq. \text{ for } \mathcal{L}[y(t)]. \xrightarrow{(2)} eq. \text{ for } \mathcal{L}[y(t)]. \xrightarrow{(3)} to obtain y(t).$$
(Use the table.)

EXAMPLE 4.1.8: Use the Laplace transform to find y solution of

$$y'' + 9 y = 0,$$
 $y(0) = y_0,$ $y'(0) = y_1.$

Remark: We know what the solution of this problem is.

SOLUTION: