
1

2.6. Applications

Section Objective(s):

• Review and Overview of Names Used in Physics.
• Undamped Mechanical Oscillations.
• Damped Mechanical Oscillations.

2.6.1. Review and Overview of Names Used in Physics.

Review: To find fundamental solutions to constant coefficient homogeneous equations

y′′ + a1 y
′ + a0 y = 0, a1, a2 ∈ R. (2.6.1)

one needs to find the roots or the characteristic polynomial p(r) = r2 + a1r+ a0, which are

r± = −a1

2
± 1

2

!
a21 − 4a0 .

We then have three different cases to consider.

(a) A system is critically damped iff r+- ∈ R and r- < r+ < 0. A set
of fundamental solutions is formed by the decreasing exponentials,

y1(t) = er+t, y2(t) = er-t .

(b) A system is critically damped iff r+- ∈ R and r- = r+ = r0 < 0.
A set of fundamental solutions is

y1(t) = e−a1t/2, y2(t) = t e−a1t/2 .
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(c) A system is under damped iff r+- = α ± iβ ∈ C and α < 0. A set of
fundamental solutions is

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt) .

(d) A system is undamped iff r+- = α±iβ ∈ C and α = 0. A set of fundamental
solutions is

y1(t) = cos(βt), y2(t) = sin(βt) .
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2.6.2. Undamped mechanical oscillations.

Problem Describe the movement of a body attached to a spring oscillating in a region
where the spring does not deform in a permanent way.

Definition 2.6.1. A spring is an object that when deformed by

an amount ∆l creates a force Fs = −k∆l , with k > 0.

Remark: The negative sign in the spring force means that force Fs and the displacement

∆l are on opposite directions .

y

∆l
0

m

y(t)
m

Theorem 2.6.2. (Static Equilibrium) A spring with spring constant k, an attached
body mass m, at rest with a spring deformation ∆l, satisfies

mg = k∆l .

Proof of Theorem 2.6.2: Since the spring is at rest, all forces acting on the body must

add up to zero. The only two forces acting on the body are its weight, Fg = mg, and the

force done by the spring, Fs0 = −k∆l. So,

Fg + Fs0 = 0 ⇒ mg = k∆l.

This establishes the Theorem. □

Remark: It is possible to compute the spring constant k by measuring the displacement
∆l and knowing the body mass m.

k =
mg

∆l
.
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Theorem 2.6.3. (Movement without Drag) The vertical movement of a spring and a
body in the air with spring constant k > 0 and body mass m > 0 is described by

my′′ + k y = 0 ,

where y is the vertical displacement function. Furthermore, there is a unique solution
to equation above satisfying the initial conditions y(0) = y0 and y′(0) = v0,

y(t) = A cos(ω0t− φ) ,

with angular natural frequency ω0 =

!
k

m
,

where the amplitude A ! 0 and phase-shift

φ ∈ (−π,π] , are fixed by the initial conditions y(0) = y0 and y′(0) = v0,

A =

"

y20 +
v20
ω2
0

, φ = arctan
# v0
ω0y0

$
.

Remark: Here ω0 is the natural angular frequency. The natural frequency is ν0 =
ω0

2π
, and

the natural period is T =
2π

ω0

.

Proof of Theorem 2.6.3: Newton’s second law of motion is

my′′(t) = Fg + Fs(t),

where Fs(t) = −k (∆l + y) is the force done by the spring due to the total displacement

∆l + y, and Fg = mg. Recall that mg − k∆l = 0, hence the body displacement from the

equilibrium position, y, must be solution of the differential equation

my′′(t) + k y(t) = 0.

The characteristic polynomial is p(r) = mr2 + k, which has complex roots r± = ±ω2
0 i,

where we introduced the angular or circular frequency of the system,

ω0 =

!
k

m
.
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Therefore, the general solution to equation above is

ygen(t) = c1 cos(ω0t) + c2 sin(ω0t).

We need to rewrite it as

ygen(t) = A cos(ω0t− φ).

These two expressions for ygen are equivalent because of the trigonometric identity

A cos(ω0t− φ) = A cos(ω0t) cos(φ) +A sin(ω0t) sin(φ),

which holds for all A and φ, and ω0t. Then, it is not difficult to see that

c1 = A cos(φ),

c2 = A sin(φ).

⎫
⎪⎬

⎪⎭
⇔

⎧
⎪⎨

⎪⎩

A =
√
c21 + c22 ,

φ = arctan
(c2
c1

)
.

Since both expressions for the general solution are equivalent, we use the second one, in

terms of the amplitude and phase-shift. The initial conditions y(0) = y0 and y′(0) = ŷ0

determine the constants A and φ. Indeed,

y0 = y(0) = A cos(φ),

ŷ0 = y′(0) = Aω0 sin(φ).

⎫
⎪⎬

⎪⎭
⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A =

√

y20 +
ŷ20
ω2
0

,

φ = arctan
( ŷ0
ω0y0

)
.

This establishes the Theorem.

□
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Example 2.6.1: Find the movement of a 50 gr mass attached to a spring moving in air
with initial conditions y(0) = 4 cm and y′(0) = 40 cm/s. The spring is such that a 30 gr
mass stretches it 6 cm. Approximate the acceleration of gravity by 1000 cm/s2.

Solution: Theorem 2.6.3 says that the equation satisfied by the displacement y is given by

my′′ + ky = 0.

In order to solve this equation we need to find the spring constant, k, which by Theorem 2.6.2

is given by k = mg/∆l. In our case when a mass of m = 30 gr is attached to the sprint, it

stretches ∆l = 6 cm, so we get,

k =
(30) (1000)

6
⇒ k = 5000

gr

s2
.

Knowing the spring constant k we can now describe the movement of the body with mass

m = 50 gr. The solution of the differential equation above is obtained as usual, first find the

roots of the characteristic polynomial

mr2 + k = 0 ⇒ r± = ±ω0i, ω0 =

√
k

m
=

√
5000

50
⇒ ω0 = 10

1

s
.

We write down the general solution in terms of the amplitude A and phase-shift φ,

y(t) = A cos(ω0t− φ) ⇒ y(t) = A cos(10 t− φ).

To accommodate the initial conditions we need the function y′(t) = −Aω0 sin(ω0t−φ). The

initial conditions determine the amplitude and phase-shift, as follows,

4 = y(0) = A cos(φ),

40 = y′(0) = −10A sin(−φ)

⎫
⎪⎬

⎪⎭
⇒

⎧
⎪⎪⎨

⎪⎪⎩

A =
√
16 + 16,

φ = arctan
( 40

(10)(4)

)
.

We obtain that A = 4
√
2 and tan(φ) = 1. The latter equation implies that either φ = π/4

or φ = −3π/4, for φ ∈ (−π,π]. If we pick the second value, φ = −3π/4, this would imply

that y(0) < 0 and y′(0) < 0, which is not true in our case. So we must pick φ = π/4. So,

y(t) = 4
√
2 cos

(
10 t− π

4

)
.
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⊳
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2.6.3. Damped Mechanical Oscillations.

Remarks:

(a) Damping is caused by friction forces .

(b) We study friction forces Fd = −d y′ , where d > 0.

The friction force opposes the velocity .

(c) Example: A spring oscillating inside an oil bath.

Theorem 2.6.4. (Movement with Drag)

(a) The vertical displacement y of a spring and a body with spring constant k > 0,
body mass m > 0, and damping constant d ! 0, is described by the solutions of

my′′(t) + d y′(t) + k y(t) = 0, (2.6.2)

(b) The roots of the characteristic polynomial of Eq. (2.6.2) are

r± = −ωd ±
!
ω2
d − ω2

0 ,

with damping coefficient ωd =
d

2m
and circular frequency ω0 =

"
k

m
.

(c) The solutions to Eq. (2.6.2) fall into one of the following cases:

(i) A system with ωd > ω0 is over damped, with general solution to Eq. (2.6.2)

y(t) = c+ e
r+t + c- e

r-t.

(ii) A system with ωd = ω0 is critically damped, with general solution to Eq. (2.6.2)

y(t) = c+ e
−ωdt + c- t e

−ωdt.

(iii) A system with ωd < ω0 is under damped, with general solution to Eq. (2.6.2)

y(t) = Ae−ωdt cos(βt− φ),

where β =
#
ω2
0 − ω2

d .

Remark: In the case the damping coefficient vanishes we recover Theorem ???.
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Proof of Therorem 2.6.4: Mass times acceleration of the body my′′(t) must be equal to

the sum of all forces acting on the body. In the case we have

my′′ = Fg + Fs(t) + Fd(t),

where Fs(t) = −k (∆l + y) and Fg = mg as in Theorem 2.6.2, and Fd(t) = −d y′(t) is the

air-body dragging force. Since mg − k∆l = 0, then y(t), must be solution of

my′′ ++d y′ + k y = 0.

which is Eq. (2.6.2). We know that to solve this type of differential equations we need to

find the roots of the characteristic polynomial is p(r) = mr2 + dr + k,

r± =
1

2m

!
−d±

"
d2 − 4mk

#
= − d

2m
±
$% d

2m

&2

− k

m
⇒ r± = −ωd ±

'
ω2
d − ω2

0 .

where ωd =
d

2m
and ω0 =

$
k

m
. We know that the general solution of a differential equation

with a characteristic polynomial having roots as above can be divided into three groups.

For the case r+ ∕= r- real valued, we obtain case (ci), for the case r+ = r- we obtain case (cii).

Finally, the general solution for the case of two complex roots r± = α+ βi was given by

y(t) = eαt
(
c1 cos(βt) + c2 sin(βt)

)
.

In our case α = −ωd and β =
"
ω2
0 − ω2

d. We now rewrite the second factor on the right-hand

side above in terms of an amplitude and a phase shift,

y(t) = Ae−ωdt cos(βt− φ).

This establishes the Theorem.

□
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Example 2.6.2: Find the movement of a 5kg mass attached to a spring with constant
k = 5 kg/s

2
moving in a medium with damping constant d = 5 kg/s, with initial conditions

y(0) =
√
3 and y′(0) = 0.

Solution: By Theorem 2.6.4 the differential equation for this system is my′′+dy′+ky = 0,

with m = 5, k = 5, d = 5. The roots of the characteristic polynomial are

r± = −ωd ±
!
ω2
d − ω2

0 , ωd =
d

2m
=

1

2
, ω0 =

"
k

m
= 1,

that is,

r± = −1

2
±
"

1

4
− 1 = −1

2
± i

√
3

2
.

This means our system has under damped oscillations. Following Theorem 2.6.4 part (ciii),

the general solution is given by

y(t) = Ae−t/2 cos
#√3

2
t− φ

$
.

We only need to introduce the initial conditions into the expression for y to find out the

amplitude A and phase-shift φ. In order to do that we first compute the derivative,

y′(t) = −1

2
Ae−t/2 cos

#√3

2
t− φ

$
−

√
3

2
Ae−t/2 sin

#√3

2
t− φ

$
.

The initial conditions in the example imply,

√
3 = y(0) = A cos(φ), 0 = y′(0) = −1

2
A cos(φ) +

√
3

2
A sin(φ).

The second equation above allows us to compute the phase-shift, since

tan(φ) =
1√
3

⇒ φ =
π

6
, or φ =

π

6
− π = −5π

6
.

If φ = −5π/6, then y(0) < 0, which is not out case. Hence we must choose φ = π/6. With

that phase-shift, the amplitude is given by

√
3 = A cos

#π
6

$
= A

√
3

2
⇒ A = 2.

We conclude: y(t) = 2 e−t/2 cos
#√3

2
t− π

6

$
.
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