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2.5. Nonhomogeneous Equations

Section Objective(s):

• The General Solution Theorem.
• Computing a Particular Solution yp.

– Undetermined Coefficients.
– Variation of Parameters.

2.5.1. The General Solution Theorem.

Remarks:

• The General Solution Theorem proven for homogeneous equations

L(y) = 0, with L(y) = y′′ + a1(t) y
′ + a0(t) y,

is not true for nonhomogeneous equations L(y) = f , with f ∕= 0.

• The superposition property is not true for nonhomogeneous equations.

• Recall the superposition property for L(y) = 0:

– If L(y1) = 0 and L(y2) = 0 then

L(c1y1 + c2y2) = c1 L(y1) + c2 L(y2) = c1 0 + c2 0 = 0.

• But for nonhomogeneous equations L(y) = f :

– If L(y1) = f and L(y2) = f then

L(y1 + y2) = L(y1) + L(y2) = f + f = 2f ∕= f.
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Theorem 2.5.1. (General Solution) If y1 and y2 are fundamental solutions of

L(y1) = 0, L(y2) = 0,

where L(y) = y′′ + a1 y
′ + a0 y , and yp is one solution

of L(yp) = f , then all solutions of the nonhomogeneous

equation L(y) = f are

y = c1 y1 + c2 y2 + yp, c1 c2 ∈ R .

Definition 2.5.2. The general solution of L(y) = f is

ygen(t) = c1 y1(t) + c2 y2(t) + yp(t),

where y1, y2 are fundamental solutions of L(y) = 0, and

yp solves L(yp) = f .

Proof of Theorem 2.5.1: Given any particular solution Let yp, that is L(yp) = f , any

other solution y of the same equation L(y) = f satisfies

L(y − yp) = L(y)− L(yp) = f − f = 0.

That is, y − yp is solution of the homogeneous equation. Therefore, this solution can be

written as linear combinations of a pair of fundamental solutions, y1, y2 of the homogeneous

equation,

y − yp = c1 y1 + c2 y2.

Since for every y solution of L(y) = f we can find constants c1, c2 such that the equation

above holds true, we have found a formula for all solutions of the nonhomogeneous equation.

This establishes the Theorem.

□
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2.5.2. The Undetermined Coefficients Method.

Problem:
Find a function yp solution of L(yp) = f ,

where L(y) = y′′ + a1 y
′ + a0 y and a1, a0 ∈ R.

Idea:

If f(t) = 3 e2t , then try yp(t) = k e2t , and find k .

If f(t) = 7 e2t , then try yp(t) = k e2t .

If f(t) = 7 e3t , then try yp(t) = k e3t .

If f(t) = t2 , then try yp(t) = k2 t
2 + k1 t+ k0 .

If f(t) = 3 cos(2t) ,

then try yp(t) = k1 cos(2t) + k2 sin(2t) .

Summary of the Undetermined Coefficients Method:

(1) Find fundamental solutions y1, y2 of the homogeneous equation L(y) = 0.

(2) Given the source functions f , guess the solutions yp following the Table 1 below.

(3) If yp given by the table satisfies L(yp) = 0 ,

then change the guess to ỹp = t yp. .

(4) If yp satisfies L(yp) = 0 and L(typ) = 0 ,

then change the guess to ỹp = t2 yp .

(5) Find the constants k in the function yp using the equation L(y) = f .

f(t) (Source) (K, m, a, b, given.) yp(t) (Guess) (k not given.)

Keat keat

Kmtm + · · ·+K0 kmtm + · · ·+ k0

K1 cos(bt) +K2 sin(bt) k1 cos(bt) + k2 sin(bt)

Table 1. List of sources f and solutions yp to the equation L(yp) = f .
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Example 2.5.1: (First Guess Right) Find all solutions to the nonhomogeneous equation

y′′ − 3y′ − 4y = 3 e2t.

Solution: From the problem we get L(y) = y′′ − 3y′ − 4y and f(t) = 3e2t.

(1) Find fundamental solutions y+, y- to the homogeneous equation L(y) = 0. Since the

homogeneous equation has constant coefficients we find the characteristic equation

r2 − 3r − 4 = 0 ⇒ r+ = 4, r- = −1, ⇒ ytipl(t) = e4t, y- = (t) = e−t.

(2) From the table: For f(t) = 3 e2t guess yp(t) = k e2t. The constant k is the undetermined

coefficient we must find.

(3) Since yp(t) = k e2t is not solution of the homogeneous equation, we do not need to

modify our guess. (Recall: L(y) = 0 iff exist constants c+, c- such that y(t) = c+ e
4t+c- e

−t.)

(4) Introduce yp into L(yp) = f and find k. So we do that,

(22 − 6− 4) k e2t = 3 e2t ⇒ −6k = 3 ⇒ k = −1

2
.

We guessed that yp must be proportional to the exponential e2t in order to cancel out the

exponentials in the equation above. We have obtained that

yp(t) = −1

2
e2t.

The undetermined coefficients method gives us a way to compute a particular solution yp

of the nonhomogeneous equation. We now use the general solution theorem, Theorem ??,

to write the general solution of the nonhomogeneous equation,

ygen(t) = c+ e
4t + c- e

−t − 1

2
e2t.

⊳
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Remark: The step (4) in Example 2.5.1 is a particular case of the following statement.

Theorem 2.5.3. The constant coefficients nonhomogeneous equation

y′′ + a1 y
′ + a0 y = K eat

with p(a) ∕= 0 , where p(r) = r2 + a1r + a0, has the particular solution

yp(t) =
K

p(a)
eat.

Remark: As we said, the step (4) in Example 2.5.1 is a particular case of Theorem 2.5.3,

yp(t) =
3

p(2)
e2t =

3

(22 − 6− 4)
e2t =

3

−6
e2t ⇒ yp(t) = −1

2
e2t.

Proof of Theorem 2.5.3: Since the linear operator L has constant coefficients,

L(y) = y′′ + a1y
′ + a0y ⇒ p(r) = r2 + a1r + a0.

Since the source function is f(t) = K eat, the Table 1 says that a good guess for a particular

soution of the nonhomogneous equation is yp(t) = k eat. Our hypothesis is that this guess

is not solution of the homogenoeus equation, since

L(yp) = (a2 + a1a+ a0) k e
at = p(a) k eat, and p(a) ∕= 0.

We then compute the constant k using the equation L(yp) = f ,

(a2 + a1a+ a0) k e
at = K eat ⇒ p(a) k eat = K eat ⇒ k =

K

p(a)
.

We get the particular solution yp(t) =
K

p(a)
eat. This establishes the Theorem.

□
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Example 2.5.2: (First Guess Wrong) Find all solutions to the nonhomogeneous equation

y′′ − 3y′ − 4y = 3 e4t.

Solution: If we write the equation as L(y) = f , with f(t) = 3 e4t, then the operator L is

the same as in Example 2.5.1. So the solutions of the homogeneous equation L(y) = 0, are

the same as in that example,

y+(t) = e4t, y-(t) = e−t.

The source function is f(t) = 3 e4t, so the Table 1 says that we need to guess yp(t) = k e4t.

However, this function yp is solution of the homogeneous equation, because

yp = k y+ ⇒ Lyp) = 0.

We have to change our guess, as indicated in the undetermined coefficients method, step (3)

yp(t) = kt e4t.

This new guess is not solution of the homogeneous equation. So we proceed to compute the

constant k. We introduce the guess into L(yp) = f ,

y′p = (1 + 4t) k e4t, y′′p = (8 + 16t) k e4t ⇒
!
8− 3 + (16− 12− 4)t

"
k e4t = 3 e4t,

therefore, we get that

5k = 3 ⇒ k =
3

5
⇒ yp(t) =

3

5
t e4t.

The general solution theorem for nonhomogneneous equations says that

ygen(t) = c+ e
4t + c- e

−t +
3

5
t e4t.

⊳
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Example 2.5.3: (First Guess Right) Find all the solutions to the nonhomogeneous equation

y′′ − 3y′ − 4y = 2 sin(t).

Solution: If we write the equation as L(y) = f , with f(t) = 2 sin(t), then the operator L

is the same as in Example 2.5.1. So the solutions of L(y) = 0 are

y+(t) = e4t, y-(t) = e−t.

Since the source function is f(t) = 2 sin(t), the Table 1 says that we need to choose the

function yp(t) = k1 cos(t) + k2 sin(t). This function yp is not solution to the homogeneous

equation. So we look for the constants k1, k2 using the differential equation,

y′p = −k1 sin(t) + k2 cos(t), y′′p = −k1 cos(t)− k2 sin(t),

and then we obtain

[−k1 cos(t)− k2 sin(t)]− 3[−k1 sin(t) + k2 cos(t)]− 4[k1 cos(t) + k2 sin(t)] = 2 sin(t).

Reordering terms in the expression above we get

(−5k1 − 3k2) cos(t) + (3k1 − 5k2) sin(t) = 2 sin(t).

The last equation must hold for all t ∈ R. In particular, it must hold for t = π/2 and for

t = 0. At these two points we obtain, respectively,

3k1 − 5k2 = 2,

−5k1 − 3k2 = 0,

⎫
⎪⎬

⎪⎭
⇒

⎧
⎪⎨

⎪⎩

k1 =
3

17
,

k2 = − 5

17
.

So the particular solution to the nonhomogeneous equation is given by

yp(t) =
1

17

[
3 cos(t)− 5 sin(t)

]
.

The general solution theorem for nonhomogeneous equations implies

ygen(t) = c+ e
4t + c- e

−t +
1

17

[
3 cos(t)− 5 sin(t)

]
.

⊳
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2.5.3. The Variation of Parameters Method.

Remarks:

• Variation of Parameters Method (VPM) works on more general
equations than the undetermined coefficients method (UCM).

• VPM works on y′′ + a1(t) y
′ + a0(t) y = f(t).

• VPM usually takes longer to implement than the UCM.

Theorem 2.5.4. (Variation of Parameters) A particular solution to the equation

L(y) = f,

with L(y) = y′′ + a1(t) y
′ + a0(t) y and a1, a0, f continuous functions, is given by

yp = u1y1 + u2y2 ,

where y1, y2 are fundamental solutions of L(y) = 0 and u1, u2 are

u1(t) =

!
−y2(t)f(t)

W12(t)
dt, u2(t) =

!
y1(t)f(t)

W12(t)
dt ,

where W12 is the Wronskian of y1 and y2.

Remark: The proof is based on a generalization of the reduction of order method.

Proof of Theorem 2.5.4: Motivated by the reduction of order method we look for a yp

yp = u1 y1 + u2 y2.

We hope that the equations for u1, u2 will be simpler to solve than the equation for yp.

But we started with one unknown function and now we have two unknown functions.

So we are free to add one more equation to fix u1, u2. We choose

u′
1 y1 + u′

2 y2 = 0.

(that is, we chose u2 =

!
−y′1
y′2

u′
1 dt.)

Let’s put this yp into L(yp) = f . We need y′p (and recall, u′
1 y1 + u′

2 y2 = 0)

y′p = u′
1 y1 + u1 y

′
1 + u′

2 y2 + u2 y
′
2 ⇒ y′p = u1 y

′
1 + u2 y

′
2.

and we also need y′′p ,

y′′p = u′
1 y

′
1 + u1 y

′′
1 + u′

2 y
′
2 + u2 y

′′
2 .
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So the equation L(yp) = f is

(u′
1 y

′
1 + u1 y

′′
1 + u′

2 y
′
2 + u2 y

′′
2 ) + a1(u1 y

′
1 + u2 y

′
2) + a0(u1 y1 + u2 y2) = f

We reorder a few terms and we see that

u′
1 y

′
1 + u′

2 y
′
2 + u1 (y

′′
1 + a1 y

′
1 + a0 y1) + u2 (y

′′
2 + a1 y

′
2 + a0 y2) = f.

The functions y1 and y2 are solutions to the homogeneous equation,

y′′1 + a1 y
′
1 + a0 y1 = 0, y′′2 + a1 y

′
2 + a0 y2 = 0,

so u1 and u2 must be solution of a simpler equation that the one above, given by

u′
1 y

′
1 + u′

2 y
′
2 = f. (2.5.1)

So we end with the equations

u′
1 y

′
1 + u′

2 y
′
2 = f

u′
1 y1 + u′

2 y2 = 0.

And this is a 2× 2 algebraic linear system for the unknowns u′
1, u

′
2. It is hard to overstate

the importance of the word “algebraic” in the previous sentence. From the second equation

above we compute u′
2 and we introduce it in the first equation,

u′
2 = −y1

y2
u′
1 ⇒ u′

1y
′
1 −

y1y
′
2

y2
u′
1 = f ⇒ u′

1

!y′1y2 − y1y
′
2

y2

"
= f.

Recall that the Wronskian of two functions is W12 = y1y
′
2 − y′1y2, we get

u′
1 = − y2f

W12

⇒ u′
2 =

y1f

W12

.

These equations are the derivative of Eq. (??). Integrate them in the variable t and choose

the integration constants to be zero. We get Eq. (??). This establishes the Theorem. □
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Remark: The integration constants in u1, u2 can always be chosen zero .

To see why, let choose these constant to be nonzero,

ũ1 = u1 + c1, ũ2 = u2 + c2.

Then the corresponding solution ỹp is given by

ỹp = ũ1 y1 + ũ2 y2 = u1 y1 + u2 y2 + c1 y1 + c2 y2 ⇒ ỹp = yp + c1 y1 + c2 y2.

So ỹp and yp differ by a solution to the homogeneous differential equation.
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Example 2.5.6: Find the general solution of the nonhomogeneous equation

y′′ − 5y′ + 6y = 2 et.

Solution: We need fundamental solutions to the homogeneous problem.

r2 − 5r + 6 = 0 ⇒ r± =
1

2

(
5±

√
25− 24

)
⇒

⎧
⎪⎨

⎪⎩

r+ = 3,

r- = 2.

So, the functions y1 and y2 in Theorem ??? are in our case given by

y1(t) = e3t, y2(t) = e2t.

The Wronskian of these two functions is given by

Wy1y2(t) = (e3t)(2 e2t)− (3 e3t)(e2t) ⇒ Wy1y2(t) = −e5t.

We are now ready to compute the functions u1 and u2.

u′
1 = − y2f

W12

, u′
2 =

y1f

W12

.

So, the equation for u1 is the following,

u′
1 = −e2t(2 et)(−e−5t) ⇒ u′

1 = 2 e−2t ⇒ u1 = −e−2t,

u′
2 = e3t(2 et)(−e−5t) ⇒ u′

2 = −2 e−t ⇒ u2 = 2 e−t,

where we have chosen the constant of integration to be zero. So,

yp = (−e−2t)(e3t) + (2 e−t)(e2t) ⇒ yp = et.

Then, ygen(t) = c+ e
3t + c- e

2t + et c+, c- ∈ R.

⊳
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Example 2.5.7: Find a particular solution to the differential equation

t2y′′ − 2y = 3t2 − 1,

knowing that y1 = t2 and y2 = 1/t are solutions to the homogeneous equation t2y′′−2y = 0.

Solution: We first rewrite the nonhomogeneous equation above in the form given in The-

orem 2.5.4. In this case we must divide the whole equation by t2,

y′′ − 2

t2
y = 3− 1

t2
⇒ f(t) = 3− 1

t2
.

We now proceed to compute the Wronskian of the fundamental solutions y1, y2,

W12(t) = (t2)
!−1

t2

"
− (2t)

!1
t

"
⇒ W12(t) = −3.

We now use the equation in Theorem 2.5.4 to obtain the functions u1 and u2,

u′
1 = −1

t

!
3− 1

t2

" 1

−3

=
1

t
− 1

3
t−3 ⇒ u1 = ln(t) +

1

6
t−2,

u′
2 = (t2)

!
3− 1

t2

" 1

−3

= −t2 +
1

3
⇒ u2 = −1

3
t3 +

1

3
t.

A particular solution to the nonhomogeneous equation above is ỹp = u1y1 + u2y2, that is,

ỹp =
#
ln(t) +

1

6
t−2

$
(t2) +

1

3
(−t3 + t)(t−1)

= t2 ln(t) +
1

6
− 1

3
t2 +

1

3

= t2 ln(t) +
1

2
− 1

3
t2

= t2 ln(t) +
1

2
− 1

3
y1(t).

However, a simpler expression for a solution of the nonhomogeneous equation above is

yp = t2 ln(t) +
1

2
.

⊳


