1 ### 2.5. Nonhomogeneous Equations # Section Objective(s): - The General Solution Theorem. - Computing a Particular Solution y_p . - Undetermined Coefficients. - Variation of Parameters. ### 2.5.1. The General Solution Theorem. ## Remarks: • The General Solution Theorem proven for homogeneous equations $$L(y) = 0$$, with $L(y) = y'' + a_1(t) y' + a_0(t) y$, is _____ for nonhomogeneous equations L(y) = f, with $f \neq 0$. - The superposition property is ______ for nonhomogeneous equations. - Recall the superposition property for L(y) = 0: - If $$L(y_1) = 0$$ and $L(y_2) = 0$ then • But for nonhomogeneous equations L(y) = f: - If $$L(y_1) = f$$ and $L(y_2) = f$ then | Theorem 2.5.1. | (General Solution) If y_1 and y_2 are | e fundamenta | l solutions of | |------------------|---|--------------|-----------------| | | | | | | where | | , and | is one solution | | of | , then all solutions of the | | | | equation | are | | | | | | | | | | | | · | | Definition 2.5.2 | 2. The <i>general solution</i> of $L(y)$ | = f is | | Proof of Theorem 2.5.1: where y_1 , y_2 are fundamental solutions of L(y) = 0, and | 9 | 5 2 | Tho | Undet | orminod | Coefficients | Mothod | |----|--------|--------|-------|---------|--------------|----------| | Z. | .;).Z. | - i ne | Under | erminea | Coemcients | vielhon. | | Problem: Find a function solution of where $L(y) = y'' + a_1 y' + a_0 y$ and $a_1, a_0 \in \mathbb{R}$. | | |---|--| | Idea: | | | If, then try | , and find | | If, then try | | | If, then try | <u> </u> | | If, then try | | | If | | | then try | | | Summary of the Undetermined Coefficien | ts Method: | | Find fundamental solutions y₁, y₂ of the hor Given the source functions f, guess the solutions. If given by the table satisfies then change the guess to If satisfies then change the guess to Find the constants k in the function y_p using usi | tions y_p following the Table 1 below, | | f(t) (Source) $(K, m, a, b, given.)$ | $y_p(t)$ (Guess) (k not given.) | | Ke^{at} | ke^{at} | | $K_m t^m + \cdots + K_0$ | $k_m t^m + \cdots + k_0$ | | $K_1 \cos(bt) + K_2 \sin(bt)$ | $k_1 \cos(bt) + k_2 \sin(bt)$ | Table 1. List of sources f and solutions y_p to the equation $L(y_p) = f$. 4 Example 2.5.1: (First Guess Right) Find all solutions to the nonhomogeneous equation $y''-3y'-4y=3\,e^{2t}.$ Remark: The step (4) in Example 2.5.1 is a particular case of the following statement. Remark: As we said, the step (4) in Example 2.5.1 is a particular case of Theorem 2.5.3, Proof of Theorem 2.5.3: 6 Example 2.5.2: (First Guess Wrong) Find all solutions to the nonhomogeneous equation $y''-3y'-4y=3\,e^{4t}.$ Example 2.5.3: (First Guess Right) Find all the solutions to the nonhomogeneous equation $y'' - 3y' - 4y = 2\sin(t).$ ## 2.5.3. The Variation of Parameters Method. ### Remarks: - Variation of Parameters Method (VPM) works on equations than the undetermined coefficients method (UCM). VPM works on - VPM usually to implement than the UCM. Remark: The proof is based on a generalization of the reduction of order method. # Proof of Theorem 2.5.4: | Remark: | The integration co | onstants in | can always be chosen | | |---------|--------------------|-------------|----------------------|--| | | | | | | Example 2.5.6: Find the general solution of the nonhomogeneous equation $$y'' - 5y' + 6y = 2e^t.$$ Example 2.5.7: Find a particular solution to the differential equation $$t^2y'' - 2y = 3t^2 - 1,$$ knowing that $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.