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2.4. Euler Equidimensional Equation

Section Objective(s):

• The Main Result and the Indicial Equation.
• Proving the Repeated Root Case.
• Real Solutions for Complex Roots.

2.4.1. The Roots of the Indicial Polynomial.

Definition 2.4.1. The Euler equidimensional equation at t0 ∈ R is

(t− t0)
2 y′′ + a1 (t− t0) y

′ + a0 y = 0, t ∕= t0 .

Remark: If t0 = 0, the equation is

t2 y′′ + a1 t y
′ + a0 y = 0, t ∕= 0 .

Example 2.4.1: Find the general solution of the equation below, for t > 0,

t2 y′′ + 4t y′ + 2 y = 0.

Solution: We look for solutions of the form y(t) = tr, which implies that

t y′(t) = r tr, t2 y′′(t) = r(r − 1) tr,

therefore, introducing this function y into the differential equation we obtain

[
r(r − 1) + 4r + 2

]
tr = 0 ⇔ r(r − 1) + 4r + 2 = 0.

The solutions are computed in the usual way,

r2 + 3r + 2 = 0 ⇒ r+- =
1

2

[
−3±

√
9− 8

]
⇒

⎧
⎪⎨

⎪⎩

r+ = −1

r- = −2.

So the general solution of the differential equation above is given by

ygen(t) = c+ t
−1 + c- t

−2.

⊳
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Theorem 2.4.2. (Euler Equation) Consider the Euler equidimensional equation

(t− t0)
2 y′′ + a1 (t− t0) y

′ + a0 y = 0, t > t0 , (2.4.1)

where a1, a0, and t0 are real constants, and denote by r+- the roots of the indicial
polynomial p(r) = r(r − 1) + a1r + a0.

(a) If r+ ∕= r- , real or complex, then the general solution of Eq. (2.4.1) is

ygen(t) = c+(t− t0)
r+ + c-(t− t0)

r- , t > t0, c+, c- ∈ R .

(b) If r+ = r- = r0 , real, then the general solution of Eq. (2.4.1) is

ygen(t) = c+ (t− t0)
r0 + c- (t− t0)

r0 ln(t− t0), t > t0, c+, c- ∈ R .

Remark: If t0 = 0 the equation is t2 y′′ + a1 t y
′ + a0 y = 0, and the solutions for t > 0 are:

If r+ ∕= r-, then ygen(t) = c+t
r+ + c-t

r- .

If r+ = r- = r0, then ygen(t) = c+ t
r0 + c- t

r0 ln(t).

Proof of Theorem 2.4.2: For simplicity we consider the case t0 = 0. The general case

t0 ∕= 0 follows from the case t0 = 0 replacing t by (t− t0). So, consider the equation

t2 y′′ + a1 t y
′ + a0 y = 0, t > 0.

We look for solutions of the form y(t) = tr, because power functions have the property that

y′ = r tr−1 ⇒ t y′ = r tr.

A similar property holds for the second derivative,

y′′ = r(r − 1) tr−2 ⇒ t2 y′′ = r(r − 1) tr.

When we introduce this function into the Euler equation we get an algebraic equation for r,

!
r(r − 1) + a1r + a0

"
tr = 0 ⇔ r(r − 1) + a1r + a0 = 0.
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So r must be a root of the indicial polynomial, p(r) = r(r − 1) + a1r + a0.

If r+ ∕= r-, we get the fundamental solutions y+(t) = tr+ , y-(t) = tr- .

If r+ = r- = r0, then one solution is y+(t) = tr0 .

To obtain the second solution we use the reduction order method.

y-(t) = v(t) y+(t) ⇒ y-(t) = v(t) tr0 .

We need to compute the first two derivatives of y-,

y′- = r0v t
r0−1 + v′ tr0 , y′′- = r0(r0 − 1)v tr0−2 + 2r0v

′ tr0−1 + v′′ tr0 .

We now put these expressions for y-, y
′
- and y′′- into the Euler equation,

t2
!
r0(r0 − 1)v tr0−2 + 2r0v

′ tr0−1 + v′′ tr0
"
+ a1t

!
r0v t

r0−1 + v′ tr0
"
+ a0 v t

r0 = 0.

Let us reorder terms in the following way,

v′′ tr0+2 + (2r0 + a1) v
′ tr0+1 +

#
r0(r0 − 1) + a1r0 + a0

$
v tr0 = 0.

We now need to recall that r0 is both a root of the indicial polynomial,

r0(r0 − 1) + a1r0 + a0 = 0

and r0 is a repeated root, that is (a1 − 1)2 = 4a0, hence

r0 = − (a1 − 1)

2
⇒ 2r0 + a1 = 1.

Using these two properties of r0 in the Euler equation above, we get the equation for v,

v′′ tr0+2 + v′ tr0+1 = 0 ⇒ v′′ t+ v′ = 0.

This is a first order equation for w = v′,

w′ t+ w = 0 ⇒ (t w)′ = 0 ⇒ w(t) =
w0

t
.
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We now integrate one last time to get function v,

v′ =
w0

t
⇒ v(t) = w0 ln(t) + v0.

So the second solution to the Euler equation in the case of repeated roots is

y-(t) =
!
w0 ln(t) + v0

"
tr0 ⇒ y-(t) = w0t

r0 ln(t) + v0 y+(t).

If we choose v0 = 0 and w0 = 1, then y-(t) = tr0 ln(t). This establishes the Theorem.

□
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Example 2.4.2: Find the general solution of the Euler equation below for t > 0,

t2 y′′ − 3t y′ + 4 y = 0.

Solution: We look for solutions of the form y(t) = tr, then the constant r must be solution

of the Euler characteristic polynomial

r(r − 1)− 3r + 4 = 0 ⇔ r2 − 4r + 4 = 0 ⇒ r+ = r- = 2.

Therefore, the general solution of the Euler equation for t > 0 in this case is given by

ygen(t) = c+t
2 + c-t

2 ln(t).

⊳
Example 2.4.3: Find the general solution of the Euler equation below for t > 0,

t2 y′′ − 3t y′ + 13 y = 0.

Solution: We look for solutions of the form y(t) = tr, which implies that

t y′(t) = r tr, t2 y′′(t) = r(r − 1) tr,

therefore, introducing this function y into the differential equation we obtain

[
r(r − 1)− 3r + 13

]
tr = 0 ⇔ r(r − 1)− 3r + 13 = 0.

The solutions are computed in the usual way,

r2 − 4r + 13 = 0 ⇒ r+- =
1

2

[
4±

√
−36

]
⇒

⎧
⎪⎨

⎪⎩

r+ = 2 + 3i

r- = 2− 3i.

So the general solution of the differential equation above is given by

ygen(t) = c+ t
(2+3i) + c- t

(2−3i). (2.4.2)

⊳



6

2.4.2. Real Solutions for Complex Roots.

Theorem 2.4.3. (Real Valued Fundamental Solutions) If the differential equation

(t− t0)
2 y′′ + a1(t− t0) y

′ + a0 y = 0, t > t0 ,

where a1, a0, t0 are real constants, has indicial polynomial with complex roots

r+- = α± iβ and complex valued fundamental solutions for t > t0,

ỹ+(t) = (t− t0)
(α+iβ), ỹ-(t) = (t− t0)

(α−iβ) ,

then the equation also has real valued fundamental solutions for t > t0 given by

y+(t) = (t− t0)
α cos

!
β ln(t− t0)

"
, y-(t) = (t− t0)

α sin
!
β ln(t− t0)

"
.

Proof of Theorem 2.4.3: For simplicity consider the case t0 = 0. Take the solutions

ỹ+(t) = t(α+iβ), ỹ-(t) = t(α−iβ).

Rewrite the power function as follows,

ỹ+(t) = t(α+iβ) = tα tiβ = tα eln(t
iβ) = tα eiβ ln(t) ⇒ ỹ+(t) = tα eiβ ln(t).

A similar calculation yields

ỹ-(t) = tα e−iβ ln(t).

Recall now Euler formula for complex exponentials, eiθ = cos(θ) + i sin(θ), then we get

ỹ+(t) = tα
#
cos

!
β ln(t)

"
+ i sin

!
β ln(t)

"$
, ỹ-(t) = tα

#
cos

!
β ln(t)

"
− i sin

!
β ln(t)

"$
.

Since ỹ+ and ỹ- are solutions to Eq. (??), so are the functions

y1(t) =
1

2

#
ỹ1(t) + ỹ2(t)

$
, y2(t) =

1

2i

#
ỹ1(t)− ỹ2(t)

$
.

It is not difficult to see that these functions are

y+(t) = tα cos
!
β ln(t)

"
, y-(t) = tα sin

!
β ln(t)

"
.

To prove the case having t0 ∕= 0, just replace t by (t− t0) on all steps above. This establishes

the Theorem. □
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Example 2.4.4: Find a real-valued general solution of the Euler equation below for t > 0,

t2 y′′ − 3t y′ + 13 y = 0.

Solution: The indicial equation is r(r − 1)− 3r + 13 = 0, with solutions

r2 − 4r + 13 = 0 ⇒ r+ = 2 + 3i, r- = 2− 3i.

A complex-valued general solution for t > 0 is,

ygen(t) = c̃+ t
(2+3i) + c̃- t

(2−3i) c̃+, c̃- ∈ C.

A real-valued general solution for t > 0 is

ygen(t) = c+ t
2 cos

!
3 ln(t)

"
+ c- t

2 sin
!
3 ln(t)

"
, c+, c- ∈ R.

⊳


