1

2.4. Euler Equidimensional Equation

Section Objective(s):

- $\bullet\,$ The Main Result and the Indicial Equation.
- Proving the Repeated Root Case.
- $\bullet\,$ Real Solutions for Complex Roots.

2.4.1. The Roots of the Indicial Polynomial.

Definition 2.4.1. The *Euler equidimensional equation* at $t_0 \in \mathbb{R}$ is

Remark: If $t_0 = 0$, the equation is

EXAMPLE 2.4.1: Find the general solution of the equation below, for t > 0,

$$t^2 y'' + 4t y' + 2y = 0.$$

SOLUTION:

Theorem 2.4.2. (Euler Equation) Consider the Euler equidimensional equation
$\underline{\hspace{1cm}}$, $(2.4.1)$
where a_1 , a_0 , and t_0 are real constants, and denote by r_{\pm} the roots of the indicial polynomial $p(r) = r(r-1) + a_1r + a_0$.
(a) If, real or complex, then the general solution of Eq. (2.4.1) is
·
(b) If, real, then the general solution of Eq. (2.4.1) is
<u> </u>

Remark:

Proof of Theorem 2.4.2:

5

Example 2.4.2: Find the general solution of the Euler equation below for t>0, $t^2\,y''-3t\,y'+4\,y=0.$

SOLUTION:

 \triangleleft

Example 2.4.3: Find the general solution of the Euler equation below for t>0, $t^2\,y''-3t\,y'+13\,y=0.$

SOLUTION:

2.4.2. Real Solutions for Complex Roots.

where a_1 , a_0 , t_0 are r	real constants, has indicial polynomial with complex roots
	and complex valued fundamental solutions for $t > t_0$,

Proof of Theorem 2.4.3:

Example 2.4.4: Find a real-valued general solution of the Euler equation below for t>0, $t^2\,y''-3t\,y'+13\,y=0.$

SOLUTION: