2.3. Homogenous Constant Coefficients Equations

Section Objective(s):

- $\bullet\,$ The Characteristic Equation.
- Proving the Repeated Root Case.
- Real Solutions for Complex Roots.

2.3.1. The Characteristic Equation.

Remark: Recall the General Solution Theo • If we find	
then we know all solutions	
• It is simple to find	solutions in the case of constant
coefficient equations. EXAMPLE 2.3.1: Find all solutions to the	equation $y'' + 5y' + 6y = 0$.
SOLUTION:	

 \triangleleft

Definition 2.3.1. The characteristic polynomial and characteristic e of the differential equation are, respectively,

Theorem 2.	3.2. If r_{\pm} are the roots of the characteristic polynomial of
	$\underline{\hspace{1cm}}, \qquad (2.3.1)$
and if c_+ , c a	are arbitrary constants, then we have the following:
(a) If	, real or complex, then the general solution of Eq. $(2.3.1)$ is
-	<u> </u>
(b) If	, real, then the general solution of Eq. $(2.3.1)$ is

Proof of Theorem 2.3.2:

Example Similar to 2.3.3: Find the solution y of the initial value problem

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 5.$

SOLUTION:

6

Example Similar to 2.3.4: Find the general solution of y'' + 6y' + 9y = 0.

SOLUTION:

 \triangleleft

EXAMPLE 2.3.5: Find the general solution y_{gen} of the equation

$$y'' - 2y' + 6y = 0.$$

SOLUTION:

2.3.2. Real Solutions for Complex Roots.

Review of Complex Numbers:

• Complex numbers have the form, where
ullet The complex conjugate of z is the number
• $\operatorname{Re}(z) = a$, $\operatorname{Im}(z) = b$ are the real and imaginary parts of z
• Hence:
• The exponential of a complex number is defined as
·
In particular holds
• Euler's formula:
• Hence, a complex number of the form e^{a+ib} can be written as
• From e^{a+ib} and e^{a-ib} we get the real numbers

, and we denote the root	
	$f p(r) = r^2 + a_1 r + a_0 \text{ as}$
,	
	hen, complex valued fundam
	nen, complex valued fundam

Proof of Theorem 2.3.3:

9

Example 2.3.7: Find the real valued general solution of the equation

$$y'' - 2y' + 6y = 0.$$

SOLUTION: