1

2.2. Reduction of Order Methods

Section Objective(s):

- Special Nonlinear Equations.
 - Function y Missing.
 - Variable t Missing.
- Conservation of the Energy.
 - Variable t and Function y' Missing.
- The Reduction of Order Method.

2.2.1. Special Nonlinear Equations.

Definition 2.2.1. A second order equation y'' = f(t, y, y') is **special** iff one of the following equations hold,

Theorem 2.2.2. (Function y Missing) If a second order differential equation has the form y'' = f(t, y'), then v = y' satisfies the first order equation

Proof of Theorem 2.2.2: Left as exercise.

Example 2.2.1: Solve $y'' = -2t(y')^2$ with initial conditions y(1) = 2, y'(1) = 1.

```
Theorem 2.2.3. (Variable t Missing) If the initial value problem , has an invertible solution y then the function , where v(t) = y'(t) and t(y) is the inverse of y(t), satisfies the initial value problem .
```

Proof of Theorem 2.2.3:

Example 2.2.3: Find the solution y to the initial value problem

$$yy'' + 3(y')^2 = 0,$$
 $y(0) = 1,$ $y'(0) = 6.$

2.2.2. Conservation of the Energy.

where m is the particle mass. So f is spec	oja]
this case the mechanical energy is $\underline{}$	
	Energy) Consider a particle with positive
•	, function of, whice
is a solution of Newton's law of motion	
is a solution of frewton's law of motion	
with initial conditions	
	;
where is the force acting on t	the particle at the
Then, the position function y satisfies	
	,
where	
is fixed by the initial conditions,	is the particle velocity
	f—the negative of the primitive of f , in other
words,	
words,	
emarks:	
•	is the kinetic energy of the particle.
•	- ential energy.
	emaar edervy
• is the pote	children childy.

Proof of Theorem 2.2.4:

EXAMPLE 2.2.4: Find the potential energy and write the energy conservation for:

- (i) A particle attached at y = 0 to a spring with constant k, moving in one space dimension on the y axis. In this case the force on the particle is f(y) = -ky.
- (ii) A particle moving vertically on Earth's constant gravitational acceleration. In this case the force on the particle having mass m is f(y) = mg, where $g = 9.81 \text{ m/s}^2$.

8

EXAMPLE 2.2.5: Find the maximum height of a ball of mass m=0.1 Kg that is shot vertically by a spring with spring constant k=400 Kg/s² and compressed 0.1 m. Use g=10 m/s².

2.2.3. The Reduction of Order Method.

Theorem 2.2.5. (Reduction of Order) If a nonzero function y_1 is solution to		
$y'' + a_1 y' + a_0 y = 0.$	(2.2.1)	
where a_1 , a_0 are given functions, then a second solution not proportional to y_1 is		
	,	
		
where .		

Remark: In the first part of the proof we write and show that y_2 is solution of Eq. (2.2.1) iff the function v is solution of

. (2.2.2)

Proof of Theorem 2.2.5:

EXAMPLE 2.2.8: Find a second solution y_2 linearly independent to the solution $y_1(t) = t$ of the differential equation

$$t^2 y'' + 2t y' - 2y = 0.$$