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2.1. Variable Coefficients

Section Objective(s):

• Definitions and Examples.
• Solutions to the Initial Value Problem.
• Properties of Homogeneous Equations.
• The General Solution Theorem.
• The Wronskian and Abel’s Theorem.

2.1.1. Definitions and Examples.

Definition 2.1.1. A second order linear differential equation on y is

y′′ + a1(t) y
′ + a0(t) y = b(t) ,

where a1, a0, b are given functions. The differential equation above:

(a) is homogeneous iff the source b(t) = 0 for all t ∈ R;

(b) has constant coefficients iff a1 and a0 are constants;

(c) has variable coefficients iff either a1 or a0 is not constant.

Remark: The homogeneous equations here are different from
the Euler homogeneous equations in § 1.3.

Example 2.1.1:

(a) A second order, linear, homogeneous, constant coefficients equation is

y′′ + 5y′ + 6y = 0 .

(b) A second order, linear, nonhomogeneous, constant coefficients, equation is

y′′ − 3y′ + y = cos(3t) .

(c) A second order, linear, nonhomogeneous, variable coefficients equation is

y′′ + 2t y′ − ln(t) y = e3t .

(d) Newton’s law of motion for a point particle of mass m moving in one space dimension
under a force f is mass times acceleration equal force,

my′′(t) = f(t, y(t), y′(t)) .

(e) Schrödinger equation in Quantum Mechanics, in one space dimension, stationary, is

− !2

2m
ψ′′ + V (x)ψ = E ψ ,

where ψ is the probability density of finding a particle of mass m at the position

x having energy E under a potential V , where ! is the Planck constant divided
by 2π. ⊳
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Example 2.1.3: Find the differential equation satisfied by the family of functions

y(t) =
c1
t
+ c2 t, c1, c2 ∈ R.

Solution: Compute y′ = −c1
t2

+ c2. Get one constant from y′ and put it in y,

c2 = y′ +
c1
t2

⇒ y =
c1
t
+
!
y′ +

c1
t2

"
t,

so we get

y =
c1
t
+ t y′ +

c1
t

⇒ y =
2c1
t

+ t y′.

Compute the constant from the expression above,

2c1
t

= y − t y′ ⇒ 2c1 = t y − t2 y′.

Since the left hand side is constant,

0 = (2c1)
′ = (t y − t2 y′)′ = y + t y′ − 2t y′ − t2 y′′,

so we get that y must satisfy the differential equation

t2 y′′ + t y′ − y = 0.

⊳
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2.1.2. Solutions to the Initial Value Problem.

Theorem 2.1.2. (IVP) If the a1, a0, b are continuous on (t1, t2) and t0 ∈ (t1, t2), then

there is a unique y on (t1, t2) solution of the initial value problem

y′′ + a1(t) y
′ + a0(t) y = b(t), y(t0) = y0, y′(t0) = y1 .

Proof: Based on the Picard iteration. Two integrations, two initial conditions.

Example 2.1.5: Find the domain of the solution to the initial value problem

(t− 1) y′′ − 3t y′ +
4(t− 1)

(t− 3)
y = t(t− 1), y(2) = 1, y′(2) = 0.

Solution: We first write the equation above in the form given in the Theorem above,

y′′ − 3t

(t− 1)
y′ +

4

(t− 3)
y = t.

The equation coefficients are defined on the domain

(−∞, 1) ∪ (1, 3) ∪ (3,∞).

So the solution may not be defined at t = 1 or t = 3. That is, the solution is defined in

(−∞, 1) or (1, 3) or (3,∞).

Since the initial condition is at t0 = 2 ∈ (1, 3), then the domain of the solution is

D = (1, 3).

⊳
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2.1.3. Properties of Homogeneous Equations.

Remark: We introduce a new notation. We write

y′′ + a1(t) y
′ + a0(t) y = b(t) as L(y) = b(t) ,

where
L(y) = y′′ + a1(t) y

′ + a0(t) y .

Here L is an operator, that is,

L(function) = another function .

The operator above is a linear operator.

Definition 2.1.3. A linear operator is an operator L such that for every pair of
functions y1, y2 and constants c1, c2 holds

L(c1y1 + c2y2) = c1L(y1) + c2L(y2) .

Example Similar to Theorem 2.1.4: Show that the operator L(y) = y′′ + a1 y
′ + a0 y

is a linear operator.

Solution: This is a straightforward calculation:

L(c1y1 + c2y2) = (c1y1 + c2y2)
′′ + a1 (c1y1 + c2y2)

′ + a0 (c1y1 + c2y2).

Recall that derivations is a linear operation

L(c1y1 + c2y2) = c1y
′′
1 + c2y

′′
2 + a1 (c1y

′
1 + c2y

′
2) + a0 (c1y1 + c2y2).

Then reoorder terms in the following way,

L(c1y1 + c2y2) =
!
c1y

′′
1 + a1 c1y

′
1 + a0 c1y1

"
+
!
c2y

′′
2 + a1 c2y

′
2 + a0 c2y2

"
.

Introduce the definition of L back on the right-hand side. We then conclude that

L(c1y1 + c2y2) = c1L(y1) + c2L(y2).

⊳
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Remark:
Linearity of an operator and the superposition property are two sides of the same coin.

Theorem 2.1.5. (Superposition Property) If L is a linear operator and y1, y2 are
solutions of the homogeneous equations

L(y1) = 0, L(y2) = 0 ,

then for every constants c1, c2 holds

L(c1 y1 + c2 y2) = 0 .

Remark: This result is not true for nonhomogeneous equations.

Proof of Theorem 2.1.5: Verify that the function y = c1y1 + c2y2 satisfies L(y) = 0 for

every constants c1, c2, that is,

L(y) = L(c1y1 + c2y2) = c1 L(y1) + c2 L(y2) = c1 0 + c2 0 = 0.

This establishes the Theorem.

□
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2.1.4. The General Solution Theorem.

Definition 2.1.6. The functions y1, y2 are linearly dependent iff

they are proportional .

Otherwise the functions are linearly independent.

Remark: Two functions y1, y2 are proportional iff there is a constant c such that

y1(t) = c y2(t) for all t .

Theorem 2.1.7. (General Solution) If y1 and y2 are linearly independent solutions of
the variable coefficients equation

L(y1) = 0, L(y2) = 0 , L(y) = y′′ + a1 y
′ + a0 y,

then every solution y of L(y) = 0 can be written as

y(t) = c1 y1(t) + c2 y2(t), c1, c2 ∈ R .

Definition 2.1.8.

(a) The functions y1 and y2 are fundamental solutions of L(y) = 0 iff holds that

L(y1) = 0, L(y2) = 0 and y1, y2 are linearly independent .

(b) The general solution of the homogeneous equation L(y) = 0 is a two-parameter
family of functions

ygen(t) = c1 y1(t) + c2 y2(t), c1, c2 ∈ R ,

where y1, y2 are fundamental solutions of L(y) = 0.

Example 2.1.8: Show that y1 = et and y2 = e−2t are fundamental solutions to the equation

y′′ + y′ − 2y = 0.

Solution: y1, y2 are l.i., so we only need to show that L(y1) = 0 and L(y2) = 0.

L(y1) = y′′1 + y′1 − 2y1 = et + et − 2et = (1 + 1− 2)et = 0,

L(y2) = y′′2 + y′2 − 2y2 = 4 e−2t − 2 e−2t − 2e−2t = (4− 2− 2)e−2t = 0.

⊳
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Remark: The fundamental solutions to the equation above are not unique. For example,
show that another set of fundamental solutions to the equation above is given by,

y1(t) =
2

3
et +

1

3
e−2t, y2(t) =

1

3

!
et − e−2t

"
.

Proof of Theorem 2.1.7: Since y1 and y2 are solutions of

L(y1) = 0, L(y2) = 0,

then the superposition property says that any linear combination c1y1 + c2y2 is also solution

to the equation, since

L(c1y1 + c2y2) = c1L(y1) + c2L(y2) = 0 + 0.

We need to show that these are all the solutions, that is, there are no other solutions which

are not given by the linear combination above. Here is where we need the IVP Theorem, in

the case of homogeneous equations, which says that the initial value problem

L(y) = 0, y(t0) = d0, y′(t0) = d2,

always has a unique solution. This means that the constants d1 and d2 label all solutions. So

we only need to show that there is a one-to-one and onto transformation between constants

c1, and c2 and constants d1, d2. But this transformation is given by

d0 = c1 y1(t0) + c2 y2(t0)

d2 = c1 y
′
1(t0) + c2 y

′
2(t0).

We now need to show that this transformation is invertible. If we solve for c1 and c2 we get

c1 =
1

W12(t0)
(d1 y

′
2(t0)− d2 y2(t0)

c2 =
(−1)

W12(t0)
(d1 y

′
1(t0)− d2 y1(t0).

where

W12(t) = y1(t) y
′
2(t)− y′1(t)y2(t) =

#######

y1(t0) y2(t0)

y′1(t0) y′2(t0)

#######
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is called the Wronskian of y1 and y2. At the end of this class we prove Theorem 2.1.13,

which says the following:

If y1, y2 are fundamental solutions of L(y) = 0 on I ⊂ R, then W12(t) ∕= 0 on I.

This statement establishes the Theorem.

□
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2.1.5. The Wronskian and Abel’s Theorem.

Definition 2.1.9. The Wronskian of functions y1, y2 is the function

W12(t) = y1(t)y
′
2(t)− y′1(t)y2(t) .

Remark: If A(t) =

[
y1(t) y2(t)
y′1(t) y′2(t)

]
, then W12(t) = det

(
A(t)

)
.

Example Similar to 2.1.9: Find the Wronskian of y1 = e2t and y2 = e3t.

Solution: We compute

W12 = det
(
⎡

⎢⎣
y1(t) y2(t)

y′1(t) y′2(t)

⎤

⎥⎦
)
= det

(
⎡

⎢⎣
e2t e3t

2 e2t 3 e3t

⎤

⎥⎦
)
= 3 e2t e3t − 2 e2t e3t,

so we get

W12 = 3 e5t − 2 e5t ⇒ W12 = e5t.

⊳

Theorem 2.1.10. (Wronskian I) If y1, y2 are linearly dependent, thenW12 = 0 .

Proof of Theorem 2.1.10: Since the functions y1, y2 are linearly dependent, there exists

a nonzero constant c such that y1 = c y2; hence y′1 = c y′2 and

W12 = det
(
⎡

⎢⎣
c y2(t) y2(t)

c y′2(t) y′2(t)

⎤

⎥⎦
)
= (c y2) y

′
2 − (c y2)

′ y2 = 0.

This establishes the Theorem.

□
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Remark:
If y1 and y2 are linearly independent, then it does not imply that W12 ∕= 0.

Example 2.1.10: Show that the functions y1(t) = t2 and y2(t) = |t| t, for t ∈ R, are linearly
independent and have Wronskian W12 = 0.

Solution: First, these functions are linearly independent, since y1(t) = −y2(t) for t < 0,

but y1(t) = y2(t) for t > 0. So there is not c such that y1(t) = c y2(t) for all t ∈ R.

Second, their Wronskian vanishes on R. This is simple to see, since y1(t) = −y2(t) for

t < 0, then W12 = 0 for t < 0. Since y1(t) = y2(t) for t > 0, then W12 = 0 for t > 0. Finally,

it is not difficult to see that W12(t = 0) = 0.

⊳

Theorem 2.1.12. (Abel) If y1, y2 are twice continuously differentiable solutions of

y′′ + a1(t) y
′ + a0(t) y = 0, (2.1.1)

where a1, a0 are continuous on I ⊂ R, then the Wronskian W12 satisfies

W ′
12 + a1(t)W12 = 0 .

Therefore, for any t0 ∈ I, the Wronskian W12 is given by the expression

W12(t) = W0 e
−A1(t) ,

where W0 = W12(t0) and A1(t) =

! t

t0

a1(s) ds .
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Proof of Theorem 2.1.12: We start computing the derivative of the Wronskian function,

W ′
12 =

!
y1 y

′
2 − y′1 y2

"′
= y1 y

′′
2 − y′′1 y2.

Recall that both y1 and y2 are solutions to Eq. (2.1.1), meaning,

y′′1 = −a1 y
′
1 − a0 y1, y′′2 = −a1 y

′
2 − a0 y2.

Replace these expressions in the formula for W ′
12 above,

W ′
12 = y1

!
−a1 y

′
2 − a0 y2

"
−
!
−a1 y

′
1 − a0 y1

"
y2 ⇒ W ′

12 = −a1

!
y1 y

′
2 − y′1 y2

"

So we obtain the equation

W ′
12 + a1(t) W12 = 0.

This equation for W12 is a first order linear equation; its solution can be found using the

method of integrating factors, given in Section 1.1, which results is the expression in the

Theorem ??. This establishes the Theorem.

□
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Example 2.1.11: Find the Wronskian of two solutions of the equation

t2 y′′ − t(t+ 2) y′ + (t+ 2) y = 0, t > 0.

Solution: Notice that we do not known the explicit expression for the solutions. Neverthe-

less, Abel’s Theorem says that we can compute their Wronskian. First, we have to rewrite

the differential equation in the form given in that Theorem, namely,

y′′ −
!2
t
+ 1

"
y′ +

! 2

t2
+

1

t

"
y = 0.

Then, Abel’s Theorem says that the Wronskian satisfies the differential equation

W ′
12(t)−

!2
t
+ 1

"
W12(t) = 0.

This is a first order, linear equation for W12, so its solution can be computed using the

method of integrating factors. That is, first compute the integral

−
# t

t0

!2
s
+ 1

"
ds = −2 ln

! t

t0

"
− (t− t0)

= ln
! t20
t2

"
− (t− t0).

Then, the integrating factor µ is given by

µ(t) =
t20
t2

e−(t−t0),

which satisfies the condition µ(t0) = 1. So the solution, W12 is given by

!
µ(t)W12(t)

"′
= 0 ⇒ µ(t)W12(t)− µ(t0)W12(t0) = 0

so, the solution is

W12(t) = W12(t0)
t2

t20
e(t−t0).

If we call the constant c = W12(t0)/[t
2
0e

t0 ], then the Wronskian has the simpler form

W12(t) = c t2et.

⊳
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Theorem 2.1.13. (Wronskian II) If y1, y2 are fundamental solutions

of L(y) = 0, then W12 ∕= 0 .

Remark: Instead of proving the Theorem above, we prove an equivalent statement—the
negative statement.

Corollary 2.1.14. (Wronskian II) If y1, y2 are solutions of L(y) = 0

on I ⊂ R and there is a point t1 ∈ I such that W12(t1) = 0 , then y1,

y2 are linearly dependent on I.

Proof of Corollary 2.1.14: We know that y1, y2 are solutions of L(y) = 0. Then, Abel’s

Theorem says that their Wronskian W12 is given by

W12(t) = W 12(t0) e
−A1(t),

for any t0 ∈ I. Chossing the point t0 = t1, the point where W12(t1) = 0, we get that

W12(t) = 0 for all t ∈ I.

Knowing that the Wronskian vanishes identically on I, we can write

y1 y
′
2 − y′1 y2 = 0,

on I. If either y1 or y2 is the function zero, then the set is linearly dependent. So we

can assume that both are not identically zero. Let’s assume there exists t1 ∈ I such that

y1(t1) ∕= 0. By continuity, y1 is nonzero in an open neighborhood I1 ⊂ I of t1. So in that

neighborhood we can divide the equation above by y21 ,

y1 y
′
2 − y′1 y2
y21

= 0 ⇒
!y2
y1

"′
= 0 ⇒ y2

y1
= c, on I1,

where c ∈ R is an arbitrary constant. So we conclude that y1 is proportional to y2 on the

open set I1. That means that the function y(t) = y2(t)− c y1(t), satisfies

L(y) = 0, y(t1) = 0, y′(t1) = 0.

So, y(t) = 0 for all t ∈ I, hence, y1 and y2 are ld. This establishes the Theorem. □


