Section Objective(s):

- Definitions and Examples.
- Solutions to the Initial Value Problem.
- Properties of Homogeneous Equations.
- The General Solution Theorem.
- The Wronskian and Abel's Theorem.

2.1.1. Definitions and Examples.

Definition 2.1.1. A *second order linear* differential equation on *y* is

where a_1, a_0, b are given functions. The differential equation above:

- (a) is *homogeneous* iff the source ______ for all $t \in \mathbb{R}$;
- (b) has *constant coefficients* iff are constants;
- (c) has *variable coefficients* iff either ______ is not constant.

Remark: The homogeneous equations here ______ the Euler homogeneous equations in § 1.3.

Example 2.1.1:

- (a) A second order, linear, homogeneous, constant coefficients equation is
- (b) A second order, linear, nonhomogeneous, constant coefficients, equation is
- (c) A second order, linear, nonhomogeneous, variable coefficients equation is
- (d) Newton's law of motion for a point particle of mass m moving in one space dimension under a force f is mass times acceleration equal force,
- (e) Schrödinger equation in Quantum Mechanics, in one space dimension, stationary, is

where _____ is the probability density of finding a particle of mass ______ at the position ______ having energy ______ under a potential ______, where \hbar is the Planck constant divided by 2π . \triangleleft

EXAMPLE 2.1.3: Find the differential equation satisfied by the family of functions

$$y(t) = \frac{c_1}{t} + c_2 t, \qquad c_1, c_2 \in \mathbb{R}.$$

SOLUTION:

Proof: Based on the Picard iteration. Two integrations, two initial conditions.

EXAMPLE 2.1.5: Find the domain of the solution to the initial value problem

$$(t-1)y'' - 3ty' + \frac{4(t-1)}{(t-3)}y = t(t-1), \qquad y(2) = 1, \qquad y'(2) = 0.$$

SOLUTION:

2.1.3. Properties of Homogeneous Equations.

Remark: We introduce a new notation. We write

 $y'' + a_1(t) y' + a_0(t) y = b(t)$ as

where

4

Here _____ is an operator, that is,

The operator above is a linear operator.

Definition 2.1.3. A *linear operator* is an operator L such that for every pair of functions y_1 , y_2 and constants c_1 , c_2 holds

EXAMPLE SIMILAR TO THEOREM 2.1.4: Show that the operator $L(y) = y'' + a_1 y' + a_0 y$ is a linear operator.

SOLUTION:

 \triangleleft

Remark:

Linearity of an operator and the superposition property are two sides of the same coin.

Theorem 2.1.5. (Superposition Property) If L is a linear operator and y_1 , y_2 are solutions of the homogeneous equations

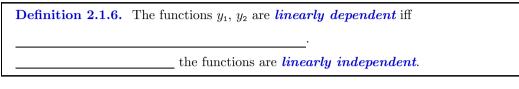
,

then for every constants $c_1,\,c_2$ holds

Remark: This result ______ for nonhomogeneous equations.

Proof of Theorem 2.1.5:

2.1.4. The General Solution Theorem.



Remark: Two functions y_1, y_2 are proportional iff there is a constant c such that

Theorem 2.1.7. (General Solution) If y_1 and y_2 are linearly independent solutions of the variable coefficients equation

$$L(y) = y'' + a_1 y' + a_0 y,$$

then solution y of L(y) = 0 can be written as

Definition 2.1.8.

- (a) The functions y_1 and y_2 are *fundamental solutions* of L(y) = 0 iff holds that $L(y_1) = 0, L(y_2) = 0$ and y_1, y_2 are .
- (b) The *general solution* of the homogeneous equation L(y) = 0 is a two-parameter family of functions

where y_1, y_2 are _____

f L(y) = 0.

EXAMPLE 2.1.8: Show that $y_1 = e^t$ and $y_2 = e^{-2t}$ are fundamental solutions to the equation y'' + y' - 2y = 0.

SOLUTION:

Remark: The fundamental solutions to the equation above are not unique. For example, show that another set of fundamental solutions to the equation above is given by,

Proof of Theorem 2.1.7:

.

Definition 2.1.9. The *Wronskian* of functions y_1, y_2 is the function

Remark: If $A(t) = \begin{bmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{bmatrix}$, then ______.

EXAMPLE SIMILAR TO 2.1.9: Find the Wronskian of $y_1 = e^{2t}$ and $y_2 = e^{3t}$.

SOLUTION:

Theorem 2.1.10. (Wronskian I) If y_1, y_2 are linearly dependent, then _____

Proof of Theorem 2.1.10:

Remark:

If y_1 and y_2 are linearly independent, then it _____ imply that $W_{12} \neq 0$.

EXAMPLE 2.1.10: Show that the functions $y_1(t) = t^2$ and $y_2(t) = |t| t$, for $t \in \mathbb{R}$, are linearly independent and have Wronskian $W_{12} = 0$.

SOLUTION:

Theorem 2.1.12. (Abel) If y_1, y_2 are twice continuously differentiable solutions of $y'' + a_1(t) y' + a_0(t) y = 0,$

(2.1.1)

 \triangleleft

where a_1, a_0 are continuous on $I \subset \mathbb{R}$, then the Wronskian W_{12} satisfies

Therefore, for any $t_0 \in I$, the Wronskian W_{12} is given by the expression

where $W_0 = W_{12}(t_0)$ and

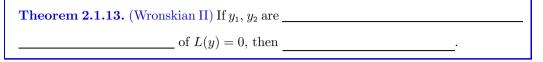
10

Proof of Theorem 2.1.12:

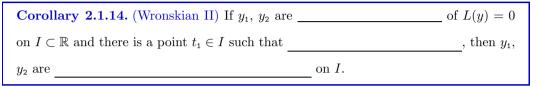
EXAMPLE 2.1.11: Find the Wronskian of two solutions of the equation $t^2\,y''-t(t+2)\,y'+(t+2)\,y=0,\qquad t>0.$

SOLUTION:

12



Remark: Instead of proving the Theorem above, we prove an equivalent statement—the negative statement.



Proof of Corollary 2.1.14: