2.1. VARIABLE COEFFICIENTS

Section Objective(s):

e Definitions and Examples.
Solutions to the Initial Value Problem.
Properties of Homogeneous Equations.

[ )
e The General Solution Theorem.
e The Wronskian and Abel’s Theorem.

2.1.1. Definitions and Examples.

Definition 2.1.1. A second order linear differential equation on y is

where a,, a,, b are given functions. The differential equation above:

(a) is homogeneous iff the source for all ¢t € R;
(b) has constant coefficients iff are constants;
(¢) has variable coefficients iff either is not constant.

Remark: The homogeneous equations here
the Euler homogeneous equations in § 1.3.

ExAMPLE 2.1.1:
(a) A second order, linear, homogeneous, constant coefficients equation is

(b) A second order, linear, nonhomogeneous, constant coefficients, equation is

(¢) A second order, linear, nonhomogeneous, variable coefficients equation is

(d) Newton’s law of motion for a point particle of mass m moving in one space dimension
under a force f is mass times acceleration equal force,

(e) Schrédinger equation in Quantum Mechanics, in one space dimension, stationary, is

)

where is the probability density of finding a particle of mass at the position

__ having energy under a potential , where h is the Planck constant divided
by 2. <



ExaMPLE 2.1.3: Find the differential equation satisfied by the family of functions

c
y(t) = 71 +cot, ¢, € R

SOLUTION:



2.1.2. Solutions to the Initial Value Problem.

Theorem 2.1.2. (IVP) If the a,, a,, b are continuous on (t,,t,) and t, € (¢,,t,), then

there is solution of the initial value problem

Proof: Based on the Picard iteration. Two integrations, two initial conditions.
ExaMpLE 2.1.5: Find the domain of the solution to the initial value problem

A1) y=tt-1), y2)=1, y(2)=0.

t_]. /,_t/
(t—1)y" =3ty + =)

SOLUTION:



2.1.3. Properties of Homogeneous Equations.

Remark: We introduce a new notation. We write

v +a)y +at)y=>0t) as ,

where

Here is an operator, that is,

The operator above is a linear operator.

Definition 2.1.3. A linear operator is an operator L such that for every pair of
functions y,, y, and constants ¢, ¢, holds

EXAMPLE SIMILAR TO THEOREM 2.1.4: Show that the operator L(y) = 3" + a; Yy + aoy
is a linear operator.

SOLUTION:



Remark:
Linearity of an operator and the superposition property are two sides of the same coin.

Theorem 2.1.5. (Superposition Property) If L is a linear operator and y;, y, are
solutions of the homogeneous equations

then for every constants c;, ¢, holds

Remark: This result for nonhomogeneous equations.

Proof of Theorem 2.1.5:



2.1.4. The General Solution Theorem.

Definition 2.1.6. The functions y,, ¥y, are linearly dependent iff

the functions are linearly independent.

Remark: Two functions ¥, y, are proportional iff there is a constant ¢ such that

Theorem 2.1.7. (General Solution) If y; and y, are linearly independent solutions of
the variable coefficients equation

. Ly)=y"+ay +acy,

then solution y of L(y) = 0 can be written as

Definition 2.1.8.
(a) The functions y; and y, are fundamental solutions of L(y) = 0 iff holds that

L(y,) =0, L(y,) = 0 and y,, y, are

(b) The general solution of the homogeneous equation L(y) = 0 is a two-parameter
family of functions

)

where y,, y, are of L(y) = 0.

EXAMPLE 2.1.8: Show that y; = e’ and y, = e~ 2! are fundamental solutions to the equation

y' +y —2y=0.

SOLUTION:



Remark: The fundamental solutions to the equation above are not unique. For example,
show that another set of fundamental solutions to the equation above is given by,

Proof of Theorem 2.1.7:






2.1.5. The Wronskian and Abel’s Theorem.

Definition 2.1.9. The Wronskian of functions y;, ¥, is the function

Remark: If A(t) = [yigg zzg;], then

EXAMPLE SIMILAR TO 2.1.9: Find the Wronskian of y; = €% and y, = e3*.

SOLUTION:

Theorem 2.1.10. (Wronskian I) If y;, y, are linearly dependent, then

Proof of Theorem 2.1.10:



10

Remark:
If y, and y, are linearly independent, then it imply that Wi, # 0.

EXAMPLE 2.1.10: Show that the functions y,(t) = t? and y,(t) = |t|t, for t € R, are linearly
independent and have Wronskian W, = 0.

SOLUTION:

Theorem 2.1.12. (Abel) If y,, y, are twice continuously differentiable solutions of
v +a.(t)y + ao(t)y =0, (2.1.1)

where a,, a, are continuous on I C R, then the Wronskian W,, satisfies

Therefore, for any t, € I, the Wronskian W, is given by the expression

where W, = Wi,(t,) and




Proof of Theorem 2.1.12:
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ExAMPLE 2.1.11: Find the Wronskian of two solutions of the equation
2y —tt+2)y +(t+2)y=0, t>0.

SOLUTION:
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Theorem 2.1.13. (Wronskian IT) If y,, y, are

of L(y) = 0, then

Remark: Instead of proving the Theorem above, we prove an equivalent statement—the

negative statement.

Corollary 2.1.14. (Wronskian IT) If y,, y, are

on I C R and there is a point ¢; € I such that

of L(y) =0

’ then Y,

Yo are

on I.

Proof of Corollary 2.1.14:



