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1.5. Applications

Section Objective(s):

• The Radioactive Decay Equation.
• Newton’s Cooling Law.
• Salt in a Water Tanks.

1.5.1. Exponential Decay.

Definition 1.5.1. The exponential decay equation for N is

N ′ = −k N, k > 0 .

Remark: The exponential growth equation is N ′ = k N , with k > 0 .

Theorem 1.5.1. The solution of the exponential decay equation with N(0) = N0 is

N(t) = N0 e
−kt .

Proof of Theorem 1.5.1:

This is a(n) linear equation with constant coefficients .

□

Remark: Radioactive materials are often characterized by their half-life τ .

Definition 1.5.2. The half-life of a radioactive material with an initial

amount N0 is the time τ such that

N(τ) =
N0

2
.

Theorem 1.5.2. A radioactive material constant k and half-life τ are related by

kτ = ln(2) .

Proof of Theorem 1.5.2: We know that the amount of a radioactive material as function

of time is given by

N(t) = N0 e
−kt.

Then, the definition of half-life implies,

N0

2
= N0 e

−kτ ⇒ −kτ = ln
!1
2

"
⇒ kτ = ln(2).

This establishes the Theorem. □
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Example 1.5.1: If certain remains are found containing an amount of 14 % of the original
amount of Carbon-14, find the date of the remains.

Solution: Suppose that t = 0 is set at the time when the organism dies. If at the present

time t the remains contain 14% of the original amount, that means

N(t) =
14

100
N0.

Since Carbon-14 is a radioactive substant with half-life τ , the amount of Carbon-14 decays

in time as follows,

N(t) = N0 2
−t/τ ,

where τ = 5730 years is the Carbon-14 half-life. Therefore,

2−t/τ =
14

100
⇒ − t

τ
= log2(14/100) ⇒ t = τ log2(100/14).

We obtain that t = 16, 253 years. The organism died more that 16, 000 years ago.

⊳
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1.5.2. Newton’s Cooling Law.

Definition 1.5.3. The Newton cooling law says that the temperature T at a time t
of a material placed in a medium with constant temperature Ts satisfies

(∆T )′ = −k (∆T ),

where ∆T (t) = T (t)− Ts, and k > 0, constant.

Remark: The general solution is (∆T )(t) = (∆T )0 e
−kt, with (∆T )0 = (T (0)− Ts)so

(T − Ts)(t) = (T0 − Ts) e
−kt ⇒ T (t) = (T0 − Ts) e

−kt + Ts.

If (∆T )0 > 0, the material cools down.

If (∆T )0 < 0, the material heats up.

Example 1.5.2: A cup with water at 45 C is placed in the cooler held at 5 C. If after 2
minutes the water temperature is 25 C, when will the water temperature be 15 C?

Solution: We know that the solution of the Newton cooling law equation is

T (t) = (T0 − Ts) e
−kt + Ts,

and we also know that in this case we have

T0 = 45, Ts = 5, T (2) = 25.

Since we need to find t1 such that T (t1) = 15, we first need to find the constant k,

T (t) = (45− 5) e−kt + 5 ⇒ T (t) = 40 e−kt + 5.

Now use the fact that T (2) = 25 C, that is,

20 = T (2) = 40 e−2k ⇒ ln(1/2) = −2k ⇒ k =
1

2
ln(2).

Having the constant k we can now go on and find the time t1 such that T (t1) = 15 C.

T (t) = 40 e−t ln(
√
2) + 5 ⇒ 10 = 40 e−t1 ln(

√
2) ⇒ t1 = 4.

⊳
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1.5.3. Salt in a Water Tank.

Instantaneously mixed

Tank

ro , qo (t)V (t) Q(t)

ri , qi (t)

Remark: Before stating the problem we want to solve, we review the physical units of the

main fields involved in it. Denote by [ri] the units of the quantity ri. Then we have

[ri] = [ro] =
Volume

Time
, [qi] = [qo] =

Mass

Volume
,

[V ] = Volume, [Q] = Mass.

Definition 1.5.4. The Water Tank Problem refers to water coming into a tank

at a rate ri with salt concentration qi, and going out the tank at a rate ro and salt

concentration qo, so that the water volume V and the total amount of salt Q, which is

instantaneously mixed , in the tank satisfy the equations,

V ′(t) = ri(t)− ro(t), (1.5.1)

Q′(t) = ri(t) qi(t)− ro(t), qo(t), (1.5.2)

qo(t) =
Q(t)

V (t)
, (1.5.3)

r′i(t) = r′o(t) = 0. (1.5.4)
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Theorem 1.5.3. The amount of salt Q in a water tank problem defined in Def. 1.5.4
satisfies the differential equation

Q′(t) = a(t)Q(t) + b(t), (1.5.5)

where the coefficients in the equation are given by

a(t) = − ro
(ri − ro) t+ V0

, b(t) = ri qi(t). (1.5.6)

Proof of Theorem 1.5.3: Note that Eq. (1.5.4) says that the water rates are constant.

We denote them as ri and ro. This information in Eq. (1.5.1) implies that

V ′ = (ri − ro)

is constant. Then we can easily integrate this equation to obtain

V (t) = (ri − ro) t+ V0, (1.5.7)

where V0 = V (0) is the water volume in the tank at the initial time t = 0. On the other

hand, Eqs.(1.5.2) and (1.5.3) imply that

Q′(t) = ri qi(t)−
ro

V (t)
Q(t).

Since V (t) is known from Eq. (1.5.7), we get that the function Q must be solution of the

differential equation

Q′(t) = ri qi(t)−
ro

(ri − ro) t+ V0

Q(t).

This is a linear ODE for the function Q. Indeed, introducing the functions

a(t) = − ro
(ri − ro) t+ V0

, b(t) = ri qi(t),

the differential equation for Q has the form

Q′(t) = a(t)Q(t) + b(t).

This establishes the Theorem.

□
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Example 1.5.3: Consider a water tank problem with water rates ri = ro = r = 2 liters/min,
fresh water is coming into the tank, the initial water volume in the tank is V0 = 200 liters,
and the initial salt in the tank is Q0 = 200 grams. Then, find the time t1 such that the salt
in the tank is 1% the initial value.

Solution: Since ri = ro we have that V ′ = (ri − ro) = 0, hence V (t) = V0 = 200 liters.

Now, the equation for the salt in the tank is

Q′ = riqi − roqo.

The fresh water enters into the tank, so qi = 0. And the salt in the tank is instantaneously

mixed, hence qo(t) =
Q(t)

V (t)
, so

Q′(t) = −ro
Q(t)

V (t)
⇒ Q′ = − ro

V0

Q.

with ro = r = 2 liters/min, initial condition Q(0) = Q0 = 200 grams. This is a linear

equation with constant coefficients, so the solution is

Q(t) = Q0 e
−rt/V0 .

We can now proceed to find the time t1. The condition that defines t1 is

Q(t1) =
1

100
Q0.

From these two equations above we conclude that

1

100
Q0 = Q(t1) = Q0 e

−rt1/V0 .

The time t1 comes from the equation

1

100
= e−rt1/V0 ⇔ ln

! 1

100

"
= −rt1

V0

⇔ ln(100) =
rt1
V0

.

The final result is given by

t1 =
V0

r
ln(100).

⊳
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1.5.4. Exercises.

1.5.1.- A radioactive material decays at
a rate proportional to the amount
present. Initially there are 50 mil-
ligrams of the material present and after
one hour the material has lost 80% of its
original mass.

(a) Find the mass of the material as
function of time.

(b) Find the mass of the material after
four hours.

(c) Find the half-life of the material.

1.5.2.- A vessel with liquid at 18 C is placed
in a cooler held at 3 C, and after 3 min-
utes the temperature drops to 13 C.

(a) Find the differential equation satis-
fied by the temperature T of a liq-
uid in the cooler at time t = 0.

(b) Find the function temperature of
the liquid once it is put in the
cooler.

(c) Find the liquid cooling constant.

1.5.3.- A tank initially contains V0 = 100
liters of water with Q0 = 25 grams of
salt. The tank is rinsed with fresh wa-
ter flowing in at a rate of ri = 5 liters
per minute and leaving the tank at the
same rate. The water in the tank is well-
stirred. Find the time such that the
amount the salt in the tank is Q1 = 5
grams.

1.5.4.- A tank initially contains V0 = 100
liters of pure water. Water enters the
tank at a rate of ri = 2 liters per minute
with a salt concentration of q1 = 3
grams per liter. The instantaneously
mixed mixture leaves the tank at the
same rate it enters the tank. Find the
salt concentration in the tank at any
time t ! 0. Also find the limiting
amount of salt in the tank in the limit
t → ∞.

1.5.5.- A tank with a capacity of Vm = 500
liters originally contains V0 = 200 liters
of water with Q0 = 100 grams of salt
in solution. Water containing salt with
concentration of qi = 1 gram per liter
is poured in at a rate of ri = 3 liters
per minute. The well-stirred water is
allowed to pour out the tank at a rate
of ro = 2 liters per minute. Find the
salt concentration in the tank at the
time when the tank is about to overflow.
Compare this concentration with the
limiting concentration at infinity time
if the tank had infinity capacity.


