1.4. EXACT DIFFERENTIAL EQUATIONS

Section Objective(s):
e Exact Equations.
Solving Exact Equations.
Semi-Exact Equations.
Solving Semi-Exact Equations.
The Equation for the Inverse Function.
Solving for the Inverse Function.

1.4.1. Exact Equations.

Definition 1.4.1. An exact differential equation has the form

where the functions N and M satisfy

Remark: Functions depend on , and use the notation

ExXAMPLE 1.4.1: Show whether a separable equation h(y) y'(t) = g(¢) is exact or not.

SOLUTION:



EXAMPLE 1.4.2: Show whether the linear differential equation below is exact or not,
Y =al)y+b(t),  alt) #0.

SOLUTION:

EXAMPLE 1.4.3: Show whether 2ty y' + 2t + y? = 0 is exact or not.

SOLUTION:



1.4.2. Solving Exact Equations.

Remark: Exact equations can be transformed into a total derivative, hence simple to solve.

Theorem 1.4.2. (Exact Equations) If the differential equation

is exact, then it can be written as

where is a potential function satisfying

Therefore, the solutions of the exact equation are given in implicit form as

Remark: The proof of the theorem above needs the following result.

Theorem 1.4.3. (Poincaré) Continuously differentiable functions M, N satisfy

iff there exists a function , called potential function, such that

Proof of Poincaré Theorem 1.4.3:

(=) It is hard. Poincaré 1880.

(<)
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Proof of Theorem 1.4.2:



ExXAMPLE 1.4.6: Find all solutions y to the differential equation
2y y + 2t +1y* = 0.

SOLUTION:



1.4.3. Semi-Exact Equations.

Definition 1.4.4. A semi-exact differential equation is a

equation that can be transformed into an equation after a multipli-

cation by an integrating factor.

EXAMPLE 1.4.8: Show that linear differential equations y' = a(t) y + b(t) are semi-exact.

SOLUTION:



1.4.4. Solving Semi-Exact Equations.

Theorem 1.4.5. If the equation Ny’ + M =0 is not exact, with
Oy N # 0,M, the function N # 0, and where the function h defined as

depends only on , then the equation below is exact

where is an antiderivative of ,

Remarks:

(a) The function u(t) = e#® is called an

(b) Any is solution of the differential
equation

(¢) Multiplication by an transforms a non-exact
equation

into an exact equation.

This is exactly what happened with linear equations.

Verification Proof of Theorem 1.4.5:
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Constructive Proof of Theorem 1.4.5:



ExAaMPLE 1.4.9: Find all solutions y to the differential equation
(B +ty)y + (3ty+y*) =0. (1.4.5)

SOLUTION:
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1.4.5. The Equation for the Inverse Function.

Remark: We change the notation in this last part of the section.

(a) We change the independent variable name from ¢ to .
(b) We write a differential equation as

(¢) z(y) is the inverse of y(x), that is, (y,) =z, <  y(z,) = y;.

(d) Recall 2'(y) = @)

Remark: But for exact equations it makes no difference to solve for y or its inverse .

Theorem 1.4.6. The equation is exact

iff the equation is exact.

Remark: For non-exact equations there is a difference.

Proof of Theorem 1.4.6:
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1.4.6. Solving for the Inverse Function.

Remark: Sometimes the equations Ny’ + M = 0 and N + M 2’ = 0 are written together,

This equation deserves two comments:

(a) We do not use this notation here. That equation makes sense in the framework of
differential forms, which is beyond the subject of these notes.
(b) Some people justify the use of that equation outside the framework of differential forms

d
by thinking 3/ = d_y as real fraction and multiplying N ¢ + M = 0 by the denominator,
i

d
Nd—erM:o = Ndy+ Mdz=0.

. . d L . .
Unfortunately, ¢’ is not a fraction d—y, so the calculation just mentioned has no meaning.
x

Theorem 1.4.7. If the equation M 2’ + N =0 is not exact, with
OyM # 0, N, the function M # 0, and where the function? defined as

depends only on , then the equation below is exact,

where L is an antiderivative of £,

Remarks:
(a) The function u(y) = e*®) is called an

(b) Any is solution of the differential
equation

(¢) Multiplication by an transforms a non-exact
equation

into an exact equation.

This is exactly what happened with linear equations.



Verification Proof of Theorem 1.4.7:
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Constructive Proof of Theorem 1.4.7:



ExAMPLE 1.4.11: Find all solutions to the differential equation
(5ze7Y +2cos(37)) y + (5e ¥ — 3sin(3z)) = 0.

SOLUTION:
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