1.4. Exact Differential Equations

Section Objective(s):

- Exact Equations.
- Solving Exact Equations.
- Semi-Exact Equations.
- Solving Semi-Exact Equations.
- The Equation for the Inverse Function.
- Solving for the Inverse Function.

1.4.1. Exact Equations

·
on, and use the notation

Example 1.4.2: Show whether the linear differential equation below is exact or not, $y'=a(t)\,y+b(t), \qquad a(t)\neq 0.$

SOLUTION:

Example 1.4.3: Show whether $2ty y' + 2t + y^2 = 0$ is exact or not.

SOLUTION:

 \triangleleft

 \triangleleft

1.4.2. Solving Exact Equations.

Remark: Exact equations can be transformed into a total derivative, hence simple to solve.

Theorem 1.4.2. (1	Exact Equations) If the differential equation
is exact, then it car	be written as
where is	a potential function satisfying
where is	- potential function satisfying
Therefore, the solut	ions of the exact equation are given in implicit form as
Remark: The proof of	of the theorem above needs the following result.
Theorem 1.4.3. (1	Poincaré) Continuously differentiable functions M, N satisfy
iff there exists a fur	action, called potential function, such that
-	·

Proof of Poincaré Theorem 1.4.3:

 (\Rightarrow) It is hard. Poincaré 1880.

(⇔)

Proof of Theorem 1.4.2:

Example 1.4.6: Find all solutions y to the differential equation

$$2ty \, y' + 2t + y^2 = 0.$$

1.4.3. Semi-Exact Equations.

Definition 1.4.4. A <i>semi-exact</i> differential equation is a	
equation that can be transformed into an	equation after a multipli-
cation by an integrating factor.	

Example 1.4.8: Show that linear differential equations y' = a(t) y + b(t) are semi-exact.

1.4.4. Solving Semi-Exact Equations.

Theorem 1.4.5. If the equation Ny' +	M = 0 is not exact, with
$\partial_t N \neq \partial_y M$, the function $N \neq 0$, and where	
depends only on	, then the equation below is exact
	,
where is an antiderivative of	·
	•
Remarks:	
(a) The function $\mu(t) = e^{H(t)}$ is called an	·
(b) Any equation	is solution of the differential
	·
(c) Multiplication by an equation	transforms a non-exact
into an exact equation.	
This is exactly what happened with lin	ear equations.

Verification Proof of Theorem 1.4.5:

Constructive Proof of Theorem 1.4.5:

Example 1.4.9: Find all solutions y to the differential equation

$$(t^{2} + ty)y' + (3ty + y^{2}) = 0. (1.4.5)$$

1.4.5. The Equation for the Inverse Function.

Remark: We change the notation in this last part of the section.

- (a) We change the independent variable name from t to x.
- (b) We write a differential equation as

(c) x(y) is the inverse of y(x), that is, $x(y_1) = x_1 \Leftrightarrow y(x_1) = y_1$.

(d) Recall
$$x'(y) = \frac{1}{y'(x)}$$
.

Remark: But for exact equations it makes no difference to solve for y or its inverse x.

Theorem 1.4.6. The equation ______ is exact iff the equation ______ is exact.

Remark: For non-exact equations there is a difference.

Proof of Theorem 1.4.6:

1.4.6. Solving for the Inverse Function.

Remark: Sometimes the equations Ny' + M = 0 and N + Mx' = 0 are written together,

This equation deserves two comments:

- (a) We do not use this notation here. That equation makes sense in the framework of differential forms, which is beyond the subject of these notes.
- (b) Some people justify the use of that equation outside the framework of differential forms by thinking $y' = \frac{dy}{dx}$ as real fraction and multiplying $N\,y' + M = 0$ by the denominator,

$$N\frac{dy}{dx} + M = 0 \quad \Rightarrow \quad N\,dy + M\,dx = 0.$$

Unfortunately, y' is not a fraction $\frac{dy}{dx}$, so the calculation just mentioned has no meaning.

Theorem 1.4.7. If the equation $\underline{M} x$ $\partial_y M \neq \partial_x N$, the function $M \neq 0$, and	$\frac{N'+N=0}{N'+N}$ is not exact, with d where the function ℓ defined as
depends only on	, then the equation below is exact,
where L is an antiderivative of ℓ ,	<u>,</u>
Remarks: (a) The function $\mu(y) = e^{L(y)}$ is called a	an .
(b) Any equation	
(c) Multiplication by an equation	transforms a non-exact
into an exact equation.	·

This is exactly what happened with linear equations.

Verification Proof of Theorem 1.4.7:

Constructive Proof of Theorem 1.4.7:

Example 1.4.11: Find all solutions to the differential equation

$$(5x e^{-y} + 2\cos(3x)) y' + (5 e^{-y} - 3\sin(3x)) = 0.$$