
1

1.4. Exact Differential Equations

Section Objective(s):

• Exact Equations.
• Solving Exact Equations.
• Semi-Exact Equations.
• Solving Semi-Exact Equations.
• The Equation for the Inverse Function.
• Solving for the Inverse Function.

1.4.1. Exact Equations.

Definition 1.4.1. An exact differential equation has the form

N(t, y) y′ +M(t, y) = 0 ,

where the functions N and M satisfy

∂tN(t, y) = ∂yM(t, y) .

Remark: Functions N , M depend on t, y , and use the notation

∂tN =
∂N

∂t
, ∂yM =

∂M

∂y
.

Example 1.4.1: Show whether a separable equation h(y) y′(t) = g(t) is exact or not.

Solution: If we write the equation as h(y) y′ − g(t) = 0, then

N(t, y) = h(y) ⇒ ∂tN(t, y) = 0,

M(t, y) = g(t) ⇒ ∂yM(t, y) = 0,

⎫
⎪⎬

⎪⎭
⇒ ∂tN(t, y) = ∂yM(t, y).

So, every separable equation is exact.

⊳
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Example 1.4.2: Show whether the linear differential equation below is exact or not,

y′ = a(t) y + b(t), a(t) ∕= 0.

Solution: We first find the functions N and M rewriting the equation as follows,

y′ + a(t)y − b(t) = 0 ⇒ N(t, y) = 1, M(t, y) = −a(t) y − b(t).

Let us check whether the equation is exact or not,

N(t, y) = 1 ⇒ ∂tN(t, y) = 0,

M(t, y) = −a(t)y − b(t) ⇒ ∂yM(t, y) = −a(t),

⎫
⎪⎬

⎪⎭
⇒ ∂tN(t, y) ∕= ∂yM(t, y).

So, the differential equation is not exact.

⊳
Example 1.4.3: Show whether 2ty y′ + 2t+ y2 = 0 is exact or not.

Solution: We first identify the functions N and M . This is simple in this case, since

(2ty) y′ + (2t+ y2) = 0 ⇒ N(t, y) = 2ty, M(t, y) = 2t+ y2.

The equation is indeed exact, since

N(t, y) = 2ty ⇒ ∂tN(t, y) = 2y,

M(t, y) = 2t+ y2 ⇒ ∂yM(t, y) = 2y,

⎫
⎪⎬

⎪⎭
⇒ ∂tN(t, y) = ∂yM(t, y).

Therefore, the differential equation is exact.

⊳
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1.4.2. Solving Exact Equations.

Remark: Exact equations can be transformed into a total derivative, hence simple to solve.

Theorem 1.4.2. (Exact Equations) If the differential equation

N(t, y) y′ +M(t, y) = 0

is exact, then it can be written as

dψ

dt
(t, y(t)) = 0 ,

where ψ is a potential function satisfying

N = ∂yψ, M = ∂tψ .

Therefore, the solutions of the exact equation are given in implicit form as

ψ(t, y(t)) = c, c ∈ R .

Remark: The proof of the theorem above needs the following result.

Theorem 1.4.3. (Poincaré) Continuously differentiable functions M,N satisfy

∂tN(t, y) = ∂yM(t, y)

iff there exists a function ψ , called potential function, such that

N = ∂yψ, M = ∂tψ .

Proof of Poincaré Theorem 1.4.3:

(⇒) It is hard. Poincaré 1880.

(⇐) We assume that the potential function ψ is given and satisfies

N = ∂yψ, M = ∂tψ.

Then,

∂tN = ∂t∂yψ = ∂y∂tψ = ∂yM.

□
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Proof of Theorem 1.4.2: The differential equation is exact, then Poincaré theorem implies

that there exists a potential function ψ satisfying

N = ∂yψ, M = ∂tψ.

Therefore, the differential equation is given by

0 = N(t, y) y′(t) +M(t, y)

=
!
∂yψ(t, y)

"
y′ +

!
∂tψ(t, y)

"

=
d

dt
ψ(t, y(t)),

where in the last step we used the chain rule. Recall that the chain rule says

d

dt
ψ
!
t, y(t)

"
= (∂yψ)

dy

dt
+ (∂tψ).

So, the differential equation has been rewritten as a total t-derivative of the potential func-

tion, which is simple to integrate,

d

dt
ψ(t, y(t)) = 0 ⇒ ψ(t, y(t)) = c,

where c is an arbitrary constant. This establishes the Theorem.

□
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Example 1.4.6: Find all solutions y to the differential equation

2ty y′ + 2t+ y2 = 0.

Solution:

The first step is to verify whether the differential equation is exact.

N(t, y) = 2ty ⇒ ∂tN(t, y) = 2y,

M(t, y) = 2t+ y2 ⇒ ∂yM(t, y) = 2y.

⎫
⎪⎬

⎪⎭
⇒ ∂tN(t, y) = ∂yM(t, y).

Since the equation is exact, Poincaré Theorem syas there exists a potential function ψ

satisfying

∂yψ(t, y) = N(t, y), (1.4.1)

∂tψ(t, y) = M(t, y). (1.4.2)

Let us compute ψ. Integrate Eq. (1.4.1) in the variable y keeping the variable t constant,

∂yψ(t, y) = 2ty ⇒ ψ(t, y) =

∫
2ty dy + g(t),

where g is a constant of integration on the variable y, so g can only depend on t. We obtain

ψ(t, y) = ty2 + g(t). (1.4.3)

Introduce into Eq. (1.4.2) the expression for the function ψ in Eq. (1.4.3) above, that is,

y2 + g′(t) = ∂tψ(t, y) = M(t, y) = 2t+ y2 ⇒ g′(t) = 2t ⇒ g(t) = t2,

where we chose the integration constant to be zero. We have found that a potential function

ψ(t, y) = ty2 + t2.

Therefore, Theorem ?? implies that all solutions y satisfy the implicit equation

ty2(t) + t2 = c,

for any c ∈ R. The choice g(t) = t2 + c0 only modifies the constant c.
⊳
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1.4.3. Semi-Exact Equations.

Definition 1.4.4. A semi-exact differential equation is a non-exact

equation that can be transformed into an exact equation after a multipli-

cation by an integrating factor.

Example 1.4.8: Show that linear differential equations y′ = a(t) y + b(t) are semi-exact.

Solution: We first show that linear equations y′ = a y + b with a ∕= 0 are not exact. If we

write them as

y′ − a y − b = 0 ⇒ N y′ +M = 0 with N = 1, M = −a y − b.

Therefore,

∂tN = 0, ∂yM = −a ⇒ ∂tN ∕= ∂yM.

We now show that linear equations are semi-exact. We multiply it by µ,

µ(t) y′ − a(t)µ(t) y − µ(t) b(t) = 0,

where we emphasized that µ, a, b depende only on t. Let us look for a particular function

µ that makes the equation above exact. If we write this equation as Ñ y′ + M̃ = 0, then

Ñ(t, y) = µ, M̃(t, y) = −aµ y − µ b.

We now check the condition for exactness,

∂tÑ = µ′, ∂yM̃ = −aµ,

and we get that

∂tÑ = ∂yM̃

the equation is exact

⎫
⎪⎬

⎪⎭
⇔

⎧
⎪⎨

⎪⎩

µ′ = −aµ

µ is an integrating factor.

Therefore, the linear equation y′ = a y + b is semi-exact, and the function that transforms

it into an exact equation is µ(t) = e−A(t), where A(t) =
∫
a(t) dt, which in § 1.2 we called

it an integrating factor. ⊳
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1.4.4. Solving Semi-Exact Equations.

Theorem 1.4.5. If the equation N y′ +M = 0 is not exact, with

∂tN ∕= ∂yM , the function N ∕= 0, and where the function h defined as

h =
(∂yM − ∂tN)

N

depends only on t, not on y , then the equation below is exact

(eH N) y′ + (eH M) = 0 ,

where H is an antiderivative of h ,

H(t) =

!
h(t) dt .

Remarks:

(a) The function µ(t) = eH(t) is called an integrating factor .

(b) Any integrating factor µ is solution of the differential
equation

µ′(t) = h(t)µ(t) .

(c) Multiplication by an integrating factor transforms a non-exact
equation

N y′ +M = 0

into an exact equation.

(µN) y′ + (µM) = 0 .

This is exactly what happened with linear equations.

Verification Proof of Theorem 1.4.5: We need to verify that the equation is exact,

(eH N) y′ + (eH M) = 0 ⇒ Ñ(t, y) = eH(t) N(t, y), M̃(t, y) = eH(t) M(t, y).

We now check for exactness, and let us recall ∂t(e
H) = (eH)′ = h eH , then

∂tÑ = h eH N + eH ∂tN, ∂yM̃ = eH ∂yM.

Let us use the definition of h in the first equation above,

∂tÑ = eH
" (∂yM − ∂tN)

N
N + ∂tN

#
= eH ∂yM = ∂yM̃.

So the equation is exact. This establishes the Theorem. □
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Constructive Proof of Theorem 1.4.5: The original differential equation

N y′ +M = 0

is not exact because ∂tN ∕= ∂yM . Now multiply the differential equation by a nonzero

function µ that depends only on t,

(µN) y′ + (µM) = 0. (1.4.4)

We look for a function µ such that this new equation is exact. This means that µ must

satisfy the equation

∂t(µN) = ∂y(µM).

Recalling that µ depends only on t and denoting ∂tµ = µ′, we get

µ′ N + µ ∂tN = µ ∂yM ⇒ µ′ N = µ (∂yM − ∂tN).

So the differential equation in (1.4.4) is exact iff holds

µ′ =
!∂yM − ∂tN

N

"
µ.

The solution µ will depend only on t iff the function

h(t) =
∂yM(t, y)− ∂tN(t, y)

N(t, y)

depends only on t. If this happens, as assumed in the hypotheses of the theorem, then we

can solve for µ as follows,

µ′(t) = h(t)µ(t) ⇒ µ(t) = eH(t), H(t) =

#
h(t) dt.

Therefore, the equation below is exact,

(eH N) y′ + (eH M) = 0.

This establishes the Theorem.

□
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Example 1.4.9: Find all solutions y to the differential equation
!
t2 + t y

"
y′ +

!
3t y + y2

"
= 0. (1.4.5)

Solution:

We first verify whether this equation is exact:

N(t, y) = t2 + ty ⇒ ∂tN(t, y) = 2t+ y,

M(t, y) = 3ty + y2 ⇒ ∂yM(t, y) = 3t+ 2y,

therefore, the differential equation is not exact. We now verify whether the extra condition in

the Theorem above holds, that is, whether the function h in that theorem is y independent;

h =
1

N(t, y)

!
∂yM(t, y)− ∂tN(t, y)

"

=
1

(t2 + ty)

!
(3t+ 2y)− (2t+ y)

"

=
1

t(t+ y)
(t+ y)

=
1

t
⇒ h(t) =

1

t
.

So, the function h = (∂yM − ∂tN)/N is y independent. Therefore, the theorem above

implies that the non-exact differential equation can be transformed into an exact equation.

We only need to multiply the differential equation by a function µ solution of the equation

µ′(t) = h(t)µ(t) ⇒ µ′

µ
=

1

t
⇒ ln(µ) = ln(t) ⇒ µ(t) = t,

where we have chosen in second equation the integration constant to be zero. Then, multi-

plying the original differential equation in (1.4.5) by the integrating factor µ we obtain

!
3t2 y + t y2

"
+
!
t3 + t2 y

"
y′ = 0. (1.4.6)

This latter equation is exact, since

Ñ(t, y) = t3 + t2y ⇒ ∂tÑ(t, y) = 3t2 + 2ty,

M̃(t, y) = 3t2y + ty2 ⇒ ∂yM̃(t, y) = 3t2 + 2ty,
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so we get the exactness condition ∂tÑ = ∂yM̃ . The solution y can be found as we did in the

previous examples in this Section. That is, we find the potential function ψ by integrating

the equations

∂yψ(t, y) = Ñ(t, y), (1.4.7)

∂tψ(t, y) = M̃(t, y). (1.4.8)

From the first equation above we obtain

∂yψ = t3 + t2y ⇒ ψ(t, y) =

! "
t3 + t2y

#
dy + g(t).

Integrating on the right hand side above we arrive to

ψ(t, y) = t3y +
1

2
t2y2 + g(t).

Introduce the expression above for ψ in Eq. (1.4.8),

3t2y + ty2 + g′(t) = ∂tψ(t, y) = M̃(t, y) = 3t2y + ty2,

g′(t) = 0.

A solution to this last equation is g(t) = 0. So we get a potential function

ψ(t, y) = t3 +
1

2
t2y2.

All solutions y to the differential equation in (1.4.5) satisfy the equation

t3 y(t) +
1

2
t2
"
y(t)

#2
= c0,

where c0 ∈ R is arbitrary.

⊳
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1.4.5. The Equation for the Inverse Function.

Remark: We change the notation in this last part of the section.

(a) We change the independent variable name from t to x.
(b) We write a differential equation as

N(x, y) y′ +M(x, y) = 0, y = y(x), y′ =
dy

dx
.

(c) x(y) is the inverse of y(x), that is, x(y1) = x1 ⇔ y(x1) = y1.

(d) Recall x′(y) =
1

y′(x)
.

Remark: But for exact equations it makes no difference to solve for y or its inverse x.

Theorem 1.4.6. The equation N y′ +M = 0 is exact

iff the equation M x′ +N = 0 is exact.

Remark: For non-exact equations there is a difference.

Proof of Theorem 1.4.6: Write the differential equation of a function y with values y(x),

N(x, y) y′ +M(x, y) = 0 and ∂xN = ∂yM.

If a solution y is invertible we denote y−1(y) = x(y), and we have the well-known relation

x′(y) =
1

y′(x(y))
.

Divide the differential equation above by y′ and use the relation above, then we get

N(x, y) +M(x, y)x′ = 0,

where now y is the independent variable and the unknwon function is x, with values x(y),

and the prime means x′ = dx/dy. The condition for this last equation to be exact is

∂yM = ∂xN,

which is exactly the same condition for the equation N y′ + M = 0 to be exact. This
establishes the Theorem.

□
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1.4.6. Solving for the Inverse Function.

Remark: Sometimes the equations N y′ +M = 0 and N +M x′ = 0 are written together,

N dy +M dx = 0 .

This equation deserves two comments:

(a) We do not use this notation here. That equation makes sense in the framework of
differential forms, which is beyond the subject of these notes.

(b) Some people justify the use of that equation outside the framework of differential forms

by thinking y′ =
dy

dx
as real fraction and multiplying N y′+M = 0 by the denominator,

N
dy

dx
+M = 0 ⇒ N dy +M dx = 0.

Unfortunately, y′ is not a fraction
dy

dx
, so the calculation just mentioned has no meaning.

Theorem 1.4.7. If the equationM x′ +N = 0 is not exact, with
∂yM ∕= ∂xN , the function M ∕= 0, and where the functionℓ defined as

ℓ = − (∂yM − ∂xN)

M

depends only on y, not on x , then the equation below is exact,

(eLM)x′ + (eLN) = 0 ,

where L is an antiderivative of ℓ,

L(y) =

!
ℓ(y) dy .

Remarks:

(a) The function µ(y) = eL(y) is called an integrating factor .

(b) Any integrating factor µ is solution of the differential
equation

µ′(y) = ℓ(y)µ(y) .

(c) Multiplication by an integrating factor transforms a non-exact
equation

M x′ +N = 0

into an exact equation.

(µM)x′ + (µN) = 0 .

This is exactly what happened with linear equations.
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Verification Proof of Theorem 1.4.7: We need to verify that the equation is exact,

(eL M)x′ + (eL N) = 0 ⇒ M̃(x, y) = eL(y) M(x, y), Ñ(x, y) = eL(y) N(x, y).

We now check for exactness, and let us recall ∂y(e
L) = (eL)′ = ℓ eL, then

∂yM̃ = ℓ eL M + eL ∂yM, ∂xÑ = eH ∂xN.

Let us use the definition of ℓ in the first equation above,

∂yM̃ = eL
!
− (∂yM − ∂xN)

M
M + ∂yM

"
= eL ∂xN = ∂xÑ .

So the equation is exact. This establishes the Theorem.

□
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Constructive Proof of Theorem 1.4.7: The original differential equation

M x′ +N = 0

is not exact because ∂yM ∕= ∂xN . Now multiply the differential equation by a nonzero

function µ that depends only on y,

(µM)x′ + (µN) = 0.

We look for a function µ such that this new equation is exact. This means that µ must

satisfy the equation

∂y(µM) = ∂x(µN).

Recalling that µ depends only on y and denoting ∂yµ = µ′, we get

µ′ M + µ ∂yM = µ ∂xN ⇒ µ′ M = −µ (∂yM − ∂xN).

So the differential equation (µM)x′ + (µN) = 0 is exact iff holds

µ′ = −
!∂yM − ∂xN

M

"
µ.

The solution µ will depend only on y iff the function

ℓ(y) = −∂yM(x, y)− ∂xN(x, y)

M(x, y)

depends only on y. If this happens, as assumed in the hypotheses of the theorem, then we

can solve for µ as follows,

µ′(y) = ℓ(y)µ(y) ⇒ µ(y) = eL(y), L(y) =

#
ℓ(y) dy.

Therefore, the equation below is exact,

(eL M)x′ + (eL N) = 0.

This establishes the Theorem.

□
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Example 1.4.11: Find all solutions to the differential equation
!
5x e−y + 2 cos(3x)

"
y′ +

!
5 e−y − 3 sin(3x)

"
= 0.

Solution: We first check if the equation is exact for the unknown function y, which depends

on the variable x. If we write the equation as N y′ +M = 0, with y′ = dy/dx, then

N(x, y) = 5x e−y + 2 cos(3x) ⇒ ∂xN(x, y) = 5 e−y − 6 sin(3x),

M(x, y) = 5 e−y − 3 sin(3x) ⇒ ∂yM(x, y) = −5 e−y − 9 cos(3x).

Since ∂xN ∕= ∂yM , the equation is not exact. Let us check if there exists an integrating

factor µ that depends only on x. Following Theorem ?? we study the function

h =
1

N

!
∂yM − ∂xN

"
=

−10 e−y + 6 sin(3x)

5x e−y + 2 cos(3x)
,

which is a function of both x and y and cannot be simplified into a function of x alone.

Hence an integrating factor cannot be function of only x.

Let us now consider the equation for the inverse function x, which depends on the variable

y. The equation is M x′+N = 0, with x′ = dx/dy, where M and N are the same as before,

M(x, y) = 5 e−y − 3 sin(3x) N(x, y) = 5x e−y + 2 cos(3x).

We know from Theorem ?? that this equation is not exact. Both the equation for y and

equation for its inverse x must satisfy the same condition to be exact. The condition is

∂xN = ∂yM , but we have seen that this is not true for the equation in this example. The

last thing we can do is to check if the equation for the inverse function x has an integrating

factor µ that depends only on y. Following Theorem ?? we study the function

ℓ = − 1

M

!
∂yM − ∂xN

"
= −−10 e−y + 6 sin(3x)

5 e−y − 3 sin(3x)
= 2 ⇒ ℓ(y) = 2.

The function above does not depend on x, so we can solve the differential equation for µ(y),

µ′(y) = ℓ(y)µ(y) ⇒ µ′(y)

µ(y)
= 2 ⇒ µ(y) = µ0 e

2y.
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Since µ is an integrating factor, we can choose µ0 = 1, hence µ(y) = e2y. If we multiply the

equation for x by this integrating factor we get

e2y
!
5 e−y − 3 sin(3x)

"
x′ + e2y

!
5x e−y + 2 cos(3x)

"
= 0,

!
5 ey − 3 sin(3x) e2y

"
x′ +

!
5x ey + 2 cos(3x) e2y

"
= 0.

This equation is exact, because if we write it as M̃ x′ + Ñ = 0, then

M̃(x, y) = 5 ey − 3 sin(3x) e2y ⇒ ∂yM̃(x, y) = 5 ey − 6 sin(3x) e2y,

Ñ(x, y) = 5x ey + 2 cos(3x) e2y ⇒ ∂xN(x, y) = 5 ey − 6 sin(3x) e2y,

that is ∂yM̃ = ∂xÑ . Since the equation is exact, we find a potential function ψ from

∂xψ = M̃, ∂yψ = Ñ .

Integrating on the variable x the equation ∂xψ = M̃ we get

ψ(x, y) = 5x ey + cos(3x) e2y + g(y).

Introducing this expression for ψ into the equation ∂yψ = Ñ we get

5x ey + 2 cos(3x) e2y + g′(y) = ∂yψ = Ñ = 5x ey + 2 cos(3x) e2y,

hence g′(y) = 0, so we choose g = 0. A potential function for the equation for x is

ψ(x, y) = 5x ey + cos(3x) e2y.

The solutions x of the differential equation are given by

5x(y) ey + cos(3x(y)) e2y = c

and the solutions y for the original differential equation are

5x ey(x) + cos(3x) e2 y(x) = c

⊳


