_____,

Section Objective(s):

- Separable Differential Equations
- Euler Homogeneous Equations
- Solving Euler Homogeneous Equations

1.3.1. Separable Differential Equations.

Definition 1.3.1. A *separable* differential equation for the function y is

where are given functions.

Remark:

Example 1.3.1:

(a)
$$(1-y^2)y' = t^2$$
.

(b)
$$\frac{1}{y^2}y' = -\cos(2t).$$

- (c) y' = a(t) y.
- (d) $y' = e^y + \cos(t)$.
- (e) y' = a(t)y + b(t).

EXAMPLE 1.3.2: Find all solutions y to the differential equation

$$-\frac{y'}{y^2} = \cos(2t).$$

SOLUTION:

Theorem 1.3.2. (Separable Equations) If h, g are continuous, with $h \neq 0$, then

has infinitely many solutions y satisfying the algebraic equation

where ______ are antiderivatives of ______.

,

Remark:

Proof of Theorem 1.3.2:

EXAMPLE 1.3.3: Find all solutions y to the differential equation

$$y' = \frac{t^2}{1 - y^2}.$$

SOLUTION:

1.3.2. Euler Homogeneous Equations.

_

Definition 1.3.4. An *Euler homogeneous* differential equation has the form

Remark:

(a) Any function F of t, y that depends only on the quotient y/t is

_____. This means that F does not change when we do

.

,

the transformation ______,

For this reason the differential equations above are also called

_____ equations.

(b) Scale invariant functions are a particular case of

which are functions f satisfying

_____ functions are the case _____.

_____.

Theorem 1.3.5. If the functions N, M, of t, y, are homogeneous of the same degree, then the differential equation

is Euler homogeneous.

Proof of Theorem 1.3.5:

6

EXAMPLE 1.3.11: Show that $(t-y)y'-2y+3t+\frac{y^2}{t}=0$ is an Euler homogeneous equation.

SOLUTION:

1.3.3. Solving Euler Homogeneous Equations.

Theorem 1.3.6. The Euler homogeneous equation	
for the function y determines a separable equation for	, given by

Proof of Theorem 1.3.6:

8

EXAMPLE 1.3.13: Find all solutions y of the differential equation $y' = \frac{t^2 + 3y^2}{2ty}$. Solution:

 \triangleleft

9