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1.3. Separable Equations

Section Objective(s):

• Separable Differential Equations
• Euler Homogeneous Equations
• Solving Euler Homogeneous Equations

1.3.1. Separable Differential Equations.

Definition 1.3.1. A separable differential equation for the function y is

h(y) y′ = g(t) ,

where h, g are given functions.

Remark:
h(y) y′ = g(y)

• The left-hand side depends explicitly only on y, so any t dependence is through y.
• The right-hand side depends only on t.
• And the left-hand side is of the form (something on y)× y′.

Example 1.3.1:

(a)
!
1− y2

"
y′ = t2. This is a separable equation h(y) y′ = g(t), with

h(y) =
!
1− y2

"
, g(t) = t2.

(b)
1

y2
y′ = − cos(2t). This is a separable equation h(y) y′ = g(t), with

h(y) =
1

y2
, g(t) = − cos(2t).

(c) y′ = a(t) y. This is a separable equation h(y) y′ = g(t), with

h(y) =
1

y
, g(t) = a(t).

(d) y′ = ey + cos(t). This equation is not separable.

(e) y′ = a(t) y + b(t). This equation, y′ = a(t)
#
y +

b(t)

a(t)

$
is not separable for

b(t)

a(t)
non-constant.

⊳
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Example 1.3.2: Find all solutions y to the differential equation

− y′

y2
= cos(2t).

Solution: The differential equation above is separable, with

g(t) = cos(2t), h(y) = − 1

y2
,

therefore, it can be integrated as follows:

− y′(t)

y2(t)
= cos(2t) ⇔

!
− y′(t)

y2(t)
dt =

!
cos(2t) dt+ c.

Again the substitution

y = y(t), dy = y′(t) dt

implies that !
−dy

y2
=

!
cos(2t) dt+ c ⇔ 1

y
=

1

2
sin(2t) + c.

So, we get the implicit and explicit form of the solution,

1

y(t)
=

1

2
sin(2t) + c ⇔ y(t) =

2

sin(2t) + 2c
.

Remark: Notice the following about the equation and its implicit solution:

− 1

y2
y′ = cos(2t) ⇔ h(y) y′ = g(t), h(y) = − 1

y2
, g(t) = cos(2t),

1

y
y′ =

1

2
sin(2t) ⇔ H(y) = G(t), H(y) =

1

y
, G(t) =

1

2
sin(2t).

where H is an antiderivative of h, that is, H(y) =
"
h(y) dy.

and G is an antiderivative of g, that is, G(t) =
"
g(t) dt.

⊳
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Theorem 1.3.2. (Separable Equations) If h, g are continuous, with h ∕= 0, then

h(y) y′ = g(t)

has infinitely many solutions y satisfying the algebraic equation

H(y(t)) = G(t) + c, c ∈ R ,

where H and G are antiderivatives of h, and g .

Remark: An antiderivative of h(y) is H(y) =
!
h(y) dy, and an antiderivative of g(t) is

given by G(t) =
!
g(t) dt.

Proof of Theorem 1.3.2: Integrate with respect to t on both sides in Eq. (??),

h(y(t)) y′(t) = g(t) ⇒
"

h(y(t)) y′(t) dt =

"
g(t) dt+ c,

where c is an arbitrary constant. Introduce on the left-hand side of the second equation

above the substitution

y = y(t), dy = y′(t) dt.

The result of the substitution is

"
h(y(t)) y′(t) dt =

"
h(y)dy ⇒

"
h(y) dy =

"
g(t) dt+ c.

To integrate on each side of this equation means to find a function H, primitive of h, and

a function G, primitive of g. Using this notation we write

H(y) =

"
h(y) dy, G(t) =

"
g(t) dt.

Then the equation above can be written as follows,

H(y) = G(t) + c,

which implicitly defines a function y, which depends on t. This establishes the Theorem.

□
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Example 1.3.3: Find all solutions y to the differential equation

y′ =
t2

1− y2
.

Solution: We write the differential equation in the form h(y) y′ = g(t),

!
1− y2

"
y′ = t2.

In this example the functions h and g are

h(y) = (1− y2), g(t) = t2.

We now integrate with respect to t on both sides of the differential equation,

# !
1− y2(t)

"
y′(t) dt =

#
t2 dt+ c,

where c is an arbitrary constant. Use the substitution

u = y(t), du = y′(t) dt ⇒
# !

1− y2(t)
"
y′(t) dt =

#
(1− u2) du.

This notation makes clear that u is the new integation variable, while y(t) is the unknown

function values we look for. However it is common in the literature to use the same name

for the variable and the unknown function. We will follow that convention, and we write

the substitution as

y = y(t), dy = y′(t) dt ⇒
# !

1− y2(t)
"
y′(t) dt =

#
(1− y2) dy.

This substitution on the left-hand side integral above gives,

#
(1− y2) dy =

#
t2 dt+ c ⇔ y − y3

3
=

t3

3
+ c.

The equation above define y as function of t in implicit form, that is,

y(t)− y3(t)

3
=

t3

3
+ c.

⊳
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1.3.2. Euler Homogeneous Equations.

Definition 1.3.4. An Euler homogeneous differential equation has the form

y′(t) = F
!y(t)

t

"
.

Remark:

(a) Any function F of t, y that depends only on the quotient y/t is

scale invariant . This means that F does not change when we do

the transformation y → cy, t → ct ,

F
! (cy)
(ct)

"
= F

!y
t

"
.

For this reason the differential equations above are also called

scale invariant equations.

(b) Scale invariant functions are a particular case of

homogeneous functions of degree n ,

which are functions f satisfying

f(ct, cy) = cn f(y, t) .

Scale invariant functions are the case n = 0 .
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Theorem 1.3.5. If the functions N , M , of t, y, are homogeneous of the same degree,
then the differential equation

N(t, y) y′(t) +M(t, y) = 0

is Euler homogeneous.

Proof of Theorem 1.3.5: Rewrite the equation as

y′(t) = −M(t, y)

N(t, y)
,

The function f(y, y) = −M(t, y)

N(t, y)
is scale invariant, because

f(ct, cy) = −M(ct, cy)

N(ct, cy)
= −cn M(t, y)

cn N(t, y)
= −M(t, y)

N(t, y)
= f(t, y),

where we used thatM and N are homogeneous of the same degree n. We now find a function

F such that the differential equation can be written as

y′ = F
!y
t

"
.

Since M and N are homogeneous degree n, we multiply the differential equation by “1” in

the form (1/t)n/(1/t)n, as follows,

y′(t) = −M(t, y)

N(t, y)

(1/tn)

(1/tn)
= −M((t/t), (y/t))

N((t/t), (y/t))
= −M(1, (y/t))

N(1, (y/t))
⇒ y′ = F

!y
t

"
,

where

F
!y
t

"
= −M(1, (y/t))

N(1, (y/t))
.

This establishes the Theorem.

□
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Example 1.3.11: Show that (t−y) y′−2y+3t+
y2

t
= 0 is an Euler homogeneous equation.

Solution: Rewrite the equation in the standard form

(t− y) y′ = 2y − 3t− y2

t
⇒ y′ =

!
2y − 3t− y2

t

"

(t− y)
.

So the function f in this case is given by

f(t, y) =

!
2y − 3t− y2

t

"

(t− y)
.

This function is scale invariant, since numerator and denominator are homogeneous of the

same degree, n = 1 in this case,

f(ct, cy) =

!
2cy − 3ct− c2y2

ct

"

(ct− cy)
=

c
!
2y − 3t− y2

t

"

c(t− y)
= f(t, y).

So, the differential equation is Euler homogeneous. We now write the equation in the form

y′ = F (y/t). Since the numerator and denominator are homogeneous of degree n = 1, we

multiply them by “1” in the form (1/t)1/(1/t)1, that is

y′ =

!
2y − 3t− y2

t

"

(t− y)

(1/t)

(1/t)
.

Distribute the factors (1/t) in numerator and denominator, and we get

y′ =

#
2(y/t)− 3− (y/t)2

$

(1− (y/t))
⇒ y′ = F

!y
t

"
,

where

F
!y
t

"
=

#
2(y/t)− 3− (y/t)2

$

(1− (y/t))
.

So The equation is Euler homogeneous and it is written in the standard form.

⊳
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1.3.3. Solving Euler Homogeneous Equations.

Theorem 1.3.6. The Euler homogeneous equation

y′ = F
!y
t

"

for the function y determines a separable equation for v = y/t , given by

v′#
F (v)− v

$ =
1

t
.

Proof of Theorem 1.3.6: If y′ = f(t, y) is Euler homogeneous, then we known that it can

be written as y′ = F (y/t), where F (y/t) = f(1, y/t). Introduce the function v = y/t into

the differential equation,

y′ = F (v).

We still need to replace y′ in terms of v. This is done as follows,

y(t) = t v(t) ⇒ y′(t) = v(t) + t v′(t).

Introducing these expressions into the differential equation for y we get

v + t v′ = F (v) ⇒ v′ =

#
F (v)− v

$

t
⇒ v′#

F (v)− v
$ =

1

t
.

The equation on the far right is separable. This establishes the Theorem.

□
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Example 1.3.13: Find all solutions y of the differential equation y′ =
t2 + 3y2

2ty
.

Solution: The equation is Euler homogeneous, since

f(ct, cy) =
c2t2 + 3c2y2

2(ct)(cy)
=

c2(t2 + 3y2)

c2(2ty)
=

t2 + 3y2

2ty
= f(t, y).

Next we compute the function F . Since the numerator and denominator are homogeneous

degree “2” we multiply the right-hand side of the equation by “1” in the form (1/t2)/(1/t2),

y′ =
(t2 + 3y2)

2ty

! 1

t2

"

! 1

t2

" ⇒ y′ =
1 + 3

!y
t

"2

2
!y
t

" .

Now we introduce the change of functions v = y/t,

y′ =
1 + 3v2

2v
.

Since y = t v, then y′ = v + t v′, which implies

v + t v′ =
1 + 3v2

2v
⇒ t v′ =

1 + 3v2

2v
− v =

1 + 3v2 − 2v2

2v
=

1 + v2

2v
.

We obtained the separable equation

v′ =
1

t

!1 + v2

2v

"
.

We rewrite and integrate it,

2v

1 + v2
v′ =

1

t
⇒

#
2v

1 + v2
v′ dt =

#
1

t
dt+ c0.

The substitution u = 1 + v2(t) implies du = 2v(t) v′(t) dt, so

#
du

u
=

#
dt

t
+ c0 ⇒ ln(u) = ln(t) + c0 ⇒ u = eln(t)+c0 .

But u = eln(t)ec0 , so denoting c1 = ec0 , then u = c1t. So, we get

1 + v2 = c1t ⇒ 1 +
!y
t

"2

= c1t ⇒ y(t) = ±t
√
c1t− 1.

⊳


