Section Objective(s):

- Overview of Differential Equations.
- Linear Differential Equations.
- Solving Linear Differential Equations.
- The Initial Value Problem.

1.1.1. Overview of Differential Equations.

Remark: A differential equation is , the unknown is

 $_$, and both $_$

may appear in the equation.

EXAMPLE 1.1.1:

(a) **Newton's Law:** Mass times acceleration equals force, ma = f, where m is the particle mass, $a = d^2x/dt^2$ is the particle acceleration, and f is the force acting on the particle. Hence Newton's law is the differential equation

where the unknown is the position of the particle in space, $\boldsymbol{x}(t)$, at the time t.

Remark: This is a second order Ordinary Differential Equation (ODE).

(b) Radioactive Decay: The amount u of a radioactive material changes in time as follows,

 $, \qquad k > 0,$

where k is a positive constant representing radioactive properties of the material.

Remark: This is a first order ODE.

(c) The Heat Equation: The temperature T in a solid material changes in time and in one space dimension according to the equation

k > 0,

where k is a positive constant representing thermal properties of the material.

Remark: This is a first order in time and second order in space PDE.

(d) The Wave Equation: A wave perturbation u propagating in time t and in one space dimension x through the media with wave speed v > 0 is

Remark: This is a second order in time and space Partial Differential Equation (PDE).

1.1.2. Linear Differential Equations.

EXAMPLE 1.1.2:

EXAMPLE 1.1.3: Show that $y(t) = e^{2t} - \frac{3}{2}$ is solution of the equation y' = 2y + 3. Solution: 1.1.3. Solving Linear Differential Equations.

Theorem 1.1.2. (Constant Coefficients) The linear differential equation			
,		(1.1.3)	
with $a \neq 0, b$ constants, has infinitely many solutions,			
		(1.1.4)	

Remark: Equation (1.1.4) is called the *general solution* of the differential equation in (1.1.3).

Proof of Theorem 1.1.2:

EXAMPLE 1.1.5: Find all solutions to the constant coefficient equation y' = 2y + 3. Solution: 1.1.4. The Initial Value Problem.

Definition 1.1.3. The initial value problem (tion 1.1.3. The <i>initial value problem</i> (IVP) is to find all solutions y to		
that satisfy the initial condition	,	(1.1.5)	
where $a, b, and y_0$ are given constants.	,	(1.1.6)	

Remark: The differential equation y' = ay + b has infinitely many solutions, but the associated IVP has only one solution.

Theorem 1.1.4. (Constant Coefficients IVP) The initial value problem

for given constants $a, b, y_0 \in \mathbb{R}$, and $a \neq 0$, has the unique solution

(1.1.7)

,

Proof of Theorem 1.1.4:

EXAMPLE 1.1.8: Find the unique solution of the initial value problem

$$y' = 2y + 3, \qquad y(0) = 1.$$
 (1.1.8)

SOLUTION: