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1.1. Linear Constant Coefficient Equations

Section Objective(s):

• Overview of Differential Equations.
• Linear Differential Equations.
• Solving Linear Differential Equations.
• The Initial Value Problem.

1.1.1. Overview of Differential Equations.

Remark: A differential equation is an equation , the unknown is

a function , and both the function and its derivatives

may appear in the equation.

Example 1.1.1:

(a) Newton’s Law: Mass times acceleration equals force, ma = f , where m is the particle
mass, a = d2x/dt2 is the particle acceleration, and f is the force acting on the particle.
Hence Newton’s law is the differential equation

m
d2x

dt2
(t) = f (t,x(t),x′(t)) .

where the unknown is the position of the particle in space, x(t), at the time t.

Remark: This is a second order Ordinary Differential Equation (ODE).

(b) Radioactive Decay: The amount u of a radioactive material changes in time as follows,

du

dt
(t) = −k u(t) , k > 0,

where k is a positive constant representing radioactive properties of the material.

Remark: This is a first order ODE.

(c) The Heat Equation: The temperature T in a solid material changes in time and in
one space dimension according to the equation

∂T

∂t
(t,x) = k

∂2T

∂x2
(t,x) , k > 0,

where k is a positive constant representing thermal properties of the material.

Remark: This is a first order in time and second order in space PDE.

(d) The Wave Equation: A wave perturbation u propagating in time t and in one space
dimension x through the media with wave speed v > 0 is

∂2u

∂t2
(t, x) = v2

∂2u

∂x2
(t, x) .

Remark: This is a second order in time and space Partial Differential Equation (PDE).

⊳
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1.1.2. Linear Differential Equations.

Definition 1.1.1. A first order ODE on the unknown y is

y′(t) = f(t, y(t)) , (1.1.1)

where f is given and y′ =
dy

dt
. The equation is linear iff the source

function f is linear on its second argument,

y′(t) = a(t) y(t) + b(t) . (1.1.2)

The linear equation has constant coefficients iff both a and b above

are constants. Otherwise the equation has variable coefficients.

Example 1.1.2:

(a) y′ = 2 y + 3 is linear, constant coefficients .

(b) y′ = −2

t
y + 4t is linear, variable coefficients .

(c) y′ = −2

t

1

y
+ 4t is nonlinear .

⊳

Example 1.1.3: Show that y(t) = e2t − 3

2
is solution of the equation y′ = 2 y + 3.

Solution: We need to compute the left and right-hand sides of the equation and verify

they agree. On the one hand we compute y′(t) = 2e2t. On the other hand we compute

2 y(t) + 3 = 2
!
e2t − 3

2

"
+ 3 = 2e2t.

We conclude that y′(t) = 2 y(t) + 3 for all t ∈ R.

⊳
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1.1.3. Solving Linear Differential Equations.

Theorem 1.1.2. (Constant Coefficients) The linear differential equation

y′ = a y + b , (1.1.3)

with a ∕= 0, b constants, has infinitely many solutions,

y(t) = c eat − b

a
, c ∈ R . (1.1.4)

Remark: Equation (1.1.4) is called the general solution of the differential equation in (1.1.3).

Proof of Theorem 1.1.2: First consider the case b = 0, so y′ = a y, with a ∈ R. Then,

y′ = a y ⇒ y′

y
= a ⇒ ln(|y|)′ = a ⇒ ln(|y|) = at+ c0,

where c0 ∈ R is an arbitrary integration constant, and we used the Fundamental Theorem

of Calculus on the last step,
!
ln(|y|)′ dt = ln(|y|). Compute the exponential on both sides,

y(t) = ±eat+c0 = ±ec0 eat, denote c = ±ec0 ⇒ y(t) = c eat, c ∈ R.

This is the solution of the differential equation in the case that b = 0. The case b ∕= 0 can

be converted into the case above. Indeed,

y′ = a y + b ⇒ y′ = a
"
y +

b

a

#
⇒

"
y +

b

a

#′
= a

"
y +

b

a

#
,

since (b/a)′ = 0. Denoting ỹ = y + (b/a), the equation above is ỹ′ = a ỹ. We know all the

solutions to that equation,

ỹ(t) = c eat, c ∈ R ⇒ y(t) +
b

a
= c eat ⇒ y(t) = c eat − b

a
.

This establishes the Theorem.

□
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Example 1.1.5: Find all solutions to the constant coefficient equation y′ = 2y + 3.

Solution: We start pulling a common factor 2 on the right-hand side of the equation,

y′ = 2
!
y +

3

2

"
⇒

!
y +

3

2

"′
= 2

!
y +

3

2

"
.

Denoting ỹ = y + (3/2) we get

ỹ′ = 2 ỹ ⇒ ỹ′

ỹ
= 2 ⇒ ln(|ỹ|)′ = 2 ⇒ ln(|ỹ|) = 2t+ c0.

We now compute exponentials on both sides, to get

ỹ(t) = ±e2t+c0 = ±e2t ec0 , denote c = ±ec0 , then ỹ(t) = c e2t, c ∈ R.

Since ỹ = y +
3

2
, we get y(t) = c e2t − 3

2
, where c ∈ R.

⊳
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1.1.4. The Initial Value Problem.

Definition 1.1.3. The initial value problem (IVP) is to find all solutions y to

y′ = a y + b , (1.1.5)

that satisfy the initial condition

y(0) = y0 , (1.1.6)

where a, b, and y0 are given constants.

Remark: The differential equation y′ = a y + b has infinitely many solutions, but the
associated IVP has only one solution.

Theorem 1.1.4. (Constant Coefficients IVP) The initial value problem

y′ = a y + b, y(0) = y0 ,

for given constants a, b, y0 ∈ R, and a ∕= 0, has the unique solution

y(t) =
!
y0 +

b

a

"
eat − b

a
. (1.1.7)

Proof of Theorem 1.1.4: The general solution of the differential equation in (1.1.5) is

given in Eq. (1.1.4) for any choice of the integration constant c,

y(t) = c eat − b

a
.

The initial condition determines the value of the constant c, as follows

y0 = y(0) = c− b

a
⇔ c =

!
y0 +

b

a

"
.

Introduce this expression for the constant c into the differential equation in Eq. (1.1.5),

y(t) =
!
y0 +

b

a

"
eat − b

a
.

This establishes the Theorem.

□
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Example 1.1.8: Find the unique solution of the initial value problem

y′ = 2y + 3, y(0) = 1. (1.1.8)

Solution: All solutions of the differential equation are given by

y(t) = ce2t − 3

2
,

where c is an arbitrary constant. The initial condition in Eq. (1.1.8) determines c,

1 = y(0) = c− 3

2
⇒ c =

5

2
.

Then, the unique solution to the initial value problem above is y(t) =
5

2
e2t − 3

2
.

⊳


