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Forced Oscillators, Beats, and Resonance
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2.
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4.

Objectives

Understanding the concepts of beats and resonance in simple oscillating systems.

Introduction

In this lab we will study the oscillations in a mass-spring system that is subject to an external force. We
focus on two cases:

• First we study the oscillations of this system in the case that the frequency of the driver force is
close—but not equal—to the natural frequency of the string-mass system.

• Then we study what happens when the external driver force has a frequency exactly equal to the
natural frequency of the system.

In the first case we will discover a particular type of behavior of the system, called beats. The oscillations
of the system have a modulation in amplitude. This modulation has its own frequency, which depends on
the difference between the driver and natural frequencies.

In the second case we discover the the behavior of the system called resonance. The amplitude of the
oscillations grow without limit, and the physical system eventually breaks down. We also see how the beats
solutions approximate the resonant solution.

The understanding of oscillations in simple systems—such as mass-spring systems—is the first step to
understand vibrations in various engineering structures. The design of buildings and bridges must be such
that resonance effects under the action of external forces—such as wind or earthquakes— are completely
suppressed.
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Part 1: Free Oscillations

A mass-spring system is a mass m attached to a spring with spring constant k that slides on a frictionless
table. We denote by y(t) the displacement of the mass as a function of time, where y = 0 represents the
rest position of the mass.

y0

m

This system is described by Newton’s law of motion ma = f , where a = y′′, and f is given by Hooke’s
law, f(y) = −k y. So the equation of motion for the oscillating spring without any external force is

my′′ + k y = 0.

The natural frequency of the oscillator is the frequency ω0 of all oscillations when there is no external
force acting on the system.

(1) (1 point) Consider now a spring-mass system with mass m = 1 grams, and k = 25 grams per second
square. Find the general solution for this mass-spring system in case that there are no external forces, and
find the natural frequency ω0 of this system.
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Part 2: Forced Oscillations

As before, assume that the spring-mass system has mass m = 1 grams, and k = 25 grams per second square.
We now add an external force to the mass-spring system given by

fext(t) = cos(νt), ν > 0.

The frequency of the external force, ν, is called the driver frequency. The motion of a mass-spring system
initially at rest and subject to the external force above is the solution of the initial value problem

y′′ + 25 y = cos(νt), and y(0) = 0, y′(0) = 0.

In the course website it is shown how to use the undetermined coefficients method to find the solution to
this initial value problem, in the case that the driver frequency is different from the natural frequency of
the system, ν 6= 5. In this case the solution is

yNR(t) =
1

(25− ν2)
(
cos(νt)− cos(5t)

)
, ν 6= 5. (1)

(2) (2 points) First, explain why we need the condition ν 6= 5 in the expression (1). Second, keep time fixed
in yNR(t) and use the L’Hopital rule in the variable ν to compute the limit

lim
ν→5

yNR(t). (Recall, keeping t fixed.)
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Part 3: Forced Resonant Oscillator

An oscillator is in resonance when the driver frequency ν of the external force is equal to the natural
frequency ω0 = 5 of the unperturbed oscillator. The motion of a mass-spring system initially at rest and
subject to the external force with driver frequency ν = 5 is the solution of the initial value problem

y′′ + 25 y = cos(5t), and y(0) = 0, y′(0) = 0. (2)

In the course website it is shown how use the undetermined coefficients method to find the solution to this
initial value problem, and the solution is

yR(t) =
t

10
sin(5t) . (3)

(3) (1 point) Verify that the function in Eq. (3) is solution of the resonant initial value problem in (2).

Note: You only need to introduce yR in (3) into Eq. (2) and also verify the initial conditions.
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Part 4: Graphical Analysis of the Forced Oscillations

We now give specific names to the functions found in the previous parts.

(a) Resonant case: ν = 5 = ω0. In this case the solution to the initial value problem in (3) is

yR(t) =
t

10
sin(5t). (4)

(b) Non-Resonant case: ν 6= 5. In this case the solution to the initial value problem in (1) is

yNR(t) =
1

(25− ν2)
(
cos(νt)− cos(5t)

)
. (5)

Note: The Non-Resonant solution is the sum of two solutions, yNR = yp + yh, where

yp(t) =
1

(25− ν2)
cos(νt), yh(t) = − 1

(25− ν2)
cos(5t). (6)

We call yp the Particular solution and yh the Homogeneous solution.

(c) Note: An oscillatory function has beats when the function has a periodic modulation in amplitude
with frequency smaller than the function frequency, as shown in the Figure 1.

t

y

Figure 1: A function y showing the beats phenomena.

In order to answer the questions below, recall the so-
lutions names given above:

• yR in (4) is the Resonant solution;

• yNR in (5) is the Non-Resonant solution;

• yp and yh in (6) are the Particular and Homo-
geneous solutions respectively.

Figure 2: Picture of the interactive graph.
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These solution names appear at the bottom of the interactive graph, which at the start will look as in
Figure 2. When you click on these buttons in the interactive graph, the corresponding solution will show
up, Resonant in blue, Non-Resonant in purple, Particular in red, and Homogeneous in green. The
last button on the bottom right in Figure 2 is a slider that changes the value of the driver frequency ν in
the interval [0, 5], where 5 is the natural frequency of the system.

Now click on the following Interactive Graph Link:

Beats and Resonance in Mass-Springs
.

(4.1) (1 point) In the Interactive Graph, turn on the Non-Resonant, keep off all the other functions, and
vary the driver frequency ν from 0 to 5. Then, find the minimum value of the driver frequency ν such
that the Non-Resonant solution displays beats.

(4.2) (1 point) We now try to understand why beats arises. Go back to the interactive graph link above.
Keep the Non-Resonant solution on and set the driver frequency to ν = 4.7, so the Non-Resonant
solution displays beats. Now turn on both the Particular and the Homogeneous solutions. Relate
the beats on the Non-Resonant solution with the values of the functions Particular and Homo-
geneous.
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(4.3) (1 point) Describe how the Non-Resonant solution yNR approaches the Resonant solution yR as
the driver frequency ν approaches the natural frequency ω0 = 5.

(4.4) (1 point) What is the behavior of the amplitude of the Resonant solution as the time variable t→∞?
What will happen to the actual spring of a resonant system when time is large enough?

Part 5: Sound Waves

(5.1) (1 point) If the ODE described sounds waves, then what would the beats phenomenon sound like?

(5.2) (1 point) Watch the following short video: https://www.youtube.com/watch?v=V8W4Djz6jnY. What
are the frequencies of the two tuning forks? Explain why beats occurs.
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