
MTH 235 Lab 02 September 25th 2018

Forced Oscillators, Beating, and Resonance
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Objectives

Understanding the concepts of beating and resonance in simple oscillating systems.

Introduction

In this lab we will study the oscillations in a mass-spring system that is subject to an external force. We
focus on two cases:

• First we study the oscillations of this system in the case that the frequency of the driving force is
close—but not equal—to the natural frequency of the string-mass system.

• Then we study what happens when the external driving force has a frequency exactly equal to the
natural frequency of the system.

In the first case we will discover a particular type of behavior of the system, called beating. The
oscillations of the system have a modulation in amplitude. This modulation has its own frequency, which
depends on the difference between the driving and natural frequencies.

In the second case we discover the the behavior of the system called resonance. The amplitude of the
oscillations grow without limit, and the physical system eventually breaks down. We also see how the
beating solutions approximate the resonant solution.

The understanding of oscillations in simple systems—such as mass-spring systems—is the first step to
understand vibrations in various engineering structures. The design of buildings and bridges must be such
that resonance effects under the action of external forces—such as wind or earthquakes— are completely
suppressed.
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Forced Oscillations and Beating

A mass-spring system is a mass m attached to a spring with spring constant k that slides on a frictionless
table. We denote by y(t) the displacement of the mass as a function of time, where y = 0 represents the
rest position of the mass.

y0

m

This system is described by Newton’s law of motion ma = f , where a = y′′, and f is given by Hooke’s
law, f(y) = −k y. So the equation of motion for the oscillating spring without any external force is

my′′ + k y = 0.

The natural frequency of the oscillator is the frequency of all oscillations when there is no external force
acting on the system.

Question 1.(1 point) Write the general solution for the mass-spring system in the case that there are no
external forces, and find a formula for the natural frequency of the system in terms of m and k.

y(t) = c1 cos(ωt) + c2 sin(ωt), ω =

󰁵
k

m
.

the natural frequency of the system is ω.
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Consider now a spring-mass system with mass m = 1 grams, and k = 25 grams per second square. We now
add an external force to the mass-spring system given by

fext(t) = cos(νt), ν > 0.

The frequency of the external force, ν, is called the driving frequency.

Question 2.(3 points) Solve the initial value problem

y′′ + 25 y = cos(νt), ν ∕= 5, and y(0) = 0, y′(0) = 0.

We use the Undefined Coefficients Method. The general solution of the homogeneous system is

yh(t) = c1 cos(5t) + c2 sin(5t).

the source is f(t) = cos(νt) with ν ∕= 5, therefore the correct guess for the particular solution is,

yp(t) = k1 cos(νt) + k2 sin(νt).

We compute its second derivative,

y′′p(t) = −ν2k1 cos(νt)− ν2k2 sin(νt).

We substitute y and y′′ in the nonhomogeneous equation,

−ν2k1 cos(νt)− ν2k2 sin(νt) + 25k1 cos(νt) + 25k2 sin(νt) = cos(νt).

(k1(−ν2 + 25)− 1) cos(νt) + k2 (−ν2 − 25) sin(νt) = 0 ⇒ k1 =
1

(25− ν2)
, k2 = 0.

Therefore yp(t) =
1

(25− ν2)
cos(νt). The solution of the initial value problem is

y(t) = c1 cos(5t) + c2 sin(5t) +
1

(25− ν2)
cos(νt), y(0) = 0, y′(0) = 0.

The condition on y(0) = 0 implies

c1 +
1

(25− ν2)
= 0 ⇒ c1 = − 1

(25− ν2)
.

The condition y(0) = 0 implies c2 = 0, so the solution of the initial value problem is

y(t) =
1

(25− ν2)

󰀃
cos(νt)− cos(5t)

󰀄
.
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Resonant Oscillator

The oscillator is in resonance when the driving frequency ν of the external force is equal to the natural
frequency ω = 5 of the unperturbed oscillator. The equation that describes a resonant oscillator is

y′′ + 25 y = cos(5t),

TA Led Discussion.(1 point) Show that the resonant initial value problem

y′′ + 25 y = cos(5t), and y(0) = 0, y′(0) = 0,

has the solution

y(t) =
1

10
t sin(5t).

We use the Undefined Coefficients Method. The general solution of the homogeneous system is

yh(t) = c1 cos(5t) + c2 sin(5t).

the source is f(t) = cos(5t), therefore the correct guess for the particular solution is,

yp(t) = k1t cos(5t) + k2t sin(5t).

We compute its first derivative,

y′p(t) = k1 cos(5t) + k2 sin(5t)− 5k1t sin(5t) + 5k2t cos(5t).

We compute the second derivative,

y′′p(t) = −10k1 sin(5t) + 10k2 cos(5t)− 25k1t cos(2t)− 25k2t sin(5t).

We substitute y and y′′ in the nonhomogeneous equation,

−10k1 sin(5t) + 10k2 cos(5t)− 25k1t cos(2t)− 25k2t sin(5t) + 25k1t cos(5t) + 25k2t sin(5t) = cos(5t).

−10k1 sin(5t) + 10k2 cos(5t) = cos(5t) ⇒ k1 = 0 k2 =
1

10
.

Therefore yp(t) =
1

10
t sin(5t). The solution of the initial value problem is

y(t) = c1 cos(5t) + c2 sin(5t) +
1

10
t sin(5t), y(0) = 0, y′(0) = 0.

Since y(0) = 0 implies c1 = 0, and y′(0) = 0 implies c2 = 0, so the solution of the resonant IVP is yp, that is

y(t) =
1

10
t sin(5t) .
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Analysis of the Resonant and Non Resonant Solutions

Consider the interactive graph given in the link: Interactive Graph Link. The functions displayed in this
graph are:

yResonant(t) =
t

10
sin(5t), yNonResonant(t) =

1

(25− ν2)

󰀃
cos(νt)− cos(5t)

󰀄
(1)

ypNonResonant(t) =
1

(25− ν2)
cos(νt), yhomNonResonant(t) = − 1

(25− ν2)
cos(5t) (2)

We try to understand how the non-resonant solution yNonResonant approaches the resonant solution yResonant

as the driving frequency ν approaches the natural frequency 5, that is,

yNonResonant −−→
ν→5

yResonant

Question 3.

(a) (1 point) An oscillatory function, called carrier signal, has beating when the carrier signal has a periodic
modulation in amplitude with frequency smaller than the carrier signal frequency. Find the minimum
value of the driving frequency ν such that the solution yNonResonant displays beating.

Hint: In the Interactive Graph, turn on yNonResonant, turn off all the other functions, and vary the
driving frequency ν from 0 to 5.

The minimum driving frequency such that beating appear in yNonResonant is ν = 4. Correct answers are
accepted in the interval [4, 4.4].

(b) (2 points) For ν = 4.7, describe how are the graphs of ypNonResonant and yhomNonResonant related when
the beating solution yNonResonant has high amplitude, and when the beating solution yNonResonant has low
amplitude. Is this behavior consistent with the expressions in (1)-(2)? Why?.

The beating appears because when ν is close enough to 5, there values of t where

ypNonResonant(t) ≃ yhomNonResonant(t),

and other regions where
ypNonResonant(t) ≃ −yhomNonResonant(t),

These regions in t repeat themselves, since the functions above are periodic. This is what creates the
beating phenomena.
This behavior is consistent with the expressions in (1)-(2) because the solution yNonResonant is the addition
of ypNonResonant and yhomNonResonant.
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(c) (1 point) Describe how the non-resonant solution yNonResonant approaches the resonant solution yResonant

as the driving frequency ν approaches the natural frequency 5.

The amplitude of the first beating modulation of the non-resonant solution grows in a way that matches
the behavior of the resonant solution.

(d) (1 point) What is the behavior of the amplitude of yResonant as the time variable t → ∞? What will
happen to the actual spring of a resonant system when time is large enough?

The amplitude diverges. The spring of a resonant system will break for some t large enough.
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