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Critical Points and Linearizations

Problem Sketch a Phase Portrait of solutions of

autonomous Ct Cats L

Remark We do not solve L It's too difficult
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also called i critical points

2 We study the behavior of sols Xct of L
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when this change is small

5 This equation for it will be called
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DIE The Linearization of Fox
at an equilibrium Soc c is a

Linear system
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