Section 5.2: Vector Spaces
Plan: * Linear (In) Dependence
* Basis and Dimension
* Dasis and Dimension
— » —
*
<u> </u>
Recall: In $V = \mathbb{R}^3$:
, -> -> ->
* {u, u, u, u,) are l.d., Then They lie on a
plane or on a line.
•
(They Span a plane or a line.)
Crity span a plant of a long ly
* $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ are l.i. iff they do Not
lie on a plane.
/ / / / / / / / / / / / / / / / / / / /
(They span the Whole R3)

Example: Determine l.d. or l.i.

(a)
$$\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 7 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \right\}$$

(b)
$$\left\{ \begin{bmatrix} i \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} \right\}$$

Sol:

(a)
$$c_1\begin{bmatrix}1\\2\\3\end{bmatrix}+c_2\begin{bmatrix}7\\2\\-3\end{bmatrix}+c_3\begin{bmatrix}3\\2\\1\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$$
 Solve for c_c .

$$2C_2 + 7C_2 + 3(-3C_2) = 0$$

$$| O C_2 = O | = \rangle | C_2 : free$$

No condition on co

=> (l. o(.)

Therefore, Eq (L) above

$$2C_{2}\begin{bmatrix}1\\2\\3\end{bmatrix}+C_{2}\begin{bmatrix}7\\2\\-3\end{bmatrix}-3C_{2}\begin{bmatrix}3\\2\\0\\0\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$$

$$2\begin{bmatrix}1\\2\\3\end{bmatrix}+\begin{bmatrix}7\\2\\-3\end{bmatrix}=\begin{bmatrix}3\\2\\1\end{bmatrix}=\begin{bmatrix}0\\-\\0\end{bmatrix}-$$

$$\begin{bmatrix} 7 \\ 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$

l. o(.

$$c_{1} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + c_{2} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + c_{3} \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$=>$$
 $C_1=0$ $=>$ $C_1=0$ and $C_3=0$

l.i.

* Basis and Dimension

Remark: A basis of a vector (sub) space is the smallest set that spans that space.

Def:
$$A$$
 set SCV is a basis of a VS V iff
$$(a) Span(S) = V$$

$$(b) S is $l.i.$$$

Example: Determine if
$$S = \{\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 7 \\ 2 \\ 1 \end{bmatrix} \}$$
is a basis of $W = Span(S)$

Sol: (0) V

$$\begin{bmatrix} 7 \\ 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} = >$$

$$= > W = Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 7 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \right\} = Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \right\}.$$

So, c's
$$S_0 = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix} \right\}$$
 a basis of W_0^2

$$0 = c_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \Rightarrow c_1 = -3c_2$$

$$= c_1 = -c_2$$

$$= c_1 = -c_2$$

Remark: A vector (sub) space has infinitely many bases.

Another basis of W above is:

$$S_1 = \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 7 \\ 2 \\ -3 \end{bmatrix} \right\}$$

Another basis is:

$$S_2 = \left\{ \begin{bmatrix} 7 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \right\}$$

Another bases es:

$$S_{3} = \left\{ \begin{bmatrix} 4 \\ 4 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} \right\}$$

Thrm: All bases of WCR" have the same]

[number of voctors

Def: The dimension of a (Sub) space WCR?

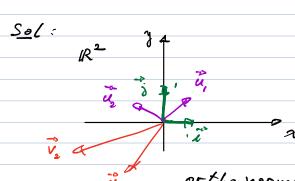
(is the number of vectors in any basis of W.)

Example: A = S, S_0 , S_1 , S_2 , S_3 are bases of W above.

* W has dimension d = 2.

* W is a plane in \mathbb{R}^3 .

Example: [Fond two bases of R2.] = 2 vectors, l.i.



$$S_0 = \left\{ \vec{s}, \vec{o} \right\} = \left\{ \begin{bmatrix} i \\ o \end{bmatrix}, \begin{bmatrix} o \\ i \end{bmatrix} \right\}$$

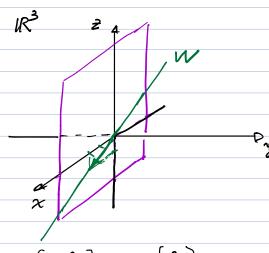
$$S_{1} = \left\{ \vec{u}_{e}, \vec{u}_{2} \right\} = \left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$$

$$\vec{u}_1 \perp \vec{u}_2$$
, $|\vec{v}_1| = |\vec{s}|$.
 $\vec{u}_1 \perp \vec{u}_2$, $|\vec{u}_1| = |\vec{s}|$, $|\vec{u}_2| = |\vec{s}|$

$$S_2 = \left\{ \begin{array}{c} \ddot{v}_1 = \begin{bmatrix} -5 \\ -7 \end{bmatrix} \right\} \quad \begin{array}{c} \ddot{v}_2 = \begin{bmatrix} -9 \\ -6 \end{bmatrix} \right\}$$

Example: Find the dimension of
$$W = Span \left\{ \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} -6 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right\} \subset \mathbb{R}^3$$

$$\left\{ \begin{bmatrix} 2\\0\\-1 \end{bmatrix}, \begin{bmatrix} -6\\0\\3 \end{bmatrix}, \begin{bmatrix} -1\\0\\\frac12 \end{bmatrix} \right\} \quad \ell. \, d.$$



$$\begin{bmatrix} -6 \\ 0 \\ 3 \end{bmatrix} = -3 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

$$-\frac{1}{2} \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ \frac{1}{2} \end{bmatrix}$$

$$Span \left\{ \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} -6 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1/2 \end{bmatrix} \right\} =$$

$$= Span \left\{ \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} \right\}$$

$$= Span \left\{ \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} \right\}$$