The Matrix Exponential

We prove several properties of the exponential function of a matrix

Objectives

To learn a few properties the exponential of a matrix.

Introduction

Recall that the exponential of a matrix can be defined as an infinite sum,

$$e^{A} = \sum_{n=0}^{\infty} \frac{A^{n}}{n!} = I + \frac{A}{1!} + \frac{A^{2}}{2!} + \frac{A^{3}}{3!} + \cdots$$

In the case of a diagonal matrix, we have the formula

$$e^{\operatorname{diag}[d_1,\cdots,d_n]} = \operatorname{diag}[e^{d_1},\cdots,e^{d_n}].$$

In the case that A is diagonalizable, with $A = PDP^{-1}$, with D diagonal, the exponential is given by

$$e^{PDP^{-1}} = Pe^DP^{-1}$$

Also recall the trace of a square matrix is the sum of its diagonal elements,

$$\operatorname{tr} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} = a_{11} + \cdots + a_{nn}.$$

Requirements

Students need to review in the Lecture Notes the section 5.6, "The Matrix Exponential".

The Exponential of Particular Matrices

Question 1:

(a) $(1 \ point)$ If $A^2 = A$, then show that

$$e^A = I + (e - 1) A.$$

(b) (1 point) If $A^2 = I$, then show that

$$2 e^A = \left(e + \frac{1}{e}\right) I + \left(e - \frac{1}{e}\right) A.$$

Question 2: (1 point) By direct computation show that $e^{(A+B)} \neq e^A e^B$ for

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Hint: You may need **Question (1a)** to compute $e^{(A+B)}$.

General Properties of the Exponential Matrix

Question 3: (1 point) Prove the following: If A is an $n \times n$, diagonalizable matrix, then

$$\det(e^A) = e^{\operatorname{tr}(A)}.$$

Hint: The determinant can be defined for $n \times n$ matrices having the same properties as the determinant of 2×2 matrices studied in the Deep Dive 09, Matrix Algebra.

Question 4: (1 point) Prove the following: If λ and \boldsymbol{v} are an eigenpair of A, then

$$e^A \mathbf{v} = e^{\lambda} \mathbf{v}.$$

Question 5: (1 point) Prove the following: If A, B are $n \times n$ matrices,

$$AB = BA \quad \Rightarrow \quad e^A e^B = e^B e^A.$$

Hints:

- First, prove that AB = BA implies $AB^n = B^n A$.
- Second, prove that AB = BA implies $Ae^B = e^B A$.

Question 6: (2 points) Prove the following: If A is an $n \times n$ matrix and s, t are real constants, then $e^{As} e^{At} = e^{A(s+t)}.$

Hints:

- Write $e^{As} = \left(\sum_{j=0}^{\infty} \frac{A^j s^j}{j!}\right)$ and $e^{At} = \left(\sum_{k=0}^{\infty} \frac{A^k t^k}{k!}\right)$, then compute their product.
- Switch from indices j and k to indices n and k, where n = j + k.
- Recall the binomial formula $(s+t)^n = \sum_{k=0}^n \frac{n!}{(n-k)!k!} s^{n-k} t^k$.

Question 7: (1 point) Use the result in Question 6 to prove the following: If A is an $n \times n$ matrix, then

$$\left(e^A\right)^{-1} = e^{-A}.$$

Question 8: (1 point) Prove the following: If A is an $n \times n$ matrix, and $t \in \mathbb{R}$, then

$$\frac{d}{dt}e^{At} = A e^{At}.$$