Matrix Algebra

We prove useful properties of determinants and inverse matrices

Objectives

To learn a few properties the inverse of 2×2 matrices and their determinants.

Introduction

Recall that the determinant of a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is $\det(A) = ad - bc$, and the inverse matrix is

$$(A^{-1}) = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
, in the case that $\det(A) \neq 0$.

This matrix (A^{-1}) is called the inverse of matrix A because

$$(A^{-1}) A = I,$$
 $A(A^{-1}) = I,$ where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$

Also recall that the trace of matrix is the sum of its diagonal elements, so the trace of A above is

$$\operatorname{tr}(A) = a + d.$$

Requirements

Students need to review in the Lecture Notes the section 5.3, "Matrix Algebra".

Question 1: (1 point) Prove that every invertible 2×2 matrices A, B, satisfy $\det(AB) = \det(A) \det(B)$.

Question 2: (1 point) Determine whether the equation det(A + B) = det(A) + det(B) is true or not. If it is true, prove it for all 2×2 matrices A and B; if it is not true, give an example.

Question 3: (2 points) Denote a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ in terms of its column vectors as $A = \begin{bmatrix} \boldsymbol{a}_1, \boldsymbol{a}_2 \end{bmatrix}$. Suppose that the vectors $\boldsymbol{a}_1 = \begin{bmatrix} a \\ c \end{bmatrix}$ and $\boldsymbol{a}_2 = \begin{bmatrix} b \\ d \end{bmatrix}$ are given in the figure below. Use that picture to prove Area of the shaded parallelogram = $|\det(A)|$.

Hint: Relate the parallelogram area with areas you can easily compute, such as triangle and rectangle areas.

Properties of Inverse Matrices

Question 4: (1 point) Prove that for every invertible 2×2 matrix holds that $((A^{-1})^{-1}) = A$.

Question 5: (1 point) Prove that every invertible 2×2 matrix satisfy $\det(A^{-1}) = \frac{1}{\det(A)}$.

Question 7: (2 points) Prove the following statements.

(7a) If a square matrix A satisfies $A^2 = 0$, then the matrix (I - A) is invertible. Find the inverse of (I - A).

(7b) If a square matrix A satisfies $A^3 = 0$, then the matrix (I - A) is invertible. Find the inverse of (I - A).

Cayley-Hamilton Theorem

Question 7: (1 point) Show that every 2×2 matrix A satisfies the following matrix equation,

$$A^{2} - \operatorname{tr}(A) A + \operatorname{det}(A) I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$