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Preface

These notes are an introduction to ordinary differential equations. We study a variety of
models in physics and engineering, which use differential equations, we learn how to con-
struct differential equations, corresponding to different ecological or physical systems. In
addition to introducing various analytical techniques for solving basic types of ODEs, we
also study qualitative techniques for understanding the behavior of solutions. We describe
a collection of methods and techniques used to find solutions to several types of differential
equations, including first order scalar equations, second order linear equations, and systems
of linear equations. We introduce Laplace transform methods to solve constant coefficients
equations with generalized source functions. We also provide a brief introduction to bound-
ary value problems, Sturm-Liouville problems, and Fourier Series. Near the end of the
course we combine previous ideas to solve an initial boundary value problem for a particular
partial differential equation, the heat propagation equation.






CHAPTER 1

First Order Equations

This first chapter is an introduction to differential equations. We focus on particular
techniques—developed in the eighteenth and nineteenth centuries—to solve certain first or-
der differential equations. These equations include separable equations, Euler homogeneous
equations, and linear equations. Soon this way of studying differential equations reached
a dead end. Most of the differential equations cannot be solved by any of the techniques
presented in the first sections of this chapter. Then, people tried something different. In-
stead of solving the equations they tried to show whether an equation has solutions or not,
and what properties such solution may have. This is less information than obtaining the
solution, but it is better than giving up. The results of these efforts are shown in the last
sections of this chapter. We present theorems describing the existence and uniqueness of
solutions to a wide class of first order differential equations.
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1.1. Separable Equations

A differential equation is an equation, where the unknown is a function and both the func-
tion and its derivatives appear in the equation. When the function depends on only one
variable, the equation is called an ordinary differential equation. In the first part of this
section we give a few examples of ordinary differential equations, then we focus on a partic-
ular type of equations that are specially simple to solve—separable equations. The simplest
idea to solve a differential equation actually works well with separable equations—integrate
on both sides of the equation. In the second part of this section we introduce Euler ho-
mogeneous equations. These equations are not separable but we can transform them into
separable equations for a different variable. Then, we can solve them for the new variable
and transform the solution back to the original variable appearing in the Euler equation.

1.1.1. Definitions and Examples. A differential equation is an equation for a func-
tion and its derivatives. The function in a differential equation is called the unknown func-
tion. An Ordinary Differential Equation (ODE) is an equation containing derivatives with
respect to only one variable. A Partial Differential Equation (PDE) is an equation contain-
ing derivatives with respect to more than one variable. The order of a differential equation
is the number of the highest derivative in the equation. For example, a first order ODE is a
differential equation containing derivatives with respect to only one variable and the highest
derivative of the unknown function is the first derivative. We can write all this in a more
concise way.

Definition 1.1.1. A first order ODE on the unknown function y is

y'(t) = f(t,y(t), (1.11)
d
where f is a given function of two variables and y' = ditJ

The function y above is usually called the dependent variable while t above is called the
independent variable. The function y(¢) is also called the unknown function, since in most
problems involving a differential equation we try to find the solutions, y(t).

Example 1.1.1. Here are a few examples of first order ordinary differential equations.

(a)

/
Y =2y,
which is called the exponential growth equation and will be aolved later on in this
section.
(b)
Yy =ay+b,

where a, b are arbitrary constants. The previous example is the case a = 2 and b = 0.

. 2t

By
which is an equation with explicit ¢ dependence on the right side, unlike the previous
two examples.

Y

2ty — sin(y) = 0,

which is not written as in (1.1.1), but simple algebraic transformations give us

, _ sin(y)
2t



1.1. SEPARABLE EQUATIONS 5

These two forms of the equation share most of their solutions, so we consider them as
the same equation.
(e)
f_ Yty =t
N 3ty ’
which is an interesting equation, called scale invariant, and we will study them later.

A differential equation can be written in many different ways. We say that a differential
equation is written in normal form if the equation is written as in (1.1.1), that is, y is
alone on the left-hand side and the right-hand side contains only functions of ¢t and y but
no derivatives, 9'. For example, the differential equation

3y +6y=9
is not written in normal form, but we can rewrite it in normal form after a few simple
algebraic transformations,

y = —2y+3.
We define simple algebraic transformations of a differential equation as adding the same
function on both sides of the equation and multiplying by non-zero functions on both sides
of the equation. Simple algebraic transformations change how the equation looks like but
they do not change its solutions.

A function g is a solution of a differential equation y' = f(¢,y), if the function ¢'(¢) is

the same as the function composition f(¢,g(t)) for all ¢. For example, the function

3
=2t _ 2
g(t) =™ — 3
is a solution of the differential equation
y =2y +3.
Because its derivative is
g(t)=2¢*

while the algebraic calculation below give us
29(t) +3 =2(e* - g) +3=2¢.
Therefore, this function g satisfies the differential equation
g =2g+3.

Differential equations may have infinitely many solutions. For example, the functions
3
h(t) =ke* — 2,
2
where k is an arbitrary constant are also solutions of the differential equation
y =2y + 3.
Indeed, if we compute the derivative,
B (t) = 2k e,

while the algebraic calculation below gives us
3
2h(t) +3 = 2(ke2t - 5) +3=2%ke.

Therefore, this function h satisfies the differential equation

h =2h+3



6 1. FIRST ORDER EQUATIONS

for any value of the constant k. So we have infinitely many solutions.

Definition 1.1.2. An initial value problem (IVP) is to find a solution y(t) to an equation
y'(t) = f(t,y(t),
that also satisfies the initial condition
Y(to) = Yo,

where t, and y, are arbitrary constants.

Example 1.1.2. Find a solution to the initial value problem

Y =2y+3, y(0) = 5.

Solution: We have seen in the previous paragraph that the differential equation in this
example has infinitely many solutions given by

3

t) =ke* — =,
y(t) 5
From these solutions we select the one that satisfies the initial condition. That is, the initial
condition determines the value of the constant k, as we can see below.

3 3 13
— — 0 — — — = —
5=y(0)=ke 5 = k 5-i—2 = k 5
Therefore, the solution of the initial value problem above is
13 5, 3
yt) = — e — 2.
y(t) = 5 e7 =5

<

Differential equations are essential to describe change in nature. Newton’s equation for
the motion of a point particle is ma = f, mass times acceleration equals the sum of all forces
acting on the particle. This equation is a differential equation. In fact, it is the differential
equation that started the whole field of differential equations. The acceleration is the second
time derivative of the position function. If we call the position function by y(t), then a = y”.
The force term may depend on time ¢, on the position ¥, and sometimes on the velocity 3/,
therefore, Newton’s equation is a second order differential equation of the form

my"(t) = f(t,y(t),y'(t)).
If the particle is a projectile and the force is the Earth’s gravity near its surface, then
Newton’s equations predict the parabolic motion of the projectile. If the particle is the
Moon and the force is Earth’s gravitational attraction, then Newton’s equation describe the
orbit of the Moon around the Earth.

Electricity and magnetism are described by Maxwell’s equations, which are a set of
differential equations for the electric and magnetic fields, partially discovered by Ampere,
Faraday, and with the last touches given by Maxwell. These equations not only describe
how electricity and magnetism behave, but they also say that light is an electromagnetic
phenomena having a fixed speed of propagation in vacuum. That observation is the corner
stone used by Einstein to build his Special Theory of Relativity.

Quantum mechanics rests on the Schrédinger equation, which is a differential equation
describing how objects behave at scales of electrons orbiting the nucleus of atoms. The
variable in Schrodinger equation is the probability of finding these microscopic objects, say
electrons, at a certain time and position. Quantum mechanics explain how atoms interact
with other atoms, converting Chemistry into a part of Physics.
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FEinstein equations of General Relativity are differential equations that improve New-
ton’s theory of gravitation in the case of large masses, such as near big stars or at the early
times of the universe. General Relativity predicts both the existence of black holes, which
produce extreme effects in the curvature of space and the passing of time, and the big bang
at the beginning of the universe.

As we see above, most natural phenomena are described by differential equations. The
job of scientists is to try to find these equations and figure out the behavior of their solutions.

1.1.2. Overview of Modeling. Modeling is to create mathematical representations
or natural porcesses, called models. These models usually involve differential equations
because natural processes change in time. To create a mathematical model of a natural
system usually involves following a few basic steps:

(1) To state all the assumptions needed to isolate the feature we are interested to describe.

(2) To introduce the independent variables and the dependent variables.

(3) To introduce all the parameters needed to specify the model.

(4) To use these assumptions to derive equations relating the variables and parameters.

(5) To analyze the predictions of the model—do they make physical sense, do they agree
with your data? If not, you might need to revise your assumptions, going back to part

(1).

In the following examples we show a few models that accurately describe different sit-
uations, including population dynamics with infinite food resources, the radioactive decay
equation, and Newton’s cooling law describing the temperature of an object in an environ-
ment with fixed temperature.

Example 1.1.3 (Exponential Growth Equation). The population as function of time, y(t),
of a living organism that has access to infinite food resources, can be described by the
solutions of the differential equation

y' =ry,
where the parameter r» > 0 is a constant called the growth rate, that has units of 1/time.
Solutions of this equation are exponentials of the form

y(t) = yoe™

where y, is the initial population, y(0) = y,. These functions are solutions of the differential
equation because

y'(t) =ryoe™ =ry(t).
This equation is called the exponential growth equation because its solutions are functions
that grow exponentially.

Example 1.1.4 (Radioactive Decay). The amount of a radioactive material as function of
time, y(t), when the material is left alone, can be described by the solutions of the differential
equation
y =-ry.

In this case the parameter r > 0 is called the decay constant, which also has units of 1/time.
Solutions of this equation are exponentials of the form

y(t) =yoe ",
where y, is the initial amount or radioactive material, y(0) = y,. These functions are
solutions of the differential equation because

y(t)=—ryoe " = —ry(t).
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This equation is called the exponential decay equation because its solutions are functions
that decay exponentially.

Example 1.1.5 (Newton’s Cooling Law). The temperature as function of time, T'(¢), of a
material placed in a surrounding medium kept at a constant temperature T can be described
by the solutions of the differential equation

T' = —kT + kT,

where the parameter k£ > 0 is a constant characterizing the material thermal properties.
Since the medium temperature is constant, we can rewrite this differential equation as

(AT) = —k(AT),

where we introduced the temperature difference

AT(t) =T(t) — Ts,
Notice that this is the exponential decay equation for the temperature difference AT. Al-
though Newton’s law is called a “Cooling Law”, it also describes objects that warm up.
When the initial temperature difference, (AT)(0) = T'(0) — T is positive the object cools
down, but when (AT)(0) is negative the object is warms up. The solution of Newton’s
cooling law equation is

(AT)(t) = (AT)(0) e ™,

for some initial temperature difference (AT)(0) = T'(0) — T;. Since

(AT)(t) =T(t) - Ts,
then we can write the solution of the differential equation as

T(t) = (T(0) — Ty) e ¥ + T,.

All the equations in the models above are particular cases of equations we call separable
differential equations. These are equations where the dependent and independent variables
can be separated on different sides of the equation, which allow us to find exact formulas
for their solutions. We introduce these equations in our next subsection.

1.1.3. Separable Equations. We now introduce a particular type of differential equa-
tions called separable equations. They include the exponential growth equation, exponential
decay equation, and Newton’s cooling law equation. In these equations the variables can be
separated on each side of the equation, which makes the equation simple to solve.

Definition 1.1.3. A differential equation for a function y(t) is separable iff after simple
algebraic transformations the equation can be written in the form

h(y)y = g(t), (1.1.2)

where h, g are given functions.

Remarks:

There is no y-dependence on the right-hand side of (1.1.2), it depends only on t.
The left-hand side depends explicitly only on y; any ¢ dependence is through y.
The left-hand side is of the form (something on y) multiplied by y'.

The normal form of a separable equation is

;g

 h(y)
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Example 1.1.6.

(a)

The exponential grow-decay equations are separable, since the equation

Yy =ay
for a constant, can be rewritten as
y g(t) =a,
v T \aw ==
Y

t2

The differential equation 3’ =
1—92

(1—y2)y’=t2 N {

The differential equation 3" + y* cos(2t) = 0 is separable, since it can be transformed
into (1.1.2) as follows,

g(t) = — cos(2t),

Ly 2) = 1
— 1y = —cos(2t
y? h(y) = —.
Yy
The functions g and h are not uniquely defined; another choice in this example is:
1
g(t) = cos(2t), h(y) = 7

The equation y’ = e¥ + cos(t) is not separable because there are no simple algebraic
transformations that can changed it into the form in (1.1.2).
The exponential grow-decay with migration equation is separable, since

Yy =ay+b
for a and b constants, can be rewritten as
) g(t) =1,
/
—y =1 = 1
ay+b hy) = —.
(ay+1) )= )

The variable coefficient equation

Yy =a(t)y+b(t),

with a # 0 and b/a nonconstant, is not separable because there are no simple algebraic
transformations that can changed it into the form in (1.1.2).

<

Separable differential equations are simple to solve. We just write them as in (1.1.2)

and integrate on both sides of the equation with respect to the independent variable . We
show this idea in the following example.

Example 1.1.7. Find all solutions y to the differential equation

yl
2 = cos(2t).
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Solution: The differential equation above is separable, with
1

o(t) = cos2t),  hly) =~

Therefore, it can be integrated as follows:

Y '(t)
—= =cos(2t) & /— dt = /Cos(Qt) dt + c.
Y

The integral on the right-hand side can be computed explicitly. The integral on the left-hand
side can be done by substitution. The substitution is

u=y(t), du=1y'( = /—— /cos(2t) dt + c.

This notation makes clear that u is the new integation variable, while y(¢) are the unknown
function values we look for. However it is common in the literature to use the same name
for the variable and the unknown function. We follow that convention and we write the
substitution as

y=y(t), dy =y'(t)dt = /—% = /cos(2t) dt + c.

We hope this is not too confusing. Integrating on both sides above we get

1 1
; = 5 Sln(2t) +c

So, we get the implicit and explicit form of the solution,

! —1'(2t)+ s yt) = 2
y(t) 2 s ¢ v = sin(2t) + 2¢

Remark: Notice the following about the equation and its implicit solution:

1 1
e y' = cos(2t) & My)y =g@), h(y) = v g(t) = cos(2t),
1 1 . 1 1 .
— = —sin(2t) & H(y)=G(t), H(y)=-, G(t) = - sin(2t).
y 2 (0 2
e H is an antiderivative of h, that is, H f h(y
e G is an antiderivative of g, that is, G fg

This remark help us summarize the calculation done in the previous example as follows.

Theorem 1.1.4 (Separable Equations). If h,g are continuous, with h # 0, then

h(y)y' = g(t) (1.1.3)
has infinitely many solutions y satisfying the algebraic equation
H(y(t)) = G(t) + ¢, (1.1.4)

where ¢ € R is arbitrary, H = [ h(y)dy and G = [ g(t) dt are antiderivatives of h and g.

Proof of Theorem 1.1.4: Integrate with respect to ¢ on both sides in Eq. (1.1.3),

h(y)y' =gt) = / t)dt = /g(t)dt+c,
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where ¢ is an arbitrary constant. Introduce on the left-hand side of the second equation
above the substitution

y=y(t), dy=y'(t)dt
The result of the substitution is

[rwowea= [nway = [nway= [gae

To integrate on each side of this equation means to find a function H, primitive of h, and
a function G, primitive of g. Using this notation we write

1) = [nedy GO = [ow
Then the equation above can be written as follows,
H(y) = G(t) +c,
which implicitly defines a function y, which depends on ¢. This establishes the Theorem. [J

Example 1.1.8. Find all solutions y to the differential equation
t2
r_ )
1—92

y (1.1.5)

Solution: We write the differential equation in (1.1.5) in the form h(y)y' = g(¢),
(1—y?)y =t
In this example the functions h and g defined in Theorem 1.1.4 are given by
h(y) =1 —y%),  gt) =t
We now integrate with respect to ¢ on both sides of the differential equation,

/(1 -2 () ' (t)dt = /t2 dt +c,

where c is any constant. The integral on the right-hand side can be computed explicitly.
The integral on the left-hand side can be done by substitution. The substitution is

y=yt), dy=y{t)dt = /(l—yz(t)) y'(t) dt:/(l—zf)dy-

This substitution on the left-hand side integral above gives,

y3 t3
/(1_y2)dy:/t2dt+c s y-Z = +tc

3 3
The equation above defines a function y, which depends on t. We can write it as
3 3
y () ¢
y(t) — = —+ec
y(t) — =3 5 T

We have solved the differential equation, since there are no derivatives in the last equation.
When the solution is given in terms of an algebraic equation, we say that the solution y is
given in implicit form. <

Definition 1.1.5. A function y is a solution in implicit form of the equation

hy)y' = g(t)
iff the function y is solution of the algebraic equation
H(yt)) = G(t) +ec,
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where H and G are any antiderivatives of h and g. In the case that function H is invertible,
the solution y above is given in explicit form iff is written as

y(t) = H ' (G(t) +c).

In the case that H is not invertible or H ! is difficult to compute (as in Example 1.1.8),
we leave the solution y in implicit form. Now we solve the problem in Example 1.1.8, but
now we just use the result of Theorem 1.1.4.

Example 1.1.9. Use the formula in Theorem 1.1.4 to find all solutions y to the equation
2
!

S 1.1.
V1 (1.1.6)

Solution: Theorem 1.1.4 tell us how to obtain the solution y. Writing Eq. (1.1.6) as
(1-y*)y =t
we see that the functions h, g are given by

h(y)=1—y>  g(t) =+t

Their primitive functions, H and G, respectively, are simple to compute,

3
Y
hy) =1-y* = Hy)=y- 7,
43
gty =t* = G(t)= 3
Then, Theorem 1.1.4 implies that the solution y satisfies the algebraic equation
3 3
yit) _t
t) — =—+4c 1.1.7
-T2 =T e (1.17)
where ¢ € R is arbitrary. <

Remark: In general it is simpler to remember ideas than formulas, specially when the
number of formulas to remember is large. Usually it is better to solve a separable equation
as we did in Example 1.1.8 instead of using the solution formulas, as in Example 1.1.9.
(Although in the case of separable equations both methods are very close.)

In the next Example we show that an initial value problem can be solved even when
the solutions of the differential equation are given in implicit form.

Example 1.1.10. Find the solution of the initial value problem

5 y(0) = . (1.1.8)

Solution: From Example 1.1.8 we know that all solutions to the differential equation
in (1.1.8) are given by

3 3
yi(t) _t
t — = —
y(t) - = gt
where ¢ € R is arbitrary. This constant is now fixed with the initial condition in Eq. (1.1.8)
3 3 3
y3(0) 0 1 11 11 By 11
—_ — — _— —_——_——— t — = —
y(0) 3 3+c = 5 353 =€ S ¢ = y(t)

Y 3 32
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So we can rewrite the algebraic equation defining the solution functions y as the (time
dependent) roots of a cubic (in y) polynomial,

5 33
2 (t) — 3y(t) + 3 + 51 =0

Example 1.1.11. Find the solution of the initial value problem
y +y?cos(2t) =0,  y(0)=1. (1.1.9)

Solution: The differential equation above can be written as
"y = cos(20)
—— 1y’ = cos(2t).
Y2

We know, from Example 1.1.7, that the solutions of the differential equation are

2
= ——— R.
y(t) sin(2t) + 2¢’ <

The initial condition implies that
2
1=y(0) = =1
VO =532 ¢ °
So, the solution to the IVP is given in explicit form by

(t) = #
Y= sin(2t) + 2

Example 1.1.12. Follow the proof in Theorem 1.1.4 to find all solutions y of the equation
, At —1t3
Vo ar s
Solution: The differential equation above is separable, with
hy)=4+y°,  g(t) =4t —t.

Therefore, it can be integrated as follows:

(A+P)y =4-t* & /(4 +y°(t) y'(t) dt = /(4t — %) dt +c.
Again the substitution
y=y(t), dy=y'(t)dt

implies that
y' tt
/(4+y3)dy:/(4t—t3)dt+co. & 4y-}-Z =912 — Z+c°'
Therefore, the solution y(¢) can be given in implicit form as
y*(t) + 16y(t) — 8t* + t* = ¢,

where ¢, = 4c,. <
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Example 1.1.13. Find the solution of the initial value problem below in explicit form,
2—t
/

~1y, Vo=t (1.1.10)

Y

Solution: The differential equation above is separable with

hy)=1+y,  g(t)=2-t

Their primitives are respectively given by,
Y2
hy)=1+y = H@)=y+73,
2

g =2-1t = Gl)y=2-7

Therefore, the implicit form of all solutions y to the ODE above are given by

2 2
y*(t) t
t =2t — —
y(t) + =, 5 to
with ¢ € R. The initial condition in Eq. (1.1.10) fixes the value of constant ¢, as follows,
2
1
y(O)erT(O):O+c = 1+§:c = c:%.
We conclude that the implicit form of the solution y is given by
2(t t2 3 . .
y(t)+y2():2t—§+§, s ) +2y@) + (-4t —3)=0.

The explicit form of the solution can be obtained realizing that y(t) is a root in the quadratic
polynomial above. The two roots of that polynomial are given by

y.(t) = L [2£ V4482 -4t -3)] & w(t)=-1x£—t2+4t+4.

T2
We have obtained two functions y. and y.. However, we know that there is only one solution
to the initial value problem. We can decide which one is the solution by evaluating them at
the value ¢t = 0 given in the initial condition. We obtain

y.(0) = —14+V4=1,
y(0) = -1 -4 =-3.

Therefore, the solution is y,, that is, the explicit form of the solution is

y(t) = -1+ —t2+ 4t + 4.

<

1.1.4. The Logistic Equation. The population as function of time, y(t), of a living
organism that has access to finite food resources, can be described by the solutions of the
differential equation, called the logistic equation

Definition 1.1.6. the logistic equation for the function y(t) is given by

' 1—3) 1.1.11
Yy ?"y( %) ( )

where r > 0 is a constant called the growth rate and K > 0 is a constant called the carrying
capacity of the environment.
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The logistic equation was introduced in a series of articles from 1838 to 1844 by Pierre
Francois Verhulst, who used to describe population growth when subject to limited resources.
The name logistic is an adaptation of the french logistique used by Verhulst. He studied
population growth with both unlimited and limited resources. Verhulst called the former
logarithmic growth and latter logistic growth. In more recent times we changed the first
name to exponential growth and kept the second name.

We can get a qualitative idea of the behavior of the solutions of this equation if we
study the behavior of the equation itself in some limiting cases.

(a) If the population is small enough so that the food seems unlimited for this population,
which happens when y(t) < K, then the rate of growth of the population is close to be
proportional to its size, just as in the exponential growth equation.

If y(t) is small enough, then o/(t) ~ry(t), then y(t)~y(0)e™.
(b) If the population is y(t) < K and near K, that is y(t) 5 K, then the rate of growth,
y'(t), decreases and becomes smaller than the exponential growth given by ry(t).
If y(t) S K then ¢'(t) % 0.

We interpret this result saying that the population is getting close to the maximum
population sustained by the food available.

(c) If the population is larger than the critical population K, that is y(t) > K, then the
population actually decreases in time.

If y(t) > K then ¢/(t) <0.

We interpret this result saying that the population becomes too large to be supported
by the finite food in the environment and decreases.

(d) If the population is exactly equal to K, then y' = 0 and that population number does
not change in time. So, one solution to the logistic equation is the constant y(t) = K.

Therefore, the solutions of the logistic equation for positive but small enough data
should behave like growing exponentials in time, but then the increase should slow down
and approach the constant solution y(t) = K, giving the solution curve an s-shape. We now
find a formula for all the solutions of the logistic equation.

Theorem 1.1.7 (Logistic Equation). The initial value problem for the logistic equation
I = 1— ﬁ) 0) =
y w( %) YO0 =w,
where r and K are positive constants and y, is an arbitrary constant, are given by

Ky,
t) = .
u(t) + (K —yo) e~

Proof of Theorem 1.1.7: We start writing the logistic equation given in (1.1.11) as
follows,

’ T
- _y(K —
y Ky( Y)s

and then we rewrite this equation in the separable form
/

Yy r

y(K—-y) K
To solve this equation we only need to integrate on both sides of the equation on the

independent variable,
/ e /
dt.
( —y(t
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The integral on the right side is simple, while on the left side we do the usual substitution
y = y(t) gives dy = v/ (t) dt. Then, we get

d

where ¢, is an arbitrary integration constant. The integral on the left side can be done using
partial fractions on the integrand,

1 a b

_ = —
y(K—-y) vy (K—-y)
where a and b are specific constants that we can compute as follows. First add up the
right-side above,
e, b a(K—y)+by
y  (K-y) y (K —vy)

which means we got the equation

1 (K —y)+by
y(K —y) y(K—-y)
This last equation says the numerators must be equal, meaning

l=a(K—y)+by for all y.

This equation can be rewritten as
(b—a)y+ (aK —-1)=0 for all y.
This can only happen for

1 1
b—a=0 K-1=0} = =—, b=—.
a=0, a } a= 2 %
Therefore, we have shown the following partial fractions decomposition,
1 11 1 1

yE-y) Ky KE-y

Now we can come back to the integral in (1.1. 12)

d
K/y K/ t+co

We multiply by K the whole equation and mtegrate each term to get
In|y| —In|K —y| =rt+ ¢,

where ¢; = K¢,. We have solved the logistic differential equation and the expression above
gives all the solutions in implicit form. We can work a bit on the left-side of the equation
to get a nicer expression, for example,

ln‘ Y ‘ =rt+c ‘ =t = e,
K-y

K-y
which gives us
Y
K-y
where ¢, = +et. The expression above is still an implicit expression of all solutions to the
logistic equation. But now it is simpler to get an explicit expression, because

=c, ert

y=ce(K—y)=cKe' —cely = (1+cet)y=cKe",
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which leads us to the explicit expression

c, K e
)= =2~
y( ) (1+62 e’"t)7
or, equivalently
K
)= ——— .
y(t) Gt

We have obtained an explicit expression of all solutions of the logistic equation. Now we
find the solution that satisfies the initial condition, that is,

K
= 0 = .
Yo y( ) (Cg + 1)
Some simple algebraic transformations give us
I+e)yp=cK = cyp-—K=-y = c= Kyo .
— Y%
If we put this expression for ¢, into the formula for the solution y(t) we get
Yo K
y(t) = (K* )( oyo +67rt)’
Yo\ & =0)
and we arrive to the final expression
Yo K
y(t) = 2 —.
Yo+ (K —yo)e
This establishes the Theorem. (I

Example 1.1.14. Find the solution of the initial value problem
Y
y' =2y (1—5), y(0) = 1.

Solution: We follow the calculations in the proof of Theorem 1.1.7. First we write

2
/
= — 3 — s
y'=3yB-y)
then we rewrite this in separable form
y 2
yB-y) 3

and we integrate on both sides with respect to the variable t,
"(t) dt 2
/ _yd / Zdt.
y(t) 3 —y(t)) 3
We integrate on the right side and we substitute y = y(t), with dy = y'(¢) dt, on the left

side,
dy 2
— =i,
/y(?ﬁy) 37

where ¢, is an arbitrary integration constant. Now we use partial fractions to simplify the
integrand on the left side. That is, we find constants a and b such that

1 a b 1 a(3—y)+by
- - -4y~ = = = 1=a(3—-y)+by.
yB-y) ¥y (B3-v) y(3—y) y(3-y) 3-4)
From this last equation we get the values of the constants a and b, since
1 1
(b—a)y+Ba—1)=0 forally = a=-, b=

3’ 3
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Therefore, the partial fraction decomposition of the integrand above is
1 11 1 1
—_— = - = —
yB—-y) 3y 33—y
which means we now have to integrate

1 [d 1 d 2
dy L[ dy 2,
3 Y 3 3—y 3
We multiply by 3 the whole equation, introduce the new constant c¢; = 3c¢,, and then we
integrate the left side, which gives us

Inly| —In|3 —y| =2t + ¢.

This is an implicit expression of all solutions of the logistic equation. WE now simplify this
expression a bit using the properties of the log function,

ln‘ ‘ =2t+c, = ‘ L ‘ et —een o Y o et

Y
(B-v) (B-v) (B3-v)
where ¢, = +et. This is still an implicit expression for all solutions of the logistic equation,
but now we are closer to an explicit expression, because

y=ce¥(3—y) =3 —ce?y = (1+ce?)y=3ce*,

which gives us our first explicit expression for all solutions of this logistic equation,

3c,e?t
)= —>— .
y( ) (1 T s egt)
A nicer explicit expression is
3¢,
t) = ———~.
y( ) (62 4 e,gt)
To find the solution of the initial value problem we need to use the initial condition,
3¢, 1
l=y0)=-— = c+1=3c¢ = = —.
y(0) (ca 1) 2 2 275
Which gives us the solution of the initial value problem,
3 3
t) = ———— Yit) = ——~.
y( ) 2(% + 6_2t) J( ) (1 + 2672t)

<

1.1.5. Euler Homogeneous Equations. We have seen several examples of differen-
tial equations that are not separable but they can be transformed into a separable equation
by simple changes in the equation. For example the equation

2y 424y =0
can be written as a separable equation as follows,

v
2

Sometimes a differential equation is not separable but it can be transformed into a separable
equation by a more complicated transformation that involves to change the unknown
function. This is the case for differential equations known as Euler homogenous equations.

t2y2+y2+y'=0 = y/:_y2_y2t2 = :—(1+t2)
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Definition 1.1.8. An Euler homogeneous differential equation has the form

0= p(2),

Remark:

(a) Any function F of ¢,y that depends only on the quotient y/t is scale invariant. This
means that F' does not change when we do the transformation y — cy, t — ct,

P(ig)=F(3)

The the differential equations above are also called scale invariant equations.

(b) Scale invariant functions are a particular case of homogeneous functions of degree n,
which are functions f satisfying

flet,cy) =" f(y,t).
Scale invariant functions are the case n = 0.

(¢) An example of an homogeneous function is the energy of a thermodynamical system,
such as a gas in a bottle. The energy, F, of a fixed amount of gas is a function of the gas
entropy, S, and the gas volume, V. Such energy is an homogeneous function of degree
one,

E(cS,cV)=cE(S,V), for all c € R.

Example 1.1.15. Show that the functions f;, f, are homogeneous and find their degree,
filty) ="+t + %%, fulty) = 2y + 1y,

Solution: The function f; is homogeneous of degree 6, since
filet,cy) = 't Py? + et y® + P Py’ = (P + 1y + 7y7) = E f(ty).

Notice that the sum of the powers of ¢ and y on every term is 6. Analogously, function f,
is homogeneous degree 4, since

blet,cy) = P2 Py? + et Py’ = ¢ (PP + ty°) = ¢ falt,y).

And the sum of the powers of ¢ and y on every term is 4. <

Example 1.1.16. Show that the functions below are scale invariant functions,

PPy +ty* +¢°
fl(tvy) Y f2(t7y): Y Y Y N

T 3 +ty?
Solution: Function f; is scale invariant since
cy Yy
fl(Ctacy) = E = ? = fl(tay)

The function f, is scale invariant as well, since

St eyt ety + P S+ 2yt 1)
A3t3 + ct c2y? o 33 +ty?)

fa(ct, ey) = = fat,y)-
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More often than not, Euler homogeneous differential equations come from a differential
equation N y'+ M = 0 where both N and M are homogeneous functions of the same degree.

Theorem 1.1.9. If the functions N, M, of t,y, are homogeneous of the same degree, then
the differential equation

N(t,y)y'(t) + M(t,y) =0
is can be transformed into the Fuler homogeneous equation

J :F(%) with, F(%) - W

Proof of Theorem 1.1.9: Rewrite the equation as

M(t,y)

/ ’
Yy t)=— )
Y= "N

M
The function f(y,y) = — N((z’z)) is scale invariant, because
M(ct,c c™ M(t, M(t,
fletiey) = —Sbe) M) MOD)_ gy )

N(ct, cy) <" N(t,y) N(t,y)
where we used that M and N are homogeneous of the same degree n. We now find a function
F such that the differential equation can be written as

)

Since M and N are homogeneous degree n, we multiply the differential equation by “1” in
the form (1/t)™/(1/t)", as follows,

iy M(ty) (/er) o M((@/t), (y/t) M1, (y/t) F (Y
VO =Ny W~ N w) ~ §ewm ~ Y6
where
yy _ M1, (y/t)
F(7)= YIROD)
This establishes the Theorem. O

Example 1.1.17. Show that (t—y)y' —2y+3t+ y? = 0 is an Euler homogeneous equation.

Solution: Rewrite the equation in the normal form
2

2 <2y _3t— %)
t—y)y =2y—-3t—=> = y=—-———12
=) t (t—y)
So the function f in this case is given by
y?
(2y-3t- %)
fy) = —F—""
.9) (t—v)

This function is scale invariant, since numerator and denominator are homogeneous of the
same degree, n = 1 in this case,
2,2 2
c
<2cy—3ct— —y) c(2y—3t— y—)
c

f(Ct’ Cy) = (Ct — cy) t = C(t — y) t = f(t?y)'
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So, the differential equation is Euler homogeneous. We now write the equation in the form
y' = F(y/t). Since the numerator and denominator are homogeneous of degree n = 1, we
multiply them by “1” in the form (1/¢)!/(1/t)!, that is
y?
(20 =3-F)
(t—y) (1/t)

Distribute the factors (1/¢) in numerator and denominator, and we get

g LW Gy

y =

(1= (y/1)) t
where
F(Y) - (2(y/t) =3 = (y/1)?)
t (1= (y/t)
So, the equation is Euler homogeneous and it is written in the standard form. <

Example 1.1.18. Determine whether the equation (1 — 3?)y’ = t? is Euler homogeneous.
Solution: If we write the differential equation in the normal form, 3y’ = f(¢,y), then we get

2
fty) = But

t
1—93
2,42

flet.c) = gy # F00).

hence the equation is not Euler homogeneous. <

1.1.6. Solving Euler Homogeneous Equations. Theorem 1.1.10 transforms an Eu-
ler homogeneous equation into a separable equation, which we know how to solve.

Theorem 1.1.10. The FEuler homogeneous equation

/- (2

for the function y determines a separable equation for v =y/t, given by

Remark: The original homogeneous equation for the function y is transformed into a sep-
arable equation for the unknown function v = y/t. One solves for v, in implicit or explicit
form, and then transforms back to y = tv.

Proof of Theorem 1.1.10: Introduce the function v = y/t into the differential equation,
y' = F(v).

We still need to replace 3’ in terms of v. This is done as follows,

y(t) =to(t) = y'(t) = (to(t)) = v(t) +tv'(t).
Introducing these expressions into the differential equation for y we get

v+t =F) = U/:M = vi'zl
t (F(v)—v) t

The equation on the far right is separable. This establishes the Theorem. O
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Example 1.1.19. Find all solutions y of the differential equation
, 2+ 3y2
Yy =—F——

, t>0.
2ty

Solution: The equation is Euler homogeneous, since

AR 433y AR 432 2432
Aeey) | ACw) 2y Y

Next we compute the function F'. Since the numerator and denominator are homogeneous

degree “2” we multiply the right-hand side of the equation by “1” in the form (1/t2)/(1/t?),

y 2
,143(3)

G

f(Ct’ Cy) =

1

o (437 (72)
2ty 1
2

Now we introduce the change of functions v = y/t,

;14302

2v
Since y = twv, then 3y’ = v + tv’, which implies
1+ 302 , 14302 14302 —20%2 1402
= tv = = = .
2v 2v 2v 2v
We obtained the separable equation

v+tv =

We rewrite and integrate it,

v, 1 v, 1
vaE = / QUdt:/Edt"—Co.

1+w
The substitution u = 1 + v2(¢) implies du = 2v(t) v'(t) dt, so

d dt
/l =7 +e = Wnw=ht)+c = u= eln®)teo _ oIn(t) geo
U

We denote ¢; = e®, then u = ¢;t. So, we get

2
1+l =ct = 1—|—(%) =cat = yt)==+tVet — 1.

Example 1.1.20. Find all solutions y of the differential equation

,_ty+ 1)+ (y+1)°
y = v

, t>0.
Solution: This equation is Euler homogeneous when written in terms of the unknown
u(t) = y(t) + 1 and the variable t. Indeed, v’ = 3, thus we obtain

tly+ 1)+ (y+1)2 tu + u? u u\2
I ! __ I
V= 12 T v T TR < U_?Jr(?)'

Therefore, we introduce the new variable v = u/t, which satisfies u = tv and v’ = v + ¢v'.
The differential equation for v is

/
1
vt =v4+0v? o t=1 & /U—th:/gdt—i—&
v
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with ¢ € R. The substitution w = v(¢) implies dw = v’ dt, so

1 1
-2 = —_ — -1 = = —_——
/w dw—/tdt—i—c & w In(t)+c¢ < w MO
Substituting back v, u and y, we obtain w = v(t) = u(t)/t = [y(¢) + 1]/, so
y+1 1 t
—_— y(t) = ——— — 1.
t In(t) + ¢ < ylt) In(t) + ¢

<

Notes. This section corresponds to Boyce-DiPrima [4] Section 2.2. Zill and Wright study
separable equations in [13] Section 2.2, and Euler homogeneous equations in Section 2.5.
Zill and Wright organize the material in a nice way, they present first separable equations,
then linear equations, and then they group Euler homogeneous and Bernoulli equations in
a section called Solutions by Substitution. Once again, a one page description is given by
Simmons in [8] in Chapter 2, Section 7.
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1.1.7. Exercises.

1.1.1.- Find an explicit expression of all solutions y to the equation

,
Yy =—.
Yy

1.1.2.- Find an implicit expression of all solutions y to the equation
3t° + 4%y — 1+ =0.

1.1.3.- Find the solution y to the initial value problem
y ="y, y(0)=1.

1.1.4.- Find all solutions y of the equation

ty +V1+t2y =0.

1.1.5.- Find every solution y of the Euler homogeneous equation
y/ _ y+t )

1.1.6.- Find all solutions y to the equation

1.1.7.- Find the explicit solution to the initial value problem

t+2ty)y =y>, y(1)=1

1.1.8.- Prove that if ' = f(¢,y) is an Euler homogeneous equation and y;(t) is a solution, then

y(t) = 1 k)

is also a solution for every non-zero k € R.
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1.2. Linear Equations

Linear differential equations look simpler than separable equations, but they could be more
complicated to solve. There are linear equations that cannot be transformed into separable
equations, meaning their solutions cannot be obtained by simply integrating on both sides
of the equation with respect to the independent variable. It turns out we need a new idea
to solve all linear equations. In the first part of this section we study one of such new ideas
called the integrating factor method.

In the second part of this section we show a simple physical system that can be described
by a linear differential equation. The physical system is a tank containing salty water and
where fresh or salty water can come in and out at the same or different rates. This type of
physical systems are called Mixing Problems.

In the last part of this section we turn our attention to a particular nonlinear differential
equation—the Bernoulli equation. This nonlinear equation has a particular property: it can
be transformed into a linear equation by an appropriate change of the unknown function.
Then, one solves the linear equation for the changed function using the integrating factor
method. The last step is to transform the changed function back into the original function.

1.2.1. Constant Coefficients. We start with a precise definition of linear differential
equations, and then we focus on a particular type of linear equations—those with constant
coeflicients.

Definition 1.2.1. A linear non-homogenous differential equation on the function y is
y' =a(t)y+b(t) (1.2.1)

The equation is called linear, also linear homogeneous, if b(t) = 0 for all t. The equation
has constant coefficients if both a and b are constants, otherwise we say that the equation
has variable coefficients.

Examples of linear equations with constant coefficients are population models with
unlimited food resources.

Example 1.2.1 (Exponential Population Model with Immigration). Consider a population
of rabbits in a region with unlimited food resources. Suppose that the growth rate is pro-
portional to the population with a proportionality factor of 2 per month and there is an
immigration rate of 25 rabbits per month. Find the differential equation that describes this
population of rabbits.

Solution: The population of rabbits has unlimited food resources, meaning that the rate
of change of the rabbits population, y'(¢), must be proportional to the actual rabbit popu-
lation, y(t). We also have immigration, so we must add a constant term into y’(¢) with the
immigration information. Therefore, the differential equation for the rabbits population is

y'(t) = ay(t) +b,

where y(t) is the rabbit population at the time ¢, a is the growth rate per capita coefficient,
and b is the immigration rate coefficient. So in this case we have

a=2, b= 25.
So the equation describing the rabbit population under the assumptions of this example is

y'(t) = 2y(t) + 25.
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Our next result is a formula for the solutions of all linear differential equations with
constant coefficients.

Theorem 1.2.2 (Constant Coefficients). The linear non-homogeneous equation
y =ay+b (1.2.2)

with a # 0, b constants, has infinitely many solutions,

b
y(t) = ce™ — =, ceR. (1.2.3)
a
Furthermore, the initial value problem
Yy =ay+bdb  y(0) =y, (1.2.4)
has a unique solution given by
b b
y(t) = (o + = ) e = 2. 1.2.5
o0 = (go+2) et = (125)

Remarks:

(a) The expression in Eq. (1.2.3) is called the general solution of the differential equation.

(b) We prove the Theorem transforming the linear equation into a separable equation and
integrating on both sides with respect to t. If we do not transform the equation into sep-
arable form and we just integrate with respect to ¢ the linear equation itself, Eq. (1.2.2),
then we cannot solve the problem. Indeed,

/y'(t)dt:a/y(t)dt+bt+c, ceR.

The Fundamental Theorem of Calculus implies y(t) = [ v/(¢) dt, so we get

y(t) = a/y(t)dt+bt+c.

The equation above is not a solution given in implicit form, because we still need to
find a primitive of y. We have only rewritten the original differential equation as an
integral equation. Simply integrating both sides of a linear equation does not solve the
equation.

Proof of Theorem 1.2.2: Rewrite the differential equation as a separable equation,
/ /
YOy L L[ vl
ay(t)+b aJ y(t)+(b/a)
In the left-hand side introduce the substitution
u=y+(b/a) 1 [ du
, = - | —= [ dt
du =1y dt. a U
The integral is is now simple to find,
1
gln(\u|):t+co = Inly+ (b/a)| = at + ¢y, €1 = ac.

Compute exponentials on both sides above, and recall that e(@1+a2) = a1 gaz,

+ (b/a)| = e™T1 = e e,
[y + (b/a)l
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We take out the absolute value,
+ a) = b
y(t) (b/ ) (:I:ecl) et = y(t) =c, et )

where ¢, = (£e®). We know that at ¢ = 0 we have y(0) = o, so

b b
yo:y(o):@** = =Y+ —.
a a
So the solution to the initial value problem is
b b
ylt) = (v + ) et = 2.
a a
This establishes the Theorem. O

Now we solve the exponential growth equation with immigration from Example 1.2.1.

Example 1.2.2 (Exponential Population Model with Immigration). Solve the differential
equation that describes the rabbit population in Example 1.2.1 knowing that the initial
rabbit population is 100 rabbits.

Solution: We follow the calculation in the proof of Theorem 1.2.2. The population of
rabbits has unlimited food resources and immigration, so the differential equation for such
system is

y'(t) = ay(t) +b,
where y(t) is the rabbit population at the time ¢, a is the growth rate per capita coefficient,
and b is the immigration rate coefficient. So in this case we have

a=2,  b=25

We have seen in previous sections how to solve this differential equation, but we do it again
here. Rewrite the differential equation as a separable equation,

! /
v E/M:/dt,
2y(t) + 25 2 ) y(t)+(25/2)
In the left-hand side introduce the substitution
u=y+(25/2) 1 [ du
, = - [ —=[dt
du =y dt. 2 U
The integral is is now simple to find,
1
51n(|u|):t+co = Inly+(25/2)] =2t + ¢y, ¢ = 2¢.
Compute exponentials on both sides above, and recall that e(®1+2) = a1 ga2,

ly + (25/2)] = e?tter = 2t e,

We take out the absolute value,

. 25
y(t) + (25/2) = (£e) e = y(t) = e — 5“)
where ¢, = (£e). We know that at ¢t = 0 we have 100 rabbits, so,
25 25 225
So the solution to our problem is
225 ,, 25
y(t) = =22 - 22
y(t) = 5" =5
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1.2.2. Newton’s Cooling Law. Our next example is about the Newton’s cooling law,
which says that the temperature T" at a time t of a material placed in a surrounding medium
kept at a constant temperature T satisfies the linear non-homogeneous differential equation

(AT =~k (AT),

where AT(t) = T(t) — T is the temperature difference between the material’s temperature
and the surroundings, while £ > 0 is a constant that characterizes the material’s thermal
properties.
Remarks:

(a) Although Newton’s law is called a “Cooling Law”, it also describes objects that warm
up. When the initial temperature difference, (AT)(0) = T'(0) — T is positive the object
cools down, but when (AT')(0) is negative the object is warms up.

(b) Newton’s cooling law for AT is the linear differential equation we called the radioactive
decay equation. But now (AT)(0) can be either positive or negative.

(¢) The solution of Newton’s cooling law equation is

(AT)(t) = (AT)(0) e,
for some initial temperature difference (AT)(0) = T(0) —Ts. Since (AT)(t) = T(t) —Ts,
T(t) = (T(0) — Ty) e ¥ + Ts.

Example 1.2.3 (Newton’s Cooling Law). A cup with water at 45 C is placed in the cooler
held at 5 C. If after 2 minutes the water temperature is 25 C, when will the water temperature
be 15 C?

Solution: The differential equation satisfied by the temperature difference is
AT = —k AT.
The solution to the Newton cooling law equation is
(AT)() = (AT)O) ™ = T(t) = (T(0) - T,) ™™ + T3,
We know that in this case we have
T(0) = 45, Ts =5, T(2) = 25.

Notice that we do not have the constant k yet. The problem is to find the time ¢, such that
T(t,) = 15. In order to find that ¢, we first need to find the constant k,

T(t)=45-5)e ™ +5 = T(t)=40e* +5.
Now use the fact that T'(2) = 25 C, that is,
20=T(2) =40e % = 1In(1/2)=-2k = k= %m(z).
Having the constant k& we can now go on and find the time ¢, such that T'(¢;) = 15 C.

T()=40e"V2D 45 = 10=40e V2 o g =4
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1.2.3. Variable Coefficients. We have solved constant coefficient linear equations
by transforming them into separable equations, and then integrating with respect to the
independent variable. Linear equations with variable coefficients are also separable in the
case that b = 0 (homogenous equations) or b/a is constant (a and b are proportional).

Example 1.2.4 (Variable Coefficient Case b = 0). Find all solutions of the equation
y' =a(t)y.
Solution: We transform the linear equation into a separable equation and we integrate,
—=a(t) = ) =at) = hy®))=Al)+c,
where A = f adt, is a primitive or antiderivative of a. Therefore,

y(t) — deA)+eo — 4 A e,

so we get the solution y(t) = ceA®), where ¢ = fe. <

Example 1.2.5. Find all solutions of

Solution: We use the result of the previous example with a(t) = t?, which gives

t3

Alt) = —

()=~

then the solutions of the differential equations are
y(t) = cet3/3, ceR.

<

The linear equation y' = a(t) y + b(¢) is not separable in the case that b(t)/a(t) is not
constant. We need a new idea to solve these equations. We now introduce the integrating
factor method, which is an idea that works well to solve all linear equations, including the
linear equations with variable coefficients.

Theorem 1.2.3 (Variable Coeflicients). If a, b are continuous on (t,,t,), then

y' =a(t)y+ b(t), (1.2.6)

has infinitely many solutions on (t,,t,) given by
y(t) = ce® 4 AW / e~ A® b(t) dt, (1.2.7)

where A(t) = [a(t)dt is any antiderivative of the function a and ¢ € R. Furthermore, for
any to € (ty,t,) and y, € R the initial value problem (IVP)

Yy =at)y+bt),  yltd) =, (1.2.8)

has the unique solution y on the same domain (t,,t,), given by

~ a t ~
Y1) = go AW 4 AD) / =46 p(s) ds, (1.2.9)

to

t
where the function A(t) = / a(s)ds is a particular antiderivative of function a.
to
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Remarks:

(a) The expression in Eq. (1.2.7) is called the general solution of the differential equation.
(b) The function u(t) = e~ is called an integrating factor of the equation.

Example 1.2.6 (Consistency with Constant Coefficients General Solution). Show that for
constant coefficient equations the solutionl given in Eq. (1.2.7) reduces to Eq. (1.2.3).

Solution: In the particular case of constant coefficient equations, a primitive, or antideriv-
ative, for the constant function a is A(t) = at, so

y(t) = ce™ + eat/efat bdt.

Since b is constant, the integral in the second term above can be computed explicitly,

b b
eat/be—at dt = eat (_7 e—at) = __.
a a

Therefore, in the case of a, b constants we obtain y(t) = ce® — = given in Eq. (1.2.3). <
a

Example 1.2.7 (Consistency with Constant Coefficients IVP). Show that for constant
coefficient equations the solution formula given in Eq. (1.2.9) reduces to Eq. (1.2.5).

Solution: In the particular case of a constant coefficient equation, where a,b € R, the
solution given in Eq. (1.2.9) reduces to the one given in Eq. (1.2.5). Indeed,

X t t b b
At) = / ads = a(t —t,), / e~ 5=t) hdg = — = gmalt—to) 4 Z

to to a [¢

Therefore, the solution y can be written as

y@%:%ewhmy+ga4w(7§€www>+§>:(%+[qewpmy,§
a a a a

<

We now prove Theorem 1.2.3. The proof is based on the integrating factor method.
We find a special function u(t) such that the linear differential equation multiplied by this
function is a total derivative, which are simple to integrate.

Proof of Theorem 1.2.3: Write the differential equation with y on one side only,

Yy —ay=0b,
and then multiply the differential equation by a function p, called an integrating factor,
py —apy = pb. (1.2.10)
The critical step is to choose a function p such that
—ap=p. (1.2.11)

If u is solution of Eq. (1.2.11), then the differential equation in (1.2.10) has the form
py' +p'y = pb.
But the left-hand side is a total derivative of a product of two functions,
/
(ny) = pb. (1.2.12)

This is the property we want in an integrating factor, ;. We want to find a function p such
that the left-hand side of the differential equation for y can be written as a total derivative,
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just as in Eq. (1.2.12). We need to find just one of such functions u. So we go back to
Eq. (1.2.11), the differential equation for p, which is separable, so we know how to solve it,

!
W=—ap = B=—a = hu)=-a = m()=-4+c,

I

where A = f adt, a primitive or antiderivative of a, and ¢, is an arbitrary constant. Com-
puting the exponential of both sides we get

A

= te“e” = p=ce ¢, = +e.

Since ¢, is a constant which will cancel out from Eq. (1.2.10) anyway, we choose the inte-
gration constant ¢, = 0, hence ¢; = 1. The integrating factor is then

pl(t) = e 4.
This function is an integrating factor, because if we start again at Eq. (1.2.10), we get
ey —aeAy=etb = ey 4 (e ) y=e,

where we used the main property of the integrating factor, —ae=4 = (e*A)I. Now the
product rule for derivatives implies that the left-hand side above is a total derivative,

(67A y)/ =e 4.

Integrating on both sides we get
(e_A y) = /e_Abdt—i—c = (e_A y) — /e_Abdt =c.

The function ¥(t,y) = (e*A y) — fe’A bdt is called a potential function of the differen-
tial equation. The solution of the differential equation can be computed from the second
equation above, 1) = ¢, and the result is

y(t) = cer® 4 AW /eiA(t) b(t) dt.

This establishes the first part of the Theorem. For the furthermore part, let us use the
notation K (t) = /e_A(t) b(t) dt, and then introduce the initial condition in (1.2.8), which
fixes the constant ¢ in the general solution,
Yo = y(to) = cetto) 4 eAto) (),
So we get the constant c,
c=yoe A _ K (t,).

Using this expression in the general solution above,
y(t) = (0™ 1) = K (1)) X A K (1) = 4O 40O 1 A (K (1) ~ K (1)).

Let us introduce the particular primitives A(t) = A(t) — A(t,) and K(t) = K(t) — K(t,),
which vanish at t,, that is,

A(t) = / t a(s)ds,  K(t) = / t e~ 46) b(s) ds.

to to
Then the solution y of the IVP has the form

X t
y(t) = yo e 4 eA®) / e A p(s) ds

to
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which is equivalent to

R t
yE) = g A0 4 A=A [ A0 ) s,

to
so we conclude that .
y(t) = 9o AW 4 Al / e=A() b(s) ds.
to

This establishes the IVP part of the Theorem. O

In the following examples we show the integrating factor method used in the proof of
the Theorem 1.2.3 above to find solutions to linear equations with variable coefficients.

Example 1.2.8 (The Integrating Factor Method). Find all solutions y of the equation

3
y’:¥y+t5, t>0.

Solution: Rewrite the equation with y on only one side,
3
/ 5
—Zy=1.
Y n Y
Multiply the differential equation by a function w, which we determine later,

3 3
u(y = 5y) = ut) = ut)y -5y =1 ).
We need to choose a positive function p having the following property,

~Tu=ue) = ‘§:i$ ~7 = ()’

Integrating,
3 e
mmm:*/;ﬁ:fmwm+%:mwr%+% S = (et0) N7,

so, u = (£e) [t|=3. Rename ¢; = +e,

u(t) = et
The absolute value is not needed since ¢t > 0, and we need only one integrating factor, so
we choose ¢; = 1 and we get

n= t73.
Back to the differential equation for y, we multiply it by the integrating factor above,
3
t*3(y’ - Ey) =t = t3y —3t7ty=12

¥

Using that =3t~ = (t73)" and t? = (§> , we get

3, 3y/ Y 3, 2\ 3 2y
Py (D) s e =(0) = (-D) <o
vy = (3 (t7y) = (3 y-3
t3
This last equation is a total derivative of a potential function v (t,y) =t 3y — 3 Since the
equation is a total derivative, this confirms that we got a correct integrating factor. Now
we integrate the total derivative, which is simple to do,
t3 t3 t6

tPy——=c = tPy=c+—- = ylt)=ct’+
y-g=c¢ y=ct3 y(t) =ct’+ =,

where c is an arbitrary constant. <
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Example 1.2.9 (The Integrating Factor Method). Find all solutions y of the equation
ty' + 2y = 4t with ¢ > 0.
Solution: Rewrite the equation in normal form,
y = —% y+4t & alt)=-=, b(t) =4t (1.2.13)
Rewrite again,
y + 2 y = 4t.

t
Multiply by a function u,

ny + %/iy = pdt.
Choose the function u to be solution of
%,u =y = In(u) = % = In(|p|) = 2In(Jt]) + co = In(t?) + co.
From here we get
w(t) = (Fe®) 2, o =%4e® = put)=ct%
We choose the integrating factor p = 2. Multiply the differential equation by this u,
2y 2ty =4tt* = (tPy) =4’
If we write the right-hand side also as a derivative,
y) =Y = (Py—t") =0
So a potential function is 9 (¢,y(t)) = t> y(t) — t*. Integrating on both sides we obtain
c

ty—tt=c = ty=c+t* = y(t)—t2+t2.

<

In the next example we show how to solve an initial value problem for a linear variable
coeflicient equation.
Example 1.2.10 (IVP). Find the function y solution of the initial value problem
ty' + 2y = 4t t>0, y(1) = 2.
Solution: In Example 1.2.9 we computed the general solution of the differential equation,
c
y(t):t—2+t2, ceR.
The initial condition implies that
1
2=y(l)=c+1 = c¢=1 = yt)= t—2+t2.

<

In our next example we solve again the problem in Example 1.2.10 but this time we use
Eq. (1.2.9).
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Example 1.2.11 (IVP). Find the solution of the problem given in Example 1.2.10, but
this time using Eq. (1.2.9) in Theorem 1.2.3.

Solution: We find the solution simply by using Eq. (1.2.9). First, find the integrating factor
function p as follows:

A(t) = — /j % ds = —2[In(t) — In(1)] = —2In(t),

that is,
A(t) = In(t™2).
The integrating factor is u(t) = e=4®) | that is,
() = efln(t72) _ eln(tr").
From here we get the integrating factor
u(t) =2
Note that Eq. (1.2.9) contains eA(*) = 1/p(t). Then, compute the solution as follows,

1 by
31(7,‘)—15—2(2—1-/1 s 4sds>
2 1

=3 + 7] 1 453ds
:%+$M*D
—%+ﬁ—é
Therefore, the solution of the initial value problem is
mw:ig+#

<

1.2.4. Mixing Problems. Consider a tank containing salty water as pictured in
Fig. 1, where salty water comes in and goes out of the tank. The amount of water in
the tank at a time ¢ is proportional to the water volume, V(¢), while the amount of salt
dissolved in the water at that time is given by Q(t). Water is pouring into the tank at a
rate r;(t) with a salt concentration ¢;(t). Water is also leaving the tank at a rate r,(t) with
a salt concentration ¢,(¢). Recall that a water rate, r, means water volume per unit time,
and a salt concentration, ¢, means salt mass per unit volume. If we denote by [r;] the units
of the quantity r;, then we have

V) = Volume,  [Q] =Mass, [ = [re] = "m0 = ao] = oy

Volume

We want to write a mathematical model to describe how the water volume and salt mass
change in time. We make one important assumption that will simplify such mathematical
model. We assume that the salt inside the tank gets instantaneously mized, which means
that—at every time—the salt concentration in one part of the tank is the same as in any
other part of the tank. When that happens we say that the salt concentration inside the
tank is constant in space and changes only in time.

We now introduce our mathematical model of this physical situation, which we call it a
mixing problem in the following definition.
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Tis 4i (t)

Tank

Instantaneously mixed

V(t) Q) To, o(t)

FIGURE 1. Description of a water tank problem.

Definition 1.2.4. A Mixzing Problem refers to water coming into a tank at a rate r; with
salt concentration q;, and going out the tank at a rate v, and salt concentration q,, so that
the water volume V' and the total amount of salt Q, which is instantaneously mized, in the
tank satisfy the following equations,

VI(t) = ri(t) —ro(t), (1.2.14)
Q'(t) = ri(t) qi(t) — 7o(t) 4o (1), (1.2.15)
Mﬂzgg, (1.2.16)

=0. (1.2.17)

Remarks:

(a) The first equation says that the variation in time of the water volume inside the tank
is the difference of volume rates coming in and going out of the tank.

(b) The second equation above says that the variation in time of the amount of salt in the
tank is the difference of the amount of salt rates coming in and going out of the tank.
These salt rates are the product of a water rate r times a salt concentration ¢q. Notice
that this product has units of mass per time, which are the units of salt rates.

(¢) Eq. (1.2.16) is the consequence of the instantaneous mixing mechanism in the tank.
Since the salt in the tank is well-mixed, the salt concentration is homogeneous in the
tank, with value Q(t)/V (¢).

(d) Finally the equations in (1.2.17) say that both rates in and out are time independent,
hence constants. We include this assumption to get simple mathematical models.

Theorem 1.2.5 (Mixing Problem). The amount of salt in the mizing problem above satisfies
the equation

Q'(t) = al(t) Q(t) + b(1), (1.2.18)
where the coefficients in the equation are given by

a(t) = ——2

CETAIES A b(t) =i qi(t). (1.2.19)

Proof of Theorem 1.2.5: The equation for the salt in the tank given in (1.2.18) comes
from Egs. (1.2.14)-(1.2.17). We start noting that Eq. (1.2.17) says that the water rates are
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constant. We denote them as r; and r,. This information in Eq. (1.2.14) implies that V' is
constant. Then we can easily integrate this equation to obtain

V(t) = (ri —ro) t+ Vs, (1.2.20)
where V, = V(0) is the water volume in the tank at the initial time ¢ = 0. On the other
hand, Eqgs.(1.2.15) and (1.2.16) imply that

() = 1 git) — —2- Q).

Q1) = ria(t) - 75 Q)

Since V() is known from Eq. (1.2.20), we get that the function @ must be solution of the
differential equation

Q) =rialt) - Sy QW)

This is a linear ODE for the function @. Indeed, introducing the functions
To

a(t) = NCETSIESA b(t) = riqi(t),

the differential equation for @) has the form

Q'(t) = a(t) Q(t) + b(t).
This establishes the Theorem. O

Example 1.2.12 (General Case for V(t) = V). Consider a mixing problem with equal
constant water rates r; = r, = r, with constant incoming concentration ¢;, and with a given
initial water volume in the tank V. Find the solution to the initial value problem

Q1) =a(®) Q) +b(),  QO0)=0Qy,
where function a and b are given in Eq. (1.2.19). Graph the solution function @ for different

values of the initial condition Q,.

Solution: The assumption r; = r, = r implies that the function « is constant, while the
assumption that ¢; is constant implies that the function b is also constant too,
To r
a(t) = ————7—"— = a(t) = ——= = ao,
() (T’i*’f'o)tﬁ’% () % 0

b(t) =1 qi(t) = b(t) = 1i ¢ = bo.

Then, we must solve the initial value problem for a constant coefficients linear equation,
Q/(t) = Qo Q(t) + bo, Q(O) = Qo,

The integrating factor method can be used to find the solution of the initial value problem
above. The formula for the solution is given in Theorem 1.2.3 and Example 1.2.7,

Q(t) = (Qo + %Z) et — %~

[22)
In our case the we can evaluate the constant b,/a,, and the result is

b _ Vo b
o=ra)(-7) = —l=a
Then, the solution @) has the form,
Qt) = (Qo — aiVs) e"/¥0 4 ¢;Vs. (1.2.21)

The initial amount of salt @), in the tank can be any non-negative real number. The solution

behaves differently for different values of (Q,. We classify these values in three classes:

(a) If Qo = ¢; V4, the initial amount of salt in the tank is the critical value, then the solution
@ remains constant equal to this critical value, that is, Q(t) = ¢;V;.
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(b) If Qo > ¢; Vi, the initial amount of salt in the tank is larger than the critical value, then
the salt in the tank ) decreases exponentially towards the critical value.

(¢) If Qo < ¢; Vi, the initial amount of salt in the tank is smaller than the critical value,
then the salt in the tank @ increases exponentially towards the critical value.

The graphs of a few solutions in these three classes are plotted in Fig. 2.

~
|

q:Vo

FIGURE 2. The function @ in (1.2.21) for a few values of the initial condi-
tion Q.

<

Example 1.2.13 (Finding a particular time, case V' (t) = V;). Consider a mixing problem
with equal constant water rates r; = r, = r and with fresh water coming into the tank,
hence ¢; = 0. Find the time ¢; such that the salt concentration in the tank Q(¢)/V (¢) is 1%
the initial value. Write that time ¢; in terms of the rate r and initial water volume Vj.

Solution: The first step to find the time ¢, is to solve the initial value problem for @,
Q'(t)=a(t) Q) +b(t),  Q0) =y,

where function a and b are given in Eq. (1.2.19). In this case they are

= =t - ) =~

b(t) = riqi(t) = b(t) = 0.
Therefore, the initial value problem we need to solve is
Q) =-7 Q0 QO)=Q.
We know from Theorem 1.2.3 that the solution is given by
Q) = Qoe /™.

The second step to find ¢, is to find the concentration inside the tank,

Q(t)
t) = —=.
We already have Q(t) and we know that V' (¢) = V,, since r; = r,. Therefore,
Q(t) = q(t) — % e—rt/VO.
Vo
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We can now find ¢,;. The condition that defines ¢, is
1 Qo
t) = — 2.
Therefore, we get
L % — %e—rtl/Vo = i — Tt/ Vo
100 V, Vo 100
Computing Logs on both sides
1 Tty
1 (7):_7 = In(100) =
"\100 Vo n(100)
and then we get the final result,

Tty
% )

v
t; = — In(100).
T
<

Example 1.2.14 (Variable Water Volume). A tank with a maximum capacity for 100 liters
originally contains 20 liters of water with 50 grams of salt in solution. Fresh water is poured
in the tank at a rate of 5 liters per minute. The well-stirred water is allowed to pour out
the tank at a rate of 3 liters per minute. Find the amount of salt in the tank at the time ¢,
when the tank is about to overflow.

Solution: We start with the water volume conservation,
Vity=ri—r,=5-3=2 = V({)=2t+1,.

Since V(0) = 20 we get the function volume of water in the tank,

V(t) = 2t + 20.
At this point we can compute the time when the tank overflows,

~ 100 —20
2
We now need to find the equation for the salt in the tank. We start with the mass salt
conservation

100 =V (t) =2t +20 = ¢,

t. = 40 min.

Q/(t) =Tiqi —To QO(t)v =0 = Ql(t) =T qo(t)'
Since the water in the tank is well-stirred, ¢,(t) = Q(t)/V (¢), so
) = — =3

This is a linear, homogeneous, differential equation with variable coefficients, so it can be
converted into a separable equation,

QW) _ 3 @__/ 3dt
Q(t) 2t + 20 Q 2t +20°
Integrating we get
Q1) = _§/ Bt 10) 4 = Q)] = (£ 10)752) + .
2/ t+10 2

We can now compute exponentials on both sides,
Q)] = (t+10)732e% =  Qt)=c(t+10)732  c=(Le®).
The initial condition Q(0) = 50 fixes the constant c,

1

50 = Q(0) = ¢ (0 +10)73/% = SOE

= ¢=50(10)%2.
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Therefore,

1 50
Q) =50(10)*? ————> = Q) = —————7.
(t +10)%/2 ((¢/10) +1)*
This result is reasonable, the amount of salt decreases as function of time, since we are
adding fresh water to the tank. The amount of salt at the time the tank overflows is Q(t.),

50 50

Q(40) = ((40/10) + 1)3/2 = (5)3/2

=  Q(40) = 4.47 grams.

Example 1.2.15 (Nonzero ¢;, for V(t) = V;). Consider a mixing problem with equal
constant water rates r; = r, = r, with only fresh water in the tank at the initial time, hence
@, = 0, and with a given initial volume of water in the tank V;. Find the amount of salt in
the tank, @, in the case that the incoming salt concentration is given by the function

¢i(t) = 2 +sin(2t).

Solution: We need to find the function @ solution of the initial value problem

Q'(t) =a(t) Q) +b(t),  Q0)=0,
where the functions a and b are given in Eq. (1.2.19). In this case we have

To r
t)=——2> )= —— =
a’() (ri_ro)t+% :> a() %

b(t) =1 ¢;(t) = b(t) = r [2 +sin(2t)].
Notice that a, > 0. The initial value problem we need to solve is
Q'(t) = —a, Q) +b(t),  Q0)=0.
The solution is computed using the integrating factor method and the result is

Q(t) = e ! /Ot €% b(s) ds,

where we used that the initial condition is Qo = 0. Recall the definition of the function b,

¢
Qt) = e—”ot/ e?0? [2 + 5111(25)] ds.
0

This is the formula for the solution of the problem, we only need to compute the integral
given in the equation above. This is not straightforward though. Notice that two integrations
by parts gives us the formula

—Qyo,

ks
/eks sin(ls) ds = k:;i—f—lQ [ksin(ls) — Lcos(ls)],

where k and [ are constants. Therefore,

t o
; 2 t aos ¢
/0 e™*[2 + sin(2s)] ds = [;oeaos] . {ﬁ [ao sin(2s) — 2005(23)]] ,
= zq(eaot _ 1) + = [ao sin(2t) _ QCOS(%)} + L
o ag + 22 a3 + 22

With the integral above we can compute the solution @ as follows,

Q(t) = e~ ®! [az (e®" —1) +

apt

[ao sin(2t) — 2 cos(2t)] +

a2 + 22 a§+22]’
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recalling that a, = r/V,. We rewrite expression above as follows,
2 7 2

2
Q)= =+ | ——— — Z| et sin(2t) — 2 cos(2t)]. 1.2.22
A0 = o+ | g — | ¢ gaae [aesin(26) — 2 cos(20)] (1.2.22)
<
Yy
2 ______ e — e e D P
Q(t)
t

FIGURE 3. The graph of the function @ given in Eq. (1.2.22) for a, = 1.

1.2.5. The Bernoulli Equation. In 1696 Jacob Bernoulli solved a first order nonlin-
ear differential equation, which is now known as the Bernoulli differential equation. This is
not the Bernoulli equation from fluid dynamics, though. The following year Leibniz solved
this equation by transforming it into a linear equation. This is a fruitful idea in mathemat-
ics: You have an equation you do not know how to solve; you transform that equation into
an equation you do know how to solve; you solve it; you transform back the solution. We
now explain Leibniz’s idea in more detail.

Definition 1.2.6. The Bernoulli equation is

y' =pt)y+at)y". (1.2.23)

where p, q are given functions and n € R.

Remarks:

(a) For n # 0,1 the equation is nonlinear.
(b) If n = 2 we get the logistic equation, which we have studied in § 1.1 and § 1.3,

r=ri(i-2)

(¢) This is not the Bernoulli equation from fluid dynamics.

The Bernoulli equation is special in the following sense: it is a nonlinear equation that
can be transformed into a linear equation.

Theorem 1.2.7 (Bernoulli). The function y is a solution of the Bernoulli equation
v =pt)y+qlt)y", n#l
iff the function v = 1/y"=1V) is solution of the linear differential equation

v' = —(n—1)p(t)v— (n —1)qg(t).
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Remark: This result summarizes Laplace’s idea to solve the Bernoulli equation. To trans-
form the Bernoulli equation for y, which is nonlinear, into a linear equation for v = 1/ y(=1,
One then solves the linear equation for v using the integrating factor method. The last step
is to transform back to y = (1/v)Y/ (=1,

Proof of Theorem 1.2.7: Divide the Bernoulli equation by y™,

vy p)
yn - ynfl

+q(t).

Introduce the new unknown v =y~ (=1 and compute its derivative,

R Iy MO0
i e B i rer Tk

If we substitute v and this last equation into the Bernoulli equation we get

,UI

(n—-1)
This establishes the Theorem. O

=pt)v+q(t) = vV =—n—-1Dplt)v—(n—1)t).

Example 1.2.16. Find every nonzero solution of the differential equation
y =y+2¢°.

Solution: This is a Bernoulli equation for n = 5. Divide the equation by 7°,

y _ 1
S +2.
Introduce the function v = 1/y* and its derivative v/ = —4(y’/y°), into the differential

equation above,

/
—UZ:U—I—Z = V=—4dv-8 = Vv +40=-8.

The last equation is a linear differential equation for the function v. This equation can be
solved using the integrating factor method. Multiply the equation by pu(t) = e**, then

8
(64%)/ =-8e¥ = eMy= 1 et + e

We obtain that v = ce™ — 2. Since v = 1/y%,
1
yl

1

—at
=ce -2 = ylH)=t—-———.
(ce*4t — 2)1/4

Example 1.2.17. Given constants ao, by, find all solutions y of the differential equation

ylzaoy+boy3~

Solution: This is a Bernoulli equation with n = 3. Divide the equation by 33,

!
¥y _ &
2

vy o
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Introduce the function v = 1/y? and its derivative v = —2(y'/y?), into the differential
equation above,

!
—% =aw—+b, = v =-2aw—-2b = U +2a,v=—2b.

The last equation is a linear differential equation for v. This equation can be solved using
the integrating factor method. Multiply the equation by pu(t) = €20,

/ bo
(62aotv) — _2b0 €2a0t = eantv _ _ 0 eant +e
Qo

b
We obtain that v = ce™2%! — = Since v = 1/3?,
Qo

1
v

b 1
_ —2aot 0 _
=ce - = t) ==+ .
. U( ) (06_20’01‘/ B %)1/2
0

Example 1.2.18. Find every solution of the equation

ty' =3y +t°>y/3.
Solution: Rewrite the differential equation as
3
Y = Ey+t4yl/3'

This is a Bernoulli equation for n = 1/3. Divide the equation by y'/3,

/
y § 2/3 4
s = v
Define the new unknown function v = 1/y("»=| that is, v = 3?/%, compute is derivative,
2 !/
v = 3 le 730 and introduce them in the differential equation,
Yy
3 ’ 3 4 1 2 2 4
2o =Su4tt = v —-Ze=Zth
2V T YT

This is a linear equation for v. Integrate this equation using the integrating factor method.
To compute an integrating factor we need to find

mw:/%ﬁ:2mw:m@)

Then, the integrating factor is u(t) = e=4®). In this case we get

1

t72-

Therefore, the equation for v can be written as a total derivative,
1

—In(t2 n(t™2
p(t) = e M) = mE) =) =

2 2 v 2 g\
1 _ 2 3)
=70 =5¢ = (5-5t’) =0
The potential function is
v 24

tv) = — — =
vt ) 2 9

and the solution of the differential equation is (¢, v(t)) = ¢, that is,

2 2 2
t%_ §t3 =c = ot)=t (c—i— §t3) = o(t) :ct2+§t5.
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Once v is known we compute the original unknown y = 4v3/2, where the double sign is
related to taking the square root. We finally obtain

2 5\3/2
y(t) = :t(ct2 + 9 t") .
<
Notes. This section corresponds to Boyce-DiPrima [4] Section 2.1, and Simmons [8] Section

2.10. The Bernoulli equation is solved in the exercises of section 2.4 in Boyce-Diprima, and
in the exercises of section 2.10 in Simmons.
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1.2.6. Exercises.

1.2.1.- Find all solutions of the following differential equations:

(a) ¥ =dty.
(b) Y =-y+ e 2" (e) y' =y — 2sin(t).
y () o +ty =ty
(C) R = 4t. ,
(£ + 1)y () ¥ = —ay+63./7.

(d) ty' +ny =1 n > 0.

1.2.2.- Find the solution y of the initial value problems

1.2.3.-

(a) A cup with some liquid is placed in a fridge held at 3 C. If k is the (positive) liquid cooling
constant, find the differential equation satisfied by the temperature of the liquid.
(b) Find the liquid temperature T as function of time knowing that the liquid initial temper-

ature when it was placed in the fridge was 18 C.

(c) After 3 minutes the liquid temperature inside the fridge is 13 C. Find the liquid cooling

constant k.

(a) A pizza is placed in a oven held at 100 C. If k is the (positive) pizza cooling constant,

find the differential equation satisfied by the temperature of the pizza.

(b) Find the pizza temperature T as function of time knowing that the pizza initial temper-

ature when it was placed in the oven was 20 C.

(c) After 2 minutes the liquid temperature inside the fridge is 80 C. Find the liquid cooling

constant k.

1.2.5.- A tank initially contains V5 = 100 liters of water with Qo = 25 grams of salt. The tank is
rinsed with fresh water flowing in at a rate of r; = 5 liters per minute and leaving the tank at
the same rate. The water in the tank is well-stirred. Find the time such that the amount the

salt in the tank is 1 = 5 grams.

1.2.6.- A tank initially contains Vo = 100 liters of pure water. Water enters the tank at a rate of
r; = 2 liters per minute with a salt concentration of g1 = 3 grams per liter. The instantaneously
mixed mixture leaves the tank at the same rate it enters the tank. Find the salt concentration
in the tank at any time ¢ > 0. Also find the limiting amount of salt in the tank in the limit

t — o0.
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1.2.7.- A tank with a capacity of V,, = 500 liters originally contains V, = 200 liters of water with
Qo = 100 grams of salt in solution. Water containing salt with concentration of ¢; = 1 gram
per liter is poured in at a rate of r; = 3 liters per minute. The well-stirred water is allowed to
pour out the tank at a rate of r, = 2 liters per minute. Find the salt concentration in the tank
at the time when the tank is about to overflow. Compare this concentration with the limiting
concentration at infinity time if the tank had infinity capacity.
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1.3. Graphical Analysis

Right after the invention of differential calculus, by Newton in 1671 and independently
by Leibniz in 1684, the first differential equations were solved using ideas similar to those
we studied in § 1.1 and § 1.2. It didn’t take long before people realized that most of the
differential equations could not be solved in this way—meaning there was no clear way to
find formulas for solutions of all differential equations in terms of known functions. Instead,
two other ideas emerged.

The first idea was to study whether a differential equation has solutions or not, without
finding a formula for the solutions. If we know that a differential equation has solutions, we
can define new functions by saying they are the solutions of that differential equation. In
this section we state Theorem 1.3.1-which we will prove in § 1.4—saying that a wide class
of first order differential equations have solutions. Then we use this result to prove that
solutions of a differential equation with different initial conditions cannot intersect.

The second idea was to developed methods to graph the qualitative behavior of solu-
tions to differential equations without actually computing the explicit expression of these
solutions. In this section we study three of these methods. The first method works with
a particular type of differential equations called autonomous equations, where the indepen-
dent variable does not show explicitly in the equation. In this method we use the differential
equation to determine regions of the solution values where these solutions are increasing or
decreasing functions of the independent variable. This information is enough to sketch an
approximate graph of these solutions. The second method works with any differential equa-
tion, autonomous or not. In this method we use a computer to find the slope (or direction)
field of the equation. These slope fields are line segments determined by the differential
equation, which are tangent to a solution of the differential equation at the point they are
computed. So, the slope fields also give us a way to draw approximate graphs of solutions
to a differential equation. The third method is an application of the slope field method.
We use the slope field to construct a collection of segments that approximate solutions to a
differential equation. This third method is called the Euler method.

1.3.1. Existence-Uniqueness Result. Solutions of differential equations are not unique.
Solving a differential equation involves integration and for each integration we get an integra-
tion constant. These integration constants can take any values, hence differential equations
have infinitely many solutions, one for each value of the integration constants.

An initial value problem is to find particular solutions to a differential equation, solu-
tions satisfying extra conditions, called initial conditions. Usually, the initial conditions are
introduced so that they determine all the integration constants. That is why solutions to
initial value problems are usually unique. For example, in the case of Newton’s second law
of motion for a point particle—force equals mass times acceleration—one could be interested
only in solutions such that the particle is at a specific position and having a specific velocity
at the initial time. These conditions determine only one possible motion, that is, only one
solution of Newton’s second law of motion.

We now present the Picard-Lindelof Theorem, which shows that a large class of initial
value problems have solutions uniquely determined by appropriate initial data.

Theorem 1.3.1 (Picard-Lindeldf). Consider the initial value problem
y'(t)=fty®),  ylte) = vo. (1.3.1)

If the function f is continuous in t and differentiable in y on some rectangle on the ty-plane
containing the point (ty,yo) in its interior, then there is a unique solution y of the initial
value problem in (1.5.1) defined on an open interval (ti,t,) containing the point t,.
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Remarks:

(a) We do not have an explicit formula for the solutions of the differential equation.

(b) We do not specify how large is the domain of the solution, (¢;,t,).

(¢) The domain (t,,t,) could even change when we change the initial data y,.

(d) The result still holds if assumption that the function f being differentiable in the variable
y is relaxed to Lipschitz continuous in y, which is something more than continuity but
less than differentiability in y.

Theorem 1.3.2. Two functions y,, y, solutions with different initial data of a differential
equation satisfying the hypotheses of Theorem 1.3.1 cannot intersect as in Fig. /.

y2(0) ya2(t)

Yo

y1(0)

FIGURE 4. Intersections like in this picture cannot happen to solutions of
differential equations satisfying the hypotheses in Theorem 1.3.1.

Proof of Theorem 1.3.2: Suppose the functions y; and y, are solutions of the same
differential equation,

y'(t) = f(t,y(t),
but with different initial conditions, y;(0) # y,(0). Therefore, in a neighborhood of the
initial conditions these solutions are different. If these solutions intersect at a point (o, ¥o),
as pictured in Fig. 4, then we can use the intersection point as the initial condition for the
same differential equation. That is, we get the initial value problem

y'(t) = fty@),  ylto) = b.
On the one hand, this initial value problem has two different solutions, as we see in Fig. 4.
On the other hand, this initial value problem satisfies the hypotheses in Theorem 1.3.1, so
it must have a unique solution in a neighborhood of (t,,y,). This is a contradiction, hence
intersections such as in Fig. 4 cannot happen. This establishes the Theorem. O

1.3.2. Autonomous Equations. We introduce an idea to find qualitative properties
of solutions to differential equations without having to solve the equation. But this idea
only works on a particular type of differential equations—autonomous differential equations.

Definition 1.3.3. A first order autonomous differential equation is

y' = f(y), (1.3.2)
dy

where y' = o and the function f does not depend explictly on t.

Autonomous equations are differential equations where the independent variable does
not appear explicitly in the equation. In symbols we can write

y'(t) = f(K ().
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It is simple to see that autonomous equations are a particular type of the separable equations
we studied in § 1.1,

h(y)y' =g(t), with h(y)=ﬁ7 g(t) = 1.

Here we show a few examples of autonomous and nonautonomous equations.
Example 1.3.1. The following first order equations are autonomous:
(a) ¥ =2y +3.
(b) y' =sin(y).
Y
c)y =ra (177>.
() v =ry .

The independent variable ¢ does not appear explicitly in these equations. The following
equations are not autonomous.

(a) ¥ =2y + 3t
(b) v = t?sin(y).
(c) y’:ty<1f%)- <

Remark: Since the autonomous equation in (1.3.2) is a particular case of the equations in
the Picard-Lindel6f Theorem 1.3.1. Then, the initial value problem

vy =1,  y0) =1y,
with f differentiable, always has a unique solution in the neighborhood of t = 0 for every
value of the initial data y,.

1.3.3. Qualitative Solution Curves. In the following example we explain how we
can obtain qualitative information about solutions of an autonomous equation by using the
equation itself without solving it.

Example 1.3.2. Sketch a qualitative graph of solutions to the initial value problem

y' =sin(y),  y(0) = o,
for different initial data conditions y,.

Solution: The differential equation has the form y' = f(y), where f(y) = sin(y). The first
step in this method is to graph f as function of y.

v =rf,a f(y) = sin(y)

/—\ L
Zon - 0 7"\/2# Y

FIGURE 5. Graph of the function f(y) = sin(y).

The second step is to identify all the zeros of the function f. In this case,

f(y)=sin(y) =0 = y,=nmw, where n=---,-2-1,0,1,2,---.
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These constants, y,, are called equilibrium solutions because they are t-independent solutions
of the differential equation. Indeed, they satisfy y/, = 0 and they are the zeros of f, hence
f(yn) = 0. From here we get that the y,, satisfy

0=y, = f(yn) = 0.

The third step is to identify the regions on the y-line where f is positive and where f is
negative. These regions are important because of the following argument. Let y(t) be any
solution of the differential equation

y' = f).
Now, fix any time ¢, and evaluate the solution y(t) at that time, let’s call it y, = y(¢,).
(a) If y, € (0,7), then f(y,) > 0, and therefore, this solution satisfies that

0< flyt) =y'(ts) = y'(t) >0.
We see that this solution is increasing at ¢;,. Then, for a time ¢, close to ¢, but with
t, > t, we have that
Y2 = y(t2) > y(t1) = y1.

Therefore, the point ¥, is on the right of the point y, on the horizontal y-axis. We
represent this behavior by a green arrow pointing to the right on the interval (0,7) in
Fig. 6. The same behavior occurs on every interval where f > 0.

(b) If y, € (—m,0), then f(y,) < 0, and therefore, this solution satisfies that

0> flyt)) =y'(t) = y'(t) <0

We see that this solution is increasing at t;. Then, for a time ¢, close to t; but with
t, > t, we have that

Yo = y(t2) < y(t:) = .

Therefore, the point y, is on the left of the point y, on the horizontal y-axis. We
represent this behavior by a green arrow pointing to the left on the interval (—m,0) in
Fig. 6. The same behavior occurs on every interval where f < 0.

v =17, f(y) = sin(y)

FIGURE 6. Critical points and increase/decrease information added to Fig. 5.

There are two types of equilibrium solutions in Fig. 6.

(a) Points such as y.;, = —7 and y, = 7 have arrows on both sides pointing to them
— .

They are called stable equilibrium solutions or attractors, and they are pictured with
solid blue dots in Fig. 5.
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(b) Points such as y., = —27, y, = 0, and y, = 27 have arrows on both sides pointing away
from them
— o — .
They are called unstable equilibrium solutions or repellers, and they are pictured with
white dots in Fig. 5.
(¢) In other equations there could be equilibrium solutions that have increasing solutions
on either side or decreasing solutions on either side,

e e
They are also called unstable equilibrium solutions or mized points. We do not have
these type of equilibrium solutions in Fig. 5.

The fourth step is to find the regions where the curvature of a solution is concave up or
concave down. That information is given by the second derivative of the solution function
y, which can be computed by taking one more derivative of the differential equation,

' =) = (W) =Wy =11,
that is,
y' = 1) fy)
Now we repeat the analysis done in the third step above: fix any time ¢, and evaluate a
solution y(t) at that time, y, = y(¢,).

(a) If y, is in any region where f(y,) f'(y,) > 0, then the second derivative of this solution
satisfies that y”(¢,) > 0, hence this solution is concave up (CU) at that time.

(b) If y, is in any region where f(y;) f'(y1) < 0, then the second derivative of this solution
satisfies that y”’(t;) < 0, hence this solution is concave down (CD) at that time.

In Fig. 7 we graph both f and f’, so it is simple to see the sign of their product f’ f. From
this product we get the intervals where solutions are concave up or concave down.

f'(y) = cos(y) f(y) =sin(y)

FIGURE 7. Concavity information on the solution y added to Fig. 6.

The fifth step is to sketch a qualitative graph of solutions to the differential equation on
a ty-plane. All the information we collected on the horizontal axis in Fig. 7 is now displayed
in the vertical axis on Fig. 8. In the horizontal axis in Fig. 8 we plot the independent
variable ¢.

Fig. 8 contains the graph of several solutions y for different choices of initial data y(0).
Equilibrium solutions are in blue and ¢-dependent solutions in green. The equilibrium
solutions are separated in two types. The stable equilibrium solutions

Y1 = —, h=m,
are pictured with solid blue lines. The unstable equilibrium solutions

Yo = _27T7 Yo = 03 Yo = 27T7
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Unstable

Stable

Unstable
t

Stable

Unstable

FIGURE 8. Qualitative graphs of solutions y for different initial conditions.

are pictured with dashed blue lines. The graph in time of the non-equilibrium solutions is
done with the intervals in y where y(t) is increasing or decreasing and with the concavity
at those intervals. <

Remark: A qualitative graph of the solutions does not provide all the possible information
about the solution. For example, we know from the graph above that for some initial
conditions the corresponding solutions have inflection points at some ¢ > 0. But we cannot
know the exact value of ¢ where the inflection point occurs. Such information could be
useful to have, since |y’| has its maximum value at those points.

In the Example 1.3.2 above we found the concavity of solutions from the sign of the
second derivative of these solutions. The second derivative of solutions is related to f and
f'. We remark this result in its own statement.

Theorem 1.3.4. Ify is a solution of the autonomous system y' = f(y), then
y' = 1) fy)

Proof: The differential equation relates y” to f(y) and f’(y), because of the chain rule,

d d d df d
Y = @(%) = 2 fw(t) = (TZ dit/ =y =ffy).

Example 1.3.3. Sketch a qualitative graph of solutions of the logistic equation

Yy =ry (1— %) y(0) = o,

for different values of the initial condition y,, where r and k are given positive constants.
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Solution: The logistic equation for population growth can be written 3y’ = f(y), where
function f is the polynomial

fly)=ry (1 - %)

The first step is to graph f as function of y. The result is in Fig. 9.

fﬂ y
i, fy)=ry (1— E>
4

0 k k g
2 \ ’

FI1GURE 9. The graph of f =ry (1 — %)

The second step is to identify all the equilibrium solutions of the equation, which are
the zeros of the function f. In this case, f(y) = 0 implies
Y% =0, y=k.

The third step is to identify the regions on the y-line where f is positive and where f
is negative. We repeat the argument from the previous example. Let y(t) be any solution
of the differential equation

v =fy)
Now, fix any time ¢; and evaluate the solution y(t) at that time, let’s call it y; = y(¢,).
(a) If y, € (0,k), then f(y,) > 0, and therefore, this solution satisfies that

0< flylty) = yl(t1) = y/(t1) > 0.
We see that this solution is increasing at ¢,. Then, for a time ¢, close to ¢; but with
t, > t, we have that
Yo = y(ta) > y(ts) = y1.

Therefore, the point y, is on the right of the point y; on the horizontal y-axis. We
represent this behavior by green arrows pointing to the right on the interval (0,k) in
Fig. 10.

(b) If y, € (—00,0) or y; € (k,00), then f(y,) < 0, and then this solution satisfies that

0> f(y(ty)) = y/(t1) = y/(t1) <0.
We see that this solution is increasing at ¢,. Then, for a time ¢, close to ¢, but with
t, > t, we have that
Y2 = y(t2) < y(ts) = ys.

Therefore, the point y, is on the left of the point y; on the horizontal y-axis. We
represent this behavior by a green arrow pointing to the left on the interval (—oo,0) and
on the interval (k, co) in Fig. 10.
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fA y
N fw) =ry(1-7)
T

FiGuRrE 10. Critical points added.

The fourth step is to find the regions where the curvature of a solution is concave up or
concave down. That information is given by the second derivative of the solution function
y, which can be computed by taking one more derivative of the differential equation,

V' =) = (W) =Wy =Ff W),
that is,
y' = 1) fy)
Now we repeat the analysis done in the third step above: fix any time ¢, and evaluate a
solution y(t) at that time, y, = y(¢,).

(a) If y, is in any region where f(y;) f'(y,) > 0, then the second derivative of this solution
satisfies that y”’(t;) > 0, hence this solution is concave up (CU) at that time.

(b) If y, is in any region where f(y,) f'(y1) < 0, then the second derivative of this solution
satisfies that y”(¢;) < 0, hence this solution is concave down (CD) at that time.

In Fig. 11 we graph both f and f’, so it is simple to see the sign of their product f’ f. From
this product we get the intervals where solutions are concave up or concave down.

y

FiGURE 11. Concavity information added.

The fifth step is to sketch a qualitative graph of solutions to the differential equation on
a ty-plane. All the information we collected on the horizontal axis in Fig. 11 is now displayed
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in the vertical axis on Fig. 12. In the horizontal axis in Fig. 12 we plot the independent
variable t.

Y

CU

Stable

A
‘\

/
CD

Unst abje
0 t

FiGurE 12. Qualitative graphs of solutions y for different initial conditions.

Fig. 12 contains the graph of several solutions gy for different choices of initial data
y(0). Equilibrium solutions are in blue and ¢-dependent solutions in green. The equilibrium
solutions are separated in two types: the stable equilibrium solution

Y=k,
which is graphed with a solid blue line; and the unstable equilibrium solution,
Z/o = 07
which is graphed with dashed blue line. The graph in time of the non-equilibrium solutions

is done with the intervals in y where y(t) is increasing or decreasing and with the concavity
at those intervals. b

1.3.4. Slope Fields. We now introduce a second idea to find qualitative properties
of solutions to differential equations without having to solve the equation. This idea only
works on any first order differential equation, whether autonomous or not. However, this
second idea requires the use of a computer. Consider a differential equation

y'(t) = ft,y(t)).
We want to display in a graph all the information given by the right-hand side of the
equation. This information can be graphed in at least two different ways.

(a) In the usual way, the graph of f(t,y) is a surface in the tyz-space, where z = f(t,y).
The values of f(t,y) are points pictured in the z-axis, perpendicular to the domain
plane, the ty-plane.

(b) In the new way, we graph the values of f(¢,y) as the slopes of segments at each point
(t,y) on the ty-plane.
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Usual Wey New  Weay
L Values  as slopes
on  Zhe z)-plane
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7 J

F1GURE 13. The function f graphed as a point in the z-axis and as a slope
of a segment in the ty-plane.

The new way pictured above comes from using the differential equation

y'(t) = f(ty(t),

to interpret the value of f(¢,y). Given a solution, y(t), the value of f(t,y(t)) is the value
of the derivative of that solution, y'(¢). The latter can be represented graphically on the
ty-plane as the slope of a segment tangent to the graph of the solution y(¢) at t. The ideas
above suggest the following definition.

Definition 1.3.5. A slope field (or direction field) for the differential equation

y'(t) = fty(t))
is the graph on the ty-plane of the values f(t,y) as slopes of a small segments.

Example 1.3.4. Find the slope field of the equation 3’ = y, and sketch a few solutions to
the differential equation for different initial conditions.

Solution: We use a computer to find the slope field, which is shown in Fig. 14. We have
also plotted solution curves corresponding to four solutions.

Notice that the solution curves are tangent at every point to the slope field. This is
no accident. Since each curve is a solution os the differential equation, these curves must
be tangent to every segment in the slope field. Also notice that the solution curves in this
example agree with the uniqueness property of solutions to initial value problems showed
in Theorem 1.3.1, which implies that the solution curves corresponding to different initial
conditions do not intersect.

Recall that in this example the solutions are functions of the form y(t) = y, e’. <

Example 1.3.5. Use a computer to find the slope field of the equation

y' = sin(y).
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FIGURE 14. Slolpe field for the equation ¢y’ =y and a few solutions.

Solution: We first mention that the equation above can be solved exactly, in implicit form,
and the solutions are

sin(y) N sin(yo) t

(1 + cos(y)) (1 + cos(yo))
for any yo € R. This is an equation that defines the solution function y. There are no
derivatives in the equation, so this is not a differential equation; We call it an algebraic
equation. However, the graphs of these solutions are not simple to do. But the direction
field is simple to plot and it can be seen in Fig. 15. From that direction field one can see
what the graph of the solutions should look like. <

FIGURE 15. Slope field for the equation 3’ = sin(y).

Example 1.3.6. Use a computer to find the slope field of the equation

y' = 2cos(t) cos(y).

Solution: We do not need to compute the explicit solution of ¢ = 2 cos(t) cos(y) to have a
qualitative idea of its solutions. The slope field can be seen in Fig. 16. <
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FIGURE 16. Slope field for the equation y' = 2 cos(t) cos(y).

1.3.5. The Euler Method. The Euler method, also called the tangent line method,
is a simple way to obtain an approximation to a solution of an initial value problem

y'(t) = flt,y®),  ylte) = vo (1.3.3)

The idea is to use the information given by the equation, provided by the function values
f(t,y), to construct a linear spline—a collection of segments where the end of one segment
is the beginning of the next—that is close to the solution y(t) of (1.3.3).

The function values f(t,y) provide all possible slopes for all possible solutions y() at all
possible times ¢. In Figure 19 we picture this meaning in the case of the differential equation
y' =y, which means that f(¢,y) = y. On the left we have the geometrical meaning of f(¢,y)
at a point (to,%o); on the right we have plotted f(¢,y), as the slope of small segments, at
several points on the ty-plane.

Yy Y,

-
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LTI
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to t t

FIGURE 17. On the left we have the geometrical meaning of the function
value f(to,¥o) at the point (Z,,¥o). On the right we have a plot of the values
of f(t,y) at several points on the ty-plane. These pictures are made in the

case f(t,y) = y.

The Euler method is simple to understand with a graphical representation. Suppose the
solution of the initial value problem in (1.3.3), for some arbitrary f(¢,y), is given in picture
on the left of Figure 20. In that picture we also plot the intial condition y(t,) = y,, and the
value of f(to, o) as the slope of the red segment. Fix a time step At > 0, and introduce the
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partition
{to,ts = to+ At ty =t + At, -ty = ty_1 + At}
where in the picture on the right of Figure 20 we chose N = 9. To construct the Spline
sn(t) we proceed as follows:
e Find the equation of the line Ly(t) that passes through the point (¢,,y,) and has
slope given by f (o, yo).
e Use L, to find the next point in the spline, y;, by evaluating L, at t; = t, + At,
that is,
yi = Lo(ty),  t, =t + AL
e Find the equation of the line L,(t) that passes through the point (¢,,y,) and has
slope given by f(t:,y:).
e Use L; to find the next point in the spline, y,, by evaluating L, at t, = ¢, + At,
that is,
Yo = Ly(ty), =1t + AL
e Repeat until reaching ty.
This procedure would give a spline s, (t) like the one shown on the right in Figure 20.

Ya Yy

SN(t)
Lo Ly Lz Ly Ly Ls Le L7 L Lo y(t)

to t to At tN t

FIGURE 18. This is what a linear spline sy (t), that approximates a solution
y(t), constructed with the Euler method could look like. Here we used a
number of steps N = 9 and a time step At. The linear functions Lg, - - , Lg
are the line segments that form the spline sy .

We are now ready to find an analytic expression for the lines L;(¢), for i = 0,1,2,--- | N,
that form the spline sy (t).

Step 0: We need to find the equation of Ly(t) and then use that equation to find the next
y-value, y, = Lo(t,), for t; = t, + At. Since Ly(t) is a line, it can be written as

Lo(t) = mot + bo.
We know that the line contains the point (o, o), that is,
Yo = Moto +bo = by = Yo — Moto.
We also know that the slope of the line is given by f(t,, o), that is,
mo = f(to, Yo)-
Therefore, the equation of the line L, is

Lo(t) = f(tm yo) (t - to) + Yo.
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Since t; = t, + At, we get that y; = Lo(t,) is given by

Y1 = f(to, Yo) At + 1.

Step 1: Now we need to find the equation of L,(¢) and then use that equation to find the
next y-value, y, = L,(t,), for t, = t, + At. Since L,(t) is a line, it can be written
as

Ly (t) = myt +b,.
We know that the line contains the point (¢,,y;), that is,
Yp =Mty +b; = by =y, —myt,.
We also know that the slope of the line is given by f(¢;,y,), that is,
my = f(ts, y1).
Therefore, the equation of the line L, is
Li(t) = f(ts,y1) (T —t1) + y1.
Since t, = t; + At, we get that y, = L,(¢,) is given by
Yo = f(ts, 1) At + g1
Step n: If we continue this process, for the n-term we get
Lo(t) = f(tnsyn) (= tn) + Yns  Yns1 = [(tn, Yn) Al + yn.
Then the spline sy (t) is determined by the N + 1 points
(to, o), (t1,91), (t2,42), -+, (Ew, yn).

The discussion above can be summarized in the following result.

Theorem 1.3.6 (Euler Method). The Euler approximation of y(t) solution of the initial
value problem

y'(t) = fty@),  ylto) =,
with N > 0 terms and time step At > 0, is the linear spline sy (t) through the points

(t07y0)7 (tlvyl)v T (tN7yN)a
where

thi1 = tn + At, Ynt1 = [(tn, Yn) At + Yn, n=20,1,2,--- ,N — 1.

Example 1.3.7. Compute the Euler approximation of the solution of
y =2y +3, y(0) =1, (1.3.4)
on the interval [0, 3] with time step At = 1.

Solution: We need to construct the approximation on the interval [0, 3], with time-step
At = 1, which means we have N = (3—0)/1, so N = 3. In this case, the Euler approximation
of the initial value problem in (1.3.4) is a table of numbers of the form
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We know the values of t,411 = t, + At, since At =1 and t, = 0 give us
tOZOa tlz]-, t2:27 t3:3

Now we can compute the values of yn1+1 = f(tn, Yn) At + yn, knowing y, = 1 from the initial
condition and At = 1, which give us

v = f(to,y0) At +yo=(2(1)+3)(1)+1 = 1y =6
Yo = f(ts,y0) At +y, = (2(6) +3)(1)+6 = y,=21
Ys = f(ta, y2) At +y, = (2(21) +3)(1) +21 = 1y = 66.
Therefore, the spline is given by the points (¢,y) as follows,
(0,1), (1,6), (2,21), (3,66). (1.3.5)
Equivalently, the spline is given by the table

2 -1 ) 1 2 3 4 5 6 7 8 9 10 1 12 13

t, {0,1,2,3}

Y, {1,6,21,66} Q

FIGURE 19. The exact solution of the initial value problem in (1.3.4) is
graphed in blue while the spline sy (t) computed in (1.3.5) is plotted in red.

We now find the Euler approximation to the solution of the initial value problem in
Example 1.3.7, but this time with a time-step half of the one used in that Example.
Example 1.3.8. Compute the Euler approximation of the solution of

Yy =2y+3,  y(0)=1, (1.3.6)
on the interval [0, 3] with time step At = 0.5.
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Solution: We need to construct the approximation on the interval [0, 3], with time-step At =
1, which means we have N = (3 —0)/0.5, so N = 6. In this case, the Euler approximation
of the initial value problem in (1.3.6) is a table of numbers of the form

bn | Yn
to | Yo
t1 | Y1
ta | Y2
ts | Y3
ta | Ya
ts | Ys
te | Us

We know the values of ¢,11 = t, + At, since At = 0.5 and t, = 0 give us
to=0, t1 =05 to=1, t3=15 t4=2 t5=25 15=3.

Now we can compute the values of y,+1 = f(tn, yn) At + y,, knowing y, = 1 from the initial
condition and At = 0.5, which give us

y1 = f(to,yo) At +yo=(2(1)+3)(0.5)+1 = 1y =35

y2 = f(t1, 1) At +y1 = (2(3.5) +3)(05) +3.5 = =85

ys = f(t2,y2) At +y2 = (2(8.5) +3)(0.5) + 85 = y3 =185,

ya = f(ts,y3) At +y3 = (2(18.5) + 3)(0.5) + 185 = 1y, =385

ys = f(ta,ys) At +ys = (2(38.5) +3)(0.5) + 38.5 = y5 =785

Yo = f(ts,ys) At +ys = (2(78.5) + 3)(0.5) + 785 =  yg = 158.5.
Therefore, the spline is given by the points (¢,y) as follows,

t a
(0,1), (0.5,3.5), (1,8.5), (1.5,18.5),(2,38.5), (2.5,78.5), (3, 158.5). (1.3.7)
Equivalently, the spline is given by the table

n | Yn

0 1

05| 3.5
1| 85
1.5 | 185
2 | 385
2.5 | 78.5
3 | 158.5
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FIGURE 20. The exact solution of the initial value problem in (1.3.6) is
graphed in blue while the spline sy (¢) computed in (1.3.7) is plotted in red.
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1.3.6. Exercises.

1.3.1.- For the differential equations below do the following:

(a) Find all the equilibrium solutions of the differential equation.
(b) Find the open intervals where solutions are increasing.
(¢) Find the open intervals where solutions are decreasing.
(d) Find the open intervals where solutions are concave up.
) Find the open intervals where solutions are concave up.
) With the information above sketch a qualitative graph of the several solutions for each
differential equation.

(i) ¥ =sin(3y), (i) ¥ =cos(3y), (i) ¥ =y* -9, (iv) ¥ =9-¢* (v) v = y( - %)

1.3.2.- Consider the differential equation

dy
g Y-
Sketch vectors from the corresponding slope field of this differential equation, at the points

indicated on the figure below.

30
o 2r °
1+
L o L
3 -2 1 1 3
° 1r °

1.3.3.- Match the slope fields of the following three differential equations to the three figures below.
Provide justification for your reasoning.

dy dy

T cos(z), B. —= =sin(y), C. =Z=zx+4y.

dx

FiGURE 21. 1 FiGURE 22. 11 FiGure 23. III
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1.4. Approximate Solutions

We know a lot more about solutions of linear differential equations than what we know
about solutions of nonlinear differential equations. While we have an explicit formula for the
solutions to all linear equations—Theorem 1.2.3—there is no such formula for solutions to
all nonlinear equations. In § 1.1 we solved only two particular cases of nonlinear equations—
separable equations and Euler homogeneous equations. But these nonlinear equations are
only a tiny part of all nonlinear equations.

After many years of trying and failing, people had to give up on the goal of finding a
formula for solutions to all nonlinear equations. Instead, they focused on finding approxi-
mate solutions to nonlinear differential equations. In this section we focus on approximate
solutions obtained using either the Taylor series expansions or the Picard iteration. Each
of these techniques produces an infinite sequence of functions. Sometimes these sequences
converge to a solution of the differential equation. In these cases, the further we move in the
sequence of functions the closer we get to a solution of the differential equation. Because of
this, the functions in the sequence are called approximate solutions.

If each function in the sequence is a better approximation than the previous function,
we can get as close as we want to the exact solution using these approximations. If the
solution of a differential equation describes a certain physical phenomena, then we can use
these approximations to predict the behavior of the system as accurately as we wish.

Another use for these sequence of approximate solutions is to show that certain nonlinear
differential equations actually have solutions. Such statements are called existence theorems
for solutions of differential equations. In this section we use the Picard iteration to show that
a certain class of nonlinear equations have solutions, and the solution is unique provided
appropriate initial conditions. This result is called the Picard-Lindel6f theorem. We end
this section comparing what we know about solutions of linear differential equations with
solutions of nonlinear differential equations.

Before we start we show a few examples of linear and nonlinear equations.

Example 1.4.1 (Linear and Non-Linear Equations).
(a) The differential equation

y’(t) o2
y(t) +3t 2t

is actually linear, because when we write it in the normal form
Y (t) = 2t% y(t) + 6t

the right-hand side is linear in the second argument. So, we know a formula for the
solutions of this equation.
(b) The differential equation

y3(t) +ty(t) + ¢
2+ y3(t)
is nonlinear. This equation is Euler homogeneous, since it can be written as
P+l
T+
We know that Euler homogeneous equations can be transformed into a separable equa-

tion and solved exactly.
(c) The differential equation

y'(t) =

y'(t) = 2ty(t) + In(y(t))
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is nonlinear. However, the equation can not be transformed into a separable equation,
and we do not know how to find a formula for its solutions.
<

1.4.1. Taylor Series. We use the Taylor series of a function to find a sequence of
approximate solutions of a first order differential equation. Recall the Taylor series expansion
centered at t =ty of a function y,

1
y(t) = Z p y(n)(fo) (t —to)"

n= 0
= y(to) + 9/ (t0) (6 = t0) + o " (t0) (£ = 0)* + -,

where n! is the n-th factorial, (™) (to) is the n-th derivative of 3 evaluated at t = to, but we
also denoted y(©) = y (the zero derivative is the original function), and y) =3/, 3 = 4"
(first and second derivatives are denoted as usual). We also used that 0! =1 and 1! =1. In
this section we focus on the Taylor formula centered at ty = 0, which is

oo

ut) =~ -y (0) ¢

n=0

=y(0)+ 9 (0)t + = 4" (0)t* +--- .

2|y

The first n+ 1 terms of the expansion above are called the n-th order Taylor approximation.

Definition 1.4.1. The n-th order Taylor approximation centered at tg of a function y

is given by
n

Zki ) (t —to)*

k=0

Remark: The definition above implies a simple relation between 7, and 7,_1,
1
() = T1 (8) + — Y™ (o) (t — to)™.

Taylor expansions have two main applications. One application is to simplify calcula-
tions by replacing a possible complicated function y(t) by a simple polynomial approxima-
tion. A second application is to extend the definition of a function y(¢) from a real variable
t to a more general type of variable, for example to a complex variable or a matrix variable.
We will discuss both types of extensions, to a complex variable or to a matrix variable, of
the exponential function later in this textbook.

In both applications above we know y(¢) and then we compute its derivatives and
evaluate these derivatives at t = ty. In this section we are interested in a different situation.
In our case, the function y(t) is not known. Instead, y(t) is solution of a differential equation
with an initial condition,

y'(t) = f(ty®),  y(to) =yo.
It turns out that the initial condition and the differential equation is enough to compute all
the derivatives of the function y(t) at the time of the initial condition, tg.

Theorem 1.4.2 (Taylor Approximation). The initial value problem
y'(t) = f(tyt),  y(to) = yo, (1.4.1)
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with f(t,y) infinitely continuously differentiable in both variables, determines 7,(t), the n-th
order Taylor approxzimation of the solution y(t) of (1.4.1), for any integer n = 0.

Proof of Theorem 1.4.2: The Taylor approximation formula is

(1) = 9lt0) +3/(0) (1~ 1o) + 359" (G0) (1 = 10)° -+ -y 1) (¢ — o)™

This formula says that to determine 7, we need to know the function value at t = to and
all the derivatives values at t = tg, that is, we need to know

y ¥ (ty), forall k=0,1,2,---n.

But y(to) is given by the initial condition, y(to) = yo, therefore the initial condition fixes
the zero order Taylor approximation,

To(t) = vo-

The next Taylor approximation is

1.(t) = 7o(t) +y'(to) (t — to).
The differential equation relates y'(t) with y(t) for all ¢ > ¢o, so in the limit ¢ — ¢}, we get

y'(to) = f(to, %o),

where we used again the initial condition y(¢9) = yo. Therefore,

1(t) = yo + f(to, yo) (t — to).
The next Taylor approximation is

1
TZ(t) = Tl(t) =+ E y//(to) (t — t0)2.

Again, the differential equation relates y'(¢) with y(t) for all ¢ > to, so we can take one more
t-derivative on both sides of the equation,

y”(t)Z%f(tyy(t)) = Y1) = 0uf(t,y(t) + Oy f (£ y(1) ' (2).

If we take the limit ¢ — ¢, in the last equation above and we recall that y(ty) = yo and we
already know the value of y/(t), then we also know the value of y”(tg), since

Yy (to) = 0:f(to,yo) + 0y f(to,y0) ¥’ (to)-
This expression gives us
1
T2(t) = yo + f(to,yo) (t —to) + 3 [0 f (to, yo) + Oy f (to, yo) f(to, yo)] (t — to)*.
Let’s compute one more Taylor approximation,
1
m3(t) = () + 55 y® (o) (t — to)?,

where y®) = . We first find y®) () computing one more derivative in the equation for 3",

v = L@ + @, ),
which gives us,
Y = 0(0uf + 0,1)Y) + 0y (0f + Ou ) y)
that is,
v =07 f + (20, 1) ¥ + (0,1)y" + (0,0:0) ¥ + (851) ()™,
The last expression above can be simplified a bit as

YO =2 +2(0:0,1)y + (0,0) y" + (92F) ().
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If we take the limit ¢ — ¢{ in the last equation above, and recalling we already know
y(to) = yo and y'(tp), and y" (o), then

2
y 3 (to) = 07 f(to,yo) +2 (0:0y f (to, y0)) ¥ (to) + (y f (o, ¥0)) ¥ (to) + (02 f (to, o)) (¥ (o))

is also know, which gives us 73(t). This process can be continued to compute y("™ (t) for all
integers n > 0, which establishes the Theorem. O

Example 1.4.2. Use the Taylor series to find the first four approximate solutions of the
linear initial value problem

y'(t)=2y@t)+3,  y(0)=1.
Solution: Recall the n-th order Taylor approximation centered at ¢t = 0,

1 1
(1) = y(0) + ¢/ (0) t + 7 ¢ (0) 2 + -+ — 3 (0) 2",
Also recall that )
Talt) = 1) + () 1
The initial condition provides 7o(t), which is
To(t) = y(O) = T()(t) =1.
The next approximation is
T1(t) = 1o(t) +y'(0) t.
We get ¢'(0) from the differential equation,
y'(0)=2y(0)+3 = ¢(0)=5,
which gives us
m(t) =145t
The next approximation is
1
Tg(t) = Tl(t) + 5 y”(O) t2.
We get y”(0) by differentiating the differential equation,
y'(t)=2y'1), = y'0)=240) = y"(0)=10,
and recalling that 2! = 2 we arrive at
To(t) =1+ 5t +5¢%

The last approximation we compute here is

s(t) = () + 59" (0)

We get y"”’(0) by differentiating the differential equation for y” we computed above,
y"(t)=2¢"(t), = y"(0)=2y"(0) = ¢"(0)=20,
and recalling that 3! = 6 we arrive at
10 .
T3(t) =145t +5t+ gtd.

<

In the case that the lim,, o 7,,(t) converges and defines a continuously differentiable
function on the ¢ variable, then this function is a solution of the initial value problem (1.4.1).
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Theorem 1.4.3 (Solution by Taylor Approximation). Let 7, (t) be the Taylor approximation
given in Theorem 1.4.2. If the limit n — oo of 7,(t) converges and

yr(t) = lim 7,(t)

n—o0

is a continuously differentiable function, then yr(t) is a solution of the initial value problem

in (1.4.1).
Proof of Theorem 1.4.3: It is not difficult to see that the functions
yr(t) = nh_)rrgo Tn(t) and g(t) = f(t,yr(t))

satisfy
g™ (o) =5 (te),  n=0,1,2,---. (1.4.2)
The case n = 0 is obtained as follows: first recall that yr(to) = yo and y7.(to) = f(to, yo);

second evaluate g(t) at t = to, the result is

g(to) = f(to,yr(to)) = f(to,y0) = yr(to)-

The case n =1 is given by

() = Sy 0)] = v,

t=to
From here it is not difficult to see that the definitions of y(t) and g(¢) imply Eq. (1.4.2).
Using equation (1.4.2) in the Taylor expansion

oo

o) = 3 119 t) (¢ ~ to)"
k=0 """

we get

WK

Z;? W (1) (¢~ t0)* = (ur(0) + D 1) (¢ = 1) V) = (o),
k=0

(k+1)!

£
I

0

where we used that y(0) is a constant. This last equation above shows that
y;“(t) = f(tayT(t))7
which establishes the Theorem. ]

Example 1.4.3. We have seen in a previous section that the solutions of the initial value
problem

y'(t) =ay(t) +b,  y(0) = yo,

with a, b constants, is given by
a
y(t) = (yo + g) et — =

Use the Taylor approximation method to find the solution formula above.

Solution: Since a and b are constants,

y(t)=ayt)+b = Y'O)=ay't) = y"I(t)=ay™().
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The initial condition y(0) = yo and the equations above imply
y'(0) = ayo + b,
y"(0) = ay'(0) = a(ayo +b),
y"'(0) = ay"(0) = a®(ayo +b),

y™(0) = ay™ V(0) = a"(ayo + b).
Therefore, the Taylor formula for the solution, yr(t) is
t2 n
yr(t) :y0+(ay0+b)t+a(ay0+b)§+~~++a”*1(ayo+b)ﬁ+~- .
If we do some simple algebraic manipulations we get

2 n—1in

at a
yT(t)=yo+(ayo+b)<t+j+...+ — +)
1 (at)? (at)™
= 1 1 (at)? (at)™
fyO*(ayoer)g+(ayo+b)a(1+at+ 51 RS - + )

b b\ 4
:yO*yO**JF(yOJr*)@
a a
b\ . b
:<yo+*)6 — —.
a a

So, we have shown that the Taylor approximation method gives the solution formula

b

b
yr(t) = (yo + 7> e — —.
a a

<

1.4.2. Picard Iteration. Unlike the Taylor approximation, which is defined for a
function, the Picard approximation is defined for an initial value problem.

Definition 1.4.4. The Picard iteration of an initial value problem

y'(t) = ft,y@),  wy(to) = vo,

is the sequence of functions y,(t), for n =0,1,2,---, given as follows,

t
yo(t) = o, %@Z%+/f@%4@ﬂ&1ﬁﬂﬂww
to

Remark: The equation defining the Picard iteration is derived from the differential equation
itself. Indeed, given the differential equation

y'(t) = f(ty(t),

integrate on both sides of that equation with respect to t,

AM@%:[f@MW% = wwmmzlf@mmw, (1.4.3)
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where on the last equation we used the Fundamental Theorem of Calculus. If we now use
the initial condition, we get

t

y(t) =yo+ [ [f(s,y(s))ds.

to

It is this integral form of the original differential equation what we used to construct the
Picard iteration. We will see later that the functions in the Picard iteration have the
following property: the larger n the closer y,, is to the solution of the initial value problem.

In the examples below, we use simple the differential equations to show how to construct
the picard iteration. The differential equations in these examples are linear equations, which
we already know how to solve—either as separable equations or with the integrating factor
method. We use simple equations because we want to show how to construct the Picard
iteration, not how to solve a new type of equations. Furthermore, because the equations are
so simple, we can actually compute the limit of the sequence, lim, o ¥, (t). Furthermore,
we show that this limit is the actual solution of the differential equation computed with
other methods. In real life applications usually this is not possible and the only thing we
can do is to stop the Picard iteration for a value of n large enough.

Example 1.4.4. Use the Picard iteration to find the solution to

vy =2y+3  y(0)=1
Solution: We first transform the differential equation into an integral equation.
t t t
/o y'(s)ds = /0 2y(s)+3)ds = y(t)—y(0) = /0 (2y(s) + 3) ds.
Using the initial condition, y(0) = 1,
yt) =1+ /;(2 y(s) + 3) ds.
We now define the sequence of approximate solutions:
Yyo=y0) =1 ynpa(t) =1+ /Ot(2yn(5) +3)ds, n=0.
We now compute the first elements in the sequence. We said yg = 1, now y; is given by
t t

n=0, yi(t)= l—l-/o (2yo(s) +3)ds = 1+/0 5ds =1+ 5t.
So y; = 1+ 5t. Now we compute ya,
Yo = 1+/0t(2 y1(8)+3) ds = 1+/0t (2(1455)+3)ds = ya = 1+/0t (5+10s) ds = 1+5t+5t°.
So we've got ya(t) = 1 + 5t + 5t2. Now ys3,

Y3 = 1—|—/0t(2y2(8) +3)ds = 1+/0t(2(1+5s+552) +3) ds

so we have,

t
10
y3:1—|—/ (5+103+1Os2)ds:1—|—5t+5t2+§t3.
0
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So we obtained y3(t) = 1 + 5t + 5t2 + — 3. We now rewrite this expression so we can get

a power series expansion that can be written in terms of simple functions. The first step is
done already, to write the powers of t as t", for n = 1,2, 3,

5(2
ys(t) = 1+ 5t' + 5% + %F’
We now multiply by one each term so we get the factorials n! on each term
t! t2 t3
Y3 ()_1+5F+5( )2, +5(2%) = T
We then realize that we can rewrite the expression above in terms of power of (2t), that is,
5 (2t) 5 (2t)2 5 (2t)3 5 (2t)2  (2t)3
H=1+2 2 2 =142 ( 2t )
wlt) =1+3 535 t3 3 2 (0 + 5 3!
From this last expression is simple to guess the n-th approximation
N
5 (2t)2  (2t)3 (2t) 5
=1 f(2t )71 2
un(t) =145 (@ + S5+ 5 2k_

Recall now that the power series expansion for the exponential

¢ > (at)* = (at)k
e“zz(k') :1+Z(k!)

k=0 : k=1

Then, the limit N — oo is given by

3

ot

o 2t
y(t) = Jim yn(t) = 2k7 =145 1),

One last rewriting of the solution and we obtain
54 3

y(t) = 2¢ ~ 35

[\)

Remark: The differential equation 3’ = 2y + 3 is of course linear, so the solution to the
initial value problem in Example 1.4.4 can be obtained using the methods in Section 1.2,

3 3
ey —2y)=e3 = e*2ty:—§e*2t+c = y(t):cth—§;
and the initial condition implies
3 5 5 3
1 e f— — = = — t = - 12t —_ =
WO =c—3 = =0 = y)=o -2

Example 1.4.5. Use the proof of Picard iteration to find the solution to
Y =ay+b y(0) = o, a,b € R.

Solution: We first transform the differential equation into an integral equation.

/0 y'(s)ds = /0 (ay(s)+b)ds = y(t)—y(0)= /0 (ay(s) + b)ds.
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Using the initial condition, y(0) = g,

y(t) = g0 + /Ol(ay(s) +b)ds.

We now define the sequence of approximate solutions:

t
o = 4(0) = g0, %Hm:%+/w%@+mw,n>o
0

We now compute the first elements in the sequence. We said yg = ¢,, now y; is given by
t
=0, n(®=u+ [ (evs) +0)ds
0

t
i+ [ (ago+b)ds
0
= :[)0 + (ago + b)t.

So y1 = o + (ayo + b)t. Now we compute ya,
t
=it [ lawn(s)+1]ds
0

=17+ /0 [a(fo + (ago +b)s) +b] ds

at?

= 9o + (ago + b)t + (a o + b) 5

t2
So we obtained ys(t) = 4o + (ago + b)t + (a go + b)% A similar calculation gives us ys,

. . . at? . a?t3
y3(t) = g0 + (agio + b)t + (a o + 6)7 + (ago + b)T'

We now rewrite this expression so we can get a power series expansion that can be written
in terms of simple functions. The first step is done already, to write the powers of ¢t as t",
forn=1,2,3,

(t)l R t2 ~ t3
ST + (ayo—i—b)aa + (ago +b) a® 3
We already have the factorials n! on each term ¢"™. We now realize we can write the power

functions as (at)™ is we multiply eat term by one, as follows

afo +b) (at)? afo +b) (at)? afo +b) (at)?
(4 1) @) (oo D) (@ (wtD) )

Now we can pull a common factor

y3(t) = o + (afo + b)

y3(t) = 1o +

0= o) (544 47)

From this last expression is simple to guess the n-th approximation

at)! at)? at)? at)™

yN(t):%*(@"*S)((f!) +(zt!) +(?,t!) +"'+%)
> (at)k

lim yN(t)ZiQo'i‘(Qo‘f‘g) Z(l:') :

N—o0
k=1
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Recall now that the power series expansion for the exponential

= Z(I:') :(eat—l).
k=1

oo k o0

k!
k=0 k=1

Notice that the sum in the exponential starts at k& = 0, while the sum in y,, starts at k = 1.
Then, the limit n — oo is given by

y(t) = Tim yy(t)

n—oo

it (30 2) S

= g + ( ) et _ )

We have been able to add the power series and we have the solution written in terms of
simple functions. One last rewriting of the solution and we obtain

y@)::Q%+—g>e“479.

a

Remark: We reobtained Eq. (1.2.5) in Theorem 1.2.2.
Example 1.4.6. Use the Picard iteration to find the solution of

y =5y,  y(0)=1
Solution: We first transform the differential equation into an integral equation.
t t t
/ y'(s)ds = / S5sy(s)ds = y(t) —y(0) :/ 5sy(s)ds.
0 0 0
Using the initial condition, y(0) = 1,
t
y(t) =1 +/ 5sy(s) ds.
0
We now define the sequence of approximate solutions:
t
Yo = y(()) = ]-7 yn+1(t) =1 +/ 55yn(s) d57 nz 0.
0

We now compute the first four elements in the sequence. The first one is yo = y(0) = 1, the
second one y; is given by

¢
5
n =20, yl(t)zl—l—/ 55ds=1+§t2
0



74 1. FIRST ORDER EQUATIONS
So y1 = 1+ (5/2)t2. Now we compute s,

t

yo =1 +/ 5sy1(s) ds
0
k 5
=1—|—/ 55(1+752)d3
0 2

t 52 3
:1+/O (5s+§s)ds

5 52
=14 ¢+ ¢
Tt

) 52
So we obtained ya(t) = 1+ §t2 + % t*. A similar calculation gives us ys,

t
Ys = 1+/ 55y2(s) ds
0

t 5 52
:1+/0 55(1+§52+2—354)d5

t 52 . 53
:1+/0 (5s+55‘3+2—355)ds
52 53

5
=1+ 2+ ¢t =45,
Tt gt asg

5 2 3
So we obtained y3(t) = 1+ =t? + 2 th+ 213 t%. We now rewrite this expression so we can
get a power series expansion that can be written in terms of simple functions. The first step
is to write the powers of t as t", for n = 1,2, 3,
5 52 53
H=1+ 2020 £ 2 122 1 2 (412)3
Balt) = 1+ S(B) + 55 ()% + o ()
Now we multiply by one each term to get the right facctorials, n! on each term,
5(12)1 52 (12)2 53 (2)3
t)y=1+ - — —
wpl) =1+ T m oty g
No we realize that the factor 5/2 can be written together with the powers of 2,
(%t2) N (% t2)2 N (%tQ)S
1 2! 3
From this last expression is simple to guess the n-th approximation
N 5.2\k
(5t7)
yn(t) =1+ Z Qk!
k=1

which can be proven by induction. Therefore,

ys(t) =1+

)

oy L =G
y(t) = lim yN(t)—lJr; T

N—o00

Recall now that the power series expansion for the exponential

at = (at)F — (at)*
=2 :H; k')

k=0

so we get
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Remark: The differential equation ¢’ = 5ty is of course separable, so the solution to the
initial value problem in Example 1.4.6 can be obtained using the methods in Section 1.1,

/ 5t2
Yost = In(y) = > +e = yit)= gest”.
Y
We now use the initial condition,
1=y0)=¢ = c=1,

so we obtain the solution

<
—~
~+
~—
I
o
Wl
ey

Example 1.4.7. Use the Picard iteration to find the solution of

y =2t'y, y(0)=1

Solution: We first transform the differential equation into an integral equation.
t t t
/ y'(s)ds =/ 2sty(s)ds = y(t)—y(0) :/ 25t y(s) ds.
0 0 0

Using the initial condition, y(0) = 1,

yt) =1 +/O 251 y(s) ds.

We now define the sequence of approximate solutions:
t
0=10) =1, pa(®=1+ [ 26p.(5)ds, 030
0

We now compute the first four elements in the sequence. The first one is yo = y(0) = 1, the
second one y; is given by

t
2
n=0, yl(t)zl—i—/ 2s4ds:1+gt5.
0
So y1 = 1+ (2/5)t>. Now we compute s,

t
y2:1+/ 25t y1(s) ds
0
! 2
=1+/284(1—|—*55)d8
0 5
t 22
:1+/(2s4+—39)ds
0 5

2 5 221
=14+ t>+ = —¢
MY
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_ 25,221 4
So we obtained ya(t) =1+ —t° + — =t

3 F2gl A similar calculation gives us ys3,

t
Y3 = 1+/ 251 y2(s) ds
0

t 2
2 21
— 4 5 10
_1+/025 (1—1—53 —1——5258 )ds
t 2 3
2 2° 1
_ 4 9 14
‘”/0<28 Ty g
2 22 1 2211
=14 2542 2410 2 2 7 415
+5 * 5 10 +52215
2 22 1 2511
So we obtained ys3(t) = 1+ =t + 53 $10 4 2 2415

R We now try reorder terms in this last
expression so we can get a power series expansion we can write in terms of simple functions.
This is what we do:

p(®) = 1+ 2%) + 5 L 200

5 5 2 5 6
_ N 2 (t5) 22 (t5)2 23 (t5)3
o 5 1! 52 2l 53 3l
245 2 15\2 2 45\3
24 2y 2¢
_1 B0 GO7 GO

3!
From this last expression is simple to guess the n-th approximation

' )
n=1 -
which can be proven by induction. Therefore,
= (20)"
: _ 5
y(t) = lim yx(t) =1+ Zl T
n—
Recall now that the power series expansion for the exponential
o o k
at (at) (at)
- Z ko 1+ Z k!
k=0
so we get

<
1.4.3. Picard vs Taylor. From the examples 1.4.2 and 1.4.4 we see that the first four
Taylor and Picard approximations of solutions to the initial value problem

y=2y+3,  y0)=1
are exactly the same, that is,

Tn(t) = yn(t), forall n=0,1,2,3.

In fact, our next result shows that both approximations are identical at all orders for all
solutions of linear non-homogeneous equations with constant coefficient equations.
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Theorem 1.4.5. If the function y is solution of the initial value problem

y(t) =ay(t)+b, ylto) = v, (1.4.4)

for any constants a, b, to, yo, then

Yn(t) = (1),

forallt € R and n = 0,1,2,---, where y, is the n-order Picard approximation and T, s
the n-order Taylor approximation centered at t =ty of the solution y.

Proof of Theorem 1.4.5: If y is the solution of the initial value in (1.4.4), its n-order
Taylor expansion centered at t = t¢ is

y @ (to)

T (t) = yo + y M (to) (t —to) + 21

(t—t0)2+~~+T(t7t0)",

where 3(™) is the n-th derivative of y. In particular, 7o = yo and 71 (t) = yo +y™® (to) (t —to).
The Picard iteration of y is defined as follows, yo(t) = yo, and

t
y’n(t) :y0+/ (ayn—1(8> +b) d37 n= 1727"' .

to

From here we see that the zero-order of the Picard and Taylor approximations agree. Now,
for n =1 we get

y1<t>=yo+/t<ayo+b>ds S ) = yo+ (ayo ) (t— to)

to
We now need to recall that y is solution of the differential equation in (1.4.4). This equation
evalueated at t =ty says that
Y (to) = aylte) +b. = yWV(to) = ayo+b.

Therefore, the first Picard approximation y; of y has the form

y1(t) = yo +y™ (to) (t — to).

We conclude that y;(¢t) = 71(¢) for all ¢ € R, that is, the order one Picard and Taylor
approximations agree. Before we finish the proof we need a formula. Differentiate n-times
the differential equation in (1.4.4) and evaluate the result at ¢ = to; recall that a and b are
constants, we get

y " (t) = ay™ (to). (1.4.5)
Now we are ready to finish the proof of the Theorem, and we do it by induction. We have
shown that for n = 0 and n = 1 the Picard and Taylor approximations are the same. Now
we prove the following:
Yn (t) = Tn(t) = y7z+1(t) = Tn+1(t)~
Indeed, if y,(t) = 7,(t), then the Picard formula says
t
Yn+1(t) = Yo +/ (aTn(s) +b)ds
to
Using the formula for the Taylor expansion written at the beginning of the proof,

y™ (to)
n!

Ynt1(t) = yo + / (a (vo +yM(to) (s —to) + -+ + (s —to)") + b) ds.

to
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If we reorder terms inside the integral, and we recall eq. (1.4.5), we get

! (1) y(n) (t()) n
y(nH)(t):yo—i—/ ((ay0+b)—|—ay (to)(s—to)+--+a . (s —to) )ds
to N
t (n+1) (¢
a0t [ (00 + 9P 00) 5= o)+ ) (o
to .
_ 2 (n+1) _ (n+1)
_ W @y E=t0)” Ly (ko) (E—to)
Yo+ y (t tO) +y (to) D) + + nl (n n 1)
= 7'n+1(t).
We conclude that y, = 7, implies that y,+1 = 7,41. This establishes the Theorem. O

In the interactive graph below we plot the Taylor approximation and the Taylor approxi-
mations for the initial value problem in examples 1.4.2 and 1.4.4. Here are a few instructions
to use the interactive graph.

e The slider Function turns on-off the graph of the solution y(¢), displayed in purple.

e We graph in blue approximate solutions y,, of the differential equation constructed
with the Picard iteration up to the order n = 10. The slider Picard-App-Blue
turns on-off the Picard approximate solution.

e We graph in green the n-order Taylor expansion centered ¢ = 0 of the solution
of the differential equation, up to order n = 10. The slider Taylor-App-Green
turns on-off the Taylor approximation of the solution.

Picard vs Taylor Approximations: Linear Case

Theorem 1.4.5 above says that for solutions of linear equations having constant coeffi-
cients the Picard and Taylor approximations of the solution are identical. This is not true
for solutions of either linear equations with variable coefficients or nonlinear equations. In
the next example we compute the first three approximations of both the Picard and Taylor
approximations of solutions to a nonlinear differential equation, and we show that they are
different.

Example 1.4.8. Show that the Picard and Taylor approximations of the solution y(t) of
the initial value problem below are different, where

Y (t) =2 (), y(0) = —1, t>0.

Remark: This differential equation is separable, so we could solve it and find out that the
solution of the initial value problem is

1
t)=———. 1.4.6
V0 =~ (146)
Then, we could use this solution to construct the Taylor approximations centered at ¢t = 0,
0 1 "
ma(t) =y gty
However, when we solve the example we are going to construct the Taylor approximation
of the solution without using the expression of the actual solution given in (1.4.6).

Solution: We start computing the Taylor approximation of the solution y(t) of the initial
value problem in the example. The formula for the Taylor approximation is

0 1 n t"
T(t) = ) + oyt 4+ oyl );,
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where y(()") is the n-derivative of y evaluated at ¢ = 0, and the case n = 0 is just y(0). From

the initial condition we know that
y(0) = -1,
which gives us the first term in the Taylor approximation. To compute the second term we
need y'(0). But the differential equation says
V)= = Y0)=w0)=1P=1 = JO0-=1
which gives us the second term in the Taylor approximation. To compute the third term we
need y”(0). Notice that

Y =) =W =290y t) =29 y* (1) = y'(t) =24
If we evaluate this last expression at t = 0 we get
y'(0)=2(-1)°=-2 = y"(0)=-2
which gives us the third term in the Taylor expansion of the solution. Summarizing, we
have the first three Taylor approximations of the solution,
o) =—1, 7{t)=—1+t nt)=—-1+t—t%
The Picard approximation of y is yo(t) = y(0), and then

t
pr®) =y + [ () ds.
0
Again, a straightforward calculation gives,

yo(t) =—-1= To(t), yl(t) =—1+t= Tl(t).

But the approximation y; is different form 75. Indeed,

yg(t):y(O)—l—/o (yl(s))g)ds:—l—i—/o (—1+s)2ds:—1+/0 (1 —2s+ s%)ds,

so we conclude that
3 t3

t
yo(t) = =14+t -t + 3 = ya(t) = mo(t) + 3

Therefore, yo # 1. We decide which approximation is more precise in the following inter-
active graph. Here are a few instructions to use the interactive graph.
e The slider Function turns on-off the graph of the solution y(t), displayed in purple.
e We graph in blue approximate solutions y,, of the differential equation constructed
with the Picard iteration up to the order n = 5. The slider Picard-App-Blue
turns on-off the Picard approximate solution.
e We graph in green the n-order Taylor expansion centered ¢ = 0 of the solution of
the differential equation, up to order n = 5. The slider Taylor-App-Green turns
on-off the Taylor approximation of the solution.

Picard vs Taylor Approximations: Non-Linear Case - Explicit Solution

We can see in the interactive graph that the Picard iteration approximates better
the solution values than the Taylor series expansion of that solution in a neighborhood
of the initial condition. <

In the next example study a nonlinear differential equation, which we do not know
how to find an explicit formula for the solution. Yet, we compute the Picard and Taylor
approximations of the solutions and we can compare them.
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Example 1.4.9. Show that the Picard and Taylor approximations of the solution y(t) of
the initial value problem below are different, where

y(t)=y*t)+t,  y0)=-1, t=0.

Solution: This differential equation is not linear, not separable, and not Euler Homoge-
neous. So we do not know how to find a solution y of that equation. But we can compute

the Taylor and Picard approximations of the solution. The Taylor approximation is
n

() =y +ys ey 5
where yén) is the n-derivative of y evaluated at ¢ = 0, and the case n = 0 is just y(0). We
now use the initial condition y(0) = —1 and the equation itself to find all the yén). Indeed,
2 1
w! =y'(0) = (4(0) +0=(-1"=1 = 4’ =1
This coefficient, and the previous one, gives us the Taylor approximation
T1 (t) =—-1+t.

To compute the coefficient y(()z) we need to take one derivative to the differential equation,

y'(t) =2y(t)y'(t) + 1.
Therefore,
u) =y"0) =20y O +1=2(-DM)+1=-1 = y’=-1
This coefficient, and the previous ones, gives us the Taylor approximation
To(t) = =1+t —t%
On the other hand, the Picard iteration is computed in the usual way, yo(t) = y(0), and

Ynt1(t) = /0 (y2(s) + s) ds.

So, yo(t) = —1 = 79(t), and then
t t2
n(t) = -1 +/ (17 +s)ds = pi(t)=—-1+t+ 3.

0

Therefore, y; # 71. We can compute one more term in the Picard iteration,
t 82 2
—1+/ ((—1+s+5) +s)ds
0

t 4
71+/ (1+52+%—25—52+33+5)d5
0

Y2 (t)

t 84
—1+/0(1—s+s3+z)ds

2 4 45
=—-1+t B + 1 + 20°
Again, yo # 7. We decide which approximation is more precise in the following interactive
graph. Here are a few instructions to use the interactive graph.
e Unlike the previous interactive graph, we do not have a slider Function, since we
do not have an explicit expression for the solution of the differential equation.
e We graph in blue approximate solutions y,, of the differential equation constructed
with the Picard iteration up to the order n = 5. The slider Picard-App-Blue
turns on-off the Picard approximate solution.
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e We graph in green the n-order Taylor expansion centered ¢t = 0 of the solution of
the differential equation, up to order n = 5. The slider Taylor-App-Green turns
on-off the Taylor approximation of the solution.

Picard vs Taylor Approximations: Non-Linear Case - No Explicit Solution

We can see in the interactive graph that the Picard iteration is different from the
Taylor series expansion of that solution in a neighborhood of the initial condition. <

1.4.4. Existence and Uniqueness of Solutions. The Picard iteration can be used
to show that a large class of nonlinear differential equations, have solutions and that the
solution is uniquely determined by appropriate initial conditions. This result is known as
the Picard-Lindel6f Theorem.

Theorem 1.4.6 (Picard-Lindeldf). Consider the initial value problem
y'(t) = f(t.y®),  ylte) = v. (1.4.7)

If the function f is continuous in t and differentiable in y on some rectangle on the ty-plane
containing the point (to,yo) in its interior, then there is a unique solution y of the initial
value problem in (1.4.7) on an open interval containing t,.

Remark: We prove this theorem rewriting the differential equation as an integral equation
for the unknown function y. Then we use this integral equation to construct a sequence of
approximate solutions {y,} to the original initial value problem. Next we show that this
sequence of approximate solutions has a unique limit as n — oo. We end the proof showing
that this limit is the only solution of the original initial value problem. This proof follows
[11] § 1.6 and Zeidler’s [12] § 1.8. It is important to read the review on complete normed
vector spaces, called Banach spaces, given in these references.

Proof of Theorem 1.4.6: We start writing the differential equation in 1.4.7 as an integral
equation, hence we integrate on both sides of that equation with respect to t,
t

t t
[v@ds= [ feunds = w0 =+ [ fsue)ds (1.4.8)
to to to

We have used the Fundamental Theorem of Calculus on the left-hand side of the first
equation to get the second equation. And we have introduced the initial condition y(t,) = o.
We use this integral form of the original differential equation to construct a sequence of
functions {y,}52,. The domain of every function in this sequence is D, = [t, — a, t, + a] for
some a > 0. The sequence is defined as follows,

t
Ynt1(t) = Yo + f(s,yn(s)) ds, n =0, Yo(t) = Yo (1.4.9)

to
We see that the first element in the sequence is the constant function determined by the
initial conditions in (1.4.7). The iteration in (1.4.9) is called the Picard iteration. The
central idea of the proof is to show that the sequence {y,} is a Cauchy sequence in the
space C(Dy) of uniformly continuous functions in the domain Dy = [t, — b, t, + b] for a small
enough b > 0. This function space is a Banach space under the norm

= t)].
lull = max fu(t)]

See [11] and references therein for the definition of Cauchy sequences, Banach spaces, and
the proof that C (D) with that norm is a Banach space. We now show that the sequence


http://mathstud.io/?input[0]=
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{yn} is a Cauchy sequence in that space. Any two consecutive elements in the sequence
satisfy
t

t
Ionsr =l = o] [ #G5.9m) ds— [* 55,3100 s

maX/‘fSyn f(synl ’ds

teD

<k max/ [Yyn(8) — Yn—1(8)|ds

teDy
< kb|[Yn — Yn-1l|-
Denoting r = kb, we have obtained the inequality

”yn—i-l - ynH <r ||yn - yn—IH = ||yn+1 - ynll <rt ||y1 - yOH'

Using the triangle inequality for norms and and the sum of a geometric series one compute
the following,

Hyn - yn+m|| = Hyn —Yn+1 +Ynt1 — Yng2 + - F Yng(m—1) — ynerH

<yn = Ynsrll + 1Ynt1 — yngall +--- + ||yn+(m,1) — Yntmll
" " ") gy — o
STt ) g — ol
m
<" (11_77; ) lyr = woll
Now choose the positive constant b such that b < min{a, 1/k}, hence 0 < r < 1. In this case
the sequence {y,} is a Cauchy sequence in the Banach space C(Dy), with norm || ||, hence

converges. Denote the limit by y = lim,,_, y,. This function satisfies the equation

B = o+ / f(s,y(s)) ds

which says that y is not only continuous but also differentiable in the interior of D, hence
y is solution of the initial value problem in (1.4.7). The proof of uniqueness of the solution
follows the same argument used to show that the sequence above is a Cauchy sequence.
Consider two solutions y and y of the initial value problem above. That means,

t t

y(t) = yo + t f(s,y(s)ds, gt) =yo+ | f(s,9(s)ds

to
Therefore, their difference satisfies

o= 31 =g [ 7t~ ttf(s,ﬂ(S))dS‘

max/ ‘f s,y(s ,gj(s))‘ds

teDy

gkmax/ ly(s) (s)|ds

teDy

< kblly =gl
Since b is chosen so that r = kb < 1, we got that

I
<

ly—gll<rly—gll, r<1 = |y-gll=0 = y
This establishes the Theorem. O
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1.4.5. Linear vs Nonlinear Equations. The main result in § 1.2 was Theorem 1.2.3,
which says that an initial value problem for a linear differential equation

y = a(t) y + b(t), y(to) = Yo,
with a,b continuous functions on (¢,t,), and constants t, € (¢;,t,) and y, € R, has the
unique solution y on (¢;,t,) given by

t
) =4O (ot [ b(s)ds),

to

¢
where we introduced the function A(t) = / a(s) ds.

to

Example 1.4.10. Find the domain of the solution y(¢) of the initial value problem

,In(t)
@—Uy-ﬁia

y = cos(2t), y(2) = 1.

Solution: We first write the equation above in the normal form,
In(t cos(2¢
() cos(2t)
(t—1)(t—3) (t—1)

This is a linear non-homogeneous equation,

Yy =a(t)y+b(t)

where In(t) (21)
n cos

“W=rTne—s W=y
The coefficient a(t) contains the function In(¢), which is defined only for ¢t € (0,00). This
same coefficient a(t) is not defined for ¢ = 1 and ¢t = 3. The function b(¢) is not defined
for t = 1. All this implies that the largest domain where both functions a(t) and b(t) are
defined and are continuous is

Dy = (0,1) U (L,3) U (3,00).

Which means that the solution, y(¢), may not be defined for ¢ <0, or at t =1 or at t = 3.
That is, we know for sure that the solution y(t) of the linear differential equation above is
defined either on
(0,1) or (1,3) or (3,00).
The initial condition in this problem is y(2) = 1, which means that the initial value of ¢
is t, = 2 and the initial value of y is y, = 1. The important thing here is the value of ¢,.
Since t, = 2 € (1, 3), then Theorem 1.2.3 says that the domain where we know for sure the
solution y(t) is defined is
D = (1,3).

Remark: It is not clear whether the solution in the example above can be extended to a
larger domain than (1,3). What the Theorem 1.2.3 says is that we are sure that the solution
exists on the domain D = (1, 3).

From the result above, Theorem 1.2.3, we can see that solutions to linear differential
equations satisfy the following properties:

(a) There is an explicit expression for the solutions of a differential equations.
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(b) For every initial condition y, € R there exists a unique solution.
(c¢) For every initial condition y, € R the solution y(t) is defined for all (¢1,2).

Remark: None of these properties hold for solutions of nonlinear differential equations.
From the Picard-Lindel6f Theorem one can see that solutions to nonlinear differential
equations satisfy the following properties:

(i) There is no explicit formula for the solution to every nonlinear differential equation.
(ii) Solutions to initial value problems for nonlinear equations may be non-unique when
the function f does not satisfy the Lipschitz condition.
(iii) The domain of a solution y to a nonlinear initial value problem may change when we
change the initial data .

The next three examples (1.4.11)-(1.4.13) are particular cases of the statements in (i)-
(iil). We start with an equation whose solutions cannot be written in explicit form.

Example 1.4.11. For every constant ai, as, as, a4, find all solutions y to the equation
12
yi(t) + as g3 (t) + az y2(t) + az y(t) + a1)

Y (t) = ( (1.4.10)

Solution: The nonlinear differential equation above is separable, so we follow § 1.1 to find
its solutions. First we rewrite the equation as

(V' () + as v’ (t) + asy*(t) + az y(t) + a1) v/ (t) = 1.

Then we integrate on both sides of the equation,
/(y4(t) +asy?(t) +az y?(t) + a2 y(t) + a1) y' () dt = /t2 dt + c.
Introduce the substitution v = y(t), so du = y'(¢) dt,
/(u4+a4u3+a3u2+a2u+a1) du = /tht—i—c.

Integrate the left-hand side with respect to u and the right-hand side with respect to ¢.
Substitute u back by the function y, hence we obtain

L s ag 4 as 3 az t3

S+ — i)+ = R + =yt t)=—=+ec

SO+ Dy 0+ T+ 2yt +ayt) =+
This is an implicit form for the solution y of the problem. The solution is the root of a
polynomial degree five for all possible values of the polynomial coefficients. But it has been
proven that there is no formula for the roots of a general polynomial degree bigger or equal
five. We conclude that that there is no explicit expression for solutions y of Eq. (1.4.10). <

We now give an example of the statement in (ii), that is, a differential equation which
does not satisfy one of the hypotheses in Theorem 1.4.6. The function f has a discontinuity
at a line in the ty-plane where the initial condition for the initial value problem is given.
We then show that such initial value problem has two solutions instead of a unique solution.

Example 1.4.12. Find every solution y of the initial value problem

y(0) =930, y(0)=0. (1.4.11)
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Remark: The equation above is nonlinear, separable, and f(t,y) = y'/? has derivative

11

Since the function d, f is not continuous at y = 0 and the initial condition in the problem

above is at y = 0, this problem does not satisfies the hypotheses in Theorem 1.4.6.

Solution: The solution to the initial value problem in Eq. (1.4.11) exists but it is not
unique, since we now show that it has two solutions. The first solution is

y:(t) = 0.

The second solution can be computed as using the ideas from separable equations, that is,

/[y(t)]*l/3 Y (t)dt = /dtJrco.

Then, the substitution u = y(t), with du = y/(t) dt, implies that

/ufl/Bdu:/dt—kCO.

Integrate and substitute back the function y. The result is

g[y(t)]wg —tte = y(t)= [g(Hc@)r/Q

The initial condition above implies

so the second solution is:

<

Finally, an example of the statement in (iii). In this example we have an equation with
solutions defined in a domain that depends on the initial data.

Example 1.4.13. Find the solution y to the initial value problem
y'(t)=y*(t),  y(0) = yo.

Solution: This is a nonlinear separable equation, so we can again apply the ideas in Sect. 1.1.
We first find all solutions of the differential equation,

Yy (t) dt / 1 1
=[dt+c, = ——<=t4+c = t) =— .
[ ; o e T v E T
We now use the initial condition in the last expression above,
1 1
yo:y(o):** = Co=——".
Co Yo
So, the solution of the initial value problem above is:
1
y(t) = 1

(yj‘f)

This solution diverges at t = 1/y,, so the domain of the solution y is not the whole real line
R. Instead, the domain is R — {y,}, so it depends on the values of the initial data y,. <
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In the next example we consider an equation of the form y/(t) = f(¢,y(t)), where f does
not satisfy the hypotheses in Theorem 1.4.6.

Example 1.4.14. Consider the nonlinear initial value problem

, _ 1
YO = D D0 - D 1 3)
y(to) = Yo (1.4.12)

Find the regions on the plane where the hypotheses in Theorem 1.4.6 are not satisfied.

Solution: In this case the function f is given by:
1
flty) =

=D+ -2)y+3)
so f is not defined on the lines
t=1, t=—-1, y =2, y=—3.

(1.4.13)

See Fig. 24. Along these lines the hypotheses of Theorem 1.4.6 are not satisfied. Below we

show two possible situations.

(a) If the initial data is t, = 0, y, = 1, then Theorem 1.4.6 implies that there exists a unique
solution on any region R contained in the rectangle R = (—1,1) x (—3,2).

(b) If the initial datais t = 0, y, = 2, then the hypotheses of Theorem 1.4.6 are not satisfied
and we do not know whether there is a solution to this initial value problem.

<

FIGURE 24. Red regions where the function f in Eq. (1.4.13) is not defined.

1.4.6. The Linearization Method. The linearization method is a slight modification
of the analysis given in § 1.3.2, which was used to obtain a qualitative graph of a solution
to an autonomous system without actually solving the differential equation. In subsection
§ 1.3.2 we had an autonomous differential equation

y'(t) = fy(®),
and we used the sign of the function f(y) to determine the intervals where a solution of the
differential equation, y(t), is increasing or decreasing in time. In the linearization method
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we use the sign of f’(y.)—the derivative of f(y) evaluated at the equilibrium solutions y.
(also called critical points)—to determine the behavior of solutions y(t) of the differential
equation near the equilibrium solutions.

The linearization method is more restrictive than the previous method in § 1.3.2, because
the information we obtain about the solution of the nonlinear system is only valid near the
equilibrium solution. In the previous method, the increasing-decreasing information about
the solution of the nonlinear system applies even far from equilibrium. However, there is one
advantage of the linearization method—it can be easily generalized from a single equation
to a system of nonlinear differential equations. We will study this generalization in § ?7.

Consider an autonomous differential equation

y'(t) = f(y(1)), (1.4.14)

with f(y) twice continuously differentiable. Let y. an equilibrium solution of this equation
(1.4.14), that is, y. is a solution of

f(ye) = 0.

Let us compute the Taylor expansion of f(y) centered at ye,

F@) = flye) + ' We) (v = ye) + o((y — ye)?)-

We evaluate the variable y in this expansion with the function y(¢) and we put this expansion
in the equation (1.4.14), that is,

Y () = fye) + f'(ye) (y(t) = ye) + o((y(t) — ye)?)-
Since y. is an equilibrium solution we have f(y.) = 0, and since y,. is a constant we have
yl. =0, then
(1) = ye) = f'(ye) (y(t) = ye) + o((y(t) — ye)?).-
=Y

C
If we introduce the function Ay(t) (t) — ye, then the differential equation in (1.4.14) has

the form

Ay'(t) = f'(ye) Ay(t) + o(Ay?).
This last equation says that the equation coefficients near an equilibrium solution . are
close to the equation coefficients of the linear differential equation

u'(t) = f'(ye) u(t).

This linear equation is called the linearization of equation (1.4.14).

Definition 1.4.7. The linearization of the scalar autonomous equation

v =fy)
at the equilibrium solution y. is the linear system for a function u(t) given by
u' = f/(yc) u

Our first result is to summarize the calculation above, which is about the equation
coeflicients of the nonlinear system and its linearization.

Theorem 1.4.8 (Linearization Equation). If a nonlinear autonomous equation

Y = fy)

has a critical point y., then in a neighborhood of y. the equation coefficients of this nonlinear
system are close to the equation coefficients of its linearization at y., given by

u = f/(yc) u.



88 1. FIRST ORDER EQUATIONS

The proof of this theorem is the calculation we did above. This result is about the
equations not their solutions. Here we say that the equation coefficients of the nonlinear
systems and its linearization are close near the equilibrium solution. Our next result relates
the solutions of the nonlinear system and its linearization near the equilibrium solution.

Theorem 1.4.9 (Linearization Solutions). Assume that the function y(t) is the solution of
the initial value problem

v =1,  ylt) =y, (1.4.15)
with f(y) being twice continuously differentiable in an interval [yq,ys], and this interval
satisfying Yo, Ye € (Ya, Yp), where y. is an equilibrium solution of the differential equation in
(1.4.15). If the function u(t) is the solution of the initial value problem

ul = f/(yC) ua U(to) = yO - ya (1416)
then given an € > 0 there exists a 6 > 0 such that for |t —to| <& and |yo — ye| < 0 then
|Ay(t) —u(t)| <e,
where Ay(t) = y(t) — ye.

Remark: In other words, if the initial condition ¥, is close enough to the equilibrium solu-
tion y., then for a time ¢ close enough to the initial time ¢, the solution y(¢) of the nonlinear
initial value problem in (1.4.15) is close to the function y. + u(t), where u(t) is the solution
of the linearization initial value problem (1.4.16).

Proof of Theorem 1.4.9: Recall the Taylor expansion formula centered at a point x, for
a function g(x),
g// T
o(x) = gla0) +9'(a) (2 — ) + T (a2,
where the point z, satisfies that |z, — x| < | — x4]. We now use this Taylor expansion
formula in the solution of both the linearization equation (1.4.16) and the nonlinear equation
(1.4.15). Since the solution of the linearization equation is

u(t) = Ay eFli=to),
where k = f/(y.) and Ay, = yo — Y., then the Taylor expansion of u(t) centered at t, is

k‘2
u(t) = Ao (1 + kAL + o bt (At)z)

where we introduced the point ¢, satisfying |t; — ¢,| < |t — to| and we also introduced the
notation At = t — t,. Notice that we do not have a formula for the solution y(t) of the
nonlinear equation. Nevertheless, we can always write the Taylor expansion centered at ¢,
of this solution y(t) as follows,

u(0) = o+ 9/ (1) At + L1 (a2

where we introduced the point ¢, satisfying [, — to| < |t — to|. Since y(t) is solution of the
nonlinear initial value problem (1.4.15) we have

Y (to) = f(y(to)) = f(wo),

and also we have

so we get that
y'(ta) = f'(y(t2)) f(y(t2))- (1.4.17)
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We will use this last equation a little later. Then, the function Ay(t) = y(t) — y., where y.
is the equilibrium solution used to compute u(t), can be written as

By(t) = A+ f) 1+ 02 (a2

We are interested in computing the difference

Ay(t) — u(t) = Ay + ) At + L2 (a2

2
~ Ay, (1 L EAL+ % ek(ti—to) (At)Q)

1 2
— (f(yo) _ f/(yc) Ayo)At + (y étz) — kTAyO ek(t1—to))(At)2

However, the Taylor expansion of f(y) centered at the equilibrium solution y.,

FOom) = £+ 1(00) Ao+ T (g2

where we introduced y, such that |y, — ye| < |yo — ye|- Since f(y.) = 0 we have that

(o) — 1) Ago = L9 (A2

2
Using this equation we get
" " 2
Ay(t) — ut) = 770 ;yl) (Ayo)*At + (y étz) - %ek“ﬁto))(m)%

Then we can see that
8y() —u)] < 5 (17l (A9 18] + (1 (12)] + 1 (o) P 120 (2.

If we finally use Eq. (1.4.17), then we get

y(0)—u(t)] < 5 (17| (D)2 [AL -+ (1F lta))] | D)+ 17 we) P el @113 (ar)?).

Since the function f(y) is twice continuously differentiable in an interval [y,, ys] such that
Yo, Ye € (Ya,yn), then f, f" and f” are bounded in that interval, which means there exist
positive constants M,, M,;, M, such that

If(y)] < M, | (y)] < M, |f" ) < My, Yy € [Ya, y)-

This information in our inequality above gives
1
|Ay(t) = u(®)] < 5 (Mz (Ayo)? |At] + (M, M, + M2 M 18M) (At)Q)-
Therefore, given 0 < § < 1 we restrict our values of ¢ and y, such that
|At| < 6, |Ayo| < 6.
Then, the inequality above has the form

1
|Ay(t) — u(t)] < §(M2 + M; My + M7 M) 52,

Therefore, given any ¢ > 0 we choose § to be

2¢
5 < mi {1, }
= i \/M2 ¥ MM, + M2 M

For such § w conclude that

[Ay(t) —u(®)| < e
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This establishes the Theorem.



1.4. APPROXIMATE SOLUTIONS 91
1.4.7. Exercises.

1.4.1.- Use the Picard iteration to find the first four elements, yo, y1, ¥2, and ys, of the sequence
{yn }nlo of approximate solutions to the initial value problem

y =6y+1, y(0)=0.

1.4.2.- Use the Picard iteration to find the information required below about the sequence {y, }n=o
of approximate solutions to the initial value problem

Yy =3y+5, y(0)=1

(a) The first 4 elements in the sequence, Yo, Y1, Y2, and ys.
(b) The general term c(t) of the approximation

k=1

(¢) Find the limit y(t) = limp— oo Yn(t).

1.4.3.- Find the domain where the solution of the initial value problems below is well-defined.

—4t
(a) ¥ = 77 y(0) = yo > 0.

(b) ¥ =2ty®, y(0) =yo > 0.

1.4.4.- By looking at the equation coefficients, find a domain where the solution of the initial value
problem below exists,
(a) (#* —4)y' +21In(t)y = 3t, and initial condition y(1) = —2.

(b) o' = e Zi 3 and initial condition y(—1) = 2.

1.4.5.- State where in the plane with points (¢, y) the hypothesis of Theorem 1.4.6 are not satisfied.

, y’

T2t -3y’

V1—12 —y2.

—
o
=
@\
I






CHAPTER 2

Second Order Linear Equations

Newton’s second law of motion, ma = f, is maybe one of the first differential equations
written. This is a second order equation, since the acceleration is the second time derivative
of the particle position function. Second order differential equations are more difficult to
solve than first order equations. In § 2.1 we compare results on linear first and second order
equations. While there is an explicit formula for all solutions to first order linear equations,
not such formula exists for all solutions to second order linear equations. The most one
can get is the result in Theorem 2.1.9. In § 2.2 we find explicit formulas for all solutions
to linear second order equations that are both homogeneous and with constant coefficients.
These formulas are generalized to nonhomogeneous equations in § 2.3. In § 77 we solve
special second order equations, which include Newton’s equations in the case that the force
depends only on the position function. In this case we see that the mechanical energy of the
system is conserved. We also present in more detail the Reduction Order Method to find a
new solution of a second order equation if we already know one solution of that equation.

93
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2.1. General Properties

The differential equation that started the whole field of differential equations is Newton’s
second law of motion for a point particle—the force acting on the particle is equal to its
mass times the acceleration of the particle. Newton’s equation is a second order differential
equation for the position of the particle as function of time. The equation is linear when
the force is a linear function of the position and the velocity of the particle.

In this section we study general second order linear differential equations but we focus
our examples on Newton’s equation for systems moving in one space dimension under forces
linear in the position and velocity. Our main example is a mass-spring system, where an
object is attached to a spring and both oscillate along a straight line. An integral of Newton’s
equation defines the mechanical energy of the mass-spring system. We show that this energy
is constant during the motion of springs oscillating without friction.

We then state Theorem 2.1.3, which says that second order linear equations with contin-
uous coefficients always have solutions, and these solutions are defined on the same domain
where the equation coefficients are continuous. Furthermore, the solution is uniquely deter-
mined by two appropriate initial conditions.

The equations for mass-spring systems are of a particular type, called homogeneous
equations. We show that homogeneous equations satisfy the superposition property—the
linear combination of two solutions is also a solution. This property is important to prove
our second main result, Theorem 2.1.9, which is the closest we can get to a formula for
solutions to second order linear homogeneous equations. This theorem says that to know all
solutions to second order linear homogeneous equations we only need to know two solutions
that are not proportional to each other, called fundamental solutions.

We end this section introducing the Wronskian of two functions, which happens to be
nonzero when the functions are not proportional to each other. When the functions are
solutions to a second order linear differential equation, then the Wronskian itself satisfies a
first order linear equation. This result is called Abel’s theorem and it shows that solutions
with different initial conditions will be not proportional to each other.

2.1.1. Definitions and Examples. We introduce second order differential equations
and then the particular case of second order linear differential equations.

Definition 2.1.1. A second order differential equation for y(t) is

y' = [ty ). (2.1.1)
The equation (2.1.1) is linear, non-homogeneous iff
Y +a(t)y + ao(t)y = b(t), (2.1.2)

where ay, a,, b are given functions on the interval I C R. The equation (2.1.2):

(a) is homogeneous iff the source b(t) =0 for allt € R;
(b) has constant coefficients iff a, and a, are constants;
(¢) has variable coefficients iff either a, or a, is not constant.

Remarks:

(a) The homogeneous equations presented here are essentially different from the Euler ho-
mogeneous equations we studied in § 1.1.

(b) We define second order linear equations with constant coefficients when only a; and a,
are constants, but b can be non-constant. This is a different definition from the first
order linear equations with constant coefficients, where we required that the coefficient
b be also constant.
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Example 2.1.1.

(a) A second order, linear, homogeneous, constant coefficients equation is
y" + 5y + 6y = 0.
(b) A second order, linear, nonhomogeneous, constant coefficients, equation is
y" — 3y +y = cos(3t).
(¢) A second order, linear, nonhomogeneous, variable coefficients equation is
y' 42ty —In(t)y = ™.
(d) A second order, non-linear equation is
y' 42ty —1In(t) y? = 3.

<

2.1.2. Newtonian Dynamics. Newton’s second law of motion for a point particle
having mass m moving in one space dimension, y, under a force f is an example of a second
order differential equation. This equation is usually written as

ma = f,

where a = 3" is the particle’s acceleration—the second time derivative of the position

function y. The force acting on the particle can depend on time, on the position, and on
the velocity of the particle. Then, Newton’s equation can be written as

my”(t) = f(t’y(t)ay/(t))' (213)

If the force acting on the particle is linear in the particle’s position and velocity, then the
differential equation in (2.1.3) is linear. Now we show a few examples of Newton’s equation
where the force is a linear function in the position and or velocity of the particle.

Example 2.1.2 (Mass-Spring, No Friction). Consider a spring attached to a ceiling from
its top end and having an object of mass m hanging from its bottom end, as pictured in
Fig. 1. In this picture we have two springs, the one on the left is at rest at the equilibrium
position, the one on the right is not at rest, since it is stretched out of the equilibrium
position. We set y to be a vertical coordinate, with y = 0 at the equilibrium position of the
mass-spring system and positive downwards. Newton’s equation for this system is

my” = fTv

where m is the mass of the object and fr represents all the forces acting on the system,

fr="J,+ 1

The first term is the weight of the object, f; = mg, which is a positive term since it is
directed downwards. We denoted by g the acceleration of gravity near the Earth surface,
g = 9.81 meters/(seconds squared). The force done by the spring on the mass can be
decomposed in two terms,

f = fO + fs'
The force f, is directed upwards and compensates the weight of the object,
Jo=—mg.

The force f, is responsible for keeping the mass-spring at the equilibrium position. The
force fs is the extra force done by the spring when it is stretched out of equilibrium. It
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is observed experimentally that the force f is proportional to the stretching of the spring
away from equilibrium, y, and in the opposite direction of the stretching,

fs = —kuy, k> 0.

This stretching force f is called Hooke’s Law, the positive constant k is the spring constant,
with units of mass/(time squared). This constant characterizes the stiffness of the spring,
the larger the constant the more stiff is the spring. Then, Newton’s equation for this system,
my" = fr, has the form

my' =fo+fotfo = my'=mg+fo—ky.
But f, + mg = 0, since these forces cancel each other, then
my’ +ky=0.

We see that this is a second order, linear, differential equation for the position y(t) as
function of time. <

Ny yy

[s
fo

=
u(t)|-------- "fg]f] .

Yfg

FIGURE 1. Mass-Spring System with coordinate system.

Example 2.1.3 (Mass-Spring with Friction). Consider a mass-spring system as described
in the example above. Suppose that the whole system is oscillating inside a liquid bath. In
this case appears a damping force, from the friction between the oscillating mass and the
liquid. The damping force is given by

fo=—dy, d>0.

The friction force damps the oscillations because it opposes the movement. Then, Newton’s
equation, my” = fr, has a right-hand side fr = f; + fo + fs + fa- As in the previous
example, the first two terms in the force cancel out, f,; + fo =0, and we get

my' =—-ky—dy = my'+dy +ky=0.

We see from the last equation above that any second order linear differential equation with
positive constant coefficients m, d, and k can always be identified with Newton’s equation for
a mass-spring system having spring constant k, mass m, and moving in one space dimension
through a medium with damping constant d. <



2.1. GENERAL PROPERTIES 97

Example 2.1.4 (Falling Particle). Consider a particle moving vertically near the surface
of the Earth. Discard any friction with the air and call y(¢) the particle position as function
of time. The only force, f, acting on the particle is the gravitational force of the Earth,
which near the Earth’s surface is constant in time, independent of the particle’s position.
This force is given by

[ =mg,

where the constant g = 9.81 rn/s2 is called the acceleration of gravity near the surface of
the Earth. Then, Newton’s equation for such particle is

my" = —mg,
where we assumed that the particle position, y, is positive in the upward direction. <
2.1.3. Conservation of the Energy. If the force acting on a particle depends only
on the position of the particle, then the velocity of the particle is an integrating factor for
Newton’s equation of motion. This means that Newton’s equation multiplied by the velocity

becomes the total time derivative of a function, called the mechanical energy of the particle.
Newton’s equation implies this energy remains constant during the motion.

Theorem 2.1.2 (Conservation of the Mechanical Energy). Let the position function y(t)
of a particle with mass m be a solution of Newton’s equation

my/l — f
If the force depends only on the particle’s position,

f=1r)),

then there is a quantity, E(t), constructed with the position y(t) and velocity v(t) = y'(t) of
the particle that remains constant along the motion of the particle, that is,

E(t) = E(0).
This quantity is called the mechanical energy of the particle, and it is given by
1 2
B(t) = 5 m (v(0)* + V(y(1),

where we introduced the potential energy of the particle,

ww:—/ﬂw@.

Remarks:

(a) The conservation of the mechanical energy holds for forces of the form

Fy) = 10Ky, )X),

that is, the force is function only of the position.
(b) From the definition of the potential energy V(y) we see that its y-derivative is related
to the force,

av
f=-=
Y
(¢) The function
1
K= 3 mv?
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is called the kinetic energy of the system. So the mechanical energy is given by the
sum of kinetic energy (measuring actual movement) and potential energy (capacity to
produce movement),

E=K+V.

Proof of Theorem 2.1.2: Since the force on the particle depends only on the particle
position, f = f(y), we can always compute its (negative) antiderivative,

V() = */f(y)dy - =2

The function V is called the potential energy of the particle. If we write Newton’s law of
motion my” = f in terms of the potential energy we get

o — av
Yy = dy’
where, as usual, prime means derivative with respect to time,
dy
/
t) = —.
yt) =
Now multiply Newton’s equation by the particle velocity, ¥/,
dv
A /
m =——1q"
yy dy Y
The chain rule for derivatives of a composition of functions says that
1 d av d

my'y" = 5m((y)?) and - @y’ = ——(V(y(®))

Therefore, Newton’s equation can be written as a total derivative,
d 1 9
2= 1% ) —0,
ai(zme V)

where v = 3/, If we introduce the mechanical energy of the particle,

1
E= imv2+V(y),

then Newton’s equation implies
E't)=0 = E(t) = E(Q).

We see that the mechanical energy is conserved during the motion of the particle, y(t), and
it is equal to its initial value. This establishes the Theorem. O

Example 2.1.5 (Mass-Spring System Undamped). Show that the mechanical energy of a
mass-spring system, as pictured in Fig. 1, is conserved.

Solution: We showd in Example 2.1.2 that Newton’s equation of a mass-spring oscillating
without friction is

my” +ky =0,
where m is the object mass and k is the spring constant. We could use the formula for
the mechanical energy given in Theorem 2.1.2, but to understand better where this formula
comes from we derive it again for this system. Multiply Newton’s equation by the velocity
v’ and recall the chain rule for derivatives.

my'y' +kyy =0 = m%((y;)2)+k%(y—):o, N i(%(y’)%gzﬁ):o.
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Denote the velocity by v = ¢/, then the mechanical energy for a mass-spring system is
1 1
E(t) = =mv* + = ky?,
t)=3 5 kY
and the third equation on the right above says this energy is conserved along the motion,
E(t) = E(0).
Let us introduce the kinetic energy and the potential energy, respectively,
1 1
K(v) = §mv2, V(y)zikyQ.
Notice that these functions are non-negative. Then, the conservation of the mechanical
energy has the form
K(v)+V(y) = E(0).
If the kinetic energy increases, then the potential energy must decrease; and viceversa.
Because each term is non-negative, the maximum value of the kinetic energy happens when
the potential energy vanishes; and viceversa. <

Example 2.1.6 (Mass-Spring System Undamped). An object of mass 10 grams is hanging
from a spring with constant 20 grams per seconds square. Assume that the object is initially
at rest and the spring is stretched 10 centimeters. Then, find both the maximum speed of the
object, Umax, and the maximum displacement, ymax, achieved by the object while oscillating.

Solution: We know that the differential equation describing the object movement is
my”’ +ky=0, m=10, k=20.

Unfortunately, we do not know how to solve this differential equation, yet. Fortunately, we
do not need to solve this equation to answer the question above, because this system has a
conserved energy,

E(t) = E(0),
where
E(t)—lmv2—|—}k 2
~ 2 o Y

and v = 3. Using the data of the problem we get
B(t) = 5(v(t))* + 10(y(t))*.
Since we know that at the initial time ¢ = 0 we have
y(0) =10, v(0)=0 = E(0)=5(v(0))*+10(y(0))*>=0+1000 = E(0) = 1000.

Since the energy is conserved we get that

1 1
§mvg + §ky2 =1000  for all ¢.

The left hand side has a maximum speed vmax when y? has the lowest possible value, and
that is when y = 0. This happens when the object passes through the equilibrium position.
At that position the speed is the maximum possible, given by

5 (Umax)® +10(0)° = 1000 = |vpax| = 10v2,

The left hand side has a maximum displacement 3. When 2 has the lowest possible value,
and that is when v = 0. This happens when the object’s velocity changes direction. At that
time the object is at the maximum elongation, given by

5(0)% + 10 (Ymax)? = 1000 = |ymax| = 10.



100 2. SECOND ORDER LINEAR EQUATIONS

In our next example we shoot a bullet in the vertical direction and we want to find the
maximum altitude achieved by the bullet.

Example 2.1.7 (Mass Falling on Earth). An object of mass m kilograms moves vertically
to the ground under the action of the Earth gravitational acceleration near the surface,
denoted as g, which has the value of g ~ 9.81 meters per second square (although we do
not need the exact value here). Denote by y vertical coordinate, positive upwards, and let
y = 0 be at the earth surface. If the initial position of the object is y(0) = y, meters and
its initial velocity is y'(0) = v, meters per second, find the maximum altitude ym,ax achieved
by the object.

Solution: Once the object is in motion the only force acting on it is its own weight,

fg = —myg,
where the negative sign indicates the force is directed downwards, which in our coordinate
system is negative. Then, the differential equation describing the projectile movement is
my" = —mg,

with m the object mass and g the Earth gravitational acceleration. Although we know how
to solve this differential equation for the function y(t), we also can solve this problem using
only the mechanical energy of this system. Multiply Newton’s equation by %/,

N

d /1
my'y' +mgy =0 = %(im(y’)z—kmgy):&

As usual, denote the velocity by v = ¢/, then the energy is
E(t) = % v2 +mgy.
The previous equation says that this energy is conserved along the motion, that is
E'(t)y=0 = E(t)= E(0).
Using the initial condition of the problem, y(0) = y, and v(0) = v, we get the initial energy
E(0)

_m
)
By looking at the energy we see that the maximum altitude achieved at a time ty,,x Wwhen
the object velocity vanishes, therefore

Uo2 +mg Yo.

2
m v
E(tmax) == E(O) = 0+ mg Ymax = 5 ’Ug + mg Yo = Ymax = i + Yo
Notice that the maximum altitude does not depend on the mass m of the object, it depends
only on the initial velocity and the initial position. <

In the next example we compute the equation satisfied by the mechanical energy of a
mass-spring system oscillating with friction.

Example 2.1.8 (Energy of Spring with Friction). Consider a mass-spring system with
friction, as described in Example 2.1.3. Find the equation satisfied by the mechanical
energy of this mass-spring system.

Solution: Following Example 2.1.3 we denote by m the mass of the object hanging from the
spring, k the spring constant, and d the liquid damping constant. We saw in that example
that Newton’s equation for this mass-spring system with friction is

my”’ +dy +ky=0.
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To obtain the equation for the mechanical energy we proceed as in the proof of Theo-
rem 2.1.2. We multiply Newton’s equation by the integrating factor, the velocity v/,
my'y" +d(y)? +kyy =0.

We use the chain rule to construct the mechanical energy function on the left-side and we
move the term proportional to (y')? to the right-hand side,

1 ro 1 /

5m(W)?) + 5k () =—d)*
We introduce the notation v = ¢’ and we get

1 1 /
<fmv2—|— ik‘yQ) = —dv?.

2
If we denote the mechanical energy for the mass-spring system as usual,
1 1
Et)=-mv*+ - ky®
(t) =5 mv"+ 5 kv,

then we found that
E'(t) = —dv*<0.

This is the equation satisfied by the mechanical energy of a mass-spring system with friction.
The right-hand side above is negative for nonzero velocity, meaning that the mechanical
energy is a decreasing function of time, hence not conserved. <

Remark: A cornerstone principle in physics is that energy cannot be created nor destroyed,
it is called the conservation of the energy. Although it seems that our result in Example 2.1.8
contradicts this principle, further study will reveal that it does not. It has happened many
times in the history of physics that the conservation of the energy seems to fail; only to
be found out later that the conservation of the energy is indeed true and the real problem
was that we were not looking at the whole picture. This is exactly what is happening
in Example 2.1.8. When an object oscillates in a viscous liquid the mechanical energy
decreases because it is transformed into a different type of energy, heat. The temperature
of the liquid and the object increase as the oscillations slow down. Since we are not taking
into account the thermal energy in our previous example, our result only shows the decrease
in the mechanical energy of the spring.

Example 2.1.9 (Motion in Viscous Liquid). A bullet with mass m is shot horizontally
with initial velocity vy into a tank containing a viscous liquid with damping constant d.
Discarding any vertical movement, how long does it take until the kinetic energy of the
bullet is 1% of the initial kinetic energy? (That is, the bullet practically stops.)

Solution: The gravitational force on the bullet is in the vertical direction, but we are
discarding the movement in that direction. We focus only on the movement in the horizontal
direction, so let’s denote our position function as z(t), positive in the direction the bullet is
moving. The only force acting on the bullet in the horizontal direction is the friction with
the liquid, fy = —dz’. Newton’s second law of motion says that

ma’ = —da'.

We can obtain a formula for the kinetic energy if we multiply Newton’s equation by z’,

d /1
P 2 - AV R 2
mz' 2’ =—-d(")* = dt(Zm(x)) d(z')”.



102 2. SECOND ORDER LINEAR EQUATIONS

Denote the velocity by v = z’, then
d 1 2d /1
—<7mv2) =—— (fmv2) = 4 = —Q—dK,
dt \2 m m
where we introduced the bullet’s kinetic energy K = (m/2)v?. So, this kinetic energy
satisfies the differential equation
2d %

The solution of this equation is
K(t) = K(0) e~ (2d/m)t,
We need to find a time t; such that K (¢;) = K(0)/100, that is

K(0) —(2d/m)t, Ly _ 2
<00 =K(0)e = ln(—>f

m
t t1 = — In(1 .
100 1 = 1 Il( 00)

m 2d
<

2.1.4. Existence and Uniqueness of Solutions. Second order linear differential
equations have solutions in the case that the equation coefficients are continuous functions.
And the solution of the equation is unique when we specify two appropriate initial conditions.
The latter means that the two arbitrary integrations constants of the general solution can
be uniquely determined by appropriately chosen initial conditions. In this short subsection
we only mention this result without a proof.

Theorem 2.1.3 (Existence and Uniqueness). Consider the initial value problem

y'+ai)y +a)y =0(t),  ylto) =4, Y'(to) =11 (2.1.4)
If the functions ay, a,, b are continuous on an open interval (ti,t,), then there exists a

unique solution y(t) of Eq. (2.1.4) defined on that interval (t,,t,) for every choice of the
initial data t, € (ty1,t,), and y,, y1 € R.

Remark: The fixed point argument used in the proof of Picard-Lindel6f’s Theorem 1.4.6
can be extended to prove Theorem 2.1.3.

Example 2.1.10. Find the domain of the solution of the initial value problem

4t —1
(t—1)y" =3ty + é_3)) y=tt-1), y2)=1, y(2)=0
Solution: We first write the equation above in the form given in the Theorem above,
P I B
Poe-nt Te-gt T

The equation coefficients are defined on the domain

Which means that the solution may not be defined at ¢ = 1 or t = 3. That is, we know for
sure that the solution is defined on

(—o00,1) or (1,3) or (3,00).
Since the initial condition is at ¢, = 2 € (1, 3), then the domain where we know for sure the

solution is defined is
D =(1,3).
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Remark: It is not clear whether the solution in the example above can be extended to a
larger domain than (1,3). What the Theorem 2.1.3 says is that we are sure that the solution
exists on the domain (1, 3).

2.1.5. Properties of Homogeneous Equations. All the second order linear dif-
ferential equations studied in the examples above have been homogeneous, as defined in
Def. 2.1.1. In the rest of this section we study general concepts about homogeneous equa-
tions that will help us get as close as possible to a formula for their solutions. These
concepts include the notion of an operator, linear operators, and the superposition property
of solutions to homogeneous equations. We start introducing the notion of an operator.

Definition 2.1.4 (Operator). A second order linear differential operator, denoted as L,
acting on twice continuously differentiable functions, y, is given by

L(y) =y" + a:i(t)y' + ao(t) y, (2.1.5)
where ay, ao, are given continuous functions.

Operators provide a convenient notation to write second order linear differential equa-
tions. The differential equation

Y +ai(t)y +ao(t)y = f(t)
can be written as

L(y) = f.

8
Example 2.1.11. Compute the operator L(y) =ty" + 2y’ — 7Y acting on y(t) = t3.

Solution: Since y(t) = ¢3, then y/(t) = 3t? and y” (t) = 6t, hence
%t?’ = L(t%) = 4.

The function L acts on the function y(¢) = ¢> and the result is the function L(t3) = 4t?. <

L(t3) =t (6t) + 2(3t%) —

In the definition above we see that L operates on a function y and the result is a new
function given by Eq. (2.1.5). For that reason L is called an operator, also a transformation.
The name emphasizes that L is a special type of function, which operates on other functions,
instead of usual functions that operate on numbers. The operator L above is also called a
differential operator, since L(y) contains derivatives of y. Furthermore, L is called a second
order differential operator, since the highest derivative in L is a second order derivative.
Lastly, the operator L above is called a linear operator, because it satisfies the following

property.

Definition 2.1.5 (Linear Operator). An operator L is a linear operator iff for every pair
of functions y., ¥, and constants c,, ¢, holds

L(cyys + c2y2) = e L(yy) + ¢ L(ys). (2.1.6)
Now we show that the operator L defined in Def. 2.1.4 is indeed a linear operator.

Theorem 2.1.6 (Linear Operator). The operator
L(y) = y'+ay +aoy,

as defined in Def. 2.1.4 is a linear operator.
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Proof of Theorem 2.1.6: This is a straightforward calculation:
Licyys + 6yn) = (crys + o) + ay (ays + 6y0)" + ao (e1ys + 61s).
Recall that derivations is a linear operation and then reoorder terms in the following way,
Ly, + cyp) = (cly;' + ay ¢y, + ao clyl) + (CQy;’ + a; eyl + ag czyg).
Introduce the definition of L back on the right-hand side. We then conclude that
L(cyys + c2ys) = e L(yy) + e L(ys).

This establishes the Theorem. |
The linearity of an operator L translates into the superposition property of the solutions
to the homogeneous equation L(y) = 0.

Theorem 2.1.7 (Superposition). If L is a linear operator and y,, y, are solutions of the
homogeneous equations L(y,) = 0, L(y,) = 0, then for every constants ¢;, ¢, holds

L(C1 Y1+ Co yz) =0.

Remarks:

(a) This result is not true for nonhomogeneous equations. Indeed, given functions y; and
Y, solutions of the same non-homogeneous equation

L(y:) = f, L(y.) = f,
the function (y; + y,) satisfies a different differential equation,
L(ys +v2) = L(y1) + L(y2) = f + f = 2f.
(b) The linearity of an operator L and the superposition property of solutions of the equation

L(y) = 0 are deeply connected—like two sides of the same coin.

Proof of Theorem 2.1.7: Verify that the function y = ¢,y, + ¢,y, satisfies L(y) = 0 for
every constants ¢, ¢,, that is,

L(y) = L(Clyl + 021,/2) =C L(%) + L(y2) =¢0+4+¢c0=0.
This establishes the Theorem. O

We now introduce the notion of linearly dependent or independent functions.

Definition 2.1.8. Consider two functions y,, y, defined on an interval I. The functions
are linearly dependent iff there is a constant, c, so that for allt € I holds

Yi(t) = cya(t).

Otherwise, the functions are linearly independent.

Remarks:

(a) Two functions y;, y, are linearly dependent when they are proportional to each other.

(b) The function y, = 0 is proportional to every other function y,, since y; = 0 = 0ys,.

(c) If the functions y,, y, satisfy y; = ty,, then they are linearly independent, since they
are not proportional to each other.

The definitions of linearly dependent or independent functions found in the literature
are equivalent to the definition given here, but they are worded in a slight different way.
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Often in the literature, two functions are called linearly dependent on the interval I iff there
exist constants ¢, ¢,, not both zero, such that for all ¢ € I holds

¢ y: (1) + coya(t) = 0.

Two functions are called linearly independent on the interval I iff they are not linearly
dependent, that is, the only constants ¢, and ¢, that for all ¢ € I satisfy the equation

C1y1(t) + C2y2(t) =0

are the constants ¢; = ¢, = 0. This wording makes it simple to generalize these definitions
to an arbitrary number of functions.

Example 2.1.12.

(a) Show that y,(t) = sin(t), y»(t) = 2sin(t) are linearly dependent.
(b) Show that y;(t) = sin(¢), y»(t) = tsin(t) are linearly independent.

Solution:

Part (a): This is trivial, since 2y,(t) — y,(t) = 0.

Part (b): Find constants ¢;, ¢, such that for all ¢ € R holds
¢, sin(t) + ¢t sin(t) = 0.

Evaluating at t = 7/2 and ¢ = 37/2 we obtain
3
Cl+g62:0, cl+§c2:0 = ¢ =0, c¢=0.
We conclude: The functions y; and y, are linearly independent. <

The concepts of operator, linearity, superposition, linearly dependence, are needed to
introduce our next result. If we know two linearly independent solutions of a second order
linear homogeneous differential equation, then we know all possible solutions to that equa-
tion. Any other solution has to be a linear combination of the previous two solutions. It is
crucial for this result that the equation be homogeneous. This is the closer we can get to a
general formula for solutions to second order linear homogeneous differential equations.

Theorem 2.1.9 (General Solution). If y, and y, are linearly independent solutions of
L(y) =0 (2.1.7)

on an interval I C R, where L(y) = y"+a, y'+ao y, and a,, ay are continuous functions on I,
then every solution y of Eq. (2.1.7) on the interval I can be written as a linear combination

y(t) = et pa(t) + o 92(2), (2.1.8)

for appropriate values of the constants ¢y, c,.

Before we prove Theorem 2.1.9, it is convenient to state the following the definitions,
which come naturally from this Theorem.

Definition 2.1.10.

(a) The functions y, and y, are fundamental solutions of the equation L(y) = 0 iff these
functions y,, y, are linearly independent and satisfy the equations

L(y1) =0, L(?h) =0.
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(b) The general solution of the equation L(y) = 0 is a family of functions given by
y(t) = crya(t) + 2 u(t),

with ¢y, ¢, arbitrary constants, and y,, y, fundamental solutions of L(y) = 0.

2

Example 2.1.13. Show that y; = e’ and 7, = e~2' are fundamental solutions of

y' +y —2y=0.

Solution: We first show that y, and y, are solutions to the differential equation, since
Ly) =9/ +y, -2y =e' +e' — 2" = (1+1-2)e' =0,
L(ys) =y + b — 2y =4de ™ =272 —2e72 = (4 —2 - 2)e ! = 0.
It is clear that y, and y, are linearly independent, since they are not proportional to each
other. Anyway, we give a formal proof of this statement.
To show that y;, and y, above are linearly independent we need show that the only

constants ¢; and ¢, satisfying the equation ¢, y; + ¢, 9y, = 0 for all £ € R are the constants
¢, = ¢, = 0. To see that this is the case we write

crel +ee =0
Since the equation above must hold for all ¢t € R, its ¢t-derivative must also hold,
e el —2c,e7? = 0.
Take ¢t = 0 in both equations above,
O=c+c, 0=c—2¢c, = c;=c,=0.

Since the only solution is ¢; = ¢, = 0, we conclude that y, and y, are fundamental solutions
of the differential equation above. <

Remark: The fundamental solutions of an homogeneous equation are not unique. For
example, it is not hard to show that another set of fundamental solutions for the equation
in the example above are

yi(t) = e+ eizta Ya(t) = e —e P

To prove Theorem 2.1.9 we need to introduce the Wronskian function and to verify
some of its properties. In the following subsection we study the Wronskian function and we
prove Abel’s Theorem. We use these results in the proof of Theorem 2.1.9, and in the next
subsection we prove them.

Proof of Theorem 2.1.9: We need to show that, given any fundamental solution pair,
Y1, Y=, any other solution y to the homogeneous equation L(y) = 0 must be a unique linear
combination of the fundamental solutions,

y(t) = 1y (t) + c2a(t), (2.1.9)

for appropriately chosen constants c¢;, c,.

First, the superposition property implies that the function y above is solution of the
homogeneous equation L(y) = 0 for every pair of constants ¢, ¢,.

Second, given a function y, if there exist constants ¢, ¢, such that Eq. (2.1.9) holds,
then these constants are unique. The reason is that functions y,, y, are linearly independent.
This can be seen from the following argument. If there are another constants ¢, ¢, so that

y(t) =0 yl(t) + G yQ(t)u
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then subtract the expression above from Eq. (2.1.9),
O=(a—é)yt(e—G&)y, = a—6=0, ¢—06=0,

where we used that y,, y, are linearly independent. This second part of the proof can be
obtained from the part three below, but it is a good idea to highlight it here.

So we only need to show that the expression in Eq. (2.1.9) contains all solutions. We
need to show that we are not missing any other solution. In this third part of the argument
enters Theorem 2.1.3. This Theorem says that, in the case of homogeneous equations, the
initial value problem

L(y) =0, y(to) =d, y/(to) = d,,
always has a unique solution. That means, a good parametrization of all solutions to the
differential equation L(y) = 0 is given by the two constants, d;, d, in the initial condition.
To finish the proof of Theorem 2.1.9 we need to show that the constants ¢, and ¢, are also
good to parametrize all solutions to the equation L(y) = 0. One way to show this, is to
find an invertible map from the constants d;, d,, which we know parametrize all solutions,
to the constants c;, c,. The map itself is simple to find, we just use the initial condition,

dy =c s (to) + Y (to)
dy = ¢y, (to) + cay5(to)-

We now need to show that this map is invertible. From linear algebra we know that this
map acting on ¢, ¢, is invertible iff the determinant of the coefficient matrix is nonzero,

Y1 (to) Y2 (to)
Y1 (to)  ys(to)

This leads us to investigate the function

Wiso(t) = v (t) y;(t) - yi(t)yz(t)

This function is called the Wronskian of the two functions y,, y,. At the end of this section
we prove Theorem 2.1.12, which says the following: If y,, y, are fundamental solutions of
L(y) =0o0n I C R, then Wy,(t) # 0 on I. Therefore, Wi,(t,) # 0, and then the map linking
dy, d, with ¢, ¢, is invertible, meaning the constants ¢, ¢, parametrize all solutions of the
differential equation. This statement establishes the Theorem. O

=i (to) y;(to) - y;(to)yz(to) # 0.

2.1.6. The Wronskian Function. We now introduce a function that provides infor-
mation about the linear dependency of two functions y;, y,. This function is called the
Wronskian to honor the polish scientist Josef Wronski, who first introduced it in 1821 while
studying a different problem. In this subsection we prove the property of the Wronskian we
used in the proof of Theorem 2.1.9. We start with the definition of the Wronskian and a
couple of examples.

Definition 2.1.11. The Wronskian of the differentiable functions y,, y, is the function
Wia(t) = ys (), (t) — vy (t)ya(t).

Remark: If we introduce the matrix valued function

o y1(t) yz(t)
A“>‘[y;<t> y;<t>]’

then the Wronskian can be written using the determinant of that 2 x 2 matrix,

Wi, (t) = det (A(t)) = y1(t)y£ (t) - y; (t)yQ(t)'
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Y Y2
/

Yy y;

An alternative notation is: Wiy, =

Example 2.1.14. Find the Wronskian of the functions:
(a) y.(t) = sin(t) and y,(t) = 2sin(¢). (1d)
(b) y.(t) = sin(t) and y,(t) = tsin(¢). (1i)

Solution:
Part (a): By the definition of the Wronskian:

yi(t) yz(t)‘: sin(t) 2sin(t)
yi(t)  wa(8)]  feos(t)  2cos(t)

We conclude that W,,(t) = 0. Notice that y, and y, are linearly dependent.
Part (b): Again, by the definition of the Wronskian:

Wi,(t) =

’ = sin(t)2 cos(t) — cos(t)2 sin(¢)

_|sin(¢) tsin(t) L . _ .
Wis(t) = cos(t) sin(t) + ¢ cos(t)| — sin(t)[sin(t) + ¢ cos(t)] — cos(t)t sin(t).
We conclude that W,,(¢) = sin®(t). Notice that y; and y, are linearly independent. <

In the proof of Theorem 2.1.9 we used the following property of the Wronskian.

Theorem 2.1.12 (Wronskian). If y;, y, are fundamental solutions of L(y) = 0 on an open
interval I C R, then Wi,(t) # 0 for every t € 1.

The proof of this statement is at the end of this section, when prove Theorem 2.1.16.
But before doing that we comment on the importance of the hypotheses in Theorem 2.1.12
and then we prove an auxiliary result, Abel’s Theorem, before focusing on the proof of
Theorem 2.1.12.

Remark: One of the hypotheses in the theorem above is that the functions y,, y, must
be solutions of an homogeneous second order linear differential equation, L(y) = 0. This
hypothesis is important, without it the statement is not true. In other words, it is not true
that “If y,, y, are linearly independent on an open interval I C R, then Wy,(¢) # 0 for all
t € I”. In the following example we show two functions which are linearly independent and
yet their Wronskian is zero.

Example 2.1.15. Show that the functions
yi(t) =12, and yo(t) = |t|t, for teR
have Wronskian W, = 0 and yet they are linearly independent.
Solution: First, we can see in Fig. 2 that these functions are linearly independent, since
yi(t) = —yo(t), for t <0, but wy,(t) =uy,(t), for ¢t>0.

We see there is not ¢ such that y;(t) = cy,(t) for all ¢ € R. Therefore, the functions y, and
1y, are linearly independent.

Second, these functions are differentiable in R, so we can compute their Wronskian. For
t < 0 we have

yi(t) = —1o(t) = Wo=uo—YiYs= s+ sy =0 for t<0.
For t > 0 we have
y1(t):y2(t) = Wu:ylyé—y{yzZyzyé—yéyz=0 for ¢t > 0.
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12 [t| ¢

FIGURE 2. We graph the functions y; = t? and y, = [t|t.

Finally, we compute the Wronskian at ¢ = 0, that is,

Wiz(0) = 31(0) 55(0) — 1(0) 32 (0).

It is clear that y,(0) = 0, y,(0) = 0, and y;(0) = 0. We only need to check that y,(t) = |t|¢
is differentiable at ¢ = 0. We know that y,(t) is given by

yo(t) = —t%, for t <0, and y,(t) =t%, for t>0.
Then, the derivative of y, is well defined for ¢ < 0 and for ¢ > 0,

ys(t) = —2t, for t <0, and y,(t)=2t, for t>0,
Therefore,

lim y5(t) = 0= lim 5 (t).

t—0—

We conclude that y,(0) exists and y5(0) = 0. Therefore, Wi,(t) vanishes for all t e R. <

In the example above we showed that when
Yy =Y, Or Yy =—Y, = Wy=0.
This result is the particular case of a more general result. If two functions satisfy that
Yi = C¥,, for any constant ¢, then their Wronskian is zero.
Theorem 2.1.13 (Wronskian LD). If y,, y, are linearly dependent on I C R, then
Wi=0 on I.

Proof of Theorem 2.1.13: Since the functions y;, y, are linearly dependent, there exists
a nonzero constant ¢ such that y, = cy,; hence holds,

Wi =419y — Y142 = (cy2) Yy — (c42) 12 = 0.
This establishes the Theorem. O

Remark: It is often cited in the literature the contrapositive of Theorem 2.1.13. Recall
that given an implication A = B, the contrapositive is No B = No A. The contrapos-
itive of a statement is equivalent to the original statement. We state the contrapositive
Theorem 2.1.13 in the following Corollary.

Corollary 2.1.14 (Wronskian LD). If functions y,, y, defined on an interval I C R have
Wronskian Wiy(t,) # 0 at a point t, € I, then the functions y,, y, are linearly independent
on I.



110 2. SECOND ORDER LINEAR EQUATIONS

Let’s go back to our main subject in this subsection, Theorem 2.1.12. We have seen
in Example 2.1.15 that the linear independence of functions y,, y, is not enough to show
that their Wronskian is nonzero. We need to assume something else on functions v, y,. In
Theorem 2.1.12 we assume that these functions are solutions a differential equation.

We need one last result before proving Theorem 2.1.12. We now show that the Wron-
skian of two solutions of an homogeneous second order linear differential equation satisfies
a differential equation of its own. The equation of the Wronskian is a first order linear
equation, which can be solved. This result is known as Abel’s Theorem.

Theorem 2.1.15 (Abel). If y,, y. are twice continuously differentiable solutions of

Y +a(t)y +ao(t)y =0, (2.1.10)
where ay, a, are continuous on I C R, then the Wronskian Wy, satisfies
W!, + a,(t) Wy, = 0. (2.1.11)

Therefore, for any t, € I, the Wronskian Wy, is given by the expression
Wis(t) = Wiz (to) e ™, (2.1.12)

where A, (t) = /t as(s) ds.

to
Proof of Theorem 2.1.15: Compute the derivative of the Wronskian function,

li
W= (v —viv) = vy — v v
Recall that both y, and y, are solutions to Eq. (2.1.10), meaning,

" / 1 /
Yy = —1Y; — Qo Y1, Yy = —A1Yy; — Qo Yo-

Replace these expressions in the formula for W/, above,
W112 =Y (—Ch y; — Qo yz) - (_ai y; — Qo yi) Yo = W1I2 = —a (Zh y; - yi y2)
So we obtain the equation
W/, + a.(t) Wy, = 0.

This equation for W, is a first order linear equation. The solution can be found using the
method of integrating factors, given in Section 1.2, which gives Eq. 2.1.12. This establishes
the Theorem. 0

Before proving Theorem 2.1.12 we show one simple application of Abel’s Theorem.

Example 2.1.16. Find the Wronskian of two solutions of the equation
2y —tt+2)y +(t+2)y=0, t>0.

Solution: Notice that we do not known the explicit expression for the solutions. Neverthe-
less, Theorem 2.1.15 says that we can compute their Wronskian. First, we have to rewrite
the differential equation in the form given in that Theorem, namely,

2 2 1
1 /
Y (t+ v+lgty)y

Then, Theorem 2.1.15 says that the Wronskian satisfies the differential equation

W (t) - (% 1) Walt) = 0.
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This is a first order, linear equation for Wi,, so its solution can be computed using the
method of integrating factors. That is, first compute the integral

t
2 t
—/ (f + 1) ds = —21n(—) —(t—to)
to \S to
2
= ln(t—;) — (t —to).
Then, the integrating factor y is given by
2
p(t) = e 7,
which satisfies the condition u(t,) = 1. So the solution, W, is given by

(W) =0 = u(OWalt) — plte) Wea(to) = 0

so, the solution is
2

t
Wia(t) = Wia(to) 5 el =",
[¢]
If we call the constant ¢ = Wi,(t,)/[t2e'], then the Wronskian has the simpler form

W12 (t) - Ct2€t.
<

Finally, we are ready to prove Theorem 2.1.12. However, instead of proving it, we prove
an equivalent statement—the contrapositive of Theorem 2.1.12.

Theorem 2.1.16 (Wronskian CP). If y,, y, are solutions of L(y) =0 on I C R and there
is a point t; € I such that Wi,(t,) = 0, then yy, y, are linearly dependent on I.

Proof of Theorem 2.1.16: We know that y,, y, are solutions of L(y) = 0. Then, Abel’s
Theorem says that their Wronskian W, is given by

W12(t) = WlZ(to) e_Al(t),

for any t, € I. Chossing the point ¢, to be t,, the point where by hypothesis Wi,(t,) = 0,
we get that
Wi(t)=0 forall tel.

Knowing that the Wronskian vanishes identically on I, we can write

Y19, — Y1 Y2 = 0,

on I. If either y; or y, is the function zero, then the set is linearly dependent. So we
can assume that both are not identically zero. Let’s assume there exists 7, € I such that
y:(71) # 0. By continuity, y, is nonzero in an open neighborhood I, C I of 7;. So in that
neighborhood we can divide the equation above by y?2,

ylyé—Qyiyz _0 = (&)’:0 L

Y1 Y1 Y1

where ¢ € R is an arbitrary constant. So we conclude that y, is proportional to y, on the
open set I;. That means that the function y(t) = y,(t) — cy,(t), satisfies

L(y) = 07 y(Tl) = 07 y/(Tl) = 0
Therefore, the existence and uniqueness Theorem 2.1.3 says that y(¢) = 0 for all ¢t € I. This
finally shows that y, and y, are linearly dependent. This establishes the Theorem. O

c, on I,
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By proving the contrapositive of Theorem 2.1.12 we have proven Theorem 2.1.12. Then,
we have finished the proof of the General Solution Theorem 2.1.9.
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2.1.1.- Find the longest interval where the solution y of the initial value problems below is defined.
(Do not try to solve the differential equations.)

(a) t%y" + 6y = 2t, y(1) =2, y'(1) = 3.
(b) (t—6)y" +3ty' —y=1,y(3) = -1, y'(3) = 2.
2.1.2.-

t2y// _ 2y _ 07

(a) Verify that y;(t) = t*> and y»(t) = 1/t are solutions to the differential equation
t>0.

(b) Show that y(t) = at® + : is solution of the same equation for all constants a,b € R.

2.1.3.- If the graph of y, solution to a second order linear differential equation L(y(t)) = 0 on the
interval [a, b], is tangent to the t-axis at any point tg € [a, b], then find the solution y explicitly.

2.1.4.- Can the function y(t) = sin(#?) be solution on an open interval containing t = 0 of a
differential equation

y' +a(t)y +b(t)y =0,
with continuous coefficients a and b7 Explain your answer.

given below:

2.1.5.- Verify whether the functions yi, y» below are a fundamental set for the differential equations
(a) y1(t) = cos(2t), ya(t) = sin(2t),
Y +4y=0.
¢

y//_2y/+y:0.
- CL', yg(t) = mez’

22y’ —2x(x+2)y +(x+2)y=0.

2.1.6.- Compute the Wronskian of the following functions:

z, g(z) =z e”.
(c) f(0) = cos®(0), g(0) = 1 + cos(26).

2.1.7.- If the Wronskian of any two solutions of the differential equation

y' +pt)y +aqt)y =0
is constant, what does this imply about the coefficients p and ¢?

differential equation satisfied by y.

2.1.8.- Let y(t) = cit+ c2 t2 be the general solution of a second order linear differential equation
L(y) = 0. By eliminating the constants ¢; and c¢2 in terms of y and %', find a second order
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2.2. Homogenous Constant Coefficients Equations

The main result in § 2.1 is Theorem 2.1.9, which says that the closest we can get to a formula
for the solutions of an homogeneous second order linear differential equation is Eq. (2.1.8).
This general solution formula says that all solutions of the differential equation are linear
combinations of two solutions not proportional to each other—fundamental solutions.

In this section we obtain the fundamental solutions in the particular case that the
homogeneous second order linear equation has constant coefficients. Such problem reduces
to solve for the roots of a degree-two polynomial, called the characteristic polynomial.

2.2.1. The Roots of the Characteristic Polynomial. The main result in Theo-
rem 2.1.9 is that all the solutions of an homogeneous second order linear differential equation
are linear combinations of two fundamental solutions. In this section we find fundamental
solutions in the case that the equation has constant coefficients. Since the equation is so
simple, we find such solutions by trial and error. Here is an example of how this works.

Example 2.2.1. Find fundamental solutions to the equation

y" + 5y + 6y = 0. (2.2.1)

Solution: We guess solutions of the equation from a set of simple candidates, such as

y(t) = ¢, y(t) =", y(t) = e, ete,
where ¢, n, and r are constants. It is simple to see that the only constant solution of the
equation is ¢ = 0, since
d'"+5d+6c=0 = c=0.

Next we try with power functions y(t) = ¢™. If y(t) = t" is a solution, then
nn—1)t""2 4 5ptD 46" =0 = "D (n(n—1) +5nt+6¢2) =0
so we arrive at the equation
n(n—1) +5nt+6t>=0, foralltcR.

But the equation above is not true for any choice of n, therefore the functions y(t) = t"
cannot be solutions of the differential equation. From this failed attempt we see that it
would be promising to try with a test function having a derivative proportional to the
original function,

y'(t) =ry(t).
Such function would be simplified from the equation. For that reason we now try with
y(t) = e"t. If we introduce this function in the differential equation we get

(€)Y +5(E€™) +6em=0 = (*+5+6)e"=0 = rP+5+6=0. (2.2.2)

We have eliminated the exponential and any t-dependence from the differential equation,
and now the equation is a condition on the constant . So we look for the appropriate values
of r, which are the roots of a polynomial degree two,

1 1 r :—2
re=5(5EVB-2) = (-5£1) = {r+=—3

)

We have obtained two different roots, which implies we have two different solutions,

yi(t) =e 2, y(t) = e
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These solutions are not proportional to each other, so the are fundamental solutions to the
differential equation in (2.2.1). Then, Theorem 2.1.9 in § 2.1 implies that we have found all
possible solutions to the differential equation, which are given by

y(t) =cre e, ¢y, 0 € R (2.2.3)
<

The exponential functions y(t) = e"* we tried in the example above will provide solutions
to constant coeflicient equations of the form
y'+ay +ay=0,
for almost any choice of the constants a,, a,. Indeed,
(€)' +ai(€") +ae” =0 = (rP+arta)e’=0 = r’+ar+a=0.

The polynomial on the equation on the far right is important and we will give it a name.

Definition 2.2.1. The characteristic polynomzial and characteristic equation of the
second order linear homogeneous equation with constant coefficients

y// + aly/ +a, =0,

are given by
p(r) =1+ a;r + a0, p(r) =0.

As we saw in Example 2.2.1, the roots of the characteristic polynomial are crucial to
express the solutions of the differential equation above. The characteristic polynomial is a
second degree polynomial with real coefficients, and the general expression for its roots is

1

ry = 5(—(11 ++Va? — 4ao>.

If the discriminant (a? — 4a,) is positive, zero, or negative, then the roots of p are different
real numbers, only one real number, or a complex-conjugate pair of complex numbers. We
summarize our results in the following statement.

Theorem 2.2.2 (Constant Coefficients). Ifry are the roots of the characteristic polynomial
to the second order linear homogeneous equation with constant coefficients
Yy +ay +ay =0, (2.2.4)

and if c., c. are arbitrary constants, then we have the following results:
(a) If r. # r_, real or complex, then the general solution of Eq. (2.2.1) is given by

y(t) =coe™ +c et
(b) If r, = r. =r, € R, then the general solution of Eq. (2.2.]) is given by

y(t) =c.e™ 4 c tet.

Furthermore, given real constants ty, yo and y,, there is a unique solution to the initial value
problem given by Eq. (2.2./) with the initial conditions y(t,) = yo and y'(to) = y1.

Remarks:

(a) The proof is to guess that functions y(¢) = €™ must be solutions for appropriate values of

the exponent constant r, the latter being roots of the characteristic polynomial. When
the characteristic polynomial has two different roots, Theorem 2.1.9 implies we have all
solutions. When the root is repeated we use the reduction of order method to find a
second solution not proportional to the first one.
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(b) At the end of the section we show a proof where we construct the fundamental solutions
Y1, Yo Without guessing them. We do not need to use Theorem 2.1.9 in this second proof,
which is based completely in a generalization of the reduction of order method.

Proof of Theorem 2.2.2: We guess that particular solutions to Eq. 2.2.4 must be expo-
nential functions of the form y(t) = €™, because the exponential will cancel out from the
equation and only a condition for r will remain. This is what happens,

)" +ai(€") +ae” =0 = (rP+arta)e’=0 = r’+ar+a =0.

The last equation says that the appropriate values of the exponent are the root of the
characteristic polynomial. We now have two cases. If r, # r_ then the solutions

b =yt =,
are linearly independent, so the general solution to the differential equation is
y(t) =c.e™t +c et

If r, = r. = r,, then we have found only one solution y.(t) = €™, and we need to find
a second solution not proportional to y,. This is what the reduction of order method is
designed to do. We write the second solution as

y-(t) =v(t) y.(t) = y-(t) =v(t)e™,
and we put this expression in the differential equation (2.2.4),
(0" 4 2rv” +org) € + (V' 4 rov) as €' + agv e™" = 0.
We cancel the exponential out of the equation and we reorder terms,
0"+ (21 + @) V' + (12 + asro + ao) v = 0.

We now need to use that 7, is a root of the characteristic polynomial, rg + a1y + ao = 0,
so the last term in the equation above vanishes. But we also need to use that the root r, is

repeated,
a 1 a
rozfglzti\/a%félaozf?l = 2ro+a; =0.

The equation on the right side above implies that the second term in the differential equation
for v vanishes. So we get that
V=0 = o{t)=c +et
and the second solution is
y-(t) = (c1 + cat) yu(t).
If we choose the constant ¢, = 0, the function y_ is proportional to y,. So we definitely want
¢, # 0. The other constant, ¢, only adds a term proportional to y., therefore we can choose
it zero. So the simplest choice is ¢; =0, ¢, = 1, and we get the fundamental solutions
pt) = e, y(t) = temt,
So the general solution for the repeated root case is
y(t) = c. ™ + ctet.

The furthermore part follows from solving a 2 x 2 linear system for the unknowns ¢, and c..
The initial conditions for the case r, # r_ are the following,

r-to
)

Yo = y(to) = c.e™ +ce Y =Y (to) = reco €™ +rocoe’ .

It is not difficult to verify that this system is always solvable and the solutions are

(1Yo — Y1) —rito o = (Yo — y1) e T-to

“T T ¢ (re— 1)
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The initial conditions for the case r. = r_ = r, are the following,
Yo = y(to) = (cv + cty) €%, Y =y (to) = c- €7 + 1o(cy + cty) €70,
It is also not difficult to verify that this system is always solvable and the solutions are

—Tolo —Tolo
R .

Ci = (yo - (Zh - 7”oyo) to) € C. = (y1 - 7"oyo) €
This establishes the Theorem. O

Example 2.2.2. Consider an object of mass m = 1 grams hanging from a spring with
spring constant k£ = 6 grams per second square moving in a fluid with damping constant
d = 5 grams per second. Introduce a coordinate system, y, which is positive downwards and
y = 0 is at the spring equilibrium position. Find the movement of this object if the initial
position is y(0) = 1 centimeter and the initial velocity is ¢’(0) = —1 centimeter per second.

Solution: The movement of the object attached to the spring in that liquid is the solution
of the initial value problem

y'+5y +6y=0,  y(0)=1, y'(0) = —1.

Notice the initial velocity is negative, which means the initial velocity is in the upward
direction. We know from Example 2.2.1 that the general solution of the differential equation
above is
y(t) =ce X 4 ce 3t
We now find the constants ¢, and c. that satisfy the initial conditions above,
1=9y0)=c +c e =2,
, =

—-1=19¢'(0) = —2¢, — 3c- c.=—1

Therefore, the unique solution to the initial value problem is
y(t) =272 — 73,

The solution is a combination of two decaying exponentials in such a way that the solution
approaches the resting position in the limit ¢ — co from the initial position without making

any oscillation. This means that the fluid viscosity is really high and it dampens any
oscillation in the spring. <

Example 2.2.3. Find the general solution, y(t), of the differential equation
2y" -3y +y=0.

Solution: We look for every solutions of the form y(t) = e", where r is solution of the
characteristic equation

T+

:17
2 =3r+1=0 = r=-(3+V9-8) = 1
=5

1 =

T

Therefore, the general solution of the equation above is
y(t) = coet + c.ell?.
<

Example 2.2.4. Consider an object of mass m = 9 grams hanging from a spring with
spring constant k£ = 1 grams per second square moving in a fluid with damping constant
d = 6 grams per second. Introduce a coordinate system, y, which is positive downwards
and y = 0 is at the spring equilibrium position. Find the movement of this object if the
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initial position is y(0) = 1 centimeter and the initial velocity is y'(0) = 5/3 centimeters per
second.

Solution: The movement of the object is described by the solution to the initial value
problem

)
%" +6y +y=0, yO0)=1  y(0)=3.
The characteristic polynomial is p(r) = 972 + 6r + 1, with roots given by
1 1
re=o(-6=v36-36) = r=r=-c.

Theorem 2.2.2 says that the general solution has the form
y(t) = coe 3 cte /3,

We need to compute the derivative of the expression above to impose the initial conditions,
repy G /3 ( t) —t/3
ty=——=e¢ +c(l—=]e ,
yt)=-3 3

then, the initial conditions imply that

1=y(0) =c,
) , Cs
g—y(O)—_§+C_

So, the solution to the initial value problem above is
y(t) = (14 2t)e /3,

<

Example 2.2.5. Consider an object of mass m = 1 grams hanging from a spring with
spring constant k = 13 grams per second square moving in a fluid with damping constant
d = 4 grams per second. Introduce a coordinate system, y, which is positive downwards
and y = 0 is at the spring equilibrium position. Find the position function of this object for
arbitrary initial position and velocity.

Solution: The position function y of the mass-spring system must be solution of Newton’s
equation of motion
vy + 4y + 13y = 0.

To find the solutions we first need to find the roots of the characteristic polynomial,
1 1
P Ar4+13=0 = ry= 5(—41 V16-52) = ry= 5(—4¢ V'36),
so we obain the roots

ry =—243i.

Since the roots of the characteristic polynomial are different, Theorem 2.2.2 says that the
general solution of the differential equation above, which includes complex-valued solutions,
can be written as follows,

y(t) = ¢, e 723 L G (72301 ¢, . eC.

This general solution describes all possible motions of the mass-spring system above. An
equivalent description is possible in terms of only real-valued functions. In the next subsec-
tion we see how this latter description can be done. <
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2.2.2. Real Solutions for Complex Roots. We study in more detail the solutions
of the differential equation (2.2.4),

y" +awy + agy = 0,
in the case the characteristic polynomial has complex roots. Since these roots are given by

1
Ti:—%i§m7

the roots are complex-valued in the case a? — 4a, < 0. We use the notation

2
ry =atif, with oz:—%7 8= QO,&_
2 4
The fundamental solutions in Theorem 2.2.2 are the complex-valued functions
g, = elatib)t . = elaib)t,

The general solution constructed from these solutions is
y(t) = é, elatiB)t 4 & e(a—iﬁ)t7

where the constants ¢,, ¢, are complex-valued.

Usually, we are interested in real-valued solutions, for example when the differential
equation describes a mass-spring system. The problem of having complex-valued funda-
mental solutions is that even real-valued solutions are expressed in terms of complex-valued
quantities. Although it is not hard to find conditions on the complex constants ¢, and ¢
so that the function y(t) above is real valued, the expression for the general solution is still
complex-valued.

It is more convenient to write the general solution y(t) in terms of real-valued funda-
mental solutions, say y;(t) and y,(¢). In this case the general solution is

y(t) =ciy:(t) + 2y (t)a

and then real-valued solutions are given for ¢; and ¢, real, while complex solutions are given
for ¢; and ¢, complex. For this reason we now provide a new set of fundamental solutions
which is real-valued.

Theorem 2.2.3 (Real Valued Fundamental Solutions). If the differential equation
y”+a1 y/—|—a0y:O7 (225)

where a,, a, are real constants, has characteristic polynomial with complex roots r4 = a+if
and complex valued fundamental solutions

Je(t) = ettt g (1) = el
then the equation also has real valued fundamental solutions given by
y.(t) = e cos(Bt), y-(t) = e sin(St).
Furthermore, the general solution of the Eq. (2.2.10) can be written either as
y(t) = (c1 cos(Bt) + ¢, sin(Bt)) e,
where ¢y, ¢, are arbitrary constants, or as
y(t) = Ae® cos(Bt — ¢)
where A > 0 is the amplitude and ¢ € [—m, ) is the phase shift of the solution.
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Proof of Theorem 2.2.3: We start with the complex valued fundamental solutions
Gu(t) = et g (1) = el
We take the function g, and we use a property of complex exponentials,
§u(t) = el@TB = got 1Bt = ¢ (cog(Bt) + isin(Bt)),

where on the last step we used Euler’s formula ¢ = cos(6)+isin(#). Repeat this calculation
for y. we get,

3. (t) = € (cos(Bt) + isin(Bt)), §-(t) = e** (cos(Bt) — isin(Bt)).

If we recall the superposition property of linear homogeneous equations, Theorem 2.1.7,
we know that any linear combination of the two solutions above is also a solution of the
differential equation (2.2.10), in particular the combinations

1

Bo(0) = 500+ 5(0), (1) = o (5:00) — 3-1).

A straightforward computation gives
y.(t) = e cos(Bt), y-(t) = e* sin(Bt).
Therefore, the general solution is
y(t) = (c1 cos(Bt) + ¢, sin(Bt)) e
There is an equivalent way to express the general solution above given by
y(t) = Ae® cos(Bt — ¢).

These two expressions for the general solution y(t) are equivalent because of the trigono-
metric identity

Acos(ft — ¢) = Acos(Bt) cos(¢) + Asin(St) sin(¢),
which holds for all A and ¢, and St. Then, it is not difficult to see that
clecos((b)} A=/ +c
=

c, = Asin(¢) tan(¢) = %

1

This establishes the Theorem. O

Example 2.2.6. Describe the movement of the object in Example 2.2.5 above, which sat-
isfies Newton’s equation

Y’ +4y + 13y =0,
with initial position of 2 centimeters and initial velocity of 2 centimeters per second.

Solution: We already found the roots of the characteristic polynomial,
P+ Ar4+13=0 = ry= %(—41@) = ry=-2+3i
So the complex-valued fundamental solutions are
3j+(t) — e(—2+31’)t, g-(t) — e(—2—3i)t.
Theorem 2.2.3 says that real-valued fundamental solutions are given by
y.(t) = e cos(3t), y.(t) = e sin(3t).
So the real-valued general solution can be written as

y(t) = (c.cos(3t) +csin(3t)) e, ¢, c- €R.
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Soon we will need its derivative, which is
y'(t) = —2(c. cos(3t) + csin(3t)) e *" + (=3¢, sin(3t) + 3 c. cos(3t)) e ",

We now use the initial conditions, y(0) = 2, and 3/(0) = 2,

2=y(0)=c
, = =2, c.=2
2=19'(0) = —2¢, + 3c.

therefore the solution is
y(t) = (2cos(3t) + 2sin(3t)) e " (2.2.6)
<

Example 2.2.7. Write the solution of the Example 2.2.6 above in terms of the amplitude
A and phase shift ¢.

Solution: We rewrite the solution in Eq. (2.2.6) in terms of amplitude and phase shift
y(t) = Ae 2" cos(3t — ).
We will need the derivative of the expression above,
y'(t) = —2A e ? cos(3t — ¢) — 3Ae * sin(3t — ).
Let us use again the initial conditions y(0) = 2, and 3/(0) = 2,

2 = y(0) = Acos(—¢) } N { Acos(¢) =

2
2 =19'(0) = —2Acos(—¢) — 3Asin(—¢) —2Acos(¢) + 3Asin(¢) = 2

Using the first equation in the second one we get

Acos(¢) =2 N Acos(¢p) =2
—4+ 3Asin(¢) =2 Asin(¢) = 2.

From here it is not too difficult to see that

A=+224+22=2\/(2), tan(¢) = 1.

Since ¢ € [—m, ), the equation tan(¢) = 1 has two solutions in that interval,

3
-7 = ——.

¢1 = ¢2:% 1

s
43

But the ¢ we need satisfies that cos(¢) > 0 and sin(¢) > 0, which means ¢ = % Then,

y(t) =2v2e % cos(3t - g)

<

Remark: Sometimes it is difficult to remember the formula for real valued fundamental
solutions. One way to obtain those solutions without remembering the formula is to repeat
the proof of Theorem 2.2.3. Start with the complex-valued solution ¢, and use the properties
of the complex exponential,

() = (T8I — =2 Bt _ =2 (cos(3t) + isin(3t)).

The real-valued fundamental solutions are the real and imaginary parts of this expression.



122 2. SECOND ORDER LINEAR EQUATIONS

Example 2.2.8. Find real-valued fundamental solutions to the equation
y' +2y +6y=0.

Solution: The roots of the characteristic polynomial p(r) = 72 4 2r + 6 are

1 1
re=3[22VE-2] = S[-2£V720] = re=-1xiV5

These are complex-valued roots, with
a=—1, B =/5.
Real-valued fundamental solutions are

y.(t) = e~ cos(V/5t), ys(t) = e~ sin(V/51).

FIGURE 3. Solutions from Example 2.2.8.

The differential equation in this example, is a particular case of

my” +dy +ky=0
which describes the movement of a mass-spring system with mass m, spring constant k,
oscillating in a liquid with damping constant d. In the case of this example we have d/m =
2 and k/m = 6. Second order differential equations with positive coefficients and with

characteristic polynomials having complex roots, like the one in this example, describe
physical processes related to damped oscillations. <

Example 2.2.9. Find the real valued general solution of
y' +5y=0.
Solution: The characteristic polynomial is p(r) = 72 + 5, with roots ry = ++/54. In this
case a = 0, and B = /5. Real valued fundamental solutions are
y.(t) = cos(V/5 1), y.(t) = sin(V/51).
The real valued general solution is
y(t) = ¢, cos(V5t) + c. sin(V51), ¢, c- € R

Physical processes that oscillate in time without dissipation could be described by differential
equations like the one in this example. <
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In the following example we solve an initial value problem for a mass-spring system
oscillating in a medium without friction. We write the solution in terms of the amplitude
and the phase shift of the oscillations.

Example 2.2.10 (No Friction). Find the motion of a 2 kg mass attached to a spring
with constant k& = 8 kg/ sec’ moving in a medium without any friction, and having initial
conditions y(0) = —v/3 m and 3/(0) = 2 m/sec.

Solution: Newton’s law of motion for this mass is
my” +ky=0

with m = 2, k = 8, that is,

y" + 4y = 0.
The characteristic polynomial is p(r) = r% + 4 and its roos are

ry = +£2i.
We can write the solution in terms of an amplitude and a phase shift,
y(t) = A cos(2t — ¢).

We now use the initial conditions to find out the amplitude A and phase-shift ¢. But first
we need to compute the derivative,

y'(t) = —2Asin(2t — ¢).
The initial conditions imply
—V3=y(0) = Acos(—¢) = Acos(¢) = Acos(¢) =—V3, (2.2.7)
2 =19'(0) = —2Asin(—¢) = 24sin(¢) = Asin(¢) =1,
where we used the identities
cos(—¢) = cos(¢), sin(—¢) = —sin(¢).

The amplitude A can be obtained by first squaring both equations (2.2.7), (2.2.8), and then
adding them,

A?(cos®(¢) + sin®(¢)) = (—\/5)2 +12=34+41 = A=2,
where we used that A > 0 and
cos®(¢) +sin?(¢) = 1.
The phase-shift ¢ can be computed from Eq. (2.2.8) divided by (2.2.7),

Asin(¢) 1 1
——=—— = tan(¢)=-———.
Acos(s) V3 W=7
Recall ¢ € [—7,7) and the equation for the tangent has two solutions in that interval,
1 )
tan(¢) = —— = ¢1:—7T or qbgzﬁ—zz—ﬂ

V3 6’ 6 6
In order to decide which solution is the phase-shift in our problem we notice that, since

the amplitude is non-negative, the equations in (2.2.7), (2.2.8) imply that the phase-shift ¢
must satisfy

cos(¢) < 0, sin(¢) > 0.
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5
Our candidates for the phase-shift, ¢, = —% and ¢, = % satisfy

cos(¢y) >0 cos(¢p,) <0
. an .
sin(¢,) < 0 sin(¢,) > 0.
Therefore, the phase shift in our problem is
o
b= = K

Therefore we obtain the solution
8

y(t) = 2cos<2t — %)
<
In the following example we solve an initial value problem for a mass-spring system

oscillating in a medium with friction. We write the solution in terms of the amplitude and
the phase shift of the oscillations.

Example 2.2.11 (With Friction). Find the motion of a 5 kg mass attached to a spring
with constant k = 5 kg/ sec’ moving in a medium with damping constant d = 5 kg/sec, with
initial conditions y(0) = v/3 m and y'(0) = 0 m/sec.

Solution: Newton’s law of motion for this mass is
my” +dy +ky=0
with m =5, K =5, d = b, that is,
y'+y' +y=0.
The characteristic polynomial is p(r) = r% +r + 1 and its roos are

1 1, V3
Ti:§(—1i\/1—4) = Ti:—iiZT.

We can write the solution in terms of an amplitude and a phase shift,
3
y(t) = Ae /2 cos(g t— gb).

We now use the initial conditions to find out the amplitude A and phase-shift ¢. But first
we need to compute the derivative,
1
y'(t) = —3 Aet/? cos(? t— gf)) - ? Aet/? sin(? t— ¢).

The initial conditions and the identities cos(—¢) = cos(¢) and sin(—¢) = —sin(¢) imply

V3 = y(0) = Acos(e), 0=14'(0) = —% Acos(¢) + ? Asin(e).

If we use the equation on the left in the equation on the right we get

V3 V3

0= —7 + 7 ASlD(¢)
Therefore, the initial condition can be written as
Acos(¢p) = V3, Asin(¢) = 1. (2.2.9)

The amplitude A can be obtained by squaring both equation and adding them,
A%(cos?(¢) +sin®(9)) =3+1 = A=2,
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since cos?(¢) 4 sin?(¢) = 1. The phase-shift ¢ can be computed from the quotient of the
equations above,

Asin(¢) 1 1
— " — = tan = —.
Zeos(6) V3 =7
Recall ¢ € [—m,7) and the equation for the tangent has two solutions in that interval,
1 s s 5w
tan((b):% = ¢1:E, or %ZE_W:_F'

In order to decide which solution is the phase-shift in our problem we notice that, since the
amplitude is non-negative, the equations in (2.2.9) imply that the phase-shift ¢ must satisfy

cos(¢) > 0, sin(¢) > 0.

5
Our candidates for the phase-shift, ¢, = % and ¢, = —% satisfy

cos(¢y) >0 cos(¢,) <0
sin(g) >0 0 sin(¢,) < 0.
Therefore, the phase shift in our problem is
7
¢=¢ = 6

Therefore we obtain the solution

y(t) = 2e7t/2 cos(? t— %)

<

Example 2.2.12 (Variable Dissipation). Consider a mass-spring system with mass m = 1
grams and spring constant k = 49 grams/sec? hanging vertically in a liquid with damping
constant d > 0. If y is the vertical coordinate, positive downwards with y = 0 at the resting
position, then this system is described by the differential equation

y' +dy +49y =0.

(a) Find the values of the damping constant d so that all solutions oscillate without slowing
down.

(b) Find the values of the damping constant d so that all solutions oscillate and slowing
down.

(¢) Find the values of the damping constant d so that all solutions slowing down without
any oscillation.

Solution: The general solution of the differential equation above is given by
y(t) = e et e,
where r,, r, are solutions of the characteristic equation

2
rP4dr+49=0 = Tt:_gi (g) _72,

(a) If all the solutions of the differential equation oscillate without slowing down, then these
solutions must be combinations of sine and cosine functions. This happens when

d =0,
because in this case the solutions of the characteristic equation are

r, = £7i,



126

2. SECOND ORDER LINEAR EQUATIONS

and then the general solution is
y(t) = ¢, cos(Tt) + ¢y sin(7t).
These solutions oscillate without slowing down as time grows.

If all the solutions of the differential equation oscillate and slow down, then these so-
lutions must be combinations of decaying exponentials times sine or cosine functions.
This happens when

d
0< 2 <1,
because in this case
- (g)Q >0
2
and then the solutions of the characteristic equation are

neg (@) =g (- (9)

which leads us to
d d\ 2

= — — ] 2 _ —
Ty 5 +i4/7 ( ) .

If we introduce the real numbers

a=dj2, B=,T2- (g)Q,

then the solutions of the characteristic equation are r, = —a £ i. In this case the
general solution of the differential equation is

y(t) = e~ (cy cos(Bt) + ¢, sin(Bt)).
These solutions oscillate and slow down as time grows.

If all the solutions of the differential equation slow down without oscillations, then
these solutions must be combinations of decaying exponentials without sine nor cosine
functions. This happens when

d
3 > 7,
because in this case
(9)2 7?50
2

and then the solutions of the characteristic equation are

d d\2

=2t (7) 72 <0,

T 2

which are both real and both negative. In this case the general solution of the differential
equation is

y(t) = cie™ 4+ e

These solutions slow down without any oscillation.
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2.2.3. Constructive Proof of Theorem 2.2.2. We now show an alternative proof
for Theorem 2.2.2, which does not involve guessing fundamental solutions of the equation.

Proof of Theorem 2.2.2: The idea of the proof is to transform the original equation into
an equation simpler to solve for a new unknown, then solve this simpler problem for the
new unknown, and transform back the solution to the original function. We transform the
problem by by writing the function y as a product of two functions, that is, y(¢) = u(t) v(¢).
If we choose the function v in an appropriate way, then the equation for the function u will
be simpler to solve than the equation for y. In order to introduce y = uw into the differential
equation we need to compute its first and second derivatives,

y=w = vy =vv+idu = ¢y =u"v+2uv +0v"u.
Therefore, Eq. (2.2.4) implies that

(v + 2u"v" +v"u) + a; (v +v'u) + aguv = 0,

that is,
!
{u” + (al + QU—) U+ ag u] v+ (" + a0 )u=0. (2.2.10)
v
We now choose the function v such that
! !
a1+2%:0 & %:—%. (2.2.11)

We choose a simple solution of this equation, given by
v(t) = e~ /2,

Having this expression for v one can compute v’ and v”, and it is simple to check that

v + a0 = —% v. (2.2.12)

Introducing the first equation in (2.2.11) and Eq. (2.2.12) into Eq. (2.2.10), and recalling
that v is non-zero, we obtain the simplified equation for the function u, given by

2

u —ku=0, k= 7 (2.2.13)

Eq. (2.2.13) for u is simpler than the original equation (2.2.4) for y since in the former there
is no term with the first derivative of the unknown function. To solve Eq. (2.2.13) we repeat
the idea followed to obtain this equation, that is, express function u as a product of two
functions, and solve a simple problem of one of the functions. We first consider the harder
case, which is when k # 0. In this case, let us express u(t) = eVt w(t). Hence,

= VEeVFwt+eVFy = W = keVR w4+ 2VEeVF W + VR W,
Therefore, Eq. (2.2.13) for function « implies the following equation for function w
O=u’—ku=e""2VEw +u") = v’ +2Vkw' =0.

Only derivatives of w appear in the latter equation, so denoting z(t) = w’(t) we have to
solve a simple equation

d=-2Vkr = a(t) =z VM, z, € R.

Integrating we obtain w as follows,
2Vkt

/ —
w = Tee
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Renaming ¢, = —x,/(2vk), we obtain

—2Vkt Yo = Vkt \/Et.

w(t) = ce u(t) = coe¥ " + cre”
We then obtain the expression for the solution y = uw, given by
y(t) = coe"FHVRIL 4 ¢ (= F VR
Since k = (a?/4 — a,), the numbers
ri:—%:t\/E & oy = %(—aii af—4a0>
are the roots of the characteristic polynomial
24 ayr+a, =0,
we can express all solutions of the Eq. (2.2.4) as follows
y(t) = coe™" + et k#£0.
Finally, consider the case k = 0. Then, Eq. (2.2.13) is simply given by
uW'=0 = ult)=(co+act) c,c ER
Then, the solution y to Eq. (2.2.4) in this case is given by
y(t) = (co + cst) e /2,
Since k = 0, the characteristic equation r? + a; 7 + a, = 0 has only one root,
ry=r_=—ay/2,
the solution y above can be expressed as
y(t) = (co + cit) ™, k=0.
The Furthermore part is the same as in Theorem 2.2.2. This establishes the Theorem. [

2.2.4. Note On the Repeated Root Case. In the case that the characteristic poly-
nomial of a differential equation has repeated roots there is an interesting argument to
guess the solution y-. The idea is to take a particular type of limit in solutions of differential
equations with complex valued roots.

Consider the equation in (2.2.4) with a characteristic polynomial having complex valued
roots given by r1+ = a ¢4, with

a, a?

7 PENer
Real valued fundamental solutions in this case are given by
7. = e*! cos(Bt), G- = e sin(Bt).
We now study what happen to these solutions g, and ¢. in the following limit: The variable
t is held constant, « is held constant, and 8 — 0. The last two conditions are conditions on

the equation coefficients, a;, a,. For example, we fix a, and we vary a, — a?/4 from above.
Since cos(f8t) — 1 as § — 0 with ¢ fixed, then keeping « fixed too, we obtain

o= —

0.(t) = e*tcos(Bt) — et =y, ().

Since — 1 as 8 — 0 with ¢ constant, that is, sin(f8t) — S8t, we conclude that

Q_B(t) _ sin(Bt) ot sin(f3t) tet — te®t =y (¢).

B pt

sin(St)
Bt
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The calculation above says that the function §./3 is close to the function y_(t) = te*! in
the limit 8 — 0, ¢ held constant. This calculation provides a candidate, y-(t) = ty.(¢),
of a solution to Eq. (2.2.4). It is simple to verify that this candidate is in fact solution of
Eq. (2.2.4). Since y. is not proportional to y., we conclude the functions y,, y- are a funda-
mental set for the differential equation in (2.2.4) in the case the characteristic polynomial
has repeated roots.



130 2. SECOND ORDER LINEAR EQUATIONS

2.2.5. Exercises.

2.2.1.- .
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2.3. Nonhomogeneous Equations

All solutions of a linear homogeneous equation can be obtained from only two solutions that
are linearly independent— fundamental solutions. Every other solution is a linear combina-
tion of these two. This is the general solution formula for homogeneous equations, and it is
the main result in § 2.1, Theorem 2.1.9. This result is not longer true for nonhomogeneous
equations. The superposition property, Theorem 2.1.7, which played an important part to
get the general solution formula for homogeneous equations, is not true for nonhomogeneous
equations.

We start this section proving a general solution formula for nonhomogeneous equations.
We show that all the solutions of the nonhomogeneous equation are a translation by a fixed
function of the solutions of the homogeneous equation. The fixed function is one solution—
it doesn’t matter which one—of the nonhomogenous equation, and it is called a particular
solution of the nonhomogeneous equation.

Later in this section we show two different ways to compute the particular solution of a
nonhomogeneous equation—the undetermined coefficients method and the variation of pa-
rameters method. In the former method we guess a particular solution from the expression of
the source in the equation. The guess contains a few unknown constants, the undetermined
coeflicients, that must be determined by the equation. The undetermined method works for
constant coefficients linear operators and simple source functions. The source functions and
the associated guessed solutions are collected in a small table. This table is constructed by
trial and error. In the latter method we have a formula to compute a particular solution
in terms of the equation source, and fundamental solutions of the homogeneous equation.
The variation of parameters method works with variable coefficients linear operators and
general source functions. But the calculations to find the solution are usually not so simple
as in the undetermined coefficients method.

2.3.1. The General Solution Formula. The general solution formula for homoge-
neous equations, Theorem 2.1.9, is no longer true for nonhomogeneous equations. But there
is a general solution formula for nonhomogeneous equations. Such formula involves three
functions, two of them are fundamental solutions of the homogeneous equation, and the
third function is any solution of the nonhomogeneous equation. Every other solution of the
nonhomogeneous equation can be obtained from these three functions.

Theorem 2.3.1 (General Solution). Every solution y of the nonhomogeneous equation
L(y) = f, (2.3.1)
with L(y) = y" + a1y + aoy, where a4, a,, and f are continuous functions, is given by
Y=c1Ys+ CaYa + Yp,
where the functions y, and y, are fundamental solutions of the homogeneous equation,

L(y,) =0, L(y,) = 0, and y, is any solution of the nonhomogeneous equation L(y,) = f.

Before we proof Theorem 2.3.1 we state the following definition, which comes naturally
from this Theorem.

Definition 2.3.2. The general solution of the nonhomogeneous equation L(y) = f is a
two-parameter family of functions

ygen(t) =G y1(t) +cya(t) + yp(t)7 (2-3-2)

where the functions y, and y, are fundamental solutions of the homogeneous equation,
L(y,) =0, L(y,) = 0, and y, is any solution of the nonhomogeneous equation L(y,) = f.
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Remark: The difference of any two solutions of the nonhomogeneous equation is actually a
solution of the homogeneous equation. This is the key idea to prove Theorem 2.3.1. In other
words, the solutions of the nonhomogeneous equation are a translation by a fixed function,
Yp, of the solutions of the homogeneous equation.

Proof of Theorem 2.3.1: Let y be any solution of the nonhomogeneous equation L(y) = f
Recall that we already have one solution, y,, of the nonhomogeneous equation, L(y,) = f.
We can now subtract the second equation from the first,

Ly) = Llyp) =f—f=0 = L(y—yy) =0.
The equation on the right is obtained from the linearity of the operator L. This last equation
says that the difference of any two solutions of the nonhomogeneous equation is solution of
the homogeneous equation. The general solution formula for homogeneous equations says
that all solutions of the homogeneous equation can be written as linear combinations of a
pair of fundamental solutions, y,, y,. So the exist constants ¢;, ¢, such that

Y= Yp=C1Y1+ CaYa
Since for every y solution of L(y) = f we can find constants ¢;, ¢, such that the equation

above holds true, we have found a formula for all solutions of the nonhomogeneous equation.
This establishes the Theorem. (]

2.3.2. The Undetermined Coefficients Method. The general solution formula
in (2.3.2) is the most useful if there is a way to find a particular solution y, of the nonho-
mogeneous equation L(y,) = f. We now present a method to find such particular solution,
the undetermined coefficients method. This method works for linear operators L with con-
stant coefficients and for simple source functions f. Here is a summary of the undetermined
coefficients method:

(1) Find fundamental solutions y;, y, of the homogeneous equation L(y) = 0.

(2) Given the source functions f, guess the solutions y, following the Table 1 below.

(3) If the function y, given by the table satisfies L(y,) = 0, then change the guess to ty,..
If ty, satisfies L(ty,) = 0 as well, then change the guess to t?y,,.

(4) Find the undetermined constants k in the function y, using the equation L(y) = f,
where y is yp, or ty, or t?y,.

f(t) (Source) (K, m, a, b, given.) yp(t) (Guess) (k not given.)

Keat keat

Ko™ + - + K, k™ 4+ -+ + ko

K, cos(bt) + K, sin(bt) k, cos(bt) + k, sin(bt)

(Kpt™ + -+ + K,) e (kt™ + -+ + ko) e

(K, cos(bt) + K, sin(bt)) e** (K, cos(bt) + ks, sin(bt)) et

(Ept™ + - + Ko) (K cos(bt) + Ky sin(bt)) || (kmt™ + -+ + ko) (ky cos(bt) + ks sin(bt))

TABLE 1. List of sources f and solutions y, to the equation L(y,) = f.
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This is the undetermined coefficients method. It is a set of simple rules to find a
particular solution y, of an nonhomogeneous equation L(y,) = f in the case that the source
function f is one of the entries in the Table 1. There are a few formulas in particular cases
and a few generalizations of the whole method. We discuss them after a few examples.

Example 2.3.1 (First Guess Right). Find all solutions to the nonhomogeneous equation

y" =3y — 4y = 3e*.

Solution: From the problem we get L(y) = y” — 3y’ — 4y and f(t) = 3%
(1): Find fundamental solutions y., y. to the homogeneous equation L(y) = 0. Since the
homogeneous equation has constant coefficients we find the characteristic equation

2 =3r—4=0 = r,=4, r=-1, = y@t)=" y=@t ="

(2): The table says: For f(t) = 3e* guess y,(t) = ke?'. The constant k is the undetermined
coefficient we must find.

(3): Since y,(t) = ke* is not solution of the homogeneous equation, we do not need to
modify our guess. (Recall: L(y) = 0 iff exist constants c,, c- such that y(t) = c, et +-c_e™".)

(4): Introduce y, into L(y,) = f and find k. So we do that,

1
(22 —6—4)ke?* =3¢ = —6k=3 = k= —5
We guessed that y, must be proportional to the exponential 2! in order to cancel out the

exponentials in the equation above. We have obtained that
Lo
Yp(t) = —= e
JP( ) 2
The undetermined coefficients method gives us a way to compute a particular solution y,, of

the nonhomogeneous equation. We now use the general solution theorem, Theorem 2.3.1,
to write the general solution of the nonhomogeneous equation,

_ 1 .
Ygen (t) = ¢, ey et — B e’t.
<

Remark: The step (4) in Example 2.3.1 is a particular case of the following statement.

Theorem 2.3.3. Consider the equation L(y) = f, where L(y) = y"+a, y'+a, y has constant
coefficients and p is its characteristic polynomial. If the source function is f(t) = K e,
with p(a) # 0, then a particular solution of the nonhomogeneous equation is

at

Proof of Theorem 2.3.3: Since the linear operator L has constant coefficients, let us
write L and its associated characteristic polynomial p as follows,

L(y) =y" +ay +ay,  p(r) =r>+ar+ a.

Since the source function is f(t) = K e, the Table 1 says that a good guess for a particular
soution of the nonhomogneous equation is y,(t) = ke®. Our hypothesis is that this guess
is not solution of the homogenoeus equation, since

L(yy) = (a® + aya + ao) ke = p(a) ke, and p(a) # 0.
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We then compute the constant k using the equation L(y,) = f,

K
(a> +aa+ag)ke =Ke™ = pla)ke” =Ke" = k= oa)
pla
. . K . .
We get the particular solution y,(t) = ﬁ e®". This establishes the Theorem. O
pla

Remark: As we said, the step (4) in Example 2.3.1 is a particular case of Theorem 2.3.3,

3 o 3 2t 3 o Lo

)= ——e¥=__ " _*_- " = t) = —= ¢,

yp( ) p(2) e (22 _ 6 _ 4) € —6 € yp( ) 2 e

In the following example our first guess for a particular solution y, happens to be a
solution of the homogenous equation.

Example 2.3.2 (First Guess Wrong). Find all solutions to the nonhomogeneous equation

y" — 3y’ — 4y = 3¢t

Solution: If we write the equation as L(y) = f, with f(t) = 3e*, then the operator L is
the same as in Example 2.3.1. So the solutions of the homogeneous equation L(y) = 0, are
the same as in that example,

w(t) =ty =e.
The source function is f(t) = 3 e, so the Table 1 says that we need to guess y,(t) = ket
However, this function g, is solution of the homogeneous equation, because

yp=ky. = L(y,) =0.
We have to change our guess, as indicated in the undetermined coefficients method, step (3)
Yp(t) = kt et

This new guess is not solution of the homogeneous equation. So we proceed to compute the
constant k. We introduce the guess into L(y,) = f,
y,=(1+4t)ke*,  yl=B+16t)ke" = [8-3+4 (16— 12—4)t] ke" =3e",
therefore, we get that
3 3
5k=3 = k= s = yp(t) = 5te4t.

The general solution theorem for nonhomogneneous equations says that

3
Ygen(t) = cu et fe et 4+ Stett.

5
In the following example the equation source is a trigonometric function.
Example 2.3.3 (First Guess Right). Find all solutions to the nonhomogeneous equation
y" — 3y — 4y = 2sin(t).

Solution: If we write the equation as L(y) = f, with f(¢) = 2sin(t), then the operator L
is the same as in Example 2.3.1. So the solutions of the homogeneous equation L(y) = 0,
are the same as in that example,
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Since the source function is f(t) = 2sin(¢), the Table 1 says that we need to choose the
function y,(t) = k, cos(t) + k,sin(¢). This function y, is not solution to the homogeneous
equation. So we look for the constants k;, k, using the differential equation,

Yy, = —ky sin(t) + k, cos(t), Yy, = —ky cos(t) — kysin(t),
and then we obtain
[—Fky cos(t) — kysin(t)] — 3[—ky sin(t) + k, cos(t)] — 4[k, cos(t) + ko sin(t)] = 2sin(t).
Reordering terms in the expression above we get
(—5ky — 3ky) cos(t) + (3ky — bk,) sin(t) = 2sin(t).

The last equation must hold for all ¢ € R. In particular, it must hold for ¢t = 7/2 and for
t = 0. At these two points we obtain, respectively,

3ky — Bk, = 2, k1:1—7,

=

_5k1 - 3k2 = 0,} _3
17

So the particular solution to the nonhomogeneous equation is given by

Yp(t) = % [3 cos(t) — Hsin(t)].

The general solution theorem for nonhomogeneous equations implies

k2:

1
Ygen(t) = cre*t + et + T7 [3 cos(t) — 5sin(t)].

<

Example 2.3.4 (First Guess Right). Find all solutions to the nonhomogeneous equation
y' — 3y — 4y = 3t2.
Solution: If we write the equation as L(y) = f, with f(t) = 32, then the operator L is

the same as in Example 2.3.1. So the solutions of the homogeneous equation L(y) = 0, are
the same as in that example,

wt) =€, y()=c.
Since the source is f(t) = 3¢, Table 1 says we need to choose the function
Yp(t) = kot® + kot + ko.

This function y, is not solution to the homogeneous equation. So we look for the constants
ks, ki, ko using the differential equation. We start computing the first two derivative of y,,

Yy = 2kyt + ki, Yy = 2k,
and then put all that in the differential equation,
(2k,) — 3(2kat + ki) — 4(kat® + kot + ko) = 3¢°.
Reordering terms in the expression above we get
(—dk, — 3)t* + (—6k, — 4k, )t + (2k, — 3k, — 4ko) =0
The last equation must hold for all ¢ € R. This implies that each coefficient must vanish,

4k, +3=0

6k, + 4k; =0

2k, — 3ky — 4k, = 0.
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(Proof: If we have the equation at? + bt + ¢ = 0 for all ¢, then evaluating at ¢t = 0 we get
that ¢ = 0; derivate the equation with respect to ¢ and we get 2at + b = 0 for all ¢, evaluate
that at t = 0 and we get b = 0; derivate one more time and the get 2a = 0, that is a = 0.
End of Proof.) We solve this system from the top equation to the bottom, and we get
3 9 39
= kO = —.
32
Then, the particular solution to the nonhomogeneous equation is given by

3, 9
(1) =—"t2 4+ St —.
yp(t) = =72+ St o

The general solution theorem for nonhomogeneous equations implies

3 9 39
Ygen(t) = coett + et — itQ + ét—l— 3

<

In the next example we show a few nonhomogeneous equations and the corresponding
guesses for the particular solution y,,.

Example 2.3.5. We provide few more examples of nonhomogeneous equations and the
appropriate guesses for the particular solutions.

a) For y” — 3y’ — 4y = 3e*sin(t), guess, y,(t) = [k, cos(t) + kysin(t)] e*".

(a)

(b) For y” — 3y — 4y = 2t* €3, guess, y,(t) = (kat® + kit + ko) €.
(c) For y” — 3y — 4y =22 e*, guess, y,(t) = (kyt? + kit + ko) t ™.
)

(d) For y"” — 3y’ — 4y = 3t sin(t), guess, y,(t) = (k:it + ko) Vﬁl cos(t) + k, sin(t)].
<

Remark: Suppose that the source function f does not appear in Table 1, but f can be
written as f = f; + f,, with f; and f, in the table. In such case look for a particular solution
Yp = Yp; + Ypy, Where L(yp, ) = f1 and L(yp,) = f». Since the operator L is linear,

L(yp) = L(ym +ypz) = L(ym) + L(ypz) =fHit+f=f = L(yp) = f.

In our next example we describe the electric T
current flowing through an RLC-series elec- R C V(t)
tric circuit, which consists of a resistor R,

an inductor L, a capacitor C, and a voltage ¢ 3

source V(t) connected in series as shown in I(t) = electric current

Fig. 4.

FIGURE 4. An RLC circuit.

This system is described by an integro-differential equation found by Kirchhoff, now
called Kirchhoff’s voltage law,

LI'(t)+ RI(t) + é /t I(s)ds = V(2). (2.3.3)

to
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If we take one time derivative in the equation above we obtain a second order differential
equation for the electric current,

1
LI"t)+ RI'(t) + ol I(t) =V'(¢).
This equation is usually rewritten as

I"(t) + 2(%) I'(t) + % I(t) = V/L(t).

R 1
If we introduce damping frequency wy = — and the natural frequency w, = ——, then

2L VLC

V(1)
7

Kirchhoff’s law can be expressed as

I+ 2wg I' + W2 T =
We are now ready to solve the following example.
Example 2.3.6. Consider a RLC-series circuit with no resistor, capacitor C, inductor L
and voltage source V() = Vj sin(vt), where v # w, = \/%70 Find the electric current in
the case 1(0) =0, I'(0) = 0.
Solution: Kirchhoff equation for this problem is

I" + W21 = wov cos(vt)
Vo : . :
where we denoted v, = T We start finding the solutions of the homogeneous equation

I" + W2l =0.

The characteristic equation is 72 + w2 = 0, and the roots are r4 = Fwsi, and real valued
fundamental solutions are

I, = cos(wst), I_ = sin(wet).

For v # w, the source function is not solution of the homogeneous equation, so the correct
guess for a particular solution of the nonhomogeneous equation is

I, = ¢, cos(vt) + ¢, sin(vt).
If we put this function I, into the nonhomogeneous equation we get
—1?(cy cos(vt) + ¢, sin(vt)) + w2(c; cos(vt) + ¢y sin(vt)) = vov cos(vt).
If we reorder terms we get
(cx(ws — v*) — wov) cos(vt) + ¢y(wy — v?) sin(vt) = 0.
From here we get that
ey (w2 —v?) —wr =0, ca(w? —v?).

Since we are studying the case v # w,, we conclude that
VoV

CL = m, Cy = 0.
So, the particular solution is
VoV
Ip(t) = (wzojcos(ut).

0
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The general solution of the nonhomogeneous equation is

VoV
@2 —17)
We now look for the solution that satisfies the initial conditions I(0) = 0, and I'(0) = 0.
For the first condition we get

It)=cl.,+c I +1, = I(t)=c cos(wet)+ c-sin(wot) + cos(vt).

VoV VoV
OZHO):C*JF(ngﬁ = az—@.
The other boundary condition implies
0=I0)=cw, = c =0.
So, the solution of the initial value problem for the electric current is

0=

(cos(vt) — cos(wot)).

FI1GURE 5. The [ for v close to w,, showing beating, when v is close to wy.

Interactive Graph Link: Beating Phenomenon. Click on the interactive graph link
here to see how the solution I(¢) changes when v — w,, exhibiting the beating phenomenon
shown in Fig. 5.

2.3.3. The Variation of Parameters Method. This method provides a second way
to find a particular solution y, to a nonhomogeneous equation L(y) = f. We summarize
this method in formula to compute ¥, in terms of any pair of fundamental solutions to the
homogeneous equation L(y) = 0. The variation of parameters method works with second
order linear equations having wvariable coefficients and contiuous but otherwise arbitrary
sources. When the source function of a nonhomogeneous equation is simple enough to
appear in Table 1 the undetermined coefficients method is a quick way to find a particular
solution to the equation. When the source is more complicated, one usually turns to the
variation of parameters method, with its more involved formula for a particular solution.

Theorem 2.3.4 (Variation of Parameters). A particular solution to the equation
L(y) = f,
with L(y) = y" + a.(t) ¥ + ao(t) y and ay, a,, f continuous functions, is given by
Yp = UrYs + UzYa,


http://mathstud.io/?input[0]=JTJGJTJGJTIwQmVhdGluZyUyMG51JTIwY2xvc2UlMjB0byUyMG9tZWdhMCUyMCUzRCUyMDUlMjAlMEElMEFzbGlkZXIobnUlMkMwLi40Ljk5OS0lM0UwLjAwMSUyQzApJTBBb21lZ2EwJTIwJTNEJTIwNSUwQUkoeCklMjAlM0QlMjBudSUyRihvbWVnYTAlNUUyLW51JTVFMiklMjAqKGNvcyhudSUyMHgpJTIwLWNvcyhvbWVnYTAqeCkpJTBBUGxvdChJKHgpJTJDY29sb3IlMjAlM0QlMjBibHVlJTJDeCUzRCU1Qi0zMCUyQzMwJTVEJTJDeSUzRCU1Qi00JTJDNCU1RCUyQyUyMGhlaWdodCUzRDYwMCUyQyUyMHdpZHRoJTNEMTIwMCklMEE%3D&input[1]=%3D%3D
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where Yy, y, are fundamental solutions of the homogeneous equation L(y) = 0 and the
functions u,, u, are defined by
() f () yi(t) f (1)
u(t) = [ — dt, uy(t) = | ==———=dt, (2.3.4)
' Wy, () ’ Wy, ()

where Wy, ,, is the Wronskian of y, and y,.

The proof is a generalization of the reduction order method. Recall that the reduction
order method is a way to find a second solution y, of an homogeneous equation if we already
know one solution y;. One writes y, = uy; and the original equation L(y,) = 0 provides an
equation for u. This equation for u is simpler than the original equation for y, because the
function y, satisfies L(y,) = 0.

The formula for y, can be seen as a generalization of the reduction order method. We
write ¥, in terms of both fundamental solutions y,, y, of the homogeneous equation,

Yp(t) = ui(t) Y () + ua(t) ya(?).

We put this y, in the equation L(y,) = f and we find an equation relating u, and u,. It
is important to realize that we have added one new function to the original problem. The
original problem is to find y,. Now we need to find u, and u,, but we still have only one
equation to solve, L(y,) = f. The problem for u,, u, cannot have a unique solution. So we
are completely free to add a second equation to the original equation L(y,) = f. We choose
the second equation so that we can solve for u, and wus,.

Proof of Theorem 2.3.4: We look for a particular solution y, of the form
Yp = U Y1 + Uz Yo

We hope that the equations for u,, u, will be simpler to solve than the equation for y,. But
we started with one unknown function and now we have two unknown functions. So we are
free to add one more equation to fix u,, u,. We choose

uy Yy 4 uy Yy = 0.

Y uy dt. Let’s put this y, into L(y,) = f. We need y,
Yo

In other words, we choose u, = /
(and recall, u} y; + uly, = 0)
Yp = U Yy F U Yy F Up Yo F U2 Yy = Yy, = U Yy F Un U
and we also need y,,
Yp = Uy ¥y Fusyl +uyy, +us gy

So the equation L(y,) = f is

(ui ¥y + sy +upy; + usyy) + an(un Yl + uyp) + ao(us Y+ us ys) = f
We reorder a few terms and we see that

uy Y+ up Yy s (Y + asyy +aoyn) +us (Y +ary; +aoys) = f
The functions y; and y, are solutions to the homogeneous equation,
Y +ary; +aoys = 0, Yy +ary;, +acys =0,

so u; and u, must be solution of a simpler equation that the one above, given by

uy Y +up Yy = f. (2.3.5)
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So we end with the equations
w Yy +upy, = f
uyys + gy, = 0.

And this is a 2 x 2 algebraic linear system for the unknowns w}, uj,. It is hard to overstate
the importance of the word “algebraic” in the previous sentence. From the second equation
above we compute v} and we introduce it in the first equation,

’ Y1 y1y£ /

P ’
up ==y = gy - up=f = <y1y2 yﬁ%) =f
Y Ya Yo

Recall that the Wronskian of two functions is Wi, = y,y, — yiy,, we get
r_ Yo f = r yif

= U, = .
! W12 2 W12

These equations are the derivative of Eq. (2.3.4). Integrate them in the variable ¢ and choose

the integration constants to be zero. We get Eq. (2.3.4). This establishes the Theorem. [

Remark: The integration constants in the expressions for u,, u, can always be chosen to
be zero. To understand the effect of the integration constants in the function y,, let us do
the following. Denote by u, and u, the functions in Eq. (2.3.4), and given any real numbers
¢, and ¢, define

Uy = Uy + ¢, Uy = Uy + Cy.

Then the corresponding solution ¢, is given by

Yp = UsYs U Yo = Ut Y1 + U Yo+ CLY1 T+ CYo = Yp=Yp+CiYi + Yo

The two solutions g, and y, differ by a solution to the homogeneous differential equation.
So both functions are also solution to the nonhomogeneous equation. One is then free to
choose the constants ¢, and ¢, in any way. We chose them in the proof above to be zero.

Example 2.3.7. Find the general solution of the nonhomogeneous equation

y" — 5y + 6y =2€".

Solution: The formula for y, in Theorem 2.3.4 requires we know fundamental solutions to
the homogeneous problem. So we start finding these solutions first. Since the equation has
constant coefficients, we compute the characteristic equation,

1 Ty = 37

P2 —5r+6=0 = ri:§(5i\/25—24) = {r _ o
So, the functions y; and y, in Theorem 2.3.4 are in our case given by

yi(t) = e, Yo(t) = e,
The Wronskian of these two functions is given by

Wiy, () = (egt)(Q 62t) -3 egt)(GQt) = Wyyy,(t) = —e.

We are now ready to compute the functions u; and u,. Notice that Eq. (2.3.4) the following
differential equations

o Yo f U = Y f

' WylyQ ’ : Wy1y2 .
So, the equation for u, is the following,

u, = —e*(2e)(—e™) = u=2eH = wu=-e %
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uy =3 2e)(—e™) = w,=-2e" = wu,=2e,
where we have chosen the constant of integration to be zero. The particular solution we are
looking for is given by

yp = (—e72)() + (2e7)() =y, =
Then, the general solution theorem for nonhomogeneous equation implies

Ygen(t) = ¢4 et 4 e 4+ et ¢y, c. € R,

Example 2.3.8. Find a particular solution to the differential equation
t2y" — 2y =3t* — 1,
knowing that 3, = 2 and y, = 1/t are solutions to the homogeneous equation %y — 2y = 0.

Solution: We first rewrite the nonhomogeneous equation above in the form given in Theo-
rem 2.3.4. In this case we must divide the whole equation by ¢2,

2 1 1
1 _ _
We now proceed to compute the Wronskian of the fundamental solutions y,, v,

W) = () (1) -~ 203

We now use the equation in (2.3.4) to obtain the functions w; and u,,
1 1y 1 1y 1
[ I (42
w=—0-a) %= (-7) 5
1 1 1 1 1

1
=-——t3 = =In(t) + =t~2 =t’4+- = = -t 4t
{3 w = Inft) + 577, *3 va =gty

A particular solution to the nonhomogeneous equation above is g, = u;y; + uyy,, that is,

) = W) = -3,

Gp = @n(w +—Et*2]@2)+f%(4¢34ftxt’1)

6

1 1 1
=t*In(t) + - — >+ =

n()+6 3 +3

1 1
=2In(t) + = — = ¢2

1 1
_ 2 Lo
—%1M0+2 3%@)

However, a simpler expression for a solution of the nonhomogeneous equation above is

1
Yp = t° In(t) + 9

<

Remark: Sometimes it could be difficult to remember the formulas for functions u; and us
in (2.3.4). In such case one can always go back to the place in the proof of Theorem 2.3.4
where these formulas come from, the system

uyyy + uyyy = f

uyys + ugy, = 0.

The system above could be simpler to remember than the equations in (2.3.4). We end this
Section using the equations above to solve the problem in Example 2.3.8. Recall that the
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solutions to the homogeneous equation in Example 2.3.8 are y,(t) = t2, and y,(t) = 1/t,
while the source function is f(¢) = 3 — 1/¢2. Then, we need to solve the system

1
t2 ) +u;¥ =0,

(=1) 1
t2 :37?

2t ul + ul

This is an algebraic linear system for «} and u}. Those are simple to solve. From the equation
on top we get ul, in terms of u}, and we use that expression on the bottom equation,

1 1
! 3.7 / ! !
u, = —t"u, = 2tu1+tu1—3—t—2 = “1—;_@'
Substitue back the expression for «} in the first equation above and we get u,. We get,

o — 1 1

Yt 3
1

i 2

U, = —t° + -.
2 3

We should now integrate these functions to get u, and u, and then get the particular solution
Up = UsY1 + UsYo. We do not repeat these calculations, since they are done Example 2.3.8.
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2.3.4. Exercises.

2.3.1.- . 2.3.2.- .
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2.4. Forced Oscillations

In this section we study the movement of a mass-spring system having a natural fre-
quency wg and oscillating in a medium with or without friction while moving under the
effects of an external force, which itself oscillates in time with a driving frequency w. We
begin studying the case without friction and we show two main results. First, if the driving
frequency w approaches the natural frequency wy, the solution develops a pulsating modula-
tion in the amplitude, called beats. Second, if the driving frequency is equal to the natural
frequency, w = wy, the solution amplitude diverges in time, and this behavior is called res-
onance. Then we add friction to this system and we see that the divergence in time of the
resonant solution is tamed by the friction effects.

2.4.1. Description of the Problem. Consider a mass-spring system as in § 2.1,
with spring constant k£ > 0 and an attached object of mass m > 0 oscillating vertically in
a medium with friction coefficient d > 0. We introduce a vertical coordinate y, positive
downwards, with y = 0 at the rest position of the mass-spring system, as in Fig. 6.

k
k
Op----- m
At Rest
yt) |-----mmm m
y Y F(t)

FIGURE 6. Mass-Spring System with an external force F'(t).

The intrinsic forces in this system are the weight of the mass-spring, the force of the
spring, and the friction force. The weight force is given by
fg =1mg,
which is positive since it points downwards and g is the acceleration of gravity at the Earth
surface, g = 9.81m/s2. The force of the spring can be split in two parts, fo + fs, where

fo=—-mg,  fs=—ky.
We see that fy balances the weight of the mass-spring while f; is the extra force made by
the spring when it is extended by an amount y away from equilibrium. This force is opposite
to the spring displacement, called Hooke’s law. The friction force is given by

fa=—dy,
that is, it points in the opposite direction from the object’s velocity. The equation of the
mass-spring system is given by Newton’s equation, which in absence of any other forces is
given by
my" = fo+ fo+ fs + fa,
and this equation can be simplified into the form used in § 2.1,

my”’ +dy +ky=0.
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In this section we add an external force to this system, F(¢), then Newton’s equation is
my" +dy +ky=F(t).
We will study the case when the external force is an oscillatory force,
F(t) = Fycos(wt),

where we call w the driving frequency of the force. The final form of Newton’s equation in
this section is

my" +dy +ky = Fycos(wt). (2.4.1)
There is another frequency that will play an important role in this section called the natural
frequency of the mass-spring system. The natural frequency of the system is the frequency
that the spring would oscillate if there are no external forces and no friction. Newton’s
equation in this case is

my’ +ky=0.

From our work on § 2.2 it is simple to see that the general solution of this system is

yn(t) = ¢ cos(wot) + ¢, sin(wot),

[k
where wy = {/ — is the natural frequency of this mass-spring system.
m

In this section we study solutions of Eq. (2.4.1) in different cases.

(a) No friction, which means d = 0. We study two solutions in this case:

e The nonresonant solution, which is the case w # wyq, that is, the force driving
frequency is different from the natural frequency of the system.

e The resonant solution, which is the case w = wyq, that is the force driving frequency
is the same as the natural frequency of the system.

(b) Friction, which means d > 0. In this case we have solution formulas for both cases,
w # wy and w = wy. We classify these solutions according to the friction coefficient:
Small friction, critical friction, and large friction. Each of these three types of solutions
are decomposed into two parts:

e The transient part of the solution: This part of the solution is due to the initial
conditions and it goes to zero in time because of the dissipation affects from the
friction forces.

o The steady part of the solution: This part of the solution is due to the always acting
force, which as time grows it approaches a nonzero equilibrium with the dissipation
effects of the friction forces.

Notice that the solutions without friction do not have a transient part, they only have
a steady part, since there is no friction to slow down any part of the solution.

2.4.2. No Friction. Consider the mass-spring system described by Newton’s equation
(2.4.1). Assume we discard any friction effects, so we set d = 0. Newton’s equation is then
given by

my" + ky = Fycos(wt).
We simplify the equation dividing it by the object mass m,
Y +wiy = focos(wt),

where we introduced the natural frequency wy = \/k/m and we the rescaled force coefficient
fo = Fo/m. As we mentioned earlier, there are two main types of solutions to this last
equation above. Solutions where w # wy, called nonresonant solutions, and solutions where
w = wy, called resonant solutions. We start computing the nonresonant solution for some
special initial conditions.
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Theorem 2.4.1 (Nonresonant Solution). The solution y(t) of the initial value problem

y' +why = focoswt), w#wo,  y(0)=0, ¢(0)=0, (24.2)
called a nonresonant solution, is given by
y(t) = (ngiowz) (cos(wt) — cos(wot)). (2.4.3)

Proof of Theorem 2.4.1: We follow the ideas given in § 2.2 and we first find the general
solution of the homogeneous equation
y" +wiy=0.

We try solutions of the form y(¢) = r™, the exponent is solution of the characteristic equation

r? —i—wg =0 = ry==wgi.
We know from § 2.2 that the general solution of this homogeneous equation is

yn(t) = ¢ cos(wot) + ¢, sin(wpt).
Now we follow the work we did in § 2.3 and we find a particular solution y,(t) of the
non-homogeneous equation

" 2,
Yy +wiy = focos(wt).
Since w # wy, then we guess
Yp(t) = k cos(wt).

This is a good guess, since this y,(t) is not solution of the homogeneous equation. Then we
can put this y,(¢) into the non-homogeneous equation and find the undetermined constant
k. Then, we get

2 2 fo

—w” +w§) kcos(wt) = focos(wt) = k=-—5—=.
( )k cos(w) = fo cos(wt) R
Therefore, a particular solution y,(t) of the non-homogenous equation is

yp(t) = (wgf—ooﬂ) cos(wt).

The general solution of the differential equation in Eq. 2.4.2 is

y(t) = yn(t) +yp(t) = y(t) = ¢ cos(wot) + ¢, sin(wot) + o fo ) cos(wt).
2
The initial condition y(0) = 0 implies
fo fo

0=y0) =i+ 0+ —12— = ¢=——g10 _
o R )

The other condition is for y/(¢), which is given by

y'(t) = —wocy sin(wot) + woc, cos(wot) — w 2 Jj) ) sin(wt).

The initial condition y’(0) = 0 implies
0=90)=0+woc,+0 = ¢, =0,

since wg # 0. Therefore, we obtained the solution of the initial value problem,
y(t) = W(cos(wt) — cos(wot)).

This establishes the Theorem. O
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The nonresonant solution in Eq. (2.4.3) develops a particular behavior called beats in
the case that the driving frequency w is close enough to the natural frequency wgy. Below is
a precise definition of what we mean by close enough.

Definition 2.4.2. The function y(t) given by Eq. (2.4.3) develops beats when the driving
frequency w and the natural frequency wgy are close in the sense

|w = wol <0.01. (2.4.4)
Wo
In Fig. 7 we graph the solution in Eq. (2.4.3) for a value of w satisfying the beats
condition in Eq. (2.4.4). We see that the oscillations in the solution have a lower frequency
modulation in the amplitude. This modulation in amplitude produces a pulsation in the
solution.

y(t)

FIGURE 7. The spring oscillation y(¢) for driving frequency w close to the
natural frequency w,. This graph shows the modulation in amplitude called
beats.

This modulation in the amplitude is hard to see in the expression for the solution given
by Eq. (2.4.3). However, this amplitude modulation can be seen analytically if we rewrite
the nonresonant solution in Eq. (2.4.3), which is a difference of cosines, in terms of a product
of sines.

Corollary 2.4.3. The nonresonant solution in Eq. (2.4.3) can be rewritten as

y(t) = 210 sin((“‘);“) t) sin((“"TJ”")t) (2.4.5)

(wg — w?)

Proof of Corollary 2.4.3: We only need to use the trigonometric identity

cos(a) — cos(f) = _Qsm(a ; B) Sin(a;ﬁ>

with @ = wt and 8 = wyt, which gives us

) = s sin(E 520 o) (02 ),

(w3 — w? 2 2

This establishes the Corollary. (Il
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The nonresonant solution given as in Eq. (2.4.5) can be written as a slow modulated
amplitude, A(t), times a fast oscillation,

y(t) = At) sin(w 1),

where

A(t) = 22f0 sin(w0 —w) t).
(wh — w?) 2

The rapid oscillations given in the solid purple line have the large frequency (wp + w)/2
while slow modulation in amplitude given by the dashed olive line have a low frequency
(wo —w)/2. The latter is a low frequency oscillation because we are assuming that w is close
to wp, which means wg — w is close to zero. The name beats may originate in sound waves.
When a given sound has an amplitude modulation as in Fig. 7 one hears a pulsation over
the original sound, hence the name beats.

2.4.3. Resonant Solution. In Theorem 2.4.1 we assumed that the driving frequency
is different from the natural frequency of the mass-spring. Now we study the case when
the external force oscillates exactly at the natural frequency of the spring. Notice that the
nonresonant solution found in Theorem 2.4.1 is not defined for w = wq, because this solution
takes the form 0/0. We need to redo the calculation to compute the solution specifically for
the case w = wy.

Theorem 2.4.4 (Resonant Solution). The solution y(t) of the initial value problem
Y +wiy = focos(wot), y(0) =0, ¢'(0)=0, (2.4.6)
called a resonant solution, is given by

y(t) = %t sin(wot). (2.4.7)

We see that the resonant solution oscillates with the natural frequency of the mass-
spring and with the amplitude of the oscillations increasing linearly in time, forever. In a
real mass-spring system this means that the amplitude of the oscillations increases until the
spring deforms or breaks.

Proof of Theorem 2.4.4: In the proof of Theorem 2.4.1 we found the general solution of
the homogeneous equation
y' +wiy =0,
which are given by
yn(t) = ¢, cos(wot) + ¢, sin(wot).
Now we follow again the work we did in § 2.3 and we find a particular solution y,(t) of the
non-homogeneous equation

Y +wiy = focos(wot). (2.4.8)
Since the driving frequency is wy we cannot guess
Yp(t) = k cos(wot)
because this y,(t) is solution of the homogeneous equation. Instead, we guess
yp(t) = k1 tcos(wot) + ko t sin(wot).
This is a good guess, since this last y,(t) is not solution of the homogeneous equation and we

will be able to find the constants k1, ko. We find these constants in the usual way, called the
undetermined coefficients method. We put this y,(¢) into the non-homogeneous equation
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and find the undetermined constants ki and k. First we need to compute y;)(t) and then
1
Yy (1),

y;(t) =k COS(OJ()t) — kqwot Sin(th) + ko Sin(th) + kowot COS(Wot),

Yy (t) = —2k1wo sin(wot) — kywit cos(wot) + 2kawg cos(wot) — kaw?t sin(wot).

We use the expressions for y, and y, in the non-homogeneous equation in (2.4.8),

72](11&)0 Sin(th) — klwgt COS(th) + 2]’62&]0 COS(WQt) — kgwgt SiH(WQt)

+w (k1 t cos(wot) + ko t sin(wot)) = fo cos(wot).
After a few simplifications we get

—2kwp sin(wot) + 2kawg cos(wot) = focos(wt) = k1 =0, ko = ijo'
0

Therefore, a particular solution y,(t) of the non-homogenous equation is

yp(t) = 2%)025 sin(wot).

Notice that this particular solution already satisfies the initial conditions

yp(0) =0,  y,(0)=0.

Therefore, this y,(t) is the unique solution of the initial value problem. This establishes the
Theorem. O

The resonant solution in Eq. (2.4.7) can be written as

_ Jo

yp(t) = A(t) sin(wot), At) = S0y

We see that the amplitude A(t) of this solution increases with time, ¢, and diverges in the
limit ¢ — oo. This mathematical increase in the amplitude means that the real life mass-
spring increases its amplitude until the spring no longer acts as a spring, because it deforms
or it breaks. In the Fig. 8 we graph the resonant solution in blue and a beats solution in
red. The beats solution has the same parameters as the resonant solution plus a driving
frequency close to the natural frequency of the mass-spring.

The graphs in Fig. 8 suggest how the resonant solution can be constructed as a limit
of the beats solution when the driving frequency w approaches the natural frequency wg. A
more precise statement is given in the following result.

Theorem 2.4.5. Consider the nonresonant and resonant solutions

ynr(t) = —5— ) sin((wO;w) t) sin((wO;w) t), yr(t) = ZfTOOt sin(wot).

Then, for every fized value of time, t, holds

lm yygr(t) = yr(t).

w—rwo
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FIGURE 8. The resonant solution in blue and a beats solution in red. This
graph shows how the amplitude of the oscillations in the resonant solution
increases in time without bound.

Proof of Theorem 2.4.5: We only need to rewrite the nonresonant solution as follows

2fo . ((wo —w) . (wo +w)
wrll) = G =)o + ) sin 2 ) sin 2 )
o ((wo—w)
_2fo by sin(=E )y (wo +w)
N (wo +OJ) (2) ( ("JOQ_"J) t ) Sln( 2 t)
4 4 4
fo t . -
o ) sin(wot) = yn(t),
where we used that for a fixed ¢ we have
sin( (1720 1
RO —1 and (wo+w)— 2wy as w — wo.

2
Therefore, for a fixed value of time ¢ we have shown that

ynvr(t) > yr(t) as w — wp.

This establishes the Theorem. O

2.4.4. Damped Forced Oscillations. Once again, consider the mass-spring system
described by Newton’s equation (2.4.1),

my" +dy +ky = Fycos(wt).
We simplify the equation dividing by the object mass m,
Y+ 2y +wiy = focos(wt),
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where we introduced the natural frequency wp, the rescaled friction coefficient a;, and the
rescaled force coefficient fy, as follows,

k d Fy
wo =1\ —» o=, fo=—.
m 2m m
Now we show the general solution of this equation, which depend on the values of the friction
constant «.

Theorem 2.4.6 (Damped Forced Oscillations). The general solution of the differential
equation
" +2ay +wiy = focos(wt),
is given by the formula
y(t) = yr(t) +ys(t),

where the transient part of the solution is given by either of the three expression below,
depending on the value of «,

yr(t) = e~ (c1 cos(Bt) + cosin(Bt)), B=1/wi—a? 0<a<wy, (smallfriction)
yr(t) = e *(c1 + 2 t), a =uwyg, (critical friction)
yr(t) = e~ (c1 cosh(t) + cosinh(yt)), v =4/a? — wg, a > wg, (large friction)

were ¢y, ¢y are arbitrary constants, and the steady part of the solution for any value of the
friction parameter o > 0 is given by

fo

wi — w?)? + (2aw)?

ys(t) = ( ((wg — w?) cos(wt) + 20w sin(wt)).

We see that the motion of the mass-spring system can be split into two main parts: a
transient part made by the initial conditions of the system that goes to zero as time grows,
and a steady part made by the external force that remains finite and balances the effects of
friction.

Proof of Theorem 2.4.6: In order to find the general solution of the equation
Y + 20y 4+ wiy = focos(wt)
we start finding the general solution of the homogeneous equation
y' + 20y +wiy=0.

We try exponentials, y(t) = e”*, which gives us the characteristic equation for the exponent,

P r2ar+wi=0 = r,=-at/a—wl

The three cases mentioned in the theorem, small friction, critical friction, and large friction
arise from these values of r,, respectively,

r. = —a+ fi B =/wi— a2, 0 < a < w, (small friction)

Ty = —a, o = wy, (critical friction)

ry=—at-vy, v =4/a? — w3, o > w, (large friction).
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Therefore the corresponding general solutions of the homogeneous equation, called here
yr(t), are given by

yr(t) = e (c1 cos(Bt) + casin(fBt)),
yr(t) = e *(c1 + 2 t),
yr(t) = e~ (c1 cosh(vt) + co sinh(7t)).
Now we only need to find a particular solution of the nonhomogeneous equation
Y+ 20y +wiy = focos(wt).
We use the undetermined coefficients method and we guess a particular solution, yg(t),
ys(t) = ky cos(wt) + ko sin(wt),
which is a good guess for any value of o > 0. The first and second derivatives are
ys(t) = w(—Fky sin(wt) + ks cos(wt))
ya(t) = w?(—ki cos(wt) — ko sin(wt)).
If we put this function and its derivatives in the nonhomogeneous equation we get
w? (—k1 cos(wt) — ko sin(wt)) + 20w (—k; sin(wt) + ks cos(wt))
+wd (k1 cos(wt) + ko sin(wt)) = fo cos(wt).
If we reorder a few terms we arrive to the equation
(k1 (wi — w?) + 2awks — fo) cos(wt) + (k2 (wg — w?) — 20wk ) sin(wt) = 0.
Since this last equation must hold for every value of the variable ¢, this means
Ey(wd — w?) 4 2awky — fo = 0,
ko(wi — w?) — 2awk; = 0.
We solve these equations for the constants k; and ko,

(wh —w?) fo
(w§ = w?)? + (20w)?’
20w fo
(w§ = w?)? + (20w)?
Therefore, we have found a particular solution
Jfo
(wd — w?)? + (2aw

This establishes the Theorem. O

k=

ko =

ys(t) = E ((w§ — w?) cos(wt) + 20w sin(wt)).

We can see in Theorem 2.4.6 that the transient part of the solution, y(t), for any value
of the friction constant o > 0, has a factor e=¢. This factor is the reason we call this part of
the solution a transient solution. This factor makes yr(t) — 0 as t — oco. Even in the large
friction case, where we have cosh(vt) and sinh(+¢) in the transient solution, the exponential
factor e~®! drives this part of the solution to zero as t grows, since by definition we have
y=va?—wi <a.

We also see in Theorem 2.4.6 that the steady part of the solution ys(t), which has no
exponential decay, contains oscillatory functions with the force driving frequency w. This
solution is well defined even in the resonance case, w = wy, and it is given by

ys(t) = S sin(wot). (2.4.9)
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The friction coefficient plays an important role in this situation, because this resonant
solution above diverges when the friction coefficient approaches zero.

Sometimes it is convenient to write the steady part of the solution in terms of amplitude
and phase shift.

Corollary 2.4.7. The function

= fo w2 — w?) cos(w aw sin(w
yS(t) - (wg _ wg)g + (2040.))2 (( 0 ) ( t) +2 ( t)) (2410)

can be written as
ys(t) = Acos(wt — @),
where the amplitude A and phase shift ¢ are given by

4 I |
V(Ww§ = w?)? + (20w)?
20w
¢ = arctan(zi), wo > W,
tan(6) 20w wi — w?
an(¢) = ——
wd — w?

20w
¢=m+ arctan(ﬁ), wo < W.
Wi —w

Proof of Corollary 2.4.7: The trigonometric identity
cos(a — b) = cos(a) cos(b) + sin(a) sin(b)
implies that
ys(t) = Acos(¢) cos(wt) + Asin(¢) sin(wt).

Comparing the expression above with Eq. (2.4.10) we get

(wg —w?) fo 2aw foy
(w§ — w?)? + (20w)?’ (w§ —w?)? + (20w)?”
If we add up the squares of these two equations we get a formula for A, because

oo (=P F fo

(wg —w?)?2+ (2aw)2)2 V(WZ —w?)? + (20w)?’
where we used that cos?(¢) + sin?(¢) = 1. The formula for ¢ comes from
_ Asin(¢) 20w

tan(¢) = Acos(¢)  wi —w?’

Notice that for w < wg the formulas in Eq. (2.4.11) say that cos(¢) > 0 and sin(¢) > 0,
which means that

Acos(¢) = Asin(¢) = (2.4.11)

20w
¢ = arctan (27) .

wi — w?
But in the case w > wy the formulas in Eq. (2.4.11) say that cos(¢) < 0 and sin(¢) > 0, and
since every phase shift is defined in the interval ¢ € (—, 7], all this means that
20w
¢ =7+ arctan(ﬁ)
Wi —w

This establishes the Corollary. ([l

In Fig. 9 we show the graph of the function A(w), the amplitude of the steady part
of the solution as function of the driving frequency. We can see that at resonance, when
w = wp, the amplitude A(w) is well-defined and it achieves its maximum value. We can



154 2. SECOND ORDER LINEAR EQUATIONS

use the expression of the solution yg(t) at resonance given in Eq. (2.4.9) to see that this
maximum value, A(wp), satisfies that A(wg) — oo as the friction coefficient o — 0.

Aw)

wo w

FIGURE 9. The amplitude given in the Corollary 2.4.7 as function of the
driving frequency, A(w).

In the last part of this section we study the behavior of the damped forced oscillation
solutions found in Theorem 2.4.6 in the case that:
e we are at resonance, that is the driving frequency is equal to the natural frequency
of the mass-spring, w = wp;
e the friction coefficient @ approaches zero.
Since we are interested in o — 0, we only need the solution in Theorem 2.4.6 for small
friction, which is given by

y(t) = e~ (c1 cos(Bt) + ca sin(Bt))
Jo

+ (wd — w?)? + (2aw

E ((wg — w?) cos(wt) + 20w sin(wt)),

where 8 = \/w? —a?. We choose the constants c¢1, ¢z so that this solution satisfies the
homogeneous initial conditions y(0) = 0 and y’(0) = 0, which are the same initial conditions
we had in the case without friction. It is not difficult to verify that the solution satisfying
these homogeneous initial conditions is

I —at 2 2 a9 2\ s
y(t) = ( 0 E (e (— (w2 — w?) cos(Bt) — 5t +w )sin(Bt))

wd — w?)? 4+ (2aw

+ ((w§ — w?) cos(wt) + 20w Sin(wt)).

We are interested to see what happens at resonance, w = wq, and the solution above reduces
to the damped resonant solution

B fo( et SIn(0t) sin(wot))

=_—|—e + .
20 B wo

We see the tin the case of no friction, & = 0, the solution above is not defined, since for

a = 0 we have 8 = wp, which means we get an expression of the form

0

yDR(t)‘a:O o

Yor(t)

It turns out that this damped resonant solution ypr(t) approaches the resonant solution
without friction in Eq.(2.4.7) in the limit o — 0.
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Theorem 2.4.8. Consider the damped resonant and undamped resonant solutions

= Qf% (_e—at Sinéﬁt) I Sinfj;ot)>7 yr(t) = ﬁ t sin(wot).

B 2w0
Then, for every fized value of time, t, holds

yor(t)
C{ig%) yDR(t> = yR(t)'

Proof of Theorem 2.4.8: In this calculation we need the expansions,
2 4 2

x x
M=1+5—§+0(x6), em=1+x+%+0(i’33),
1 z? ozt 6 z3
— Lt : _ 5
\/m—1—|-2+8+(9(30)7 sm(x)—q:—g—&—(’)(x).
Using these expansions we get
a? a? 4
1 1 1 1 2
L R . )
B wo /i a2 wo 2w§
wo
a?t?

e~ =1—at+

If we use these expansions in ypr(t) we get

22 2 1 2 sin(wot f
yoa(t) = Qf—z(f(lfatJra )sm(wotu20;8))%(1+;J8)+8m520 ))+O(a3). (2.4.12)

Now we need the formula
sin(a — b) = sin(a) cos(b) — sin(b) cos(a),

which implies

2 2 24
sin(wot (1 — ;7%)) = sin(wopt) cos(;—wo) - sin(;—wo) cos(wot)
2
. a“t 4
= sin(wot) — S cos(wot) + O(a”), (2.4.13)
wo

where in the last step we used the expansions

) x3 5 x? 4
sm(ar):xfEJrO(x ) cos(:z:):leJrO(:c ).
If we use Eq. (2.4.13) in Eq. (2.4.12) we get
2t2 2t 2
ypr(t) = 25204 ((—1 tat—2 ) (sin(wot) — ;YTJO cos(wot)) (1 + ;78) + sin(wmﬁ))
+ O0(a?).
Expanding the terms in the first product above we get
2 242 2
ypr(t) = 25;004 ((— sin(wot) + ;YTO cos(wot) + at sin(wot) — « sin(wot)) (1 + 20[7(2))

+ sin(wot)) +O(a?).
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Expanding the terms in the last product above we get

fo . o?t . o?t? o?
ypr(t) = S (—M+ %0 cos(wot) + at sin(wpt) — 5 sin(wot) — %3 sin(wot)
+ sinet]) + - O(a),
Jo

t 1
= g (atsineot) + ? (5 cos(awnt) — 7 sin(unt) (1+w2)) ) +O(a?).

We now cancel the factors o and we get our final expression

ypr(t) = QfTOO tsin(wot) + a % (wot cos(wot) — (1 4+ wit?) sin(wot)) + O(a?).
0
From this last expression is simple to see that

C{Z% Ypr(t) = 2]%0 tsin(wot) = yr(1).

This establishes the Theorem.
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2.4.5. Exercises.

2.4.1.- . 2.4.2.- .






CHAPTER 3

The Laplace Transform Method

The Laplace Transform is a transformation, meaning that it changes a function into a new
function. Actually, it is a linear transformation, because it converts a linear combination of
functions into a linear combination of the transformed functions. Even more interesting, the
Laplace Transform converts derivatives into multiplications. These two properties make the
Laplace Transform very useful to solve linear differential equations with constant coefficients.
The Laplace Transform converts such differential equation for an unknown function into an
algebraic equation for the transformed function. Usually it is easy to solve the algebraic
equation for the transformed function. Then one converts the transformed function back
into the original function. This function is the solution of the differential equation.

Solving a differential equation using a Laplace Transform is radically different from all
the methods we have used so far. This method, as we will use it here, is relatively new. The
Laplace Transform we define here was first used in 1910, but its use grew rapidly after 1920,
specially to solve differential equations. Transformations like the Laplace Transform were
known much earlier. Pierre Simon de Laplace used a similar transformation in his studies of
probability theory, published in 1812, but analogous transformations were used even earlier
by Euler around 1737.
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3.1. Introduction to the Laplace Transform

The Laplace transform is an integral transformation that takes a function of a real variable,
say ¢, multiplies that function by an exponential e~%!, where s is a real or complex variable,
and integrates this product on t € [0, 00). This transformation is an example of a broad type
of transformations called integral transformations, which include the Fourier transform, the
Laplace-Carson transform, the Mellin transform, and many others.

Transformations along these lines were first introduced by Leonhard Euler in 1737.
Later on, in 1769, Euler used one of these transformations to solve second order linear
differential equations with constant coefficients. Something along these lines is what we are
going to do in this chapter. Joseph-Louis Lagrange used similar transformations in 1759 to
solve the wave equation—a partial differential equation describing the propagation of waves
in a medium, such as pressure waves on air which is the origin of sounds. Pierre-Simon
Laplace (1749-1827) started working on integral transformations in 1779. Laplace returned
to this subject during the period of 1782-1785 when he laid the main groundwork on integral
transforms together with some applications to solve differential equations. That’s why the
integral transform we study in this section is named after Laplace. Many others worked in
this subject, we only mention here Gustav Doetsch (1892-1977) who developed the modern
version of the Laplace transform in 1937 and popularized its use on problems from physics
and engineering.

3.1.1. Overview of the Method. Suppose we want to solve Newton’s equation of
motion for the position function y(t) of a particle subject the second order linear differential
equation

Y +ay +acy = f(t)
with constant coefficients a,, a,, and an impulsive force f(t), and initial conditions

y(0) =%,  ¥(0)=y.

Impulsive forces are zero for all times except at a single point ¢, when they are infinite
in a particular way—they transfer a finite amount of momentum (mass times velocity)
to the particle. An example of an impulsive force is the force done by a hammer hitting a
pendulum. The particle is the object hanging in the pendulum, and the force by the hammer
happens at a single point in time, the intensity of the force at that time is very large, but
the amount of momentum transferred to the system is finite. We will study impulsive forces
in Section 3.4.

One way to describe impulsive forces mathematically is by integration on a finite time
interval, where we can use their property that the amount of momentum transferred by the
force is finite. Since integration in time will be part of the calculations used to solve the
equation above, we may use integrations by parts in the terms that have derivatives of y(t).
So, to solve the initial value problem above we first multiply the equation by a function
p(t),

1(t) (Y +ary’ +acy) = pu(t) f(t)
then we integrate in time from the initial time ¢ = 0 to infinity,

oo

/ T O+ ay +aoy)dt = | u s
0 0

and now we move the derivatives from y(¢) to u(t) using integration by parts. This idea
could work if the function u(t) has simple derivatives and helps the integral to converge in
the interval [0, 00). Different choices of the function p(t) define different transforms. The
Laplace transform is the case when we choose the function u(t) as

p(t) = e,
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where s is any constant, real or complex. When s is real and positive or complex with
positive real part, this exponential function will help make the integrals convergent. Also,
this exponential function is simple to derivate,

i(e—st) = —g e_St.

dt
If we go back to our initial value problem above we have,

oo o0
/ e (Y +ary +acy)dt = / e st f(t)dt.
0 0
For simplicity, let us consider the case here of homogeneous initial conditions,
y(0) =0, y'(0) =0,

and let’s assume the solution y(t) grows slower than an exponential as t — co. In this case,
we can integrate by parts the equation above and we get

/ =t (2 y(t) + 5.0y y(t) + ao y) dt = / e () dt,
0

0
where we used that the coefficients a4, a, are constants. Equivalently,
o0 o0
(s> +ay s+ ao)/ et y(t) dt = / e St f(t)dt.
0 0
We see that the integration by parts has changed derivatives into multiplications by s. So,

we have transformed the differential equation for y(t) into an algebraic equation for the
transformed function Y'(s), where

o0
Y(s) = / et y(t) dt.
0
We will call Y(s) the Laplace transform of y(¢) and also use the notation
Lly(t)] =Y (s).

The idea above will allow us to find the transformed function Y'(s) and then invert the
transformation and find the function y(t) solution of the original initial value problem. We
can summarize these steps as follows,

] ) . Solve the Transform back
differential] (1) Algebraic (2) aloebraic (3) to obtain
eq. for y. - eq. for L[y]. - 8 - v
E eq. for L[y]. (Use the table.)

The last step above, transforming back from Y'(s) to y(¢), will be done using a Laplace
transform table that we will construct by hand. For example, we will show later on that
the Laplace transform changes

a

f(t) =sin(at) into F(s) = o
which will be one entry in our Laplace transform table.

As we see above, this idea will work on differential equations of any order as long as
the equation is linear with constant coefficients, so we can carry out the integrations by
parts. This concludes our brief overview of the ideas that led to the Laplace transform and
how we use it to solve differential equations. In the next subsection we formally introduce
the Laplace transform, we compute the Laplace transform of a few functions, then we show
the main properties of this transformation, and finally we solve a first order initial value
problem using the Laplace transform method.
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3.1.2. The Laplace Transform. The Laplace transform is a transformation, meaning
that it converts a function into a new function. We have seen transformations earlier in these
notes. In Chapter 2 we used the transformation

Lly@®)] =y"(t) + a1y (t) + ao y(t),

so that a second order linear differential equation with source f could be written as L[y] = f.
There are simpler transformations, for example the differentiation operation itself,

D[f(&)] = f'(t).

Not all transformations involve differentiation. There are integral transformations, for ex-
ample integration itself,

Hf@ﬂlﬂzf@)ﬁ~

Of particular importance in many applications are integral transformations of the form

b
Tmm=/K@ﬂNMu

where K is a fixed function of two variables, called the kernel of the transformation, and a,
b are real numbers or +00. The Laplace transform is a transfomation of this type, where
the kernel is K (s,t) = e~ 5!, the constant a = 0, and b = oo.

Definition 3.1.1. The Laplace transform of a function f defined on Dy = (0,00) is

Fls) = /oo = F(t) dt, (3.1.1)

0

defined for all s € Dp C R where the integral converges.

In these note we use an alternative notation for the Laplace transform that emphasizes
that the Laplace transform is a transformation: £[f] = F, that is

] ]:/Oooe-sw ) dt.

So, the Laplace transform will be denoted as either L[f] or F, depending whether we want
to emphasize the transformation itself or the result of the transformation. We will also use
the notation L[f(t)], or L[f](s), or L[f(¢)](s), whenever the independent variables ¢ and s
are relevant in any particular context.

The Laplace transform is an improper integral—an integral on an unbounded domain.
Improper integrals are defined as a limit of definite integrals,

0 N
/ g(t)dt = lim g(t) dt.
to N

— 00 to

An improper integral converges iff the limit exists, otherwise the integral diverges.
Now we are ready to compute our first Laplace transform.

Example 3.1.1. Compute the Laplace transform of the function f(t) = 1, that is, £[1].

Solution: Following the definition,

00 N
L[1] = / e *'dt = lim e "t dt.
0

N—o0 0
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The definite integral above is simple to compute, but it depends on the values of s. For
s =0 we get
N

lim dt = lim N = oo.
N—o0 0 n—o00

So, the improper integral diverges for s = 0. For s # 0 we get

N
1 1
lim e t'dt = lim —-e % = lim —- (6_5N —1).
N—=o0o Jg N—oo 8 0 N—oco 8
For s < 0 we have s = —|s|, hence
. 1, N . 1 S|V
lim —- (e —1)= lim —— (e —1) = —oc0.
N—oo 8 N—oo 8

So, the improper integral diverges for s < 0. In the case that s > 0 we get
1 X 1
lim —— (e *N —1) = -,
N—00 S S

If we put all these result together we get

Example 3.1.2. Compute L[e?], where a € R.

Solution: We start with the definition of the Laplace transform,

Le™ :/ e_St(e“t)dt:/ e~ (=)t gy,
0 0

In the case s = a we get
Lle™] = / 1dt = oo,
0

so the improper integral diverges. In the case s # a we get

N

L[e™] = lim e~ (=Dt gt s # a,

N—00 0

-2y

_ Ji&[é__li) (e _ 1)),

Now we have to remaining cases. The first case is:

s—a<0 = —(s—a)=|s—a/>0 = lim e "I =

7
N—00

so the integral diverges for s < a. The other case is:

s—a>0 = —(s—a)=—|]s—al<0 = lim e "IN =,
N—o00

so the integral converges only for s > a and the Laplace transform is given by

Lle™] = 5> a.

(s—a)
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Example 3.1.3. Compute L[te?!], where a € R.

Solution: In this case the calculation is more complicated than above, since we need to
integrate by parts. We start with the definition of the Laplace transform,

N—oc0 0

e o] N
Lte™] = / e S'te® dt = lim te~ (=t g¢.,
0

This improper integral diverges for s = a, so L[te?!] is not defined for s = a. From now on
we consider only the case s # a. In this case we can integrate by parts,

N N
n 1 / ef(sfa)t dt:|,
o s—a J,

N 1
s—a) o (s—a)?
In the case that s < a the first term above diverges,

tef(sfa)t

L[te™] = lim [f

N—00

1
(s —a)
that is,

te—(s—a)t e—(s—a)t

L[te™] = lim [—

N—00

N] (3.1.2)

0

lim — Ne 6=0N — i — Nels=alN = oo,

N—o00 (s—a,) N—oo (s—a)

therefore L[te®] is not defined for s < a. In the case s > a the first term on the right hand
side in (3.1.2) vanishes, since

: _ —(s—a)N _ —(s—a)t —
Nh_r)mOC G_a) e 0, G a)te 1eo = 0.
Regarding the other term, and recalling that s > a,
1 1 1
li _ —(s—a)N _ 07 —(s—a)t _ )
N e (s —a)Qe (s — a)Qe |t=0 (s —a)?
Therefore, we conclude that
1
Llte™) = ———, 5 > a.
Ay A <
Example 3.1.4. Compute L[sin(at)], where a € R.
Solution: In this case we need to compute
[e’e] N
L[sin(at)] = / e *'sin(at) dt = lim e *'sin(at) dt
0 N—00 0

The definite integral above can be computed integrating by parts twice,

N

N
/ e *'sin(at) dt = ! [e=*" sin(at)] ‘ - % [e=*" cos(at)]
0 s 0

N g2

N
- 5—2/0 e *'sin(at) dt,

S 0

which implies that
2

N
(1 + 2—2) /O e Stsin(at) dt = —é [e=*" sin(at)]

then we get

/N e *'sin(at) dt = L [—1 [e™*"sin(at)] too [e™*" cos(at)] N]'
o (s2+a?) L s o 82 0
and finally we get
N 52 1 a
/0 e Stsin(at) dt = 1 a7 {—g [e_SN sin(aN) — 0] — 2 [G_SN cos(alN) — 1]}
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One can check that the limit N — oo on the right hand side above does not exist for s < 0,
so L[sin(at)] does not exist for s < 0. In the case s > 0 it is not difficult to see that
2

/OOO e sin(ar)dt = (o) [1 0-0)~ %01

+a?/ls

so we obtain the final result

L[sin(at)] = ﬁ 5> 0.

<

In Table 1 below we present a short list of Laplace transforms. They can be computed
in the same way we computed the the Laplace transforms in the examples above.

f#) F(s) = LIf(1)] Dp
fit)=1 F(s) = >0
(1) = eot Fo) = ! 5 s>a

F(t) =tn F(s) = S(TLLLI) s> 0

£(t) = sin(at) F(s) = SQiLaQ $>0

£(t) = cos(at) F($)= 5o 5> 0

f(t) = sinh(at) F(s) = 5= s> al
#(t) = cosh(at) F(s) = ﬁ s> |al
F(t) = trett F(s) = (8_2)'(%1) s>a

f(t) = e sin(bt) F(s) = (sal))QerQ s>a

F(t) = €% cos(bt) F(s) = (sfsa_);:)—bQ s>a

F(t) = e sinh(bt) F(s) = m s—a> bl
F(t) = e cosh(bt) F(s) = (Sf"a)fsz s—a>|b|

TABLE 1. List of a few Laplace transforms.
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3.1.3. Main Properties. Since we are more or less confident on how to compute
a Laplace transform, we can start asking deeper questions. For example, what type of
functions have a Laplace transform? It turns out that a large class of functions, those that
are piecewise continuous on [0,00) and bounded by an exponential. This last property is
particularly important and we give it a name.

Definition 3.1.2. A function f defined on [0,00) is of exponential order s,, where s, is
any real number, iff there exist positive constants k, T such that

()] < ket forall t>T. (3.1.3)

Remarks:

(a) When the precise value of the constant s, is not important we will say that f is of
exponential order.
2
(b) An example of a function that is not of exponential order is f(t) = e.
This definition helps to describe a set of functions having Laplace transform. Piecewise
continuous functions on [0, 00) of exponential order have Laplace transforms.

Theorem 3.1.3 (Convergence of LT). If a function f defined on [0,00) is piecewise con-
tinuous and of exponential order s,, then the L[f] exists for all s > s, and there exists a
positive constant k such that
k
ILf]] < , s> S.

s — S

Proof of Theorem 3.1.3: From the definition of the Laplace transform we know that

L[f] = lim Ne—sff(t) dt.

0

The definite integral on the interval [0, N] exists for every N > 0 since f is piecewise
continuous on that interval, no matter how large N is. We only need to check whether the
integral converges as N — oo. This is the case for functions of exponential order, because

N N N N
/ e Stf(t) dt’ g/ e—st|f(t)|dt</ e~ kesot dt:kz/ e~ (57s0)t gy
0 0 0 0

Therefore, for s > s, we can take the limit as N — oo,

k
(s —s0)
Therefore, the comparison test for improper integrals implies that the Laplace transform
L[f] exists at least for s > s,, and it also holds that

k
|Lf]] < , s> So.
s — S
This establishes the Theorem. O
The next result says that the Laplace transform is a linear transformation. This means
that the Laplace transform of a linear combination of functions is the linear combination of

their Laplace transforms.

1) < Jim | [ et ar] < rzien) =

N—o00

Theorem 3.1.4 (Linearity). If L[f] and L[g] exist, then for all a, b € R holds
Llaf +bg] = aL[f] +bL]g].
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Proof of Theorem 3.1.4: Since integration is a linear operation, so is the Laplace trans-
form, as this calculation shows,

ﬁ[af+bg}:/ooe Hlaf(t) + bg(t)] dt

:a/ et f(t) dt+b/ e g
[¢]

=aL[f] +bL]g].
This establishes the Theorem. O

Example 3.1.5. Compute L£[3t? + 5 cos(4t)].
Solution: From the Theorem above and the Laplace transform in Table 7?7 we know that

L[3t* + 5cos(4t)] = 3 L[t?] + 5 L[cos(4t)]

_3( 5)+5(argE) 520
6 o8

T8 T2y
Therefore,
. 55% 4 652 + 96
t2 +5cos(dt)] = = 5 .
L3t + 5 cos(4t)] FGI116) $s>0 4

The Laplace transform can be used to solve differential equations. The Laplace trans-
form converts a differential equation into an algebraic equation. This is so because the
Laplace transform converts derivatives into multiplications. Here is the precise result.

Theorem 3.1.5 (Derivative into Multiplication). If a function f is continuously differen-
tiable on [0,00) and of exponential order so, then L[f’] exists for s > s, and

Lf'1=sL[f] - f(0), 5> So. (3.1.4)

Proof of Theorem 3.1.5: The main calculation in this proof is to compute
N

L[f] = lim e St /() dt

N—00 o

We start computing the definite integral above. Since f’ is continuous on [0, c0), that definite
integral exists for all positive IV, and we can integrate by parts,

/ON ety de = [ (e (1)) ‘:V - /ON(—s)e_Stf(t) ]

:efst(N)—f(O)—Fs/ e SUf(t) dt

We now compute the limit of this expression above as N — oo. Since f is continuous on
[0,00) of exponential order s,, we know that

lim : e St f(t)dt = L[f], 5> 5.

N—00 0

Let us use one more time that f is of exponential order s,. This means that there exist
positive constants k and T such that |f(¢)| < ke®o?, for ¢t > T. Therefore,

lim e *Nf(N) < lim ke *Ne®N = lim ke (575N =0, $ > So.
N—00 N—00 N—00
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These two results together imply that L£[f’] exists and holds

L[f'T=sL[f]—f0), s> s
This establishes the Theorem. (]
Example 3.1.6. Verify the result in Theorem 3.1.5 for the function f(t) = cos(bt).

Solution: We need to compute the left hand side and the right hand side of Eq. (3.1.4) and
verify that we get the same result. We start with the left hand side,

N = Ll—bsin(bt)] = —b Llsin(bt)] = —b—2 no__ b
L[f'] = L][-bsin(bt)] = —b L[sin(bt)] = —b RN = L[f]= Tl
We now compute the right hand side,
s PR —
sL[f] — f(0) = s L[cos(bt)] — 1 = SaT 1= BT
so we get
, . b?
sL[f] = f(0) = 212
We conclude that L[f'] = s L[f] — f(0). <

It is not difficult to generalize Theorem 3.1.5 to higher order derivatives.

Theorem 3.1.6 (Higher Derivatives into Multiplication). If a function f is n-times con-
tinuously differentiable on [0,00) and of exponential order s,, then L[f"],---, L[f™] exist
for s > s4 and

LIf"] = s> LIf] = 5 £(0) = £(0) (3.1.5)

LIF] = s" LIf) = 5T £(0) = = f*71(0). (3.1.6)

Proof of Theorem 3.1.6: We need to use Eq. (3.1.4) n times. We start with the Laplace
transform of a second derivative,

L") = £I(F)]
=sL[f'] - f'(0)
= s(sL[f] = £(0)) = £(0)
= s* L[f] = s f(0) = f(0).

The formula for the Laplace transform of an nth derivative is computed by induction on n.
We assume that the formula is true for n — 1,

LI D] = s L[f] = 5072 £(0) — - = f72(0).
Since L[f™] = L[(f)~Y)], the formula above on f’ gives
LI = s L[] = s F1(0) — - = () 2(0)
=" (s L[] = £0) =TT F(0) = oo = FTD(0)
= st L[f] = 0D F(0) = ¢ £1(0) = = fOT(0).

This establishes the Theorem. O
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Example 3.1.7. Verify Theorem 3.1.6 for f”, where f(t) = cos(bt).

Solution: We need to compute the left hand side and the right hand side in the first
equation in Theorem (3.1.6), and verify that we get the same result. We start with the left
hand side,

24

L[f"] = L[ cos(bt)] = —b* L[cos(bt)] = —b° ﬁ = L[f"= ’S;ﬁ'
We now compute the right hand side,

L) = 5 (0) = J'(0) = & Lleos(bt)] —s — 0= 575 —s = %
so we get

2L~ 5 £0) — F10) =~
s2 402

We conclude that L[f"] = s? L[f] — s f(0) — f/(0). <

The Laplace transform also satisfies a converse to Theorem 3.1.5, since multiplications
can be transformed into derivatives.

Theorem 3.1.7 (Multiplication into Derivative). If a function f is of exponential order s,
with a Laplace transform F(s) = L[f(t)], then L[t f(t)] exists for s > s, and

Lt f(t)]=—-F'(s), 5> So. (3.1.7)

Proof of Theorem 3.1.7: From the definition of the Laplace Transform we see that

CitF(1)] = /OOO =Lt F(t) dt

_ /OOO %(—e‘”) £(t) dt

= —F'(s).

This establishes the Theorem. ]
The result in Theorem 3.1.7 can be generalized to higher powers.

Theorem 3.1.8 (Higher Powers into Derivative). If a function f is of exponential order s,
with a Laplace transform F(s) = L[f(t)], then L[t f(t)] exists for s > s, and

L f()] = (~1)"F™(s), s> s, (3.1.8)

n

d
where we denoted F(™ = d—nF.
s
Proof of Theorem 3.1.8: We use induction one more time. The case n = 1 is done in

Theorem 3.1.7. We now assume that

£ F(0)] = (~1)" L7 0)
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and we try to show that a similar formula holds for n 4+ 1. But this is the case, since
LD (1) = L[t (£ f(1))]

= (-1 Ll ),

since t f(t) satisfies the hypotheses in Theorem 3.1.7, since f(¢) does. Then we use Theorem
3.1.7 one more time,

LD £(1) = ()" Ll (1),

(1) ) Sl (o),
dn+1)

ds(n+1) ‘C[f(t)]7
— (1) plrtD) (5).

This establishes the Theorem. O

= (-

3.1.4. Solving Differential Equations. The Laplace transform can be used to solve
differential equations. We Laplace transform the whole equation, which converts the differ-
ential equation for y into an algebraic equation for L[y]. We solve the Algebraic equation
and we transform back.

) . . Solve the Transform back
differential 1) Algebraic (2) alrehraic (3) to obtain
eq. for y. — eq. for L[y]. - 8 - v
a eq. for L[y]. (Use the table.)

Example 3.1.8. Use the Laplace transform to find y solution of

Y +9y=0,  y(0) =15, ¥(0)=y.

Remark: Notice we already know what the solution of this problem is. Following § 2.2 we
need to find the roots of

p(r)=r*4+9 = r, =431,

and then we get the general solution
y(t) = ¢, cos(3t) + c_sin(3t).

Then the initial condition will say that

y(t) = yo cos(3t) + % sin(3t).
We now solve this problem using the Laplace transform method.
Solution: We now use the Laplace transform method:

Lly" + 9y] = L]0] = 0.
The Laplace transform is a linear transformation,
Lly"] +9L[y] = 0.

But the Laplace transform converts derivatives into multiplications,

s* LIyl — sy(0) —y'(0) + 9 L[y] = 0.
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This is an algebraic equation for L[y]. It can be solved by rearranging terms and using the
initial condition,

(32 +9 LYl =sy+y. = Llyl=u

s
219 M Ero)
But from the Laplace transform table we see that

s 3

E[COS(3IJ))] = m, E[Sln(?)t)] = m,

therefore,
Lly] = yo L[cos(3t)] + v, % L[sin(3t)).
Once again, the Laplace transform is a linear transformation,
Lly] = L|yo cos(3t) + % sin(3t)].

We obtain that .
y(t) = yo cos(3t) + % sin(3t).



172 3. THE LAPLACE TRANSFORM METHOD

3.1.5. Exercises.

3.1.1.- . 3.1.2.- .
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3.2. The Initial Value Problem

We will use the Laplace transform to solve differential equations. The main idea is,

diff tial Algebrai Solve the Transform back
ifferential eq. ebraic eq.
d ﬂ) & d ﬂ algebraic eq. Q) to obtain y(t).
for y(¢). for L[y(t)].
for Ly(t)]. (Use the table.)

We will use the Laplace transform to solve differential equations with constant coeffi-
cients. Although the method can be used with variable coefficients equations, the calcula-
tions could be very complicated in such a case.

The Laplace transform method works with very general source functions, including step
functions, which are discontinuous, and Dirac’s deltas, which are generalized functions.

3.2.1. Solving Differential Equations. As we see in the sketch above, we start with
a differential equation for a function y. We first compute the Laplace transform of the whole
differential equation. Then we use the linearity of the Laplace transform, Theorem 3.1.4, and
the property that derivatives are converted into multiplications, Theorem 3.1.5, to transform
the differential equation into an algebraic equation for L[y]. Let us see how this works in a
simple example, a first order linear equation with constant coefficients—we already solved
itin § 77.

Example 3.2.1. Use the Laplace transform to find the solution y to the initial value prob-
lem

Yy +2y=0, y(0)=3.

Solution: In § 1.2 we saw one way to solve this problem, using the integrating factor method.
One can check that the solution is y(t) = 3¢~ 2. We now use the Laplace transform. First,
compute the Laplace transform of the differential equation,

L[y +2y] = L[0] = 0.
Theorem 3.1.4 says the Laplace transform is a linear operation, that is,
Lly']+2L[yl=0.

Theorem 3.1.5 relates derivatives and multiplications, as follows,

(s£l) - () +2£L) =0 = (s+2)Lly] = y(0).

In the last equation we have been able to transform the original differential equation for y
into an algebraic equation for L[y]. We can solve for the unknown L[y] as follows,

=20 o ’

Lly] = ,
s+2 ] s+2
where in the last step we introduced the initial condition ¢(0) = 3. From the list of Laplace
transforms given in §. 3.1 we know that
1 3

L[e™] = privl 3L[e™ 2]

3 —2t
P = L[3e .

So we arrive at L[y(t)] = L[3 e~2!]. Here is where we need one more property of the Laplace
transform. We show right after this example that

Llyt)] =LBe ] = y(t)=3e2.

This property is called one-to-one. Hence the only solution is y(t) = 3 e~ 2. <
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3.2.2. One-to-One Property. Let us repeat the method we used to solve the differ-
ential equation in Example 3.2.1. We first computed the Laplace transform of the whole
differential equation. Then we use the linearity of the Laplace transform, Theorem 3.1.4, and
the property that derivatives are converted into multiplications, Theorem 3.1.5, to trans-
form the differential equation into an algebraic equation for L[y]. We solved the algebraic
equation and we got an expression of the form

Lly®)] = H{(s),

where we have collected all the terms that come from the Laplace transformed differential
equation into the function H. We then used a Laplace transform table to find a function h
such that

We arrived to an equation of the form

Lly(t)] = LI(t)].

Clearly, y = h is one solution of the equation above, hence a solution to the differential
equation. We now show that there are no solutions to the equation L[y] = L[h] other than
y = h. The reason is that the Laplace transform on continuous functions of exponential
order is an one-to-one transformation, also called injective.

Theorem 3.2.1 (One-to-One). If f, g are continuous on [0,00) of exponential order, then

Llfl=Llgl = f=g

Remarks:

(a) The result above holds for continuous functions f and g. But it can be extended to
piecewise continuous functions. In the case of piecewise continuous functions f and g
satisfying £[f] = L[g] one can prove that f = g+ h, where h is a null function, meaning
that f;T h(t)dt =0 for all T > 0. See Churchill’s textbook [5], page 14.

(b) Once we know that the Laplace transform is a one-to-one transformation, we can define
the inverse transformation in the usual way.

Definition 3.2.2. The inverse Laplace transform, denoted L™, of a function F is

LTFG6)] =f() & F(s)=L[fO)].

Remarks: There is an explicit formula for the inverse Laplace transform, which involves
an integral on the complex plane,
1 at+ic
L7YE(s)]| = =— lim et F(s)ds.

t 27 c=oo e

See for example Churchill’s textbook [5], page 176. However, we do not use this formula in
these notes, since it involves integration on the complex plane.

Proof of Theorem 3.2.1: The proof is based on a clever change of variables and on
Weierstrass Approximation Theorem of continuous functions by polynomials. Before we get
to the change of variable we need to do some rewriting. Introduce the function u = f — g,
then the linearity of the Laplace transform implies

Lu] = L[f — g] = L[f] = L[g] = 0.
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What we need to show is that the function w vanishes identically. Let us start with the
definition of the Laplace transform,

o0
Clu] = / e~ u(t) dt.
0
We know that f and g are of exponential order, say s,, therefore u is of exponential order
So, meaning that there exist positive constants k and T such that
lu(t)| < ke>, t>T.

Evaluate L[u] at § = s; +n+ 1, where s, is any real number such that s; > s, and n is any
positive integer. We get

= / e~ (srtnti)t u(t)dt = / e o1t g= (D)t u(t) dt.

s 0 0

L[u]

We now do the substitution y = e~%, so dy = —e~* dt,

1

E[U]L = /lo ¥ty u(—1In(y)) (—dy) =/ y*t " u(—In(y)) dy.

0

Introduce the function v(y) = y* u((—In(y)), so the integral is

= / y" v(y) dy. (3.2.1)

We know that L[u] exists because u is continuous and of exponential order, so the function
v does not diverge at y = 0. To double check this, recall that t = —In(y) — oo as y — 0%,
and u is of exponential order s,, hence

lim |v(y)| = lim e™**|u(t)| < lim e~ (1750t =,
y—0* t—o0 t—00

L[u)

Our main hypothesis is that L[u] = 0 for all values of s such that L[u] is defined, in particular
5. By looking at Eq. (3.2.1) this means that

1
/y"v(y)dyzo, n=123---.
0

The equation above and the linearity of the integral imply that this function v is perpen-
dicular to every polynomial p, that is

/ () vly) dy = 0, (3.2.2)

for every polynomial p. Knowing that, we can do the following calculation,

/ V2(y) dy = / (o(y) — py) vly) dy + / ' p() oly) dy.

The last term in the second equation above vanishes because of Eq. (3.2.2), therefore

/0 2 (y) dy = / (v(y) — p()) v() dy

</|v(y> )] [v()] dy

< (o) [ o)~ (o) (3.2:3

We remark that the inequality above is true for every polynomial p. Here is where we use the
Weierstrass Approximation Theorem, which essentially says that every continuous function
on a closed interval can be approximated by a polynomial.
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Theorem 3.2.3 (Weierstrass Approximation). If f is a continuous function on a closed
interval [a,b], then for every € > 0 there exists a polynomial q. such that

I, 1f(y) —ac(y)| <e

The proof of this theorem can be found on a real analysis textbook. Weierstrass result
implies that, given v and € > 0, there exists a polynomial p. such that the inequality
n (3.2.3) has the form

/ov%y)dy\ max [v(y |/|v pe)| dy < max v(y)|c.

y€[0,1] y€[0,1]

Since € can be chosen as small as we please, we get

1
/ v (y) dy = 0.
0
But v is continuous, hence v = 0, meaning that f = g. This establishes the Theorem. [

3.2.3. Partial Fractions. We are now ready to start using the Laplace transform to
solve second order linear differential equations with constant coefficients. The differential
equation for y will be transformed into an algebraic equation for L[y]. We will then arrive
to an equation of the form L[y(¢)] = H(s). We will see, already in the first example below,
that usually this function H does not appear in Table 1. We will need to rewrite H as a
linear combination of simpler functions, each one appearing in Table 1. One of the more
used techniques to do that is called Partial Fractions. Let us solve the next example.

Example 3.2.2. Use the Laplace transform to find the solution y to the initial value prob-
lem

y' =y =2y=0, y0)=1  y'(0)=0.
Solution: First, compute the Laplace transform of the differential equation,
Lly" —y —2y] = L[0] =0.
Theorem 3.1.4 says that the Laplace transform is a linear operation,
Lly" = L] 2Ly =

Then, Theorem 3.1.5 relates derivatives and multiplications,

|2 L1 = 5(0) =y (O] = [s Lly] = y(0)] 21y =
which is equivalent to the equation
(s* =5 =2) Ly = (s = 1) y(0) + ¥/ (0).

Once again we have transformed the original differential equation for y into an algebraic
equation for L[y]. Introduce the initial condition into the last equation above, that is,

(82 —s—2)Lly] = (s — 1).

Solve for the unknown L[y] as follows,
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The function on the right hand side above does not appear in Table 1. We now use partial
fractions to find a function whose Laplace transform is the right hand side of the equation
above. First find the roots of the polynomial in the denominator,

S+ = 27

1
$$—5-2=0 = sy=-[1£V/1+8 =
2 s_ = —1,

that is, the polynomial has two real roots. In this case we factorize the denominator,
(s—1)

-2+

The partial fraction decomposition of the right-hand side in the equation above is the fol-

lowing: Find constants a and b such that

(s—1) a b

G-2+1) s—2 s+l

Lly] =

A simple calculation shows

(s—1) __a b a(s+1)+b(s—2) s(a+b)+(a—2b)
(s—2)(s+1) s-2 s+1  (s=2)(s+1)  (s=2)(s+1)
Hence constants a and b must be solutions of the equations
1 b 2% erb=t
G-v=starnr@-m = {70
. 1 2
The solution is a = 3 and b = 3" Hence,
1 1 2 1
Lly] =

3(-2) 3(s+1)
From the list of Laplace transforms given in § 7?7, Table 1, we know that
1 1 1

at] _ _ P2t _ —t
E[e]—s_a = T3 L[e*'], porag] L[e™"].
So we arrive at the equation
R e S | —t
Lly) = 5 £le™) + 5 Lle ]—5[3(6 +2e )}
We conclude that
y(t) = %(ezt +2e7").

<

The Partial Fraction Method is usually introduced in a second course of Calculus to in-
tegrate rational functions. We need it here to use Table 1 to find Inverse Laplace transforms.
The method applies to rational functions

Q(s)
P(s)’

where P, () are polynomials and the degree of the numerator is less than the degree of the
denominator. In the example above

R(s) =

(s—1)

R(s) = m
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One starts rewriting the polynomial in the denominator as a product of polynomials degree
two or one. In the example above,

(s—1)
(s—2)(s+1)
One then rewrites the rational function as an addition of simpler rational functions. In the
example above,

R(s) =

a n b
(s—2) (s+1)
We now solve a few examples to recall the different partial fraction cases that can appear
when solving differential equations.

R(s) =

Example 3.2.3. Use the Laplace transform to find the solution y to the initial value prob-
lem
y' =4y +4y=0, y(0)=1, y(0)=1L

Solution: First, compute the Laplace transform of the differential equation,

Lly" —4y" +4y] = L£[0] = 0.
Theorem 3.1.4 says that the Laplace transform is a linear operation,

Lly"] = 4L[y'] +4Lly] = 0.
Theorem 3.1.5 relates derivatives with multiplication,

|2 1) = 5y(0) =/ (0)] — 4[5 £ly] — y(0)] + 4141 = 0,
which is equivalent to the equation
(s* —ds +4) L[y] = (s — 4) y(0) +y'(0).
Introduce the initial conditions y(0) = 1 and ¢’(0) = 1 into the equation above,
(s> —4s+4) Ly =s— 3.
Solve the algebraic equation for L[y],
(s—3)

Ly = 5.
Ll ey
We now want to find a function y whose Laplace transform is the right hand side in the

equation above. In order to see if partial fractions will be needed, we now find the roots of
the polynomial in the denominator,

1
$?—ds+4=0 = si=§[4j: 16 —16] = s, =s_=2.

that is, the polynomial has a single real root, so L[y] can be written as

(s—3)

(s —2)*

This expression is already in the partial fraction decomposition. We now rewrite the right

hand side of the equation above in a way it is simple to use the Laplace transform table in
§ 77,

Ly =

(s—2)+2-3 (s—2) 1 1 1
Lly] = = - Lly] = -
] (s 2)2 oo GooE T M=o GTae
From the list of Laplace transforms given in Table 1, § 7?7 we know that
1 1
Ll = —— = = L[e*],

s—a s—2
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1 1
(s —a)? (s —2)?

L[te™] = = L[te*].

So we arrive at the equation
Lly] = L[e*] — L[te*] = L[e* —te*] =  y(t)=e* —te.
<

Example 3.2.4. Use the Laplace transform to find the solution y to the initial value prob-
lem
y'—4y +4y =3¢, y(0)=0,  y(0)=0.

Solution: First, compute the Laplace transform of the differential equation,

" / 1
Lly" — 4y + 4y = L[3 €] :3(8_1).

The Laplace transform is a linear operation,

3
s—1
The Laplace transform relates derivatives with multiplication,

Lly"| =4 LY +4Ly =

3
|2 Lly) = 59(0) =y ()] =4[5 £ly] —y(O)] +4£ly) = —,
But the initial conditions are y(0) = 0 and 3/(0) = 0, so
3
s—1

(s> —4s+4) Ly =
Solve the algebraic equation for L[y],
3
Ll = (s —1)(s2—4s+4)

We use partial fractions to simplify the right-hand side above. We start finding the roots of
the polynomial in the denominator,

1
2 —4s+4=0 = si:§[4ﬁ: 16 —16] = s, =s5_=2.

that is, the polynomial has a single real root, so L[y] can be written as

3
=6
The partial fraction decomposition of the right-hand side above is
3 _a bs+c a(s—2)* 4 (bs+c)(s—1)
G-DE-2° (-1 (s-2¢7 (s =1)(s —2)?

From the far right and left expressions above we get
3=a(s—2)%+(bs+c)(s—1)=a(s®* —4s+4)+bs* —bs+cs—c
Expanding all terms above, and reordering terms, we get
(a4+b)s*+(—4a—b+c)s+(4a—c—3)=0.
Since this polynomial in s vanishes for all s € R, we get that
a+b=0, a=3
—4a—b+c=0, = b=-3
da—c—-3=0. c=9.
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So we get
3 3 —3s+9
E = =
W= GG so1 7 Goop
One last trick is needed on the last term above,
3549 B(s-249+9 _ 3(s-2 , 6+9 3 3
G-27 (-27 -2 -27 (-2 (-2

So we finally get
3 3 3

Lly] = — .
W= 6o T eoee
From our Laplace transforms Table we know that
1 1 2t]

E[e“t}zis_a = 8_2:£[6

9

L[te™] = = L[te?].

s-af — (s-2p
So we arrive at the formula

Lly] =3 L[e'] = 3L +3L[te*] = L[3(e" — & +te)]
So we conclude that y(t) = 3 (e! — * 4 te?'). 4

Example 3.2.5. Use the Laplace transform to find the solution y to the initial value prob-
lem

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: First, compute the Laplace transform of the differential equation,
Lly" — 4y + 4y] = L[3sin(2t)].

The right hand side above can be expressed as follows,

U S
£[3 31n(2t)] = 3£[Sln(2t)] =3 21 02 =2 e

Theorem 3.1.4 says that the Laplace transform is a linear operation,

6
" _ 4 ! 4 —
L") - ALY+ ALY = 5
and Theorem 3.1.5 relates derivatives with multiplications,
6
2 o ) . . -
[ Ll = sy(0) = y'(0)] — 4 [s Lly) — y(0)] + 4Ll = 5=

Reorder terms,

6
(s2 —4s+4) L[y = (s — 4) y(0) + 4/ (0) + R
Introduce the initial conditions y(0) = 1 and y'(0) = 1,
6

s24+4°

(s> —4s+4) L[y =5 — 3+
Solve this algebraic equation for L[y], that is,
(s—3) 6
Lly] = .
] (s2 —4s+4) * (2 —4s+4)(s2+4)
From the Example above we know that s — 4s + 4 = (s — 2)2, so we obtain
1 1 6

Llyl=—5~ PRI ey (3.2.4)
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From the previous example we know that

1 1
Le* —te*] = - 3.2.5
1] = =5~ g (3.2.5)
We know use partial fractions to simplify the third term on the right hand side of Eq. (3.2.4).
The appropriate partial fraction decomposition for this term is the following: Find constants

a, b, ¢, d, such that

6 _as+b+ c n d
(s —2)2(s24+4) s2+4 (s—2) (s—2)2

Take common denominator on the right hand side above, and one obtains the system

a+c=0,
—4a+b—2c+d=0,
4a —4b+ 4c = 0,

4b — 8c+4d = 6.

The solution for this linear system of equations is the following:

3 3 3
= b= S d="2.
0, ¢ 8’ 4
Therefore,
6 3 s 3 1 3 1

(5—272(2+4) 857+4 B8(s—2) d(s—22
We can rewrite thi