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1.1. Bacteria Reproduce like Rabbits

Section Objective(s):

• Overview of Differential Equations.
• The Difference Equation.
• The Continuum Equation.
• Summary and Consistency.

1.1.1. Overview of Differential Equations.

Remarks:

(a) A differential equation is an equation , the unknown is

a function , and both the function and its

derivatives may appear in the equation.

(b) Differential equations are essential for a mathematical

description of nature.

(c) In this section we show that differential equations can be obtained

from difference equations.

(d) We focus on a specific problem—a quantitative description of bacteria growth

under certain conditions including unlimited space and food.
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1.1.2. The Difference Equation.

The Problem: We want to know how bacteria grow in time when they have

unlimited space and food supplies.

The Experiments:

(1) First Experiment: We put an P (0) bacteria in a small region at the center of a petri
dish, which is full bacteria food.

Figure 1. Bacteria growth experiment with unlimited food and space.

(2) We measure the bacteria population after regular time intervals.

• The time interval between measurements is ∆t1 = 1 hour .

• Denote the bacteria population after n time intervals by P (n∆t1) = P (n) ,

• Introduce the initial bacteria population P (0) = P (0) ,

(3) Our first n measurements are the following,

P (1) = P0 + ∆P1,

P (2) = P (1) + ∆P2,

...

P (n) = P (n− 1) + ∆Pn,

∆P1 = K1 P0,

∆P2 = K1 P (1),

...

∆Pn = K1 P (n− 1),

Summary so far:

P (n∆t1) = P ((n− 1)∆t1) +K1 P ((n− 1)∆t1), K1 depends on the bacteria.

(4) Second Experiment: We reduce the time interval to ∆t2 =
1

2
=

∆t1
2

when we take measurements. We find:

P (n∆t2) = P ((n− 1)∆t1) +K2 P ((n− 1)∆t2), n = 1, 2, · · · , N,
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where K2 =
K1

2
.

(5) Experiment m-th: We use a time interval ∆tm =
∆t1
m

. We get

P (n∆tm) = P ((n− 1)∆tm) +Km P ((n− 1)∆tm), n = 1, 2, · · · , N,

where Km =
K1

m
. Therefore,

Km =
K1

m
⇒ Km =

K1

∆t1

∆t1
m

⇒ Km = r∆tm, where r =
K1

∆t1
.

The constant r depends only on the type of bacteria.

(6) Summary: If we drop the subindex m, we get

K = r∆t,

where ∆t is any time interval. Therefore, the final conclusion of all

our experiments is the following: The population of bacteria P (n∆t) after n > 1 time

intervals ∆t > 0 is given by the difference equation

P (n∆t) = P ((n− 1)∆t) + r∆t P ((n− 1)∆t),

where r > 0 is a constant that depends on the particular type of bacteria.
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1.1.3. Solving the Difference Equation.

The difference equation relates P (n∆t) with P ((n− 1)∆t) .

To solve the difference equation means to relate P (n∆t) with P (0) .

The difference equation above can be solved, and the result is summarized below.

Theorem 2. The difference equation

P (n∆t) = P ((n− 1)∆t) + r∆t P ((n− 1)∆t),

relating P (n∆t) with P ((n− 1)∆t) has the solution

P (n∆t) = (1 + r∆t)n P (0),

relating P (n∆t) with P (0) .

Proof: We now that:

P (n∆t) = (1 + r∆t)P ((n− 1)∆t),

but

P ((n− 1)∆t) = (1 + r∆t)P ((n− 2)∆t),

and so on till we reach P0. Therefore,

P (n∆t) = (1 + r∆t)P ((n− 1)∆t)

= (1 + r∆t)2 P ((n− 2)∆t)

...

= (1 + r∆t)n P0.

So, the solution of the discrete equation is

P (n∆t) = (1 + r∆t)n P0.

�
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1.1.4. The Continuum Equation.

We study the difference population equation and its solutions in the

continuum limit:

∆t→ 0, such that n∆t = t > 0, is constant.

Hence n =
t

∆t
→∞ . The result is:

Theorem 3. The continuum limit of the difference equation

P (n∆t) = P ((n− 1)∆t) + r∆t P ((n− 1)∆t),

is the differential equation

P ′(t) = r P (t).

Remark: The differential equation is called the exponential growth equation.

Proof: We start renaming n as n+ 1, so the discrete equation is

P ((n+ 1)∆t) = P (n∆t) + r∆t P (n∆).

From here it is simple to see that

P (n∆t+ ∆t)− P (n∆t) = r∆t P (n∆).

We use that n∆t = t, then

P (t+ ∆t)− P (t) = r∆t P (t).

Dividing by ∆t we get

P (t+ ∆t)− P (t)

∆t
= r P (t).

The continuum limit is

lim
∆t→0

P (t+ ∆t)− P (t)

∆t
= r P (t).

Since t is held constant and ∆t→ 0, the left-hand side above is P ′,

P ′(t) = lim
∆t→0

P (t+ ∆t)− P (t)

∆t
⇒ P ′(t) = r P (t)

�
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1.1.5. Solving the Continuum Equation.

Theorem 4. There is only one solution P to the initial value problem

P ′(t) = r P (t), P (0) = P0,

where P0 is a constant, given by

P (t) = P0 e
rt.

Proof: Divide the differential equation by P ,

P ′(t)

P (t)
= r.

We now integrate both sides with respect to time,∫
P ′(t)

P (t)
dt =

∫
r dt.

The integral on the right-hand side is simple to do, we need to integrate a constant,∫
P ′(t)

P (t)
dt = rt+ c0,

where c0 is an arbitrary constant. On the left-hand side we can introduce a substitution

p = P (t) ⇒ dp = P ′(t) dt.

Then, the the equation above becomes∫
dp

p
= rt+ c0.

The integral above is simple to do and the result is

ln |p| = rt+ c0.

We now replace back p = P (t), and we can solve for P ,

ln |P (t)| = rt+ c0 ⇒ |P (t)| = ert+c0 = ekt ec0 ⇒ P (t) = (±ec0) ert.
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Denote c = (±ec0), then all the solutions to the exponential growth equation are,

P (t) = c ert, c ∈ R.

We now use the initial condition, P (0) = P0,

P0 = P (0) = c e0 = c ⇒ c = P0,

So we get P (t) = P0 e
rt. �

1.1.6. Summary and Consistency.

We can summarize all this in the following picture

Difference description ∆t→ 0 Continuous description

P (n∆t) = (1 + r∆t)P ((n− 1)∆t) −→ P ′(t) = r P (t)

↓ ↓
Soving the equation Solving the equation

↓ ↓

P (n∆t) = (1 + r∆t)n P0
Consistency−→ P (t) = P0 e

rt

Theorem 5. (Consistency) The continuum limit of the solu-

tions of the difference population equations are the solutions of the continuum popu-

lation equation,

P (n∆t) = (1 + r∆t)n P0 −→ P (t) = P0 e
rt.

(The proof is in the Lecture Notes.)
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1.2. Introduction to Modeling

Section Objective(s):

Part 1:

• Linear Growth and Decay
• Exponential Growth and Decay.

Part 2:

• Migration Terms.
• The Logistic Equation.
• Interacting Species.

Remarks:

• Modeling is a mathematical description of a physical system using

differential equations .

• Linear models are models such that their solutions contain

linear functions of the independent variable.

• Exponential models are models such that their solu-

tions contain exponential functions of the independent

variable.

• Exponential models describe population systems

having infinite food resources.

• Population models may contain a migration term.

• The logistic equation is a population model with finite

food resources.

• The interacting species model describes the inter-

action of two species with finite food resources.
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1.2.1. Linear Growth and Decay.

Remarks:

• Linear models describe physical situations where a function changes in a linear

way with respect to its independent variable .

• The models can be discrete or continuous .

Example 1 (Discrete Model): Consider a swimming pool that is initially empty. Every
minute a bucket of K gallons is added to the pool. Write a mathematical model describing
the amount of water W as function of the number n of minutes.

Solution:
W (n+ 1)−W (n) = K, W (0) = 0.

C

Example 2 (Continuous Model): Consider a swimming pool that is initially empty.
Water is added to the pool using a hose at a constant rate of K gallons per minute. Write
a mathematical model describing the amount of water W as function of time t.

Solution:
W ′(t) = K, W (0) = 0.

The solution is
W (t) = K t.

This is why these models are called linear growth models: the solution is a linear function
of the independent variable t.

C

Remarks:

• K > 0 describe water added to the pool.

• K < 0 describe water taken out of the pool.
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1.2.2. Exponential Growth and Decay.

Remarks:

• Exponential models describe physical situations where a function changes in an

exponential way with respect to its independent variable .

• Examples are population models with unlimited food resources.

• The models can be discrete or continuous .

Example 1 (Discrete Model): Consider a bacteria population in a Petri dish having
unlimited food resources. Denote by P (n) the bacteria population after n hours, where
P (0) is the initial bacteria population. The increment in the bacteria population every hour
is equal to r times the amount of bacteria in the previous hour. Write a mathematical model
describing the amount of bacteria P as function of the number n of hours.

Solution:

P (n+ 1)− P (n) = r P (n), P (0) is the initial population.

C

Example 2 (Continuous Model): Consider a bacteria population in a Petri dish having
unlimited food resources. Denote by P (t) the bacteria population at the time t, where
P (0) is the initial bacteria population. The rate of change in the bacteria population at the
time t is equal to r times the amount of bacteria at that time. Write a mathematical model
describing the amount of bacteria P as function of time t.

Solution:
P ′(t) = r P (t), P (0) is the initial population.

The solution is

P ′

P
= r ⇒ ln(P (t)) = rt+ c ⇒ P (t) = ert+c = ert ec ⇒ P (0) = ec.

P (t) = P (0) ert.

This is why these models are called exponential growth models: the solution is an exponential
function of the independent variable t. C

Remarks:

• r is the population rate change per capita .

• r > 0 describe exponential growth models.

• r < 0 describe exponential decay models.

Read in Lecture Notes:

• Radioactive half-life.
• Using radioactive decay to date remains.
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1.2.3. Migration Terms.

Example 3 (Immigration): Describe a village population when they have unlimited
food, the rate of population growth per capita is r > 0, and they have an immigration rate
of K persons per unit time.

Solution:
P ′(t) = r P (t) +K,

P ′(t)

r P (t) +K
= 1 ⇒

∫
P ′(t)

r P (t) +K
dt =

∫
dt

∫
dp

rp+K
= t+ c0 ⇒ 1

r

∫
dp

p+K/r
= t+ c0

ln |p+K/r| = rt+ c1 ⇒ |P (t) +K/r| = ert+c1 = ert ec1

P (t) +K/r = c2 e
rt ⇒ P (t) = c2 e

rt −K/r.

P (0) = c2 −K/r ⇒ c2 = P (0) +K/r ⇒ P (t) =
(
P (0) +

K

r

)
ert − K

r
.

C

Remarks:

• K is the migration constant .

• When K > 0 the constant is called immigration .

• When K < 0 the constant is called emigration .
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1.2.4. The Logistic Equation.

Remark: The logistic equation is a population model with finite food resources.

If the population P (t) is small : P ′(t) ' r P (t) > 0 .

If the population P (t) is large : P ′(t) < 0 .

Definition 1. The logistic equation for the function P , which depends on the
independent variable t, is

P ′(t) = r P (t)
(

1− P (t)

Pc

)
, (1.2.1)

r > 0 is the growth constant and Pc > 0 is the carrying capacity .

Example 1: Suppose the function P is solution to the logistic equation

P ′(t) = r P (t)
(

1− P (t)

Pc

)
.

(a) For what values of P is the population in equilibrium—that is, time independent?
(b) For what values of P is the population increasing in time?
(c) For what values of P is the population decreasing in time?

Solution:

(a) If P is an equilibrium solution, then P constant, so, P ′ = 0. The equation says

0 = P̃ ′ = r P̃
(

1− P̃

Pc

)
⇒ P̃ = 0 or P̃ = Pc.

(b) If P is increasing, then P ′ > 0, then

P ′(t) = r P (t)
(

1− P (t)

Pc

)
> 0, r > 0, P > 0

implies (
1− P (t)

Pc

)
> 0 ⇒ 0 < P (t) < Pc.

(c) If P is decreasing, then P ′ < 0, but

(
1− P (t)

Pc

)
< 0 ⇒ P (t) > Pc,

since P cannot be negative.

Discuss the meaning of the carrying capacity.

C
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1.2.5. Interacting Species.

Problem: Write a simple model to describe how rabbits and sheep populations evolve in
time when they compete on finite food resources on a particular piece of land.

Solution:

• Suppose the species do not interact. R are rabbits and S are sheep.

R′ = rr R
(

1− R

Rc

)
S′ = rs S

(
1− S

Sc

)
,

where rr, rs are the growth rates and Rc, Sc are the carrying capacities.

• Introduce the effect or sheep on rabbits.

R′ = rr R
(

1− R

Rc

)
− c1RS, c1 > 0.

The product measures the encounters on the field.

• Introduce the effect of or rabbits on sheep.

S′ = rs S
(

1− S

Sc

)
− c2RS, c2 > 0.

The product measures the encounters on the field.

C
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Definition 2. The interacting species equation for the functions x and y, which
depend on the independent variable t, are

x′ = rx x
(

1− x

xc

)
+ αx y

y′ = ry y
(

1− y

yc

)
+ β x y,

where the constants rx, ry and xc, xc are positive and α, β are real numbers.

Example 1.2.1. The following systems are models of the populations of pair of species
that either compete for resources (an increase in one species decreases the growth rate
in the other) or cooperate (an increase in one species increases the growth rate in the
other). For each of the following systems identify the independent and dependent variables,
the parameters, such as growth rates, carrying capacities, measure of interactions between
species. Do the species compete of cooperate?

(a)

dx

dt
= c1x− c1

x2

K1
− b1 xy

dy

dt
= c2y − c2

y2

K2
− b2 xy.

(b)

dx

dt
= x− x2

5
+ 5xy

dy

dt
= 2 y − y2

6
+ 2xy.

Solution:

(a)

• The species compete.

• t is the independent variable.

• x, y are the dependent variables.

• c1, c2 are the growth rates.

• K1, K2 are the carrying capacities.

• b1, b2 are the competition coeffi-

cients.

(b)

• The species coperate.

• t is the independent variable.

• x, y are the dependent variables.

• 1, 2 are the growth rates.

• 5, 12 (not 6) are the carrying capac-

ities.

• 5, 2 are the competition coefficients.

Question: If x are elephants and y are chipmunks, then is b1 > b2 or b2 > b1?

Answer: b2 > b1.

C
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1.3. Qualitative Analysis

Section Objective(s):

• The Existence of Solutions Theorem.
• Direction Fields.
• Autonomous Equations.

Remarks:

• If the equation is nice enough , then there are solu-

tions.

• However, there is no explicit formula for the solutions of

all differential equations.

• The simple functions we know are not enough

to write their solutions.

• Simple functions are power, rational functions

exponentials, logs, trigonometric functions

• There are more equations than simple functions

needed to write their solutions.

• It is important to study qualitative methods

to describe solutions to differential equations.

• We get information about the solutions of differential equations

without solving the equation.

(a) Direction Fields Method , works with all

equations.

(b) Autonomous Equations Method , works

with particular equations.
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1.3.1. The Existence of Solutions Theorem.

Theorem 1.3.1. (Picard-Lindelöf) Consider the initial value problem

y′(t) = f(t, y(t)), y(t0) = y0.

If the function f and its partial derivative ∂yf are continuous on some rectangle on

the ty-plane containing the point (t0, y0) in its interior,

then there is a unique solution y of the initial value

problem above on an open interval I containing the point t0.

Remarks:

(1) An initial value problem means to find a solution to

both a differential equation and an initial condition.

(2) There is no formula for the solution in this Theorem.

(3) Results with no formula are still useful

Example 1.3.1. Determine whether
the functions y1 and y2 given by their
graphs in Fig. 2 can be solutions of the
same differential equation satisfying the
hypotheses in the Picard-Lindelöf Theo-
rem.

y

t

y2(t)y2(0)

y1(t)

y1(0)

t0

y0

Figure 2. The graph of two functions.

Solution:

• No.

• Solution graphs do not intersect.

• If they did, at (t0, y0) the IVP would have two solutions;

• But the Theorem above says IVP always have only one solution.

• So no intersections.

C
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1.3.2. Direction Fields.

Remark: We interpret f(t, y) at each point (t, y) on the ty-plane as

the value of a slope of a segment .

Definition 1.6.3. The direction field of the differential equation

y′(t) = f(t, y(t))

is the graph on the ty-plane of f(t, y)

as slopes of segments .
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Example 1.6.11: Find the direction field of the equation y′ = sin(y), and sketch a few
solutions to the differential equation for different initial conditions.

Solution: We first mention that the equation above can be solved and the solutions are

sin(y)(
1 + cos(y)

) =
sin(y0)(

1 + cos(y0)
) et.

for any y0 ∈ R. This is an equation that defines the solution function y. There are no

derivatives in the equation, so this is not a differential equation; We call it an algebraic

equation. However, the graphs of these solutions are not simple to do. But the direction

field is simple to plot and it can be seen in Fig. 3. From that direction field one can see

what the graph of the solutions look like. C

t

y

π

0

−π

y′ = sin(y)

Figure 3. Direction field for the equation y′ = sin(y).

C
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1.3.3. Autonomous Equations.

Definition 6.1.1. A first order equation is autonomous iff

y′ = f(�Zt , y) ,

where y′ =
dy

dt
, and the function f does not depend explicitly on t.

Remark: An important example of an autonomous equation is

the logistic equation .

P ′ = rP
(

1− P

Pc

)
, r > 0, Pc > 0.

Remark: The logistic equation can be solved exactly.

P (t) =
Pc P0

P0 + (Pc − P0) e−rt
, P (0) = P0.

Example 6.1.7: Sketch a qualitative graph of solutions of

y′ = ry
(

1− y

K

)
, y(0) = y0, r > 0, K > 0.

Solution:

(1) Graph f(y) = ry(1− y/K)

f

y0 KK/2

rK/4

y

f

(2) Find the critical points: yc is a critical point iff f(yc) = 0

f(y) = ry(1− y/K) ⇒ y0 = 0, y1 = K.
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(3) Find the increasing-decreasing intervals of f .

f

y0 KK/2

rK/4

f

y

(4) We can skip the concavity regions.
(5) Move the horizontal y-axis into a vertical axis, and add a horizontal t-axis.

y

t

K

K/2

0

CD

CU

CD

CU

Stable

Unstable

y

t

C
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1.4. Separable Equations

Section Objective(s):

• Separable Differential Equations
• Euler Homogeneous Equations
• Solving Euler Homogeneous Equations

Remarks:

• Separable differential equations are simple to solve .

• Integrate on both sides just works.

• Euler homogeneous equations are not separable .

• Euler homogeneous equations can be transformed into

separable equations.

• One then solves the separable equation and then

transforms back the solution .
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1.4.1. Separable Differential Equations.

Definition 1. A separable differential equation for the function y is

h(y) y′ = g(t),

where h, g are given functions.

Remark:
h(y) y′ = g(y)

• The left-hand side depends explicitly only on y, so any t dependence is through y.
• The right-hand side depends only on t.
• And the left-hand side is of the form (something on y)× y′.

Example 1.4.1. Find all solutions y to the differential equation

− y
′

y2
= cos(2t).

Solution: The differential equation above is separable, with

g(t) = cos(2t), h(y) = − 1

y2
,

therefore, it can be integrated as follows:

− y
′(t)

y2(t)
= cos(2t) ⇔

∫
− y
′(t)

y2(t)
dt =

∫
cos(2t) dt+ c.

Again the substitution

y = y(t), dy = y′(t) dt

implies that ∫
−dy
y2

=

∫
cos(2t) dt+ c ⇔ 1

y
=

1

2
sin(2t) + c.

So, we get the implicit and explicit form of the solution,

1

y(t)
=

1

2
sin(2t) + c ⇔ y(t) =

2

sin(2t) + 2c
.

C
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Remark: Let’s find the general rule for the solution formula:

− 1

y2
y′ = cos(2t) ⇒ 1

y
=

1

2
sin(2t) + c

h(y) y′ = g(t), ⇒ H(y) = G(t) + c

h(y) = − 1

y2
, ⇒ H(y) =

1

y

g(t) = cos(2t), ⇒ G(t) =
1

2
sin(2t).

where H is an antiderivative of h, that is, H(y) =
∫
h(y) dy.

and G is an antiderivative of g, that is, G(t) =
∫
g(t) dt.

Theorem 1. (Separable Equations) If h, g are continuous, with h 6= 0, then

h(y) y′ = g(t)

has infinitely many solutions y satisfying the algebraic equation

H(y(t)) = G(t) + c, c ∈ R,

where H and G are antiderivatives of h, and g .

Remark: An antiderivative of h(y) is H(y) =
∫
h(y) dy, and an antiderivative of g(t)

is given by G(t) =
∫
g(t) dt.
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1.4.2. Euler Homogeneous Equations.

Definition 2. An Euler homogeneous differential equation has the form

y′(t) = F
(y(t)

t

)
.

Example 1.4.2.

(1) y′ =
3 + 2 (y/t)3

(y/t)
, (2) y′ =

cos(y)

2t
, (3) y′ =

t2 + 3y2

2ty
,

(1) This is Euler Homogeneous.

(2) This is Not Euler Homogeneous.

(3) This is Euler homogeneous.

Example 1.4.3. Show that y′ =
t2 + 3y2

2ty
is Euler Homogeneous.

Solution:

y′ =
(t2 + 3y2)

2ty
=

(t2 + 3y2)

2ty

( 1

t2

)
( 1

t2

) ⇒ y′ =
1 + 3

(y
t

)2

2
(y
t

) .

Theorem 2. If there is an integer n such that

p(ct, cy) = cn p(t, y), q(ct, cy) = cn q(t, y), for all constant c > 0,

then y′ =
p(t, y)

q(t, y)
is Euler homogeneous.

Proof: Choose c =
1

t
, then

p(t, y)

q(t, y)
=
p(t, y)

q(t, y)

1/tn

1/tn
=
p(t/t, y/t)

q(t/t, y/t)
=
p(1/y/t)

q(1, y/t)
= F (y/t).

�



1.4. SEPARABLE EQUATIONS 5

1.4.3. Solving Euler Homogeneous Equations.

Theorem 3. The Euler homogeneous equation

y′ = F
(y
t

)

for the function y determines a separable equation for v =
y

t
, given by

v′(
F (v)− v

) =
1

t
.

Proof: If y′ = f(t, y) is Euler homogeneous, then we known that it can be written as

y′ = F (y/t), where F (y/t) = f(1, y/t). Introduce the function v = y/t into the differential

equation,

y′ = F (v).

We still need to replace y′ in terms of v. This is done as follows,

y(t) = t v(t) ⇒ y′(t) = v(t) + t v′(t).

Introducing these expressions into the differential equation for y we get

v + t v′ = F (v) ⇒ v′ =

(
F (v)− v

)
t

⇒ v′(
F (v)− v

) =
1

t
.

The equation on the far right is separable. This establishes the Theorem.

�
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Example 1.4.4. Find all solutions y of the differential equation y′ =
t2 + 3y2

2ty
.

Solution: The equation is Euler homogeneous, since

f(ct, cy) =
c2t2 + 3c2y2

2(ct)(cy)
=
c2(t2 + 3y2)

c2(2ty)
=
t2 + 3y2

2ty
= f(t, y).

Next we compute the function F . Since the numerator and denominator are homogeneous

degree “2” we multiply the right-hand side of the equation by “1” in the form (1/t2)/(1/t2),

y′ =
(t2 + 3y2)

2ty

( 1

t2

)
( 1

t2

) ⇒ y′ =
1 + 3

(y
t

)2

2
(y
t

) .

Now we introduce the change of functions v = y/t,

y′ =
1 + 3v2

2v
.

Since y = t v, then y′ = v + t v′, which implies

v + t v′ =
1 + 3v2

2v
⇒ t v′ =

1 + 3v2

2v
− v =

1 + 3v2 − 2v2

2v
=

1 + v2

2v
.

We obtained the separable equation

v′ =
1

t

(1 + v2

2v

)
.

We rewrite and integrate it,

2v

1 + v2
v′ =

1

t
⇒

∫
2v

1 + v2
v′ dt =

∫
1

t
dt+ c0.

The substitution u = 1 + v2(t) implies du = 2v(t) v′(t) dt, so∫
du

u
=

∫
dt

t
+ c0 ⇒ ln(u) = ln(t) + c0 ⇒ u = eln(t)+c0 .

But u = eln(t)ec0 , so denoting c1 = ec0 , then u = c1t. So, we get

1 + v2 = c1t ⇒ 1 +
(y
t

)2

= c1t ⇒ y(t) = ±t
√
c1t− 1.

C
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1.5. Linear Equations

Section Objective(s):

• Constant Coefficient Equations.
• Variable Coefficient Equations.
• The Integrating Factor Method.

Remarks:

• The study equations of the form y′ = a(t) y + b(t) .

• Constant coefficients linear equations are separable .

• We review how to solve these equations.

• Variable coefficients linear equations may not be separable .

• And integrating on both sides of the equation actually does not work .

• A new idea is needed to solve variable coefficients

equations.

• The new idea is to transform the linear equation into

a total derivative .

y′ = a(t) y + b(t) −→
(
ψ(t, y(t))

)′
= 0.

• This is what integrating factor method does .
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1.5.1. Linear Constant Coefficient Equations.

Definition 1. A linear differential equation on the function y is

y′ = a(t) y + b(t)

The equation has constant coefficients if both a and b are constants,

otherwise the equation has variable coefficients.

Example 1. (Constant Coefficients): Solve linear constant coefficients equations using

that they are separable equations .

We wrote the equation y′ = a y + b as follows y′ = a
(
y +

b

a

)
. The critical step was the

following: since b/a is constant, then (b/a)′ = 0, hence

(
y +

b

a

)′
= a

(
y +

b

a

)
.

At this point the equation was simple to solve,

(y + b
a )′

(y + a
b )

= a ⇒ ln
(∣∣∣y +

b

a

∣∣∣)′ = a ⇒ ln
(∣∣∣y +

b

a

∣∣∣) = c0 + at.

We now computed the exponential on both sides, to get

∣∣∣y +
b

a

∣∣∣ = ec0+at = ec0 eat ⇒ y +
b

a
= (±ec0) eat,

and calling c = ±ec0 we got the formula y(t) = c eat − b

a
,

C
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Example 2. (Variable Coefficients with b = 0): Solve linear variable coefficients

equations, y′ = a(t) y , using that they are separable equations .

Solution:

y′

y
= a(t) ⇒ ln(|y|)′ = a(t) ⇒ ln(|y(t)|) = A(t) + c0,

where A =
∫
a dt, is a primitive or antiderivative of a. Therefore,

y(t) = ±eA(t)+c0 = ±eA(t) ec0 ⇒ y(t) = c eA(t), c = ±ec0 .

C

Example 3.: Find all solutions of The solutions of y′ = 2t y.

Solution:
y(t) = c et

2

, where c ∈ R .

C

Remark: The case b/a non-constant cannot be solved with this idea.
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1.5.2. Variable Coefficient Equations.

Theorem 1. (Variable Coefficients) If the functions a, b are continuous, then

y′ = a(t) y + b(t), (1.5.1)

has infinitely many solutions given by

y(t) = c eA(t) + eA(t)

∫
e−A(t) b(t) dt, (1.5.2)

where A(t) =
∫
a(t) dt and c ∈ R.

Remarks:

(a) The expression in Eq. (1.5.2) is called the general solution .

(b) We solve these equations using the integrating factor method .

(c) The function µ(t) = e−A(t) is the integrating factor .

Example 4. (Integrating Factor Method): Find all the solutions of the equation

ty′ = −2y + 4t2, with t > 0.

Solution: Rewrite the equation as

y′ = −2

t
y + 4t ⇔ a(t) = −2

t
, b(t) = 4t. (1.5.3)

Rewrite again,

y′ +
2

t
y = 4t.

Multiply by a function µ,

µ y′ +
2

t
µ y = µ 4t.

Choose µ solution of

2

t
µ = µ′ ⇒ ln(|µ|)′ =

2

t
⇒ ln(|µ|) = 2 ln(t) = ln(t2) ⇒ µ(t) = ±t2.

We choose µ = t2. Multiply the differential equation by this µ,

t2 y′ + 2t y = 4t t2 ⇒ (t2 y)′ = 4t3.
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If we write the right-hand side also as a derivative,

(
t2 y
)′

=
(
t4
)′ ⇒

(
t2 y − t4

)′
= 0.

So a potential function is ψ(t, y(t)) = t2 y(t)− t4. Integrating on both sides we obtain

t2 y − t4 = c ⇒ t2 y = c+ t4 ⇒ y(t) =
c

t2
+ t2.

C
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Example 5. (Initial Value Problem): Find the solution to the initial value problem

ty′ + 2y = 4t2, t > 0, y(1) = 2.

Solution: The general solution is y(t) =
c

t2
+ t2. The initial condition implies that

2 = y(1) = c+ 1 ⇒ c = 1 ⇒ y(t) =
1

t2
+ t2.

C
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Example 6. (Extra Example 1): Find all solutions to the differential equation

y′ =
3

t
y + t5, for t > 0.

Solution: Rewrite the equation with y on only one side,

y′ − 3

t
y = t5.

Multiply the differential equation by a function µ, which we determine later,

µ(t)
(
y′ − 3

t
y
)

= t5 µ(t) ⇒ µ(t) y′ − 3

t
µ(t) y = t5 µ(t).

We need to choose a positive function µ having the following property,

−3

t
µ(t) = µ′(t) ⇒ −3

t
=
µ′(t)

µ(t)
⇒ −3

t
=
(
ln(|µ|)

)′
Integrating,

ln(|µ|) = −
∫

3

t
dt = −3 ln(|t|) + c0 = ln(|t|−3) + c0 ⇒ µ = (±ec0) eln(|t|−3),

so we get µ = (±ec0) |t|−3. We need only one integrating factor, so we choose µ = t−3. We

now go back to the differential equation for y and we multiply it by this integrating factor,

t−3
(
y′ − 3

t
y
)

= t−3 t5 ⇒ t−3 y′ − 3 t−4 y = t2.

Using that −3 t−4 = (t−3)′ and t2 =
( t3

3

)′
, we get

t−3 y′ + (t−3)′ y =
( t3

3

)′
⇒

(
t−3 y

)′
=
( t3

3

)′
⇒

(
t−3 y − t3

3

)′
= 0.

This last equation is a total derivative of a potential function ψ(t, y) = t−3 y− t
3

3
. Since the

equation is a total derivative, this confirms that we got a correct integrating factor. Now

we need to integrate the total derivative, which is simple to do,

t−3 y − t3

3
= c ⇒ t−3 y = c+

t3

3
⇒ y(t) = c t3 +

t6

3
,

where c is an arbitrary constant.

C
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Example 7. (Extra Example 2): Find the solution of

ty′ = 2y + 4t3 cos(4t), y
(π

8

)
= 0.

Solution: Rewrite the equation as

y′ − 2

t
y = 4t2 cos(4t) ⇔ a(t) =

2

t
, b(t) = 4t2 cos(4t). (1.5.4)

Multiply by a function µ,

µ y′ − 2

t
µ y = µ 4t2 cos(4t).

Choose µ solution of

−2

t
µ = µ′ ⇒ ln(|µ|)′ = −2

t
⇒ ln(|µ|) = −2 ln(t) = ln(t−2) ⇒ µ(t) = ± 1

t2
.

We choose µ = 1
t2 . Multiply the differential equation by this µ,

y′

t2
− 2y

t3
= 4 cos(4t) ⇒

( y
t2
)′

= 4 cos(4t).

If we write the right-hand side also as a derivative,

( y
t2
)′

=
(
sin(4t)

)′ ⇒
( y
t2
− sin(4t)

)′
= 0.

So a potential function is ψ(t, y(t)) = y
t2 − sin(4t). Integrating on both sides we obtain

y

t2
− sin(4t) = c ⇒ y(t) = ct2 + t2 sin(4t).

Using the initial condition, we find c = −1, so the solution to the IVP is

y(t) = −t2 + t2 sin(4t).

C
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1.6. Approximate Solutions

Section Objective(s):

• The Existence of Solutions Theorem.
• The Picard Iteration.
• Linear vs Nonlinear Equations.

Remarks:

• If the equation is nice enough , then there are solutions.

• The theorem is proved using the Picard iteration .

• The Picard iteration creates a sequence of functions .

• The solution of the equation is the limit of the sequence .

• We compare results on solutions of linear and

nonlinear equations.
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1.6.1. The Existence of Solutions Theorem.

Theorem 1.3.1. (Picard-Lindelöf) Consider the initial value problem

y′(t) = f(t, y(t)), y(t0) = y0.

If the function f and its partial derivative ∂yf are continuous on some rectangle on

the ty-plane containing the point (t0, y0) in its interior,

then there is a unique solution y of the initial value

problem above on a smaller rectangle containing the condition (t0, y0).

Idea of the Proof: The Picard Iteration.

(a) Transform the differential equation into an integral equation:∫ t

t0

y′(s) ds =

∫ t

t0

f(s, y(s)) ds ⇒ y(t) = y(t0) +

∫ t

t0

f(s, y(s)) ds,

where we have used the Fundamental Theorem of Calculus on the left-hand side of the

first equation to get the second equation.

(b) Introduce a sequence of functions, called approximate solutions, as follows:

y0(t) = y(t0),

yn+1(t) = y(t0) +

∫ t

t0

f(s, yn(s)) ds, n > 0.

Remark: One can show that lim
n→∞

yn(t) = y(t) exists and this limit satisfies

y(t) = y(t0) +

∫ t

t0

f(s, y(s)) ds

and y is differentiable, so it also satisfies y′ = f(t, y).

�
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1.6.2. The Picard Iteration.

Example 1: Use three iterations of Picard’s iteration procedure to find and approximate
solution to

y′ = 2 y + 3 y(0) = 1.

Remark: We can compute the solution using the integrating factor method.

e−2t (y′ − 2 y) = e−2t 3 ⇒ e−2t y = −3

2
e−2t + c ⇒ y(t) = c e2t − 3

2
;

and the initial condition implies

1 = y(0) = c− 3

2
⇒ c =

5

2
⇒ y(t) =

5

2
e2t − 3

2
.

Solution: We first transform the differential equation into an integral equation.∫ t

0

y′(s) ds =

∫ t

0

(2 y(s) + 3) ds ⇒ y(t)− y(0) =

∫ t

0

(2 y(s) + 3) ds.

Using the initial condition, y(0) = 1,

y(t) = 1 +

∫ t

0

(2 y(s) + 3) ds.

We now define the sequence of approximate solutions:

y0 = y(0) = 1, yn+1(t) = 1 +

∫ t

0

(2 yn(s) + 3) ds, n > 0.

We now compute the first elements in the sequence. We said y0 = 1, now y1 is given by

n = 0, y1(t) = 1 +

∫ t

0

(2 y0(s) + 3) ds = 1 +

∫ t

0

5 ds = 1 + 5t.

So y1 = 1 + 5t. Now we compute y2,

y2 = 1+

∫ t

0

(2 y1(s)+3) ds = 1+

∫ t

0

(
2(1+5s)+3

)
ds ⇒ y2 = 1+

∫ t

0

(
5+10s

)
ds = 1+5t+5t2.

So we’ve got y2(t) = 1 + 5t+ 5t2. Now y3,

y3 = 1 +

∫ t

0

(2 y2(s) + 3) ds = 1 +

∫ t

0

(
2(1 + 5s+ 5s2) + 3

)
ds
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so we have,

y3 = 1 +

∫ t

0

(
5 + 10s+ 10s2

)
ds = 1 + 5t+ 5t2 +

10

3
t3.

So we obtained y3(t) = 1 + 5t+ 5t2 +
10

3
t3. We now rewrite this expression so we can get

a power series expansion that can be written in terms of simple functions. The first step is

done already, to write the powers of t as tn, for n = 1, 2, 3,

y3(t) = 1 + 5t1 + 5t2 +
5(2)

3
t3

We now multiply by one each term so we get the factorials n! on each term

y3(t) = 1 + 5
t1

1!
+ 5(2)

t2

2!
+ 5(22)

t3

3!

We then realize that we can rewrite the expression above in terms of power of (2t), that is,

y3(t) = 1 +
5

2

(2t)1

1!
+

5

2

(2t)2

2!
+

5

2

(2t)3

3!
= 1 +

5

2

(
(2t) +

(2t)2

2!
+

(2t)3

3!

)
.

From this last expressions simple to guess the n-th approximation

yN(t) = 1 +
5

2

(
(2t) +

(2t)2

2!
+

(2t)3

3!
+ · · ·+ (2t)N

N !

)
= 1 +

5

2

N∑
k=1

(2t)k

k!
.

Recall now that the power series expansion for the exponential

eat =

∞∑
k=0

(at)k

k!
= 1 +

∞∑
k=1

(at)k

k!
⇒

∞∑
k=1

(at)k

k!
= (eat − 1).

Then, the limit N →∞ is given by

y(t) = lim
N→∞

yN(t) = 1 +
5

2

∞∑
k=1

(2t)k

k!
= 1 +

5

2

(
e2t − 1

)
,

One last rewriting of the solution and we obtain

y(t) =
5

2
e2t − 3

2
.

C
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1.6.3. Linear vs Nonlinear Equations.

Recall: The main theorem about solutions of linear equations.

Theorem 1. Given continuous functions a, b with domain (t1, t2), and constants
t0 ∈ (t1, t2), y0 ∈ R, then the initial value problem

y′ = a(t) y + b(t), y(t0) = y0,

has the unique solution on the domain (t1, t2), given by

y(t) = y0e
A(t) + eA(t)

∫ t

t0

e−A(s) b(s) ds,

where A(t) =

∫ t

t0

a(s) ds .

Solutions to linear equations satisfy:

(a) There is an explicit formula for all solutions.

(b) For every initial condition y0 there is a unique solution.

(c) For every IC y0 the domain of y(t) is fixed, (t1, t2) .

Solutions to nonlinear equations satisfy:

(1) There is no explicit formula for the solution of

every nonlinear differential equation.

(2) Given an initial condition (t0, y0)

there may be more than one solution .

(3) Given an initial condition (t0, y0) the domain of the solution y(t)

may change with y0 .

Example 2. (Linear vs. Non-Linear ODEs): The solutions of the following equations
are examples of the properties above. Identify which example corresponds to which property
and explain your reasoning.

(1) y′(t) =
t2(

y4(t) + 8 y3(t) + 9 y2(t) + 6 y(t) + 7
) .

(2) y′(t) = y1/3(t), y(0) = 0.

(3) y′(t) = y2(t), y(0) = y0.

C
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Example 3. (Extendability of solutions to linear equations): In the initial value
problems below find the maximum domain where the solution is certain to exist.

(1) t(t− 5) y′ = y, y(−1) = 4

(2) (t2 − 4) y′ − 5 ln(t) y = 3t, y(1) = 2

Solution:

(1) The equation is y′ =
y

t(t− 5)
, so the equation is defined on

(−∞, 0) ∪ (0, 5) ∪ (5,∞).

The initial condition is at t = −1, so the interval where the equation is defined

and contains the initial condition is

I = (−∞, 0).

(2) The equation is y′ =
5 ln(t) y

(t2 − 4)
+

3t

(t2 − 4)
, so the equation is defined on

(0, 2) ∪ (2,∞).

The initial condition is at t = 1, so the interval where the equation is defined and

contains the initial condition is

I = (0, 2).

C
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Example 4. (Extra Example): Use three iterations of Picard’s iteration procedure to
find an approximate solution of

y′ = 5t y, y(0) = 1.

Solution: We first transform the differential equation into an integral equation.∫ t

0

y′(s) ds =

∫ t

0

5s y(s) ds ⇒ y(t)− y(0) =

∫ t

0

5s y(s) ds.

Using the initial condition, y(0) = 1,

y(t) = 1 +

∫ t

0

5s y(s) ds.

We now define the sequence of approximate solutions:

y0 = y(0) = 1, yn+1(t) = 1 +

∫ t

0

5s yn(s) ds, n > 0.

We now compute the first four elements in the sequence. The first one is y0 = y(0) = 1, the

second one y1 is given by

n = 0, y1(t) = 1 +

∫ t

0

5s ds = 1 +
5

2
t2.

So y1 = 1 + (5/2)t2. Now we compute y2,

y2 = 1 +

∫ t

0

5s y1(s) ds

= 1 +

∫ t

0

5s
(
1 +

5

2
s2
)
ds

= 1 +

∫ t

0

(
5s+

52

2
s3
)
ds

= 1 +
5

2
t2 +

52

8
t4.

So we obtained y2(t) = 1 +
5

2
t2 +

52

23
t4. A similar calculation gives us y3,

y3 = 1 +

∫ t

0

5s y2(s) ds

= 1 +

∫ t

0

5s
(
1 +

5

2
s2 +

52

23
s4
)
ds
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y3 = 1 +

∫ t

0

(
5s+

52

2
s3 +

53

23
s5
)
ds

= 1 +
5

2
t2 +

52

8
t4 +

53

236
t6.

So we obtained y3(t) = 1 +
5

2
t2 +

52

23
t4 +

53

243
t6. We now rewrite this expression so we can

get a power series expansion that can be written in terms of simple functions. The first step

is to write the powers of t as tn, for n = 1, 2, 3,

y3(t) = 1 +
5

2
(t2)1 +

52

23
(t2)2 +

53

243
(t2)3.

Now we multiply by one each term to get the right facctorials, n! on each term,

y3(t) = 1 +
5

2

(t2)1

1!
+

52

22

(t2)2

2!
+

53

23

(t2)3

3!
.

No we realize that the factor 5/2 can be written together with the powers of t2,

y3(t) = 1 +
( 5

2 t
2)

1!
+

( 5
2 t

2)2

2!
+

( 5
2 t

2)3

3!
.

From this last expression is simple to guess the n-th approximation

yN(t) = 1 +

N∑
k=1

( 5
2 t

2)k

k!
,

which can be proven by induction. Therefore,

y(t) = lim
N→∞

yN(t) = 1 +

∞∑
k=1

( 5
2 t

2)k

k!
.

Recall now that the power series expansion for the exponential

eat =

∞∑
k=0

(at)k

k!
= 1 +

∞∑
k=1

(at)k

k!
.

so we get

y(t) = 1 + (e
5
2 t

2

− 1) ⇒ y(t) = e
5
2 t

2

.

C
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2.1. Second Order Linear Equations: General Properties

Section Objective(s):

• Second Order Linear Equations.
• Conservation of Mechanical Energy.
• Properties of Homogeneous Equations.

Remarks:

• We now study second order differential equations.

• The main example is Newton’s law of motion .

• We have an existence result about solutions these equations

without a formula for the solutions .

• We study ways to find properties of the solutions

without solving the equations.

• One way is with the conservation of the energy

• We end this section studying properties of homogeneous

equations.
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2.1.1. Second Order Linear Equations.

Definition 1. A second order linear differential equation on y is

y′′ + a1(t) y
′ + a0(t) y = b(t),

where a1, a0, b are given functions. The differential equation above:

(a) is homogeneous iff the source b(t) = 0 for all t ∈ R;

(b) has constant coefficients iff a1 and a0 are constants;

(c) has variable coefficients iff either a1 or a0 is not constant.

Theorem 1. (IVP) If the a1, a0, b are continuous on (t1, t2) and t0 ∈ (t1, t2), then there

is a unique y on (t1, t2) solution of the initial value problem

y′′ + a1(t) y
′ + a0(t) y = b(t), y(t0) = y0, y′(t0) = y1.

Example 1. (Newton’s Second Law of Motion): The main example of a second order

linear equation is Newton’s law of motion

ma = f a = y′′ ⇒ my′′ = f.

The moving particle is described by its position, velocity and acceleration.

• The function y is the position of a particle.

• The function y′ = v is the velocity of a particle.

• The function a = y′′ is the acceleration of a particle.

The force may depend on time, position, and velocity. So, Newton’s equation is the differ-

ential equation

my′′ = f(t, y, y′).
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Example 2. (Mass-Spring without Friction):
Consider mass hanging at the bottom of a spring. Set
y to be a vertical coordinate, with y = 0 at the equi-
librium position of the mass-spring. Then, Hooke’s
Law states the force done by the spring on the mass
is proportional to the stretching distance y and in the
opposite to the stretching,

f = −ky, k > 0.

Newton’s equation for this system, my′′ = f , is

my′′ = −k y ⇒ my′′ + k y = 0 . y

0
m

y(t)
m

Example 3. (Mass-Spring with Friction): Consider mass hanging at the bottom of
a spring describe in the example above. Suppose now that the whole system is oscillating
inside a water bath. In this case appears an extra force, the friction between the oscillating
mass and the water, given by

fd = −d y′, d > 0.

This friction, or damping force, opposes the movement. Then, Newton’s equation, my′′ = f ,
in this case is

my′′ = −k y − d y′ ⇒ my′′ + d y′ + k y = 0 .
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2.1.2. Conservation of Mechanical Energy.

Theorem 2.1.1 (Conservation of the Energy). All solutions of the Mass-Spring System

without friction

my′′ + k y = 0,

satisfy that the quantity

E(t) =
1

2
m
(
v(t)

)2
+

1

2
k
(
y(t)

)2
.

where v = y′ , is constant in time.

Proof:

(my′′ + k y) y′ = 0 ⇒ my′′y′ + kyy′ = 0 ⇒ d

dt

(
m

(y′)2

2
+ k

y2

2

)
= 0

E(t) =
1

2
m (y′)2 +

1

2
k y2 ⇒ d

dt
E(t) = 0.

C
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Example 4. (Conservation of the Energy): An object of mass m = 1 grams hanging
at the bottom of a spring with a spring constant k = 2 grams per second square. Denote
by y vertical coordinate, positive downwards, and y = 0 is the spring-mass resting position.

(1) Write the equation of motion for this object.

(2) Write the expression of the energy of this system.

(3) If the initial position of the object is y(0) = 1 and its initial velocity is y(0) = 2, find
the maximum value of the object velocity, vmax > 0 achieved during its motion.

Solution:

(1) The equation of motion is y′′ + 2 y = 0.

(2) The energy is obtained from

(y′′ + 2y) y′ = 0 ⇒ y′′ y′ + y y′ ⇒ d

dt

(1

2
(y′)2 + y2

)
= 0

so the energy is E(t) =
1

2
v2 + y2, where v = y′.

(3) The energy is conserved: E(t) = C. And C is the initial energy E(t) = E(0), so

1

2
v2(t) + y2(t) =

1

2
v2(0) + y2(0).

But the initial conditions say that y(0) = 1, and v(0) = 2, so

1

2
v2(t) + y2(t) =

1

2
4 + 1 ⇒ 1

2
v2(t) + y2(t) = 3.

From the expression above we see that the maximum speed vmax is achieved when

y(t) = 0. At these times we get

1

2
v2

max = 3 ⇒ vmax =
√

6.

C
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Example 1. (Extendability of Solutions): Find the maximum domain where the
solution of the initial value problem below is certain to exist.

(t− 1) y′′ − 3t y′ +
4(t− 1)

(t− 3)
y = t(t− 1), y(2) = 1, y′(2) = 0.

Solution: The equation is y′′ − 3t

(t− 1)
y′ +

4

(t− 3)
y = t, so, the equation coefficients are

defined on the domain

(−∞, 1) ∪ (1, 3) ∪ (3,∞) ⇒ solution is defined on (−∞, 1) or (1, 3) or (3,∞)

The initial condition is at t = 2, so the interval where the equation and the initial condition

are defined is

D = (1, 3).

C
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2.1.3. Properties of Homogeneous Equations.

Remark: We introduce the (operator) notation

y′′ + a1 y
′ + a0 y = b(t) ⇔ L(y) = b(t) with L(y) = y′′ + a1 y

′ + a0 y.

Theorem 2.1.5. (Superposition Property) If y1, y2 are solutions of the homogeneous

equations L(y1) = 0 and L(y2) = 0 , where L(y) = y′′+a1 y
′+a0 y,

then for every constants c1, c2 holds

L(c1 y1 + c2 y2) = 0.

Remark: This result is not true for nonhomogeneous equations.

Proof:

L(c1 y1 + c2 y2) = (c1 y1 + c2 y2)
′′ + a1 (c1 y1 + c2 y2)

′ + a0 (c1 y1 + c2 y2)

= c1(y
′′
1 + a1 y

′
1 + a0 y1) + c2(y

′′
2 + a1 y

′
2 + a0 y2)

= c1 L(y1) + c2 L(y2)

= 0.

�

Theorem (General Solution). If y1, y2, with y1 6= c y2 for any c ∈ R, are solutions

of L(y1) = 0 and L(y2) = 0 , where L(y) = y′′ + a1 y
′ + a0 y,

then every solution y of L(y) = 0 can be written as

y(t) = c1 y1(t) + c2 y2(t), c1, c2 ∈ R.

Remark: Solutions y1 and y2 of L(y) = 0 with y1 6= c y2 are called

fundamental solutions .
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Example 5. (Superposition Property): If y1 is solution of

y′′ + a1 y
′ + a0 y = 0, (1)

and y − 2 is solution of
y′′ + a1 y

′ + a0 y = cos(2t), (2)

then determine whether the following statements are True or False.

(1) y1 + y2 solves the homogeneous equation (1)

(2) y1 + y2 solves the non-homogeneous equation (2)

(3) 2 y1 solves the homogeneous equation (1)

(4) 2 y2 solves the non-homogeneous equation (2)

Solution:

(1) False

(2) True

(3) True

(4) False

C

Example 6. (Fundamental Solutions): Show that y1 = et and y2 = e−2t are funda-
mental solutions to the equation

y′′ + y′ − 2y = 0.

Solution: y1, y2 are l.i., so we only need to show that L(y1) = 0 and L(y2) = 0.

L(y1) = y′′1 + y′1 − 2y1 = et + et − 2et = (1 + 1− 2)et = 0,

L(y2) = y′′2 + y′2 − 2y2 = 4 e−2t − 2 e−2t − 2e−2t = (4− 2− 2)e−2t = 0.

C

Example 7.: Since y1 = 1 is solution of

y′′ + y′ − 2y = −2.

find two more different solutions.

Solution:

y2(t) = 1 + et, y3(t) = 1 + e−2t.
C
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2.2. Homogenous Constant Coefficients Equations

Section Objective(s):

Part 1:

• Review: General and Fundamental Solutions.
• Guessing Fundamental Solutions for 2× 2 Systems.
• Solutions for 2× 2 Systems.

Part 2:

• Review: Solutions for 2× 2 Systems.
• The Complex Roots Case.
• Real Solutions for Complex Roots.

Remarks:

• Recall:

Theorem (General Solution). If y1, y2, with y1 6= c y2 for any c ∈ R, are

solutions of L(y1) = 0 and L(y2) = 0 , where

L(y) = y′′ + a1 y
′ + a0 y, then every solution y of

L(y) = 0 can be written as

y(t) = c1 y1(t) + c2 y2(t), c1, c2 ∈ R.

• Solutions y1 and y2 of L(y) = 0 with y1 6= c y2 are called

fundamental solutions .

• If we know 2 fundamental solutions , then we know

all solutions of the homogeneous equation.

• For 2× 2 system we guess the fundamental

solutions.
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2.2.1. Guessing Fundamental Solutions for 2× 2 Systems.

Example 1. (Guessing Fundamental Solutions): Find all solutions to the equation

y′′ + 5y′ + 6y = 0.

Solution: Trial and Error:

• We try with simple functions: y(t) = tn, y(t) = ert, y(t) = cos(at), etc.

• Power functions: y = tn. We need y′ = n tn−1, and y′′ = n(n− 1) tn−2.

n(n− 1) t(n−2) + 5n t(n−1) + 6 tn = 0 for all t ∈ R ⇒ no solution.

• Exponential functions: y(t) = ert. We need y′ = r ert, and y′′ = r2 ert.

r2 ert + 5r ert + 6 ert = 0 ⇒ (r2 + 5r + 6) ert = 0 ⇒ (r2 + 5r + 6) = 0

Therefore we get two values: r1 = −2 and r2 = −3. So two fundamental

solutions,

y1 = e−2t, y2 = e−3t.

The General solution Theorem Says the general solution is

y(t) = c e−2t + c2 e
−3t.

C



2.2. HOMOGENOUS CONSTANT COEFFICIENTS EQUATIONS 3

Definition 1. The characteristic polynomial and characteristic equation of
the differential equation

y′′ + a1y
′ + a0 = 0 a1, a0 ∈ R,

are, respectively,

p(r) = r2 + a1r + a0 and p(r) = 0.

Theorem 1. If r± are the roots of the characteristic polynomial of

y′′ + a1y
′ + a0y = 0, (1)

if c+, c- are arbitrary constants, then we have the following:

(a) If r+ 6= r- , real or complex, then the general solution of Eq. (2) is

ygen(t) = c+ e
r+t + c- e

r-t.

(b) If r+ = r- = r0 , real, then the general solution of Eq. (2) is

ygen(t) = c+ e
r0t + c- te

r0t.

Proof of Theorem 1:

Case (a): Since r+ 6= r-, then er+t 6= c er-t, so we get y+ 6= c y-. Since r+- are roots of the

characteristic polynomial,

p(r+) = 0, p(r-) = 0,

then y+- solve the differential equation. Indeed,

L(y+-) = (r2
+-

+ a1r+- + a0) e
r+-t = p(r+-) e

r+-t = 0.

Case (b): If r+ = r- = r0, then we know that y1 = er0t is a solution, since

L(y0) = (r2
0 + a1r0 + a0) e

r0t = p(r0) e
r0t = 0.

We now need to find a second solution y2 not proportional to y1. We use the Reduction

of Order Method:

y2(t) = v(t) y1(t) ⇒ y2(t) = v(t) er0t,
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and we put this expression in the differential equation (2),

(
v′′ + 2r0v

′ + vr2
0

)
er0t +

(
v′ + r0v

)
a1e

r0t + a0v e
r0t = 0.

We cancel the exponential out of the equation and we reorder terms,

v′′ + (2r0 + a1) v
′ + (r2

0 + a1r0 + a0) v = 0.

Recall that r0 is a root of the characteristic polynomial

r2
0 + a1r0 + a0 = 0,

Also recall that r0 is the only root,

r0 = −a1
2
± 1

2

√
a2
1 − 4a0 = −a1

2
⇒ 2r0 + a1 = 0.

Therefore

v′′ = 0 ⇒ v(t) = c1 + c2t

and the second solution is

y2(t) = (c1 + c2t) y1(t).

• Choosing c2 = 0 is bad, y2 is proportional to y1.

• So c2 6= 0. We choose c2 = 1, and we get

y1(t) = er0t, y2(t) = t er0t.

�
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Example 2: Consider an object of mass m = 1 grams hanging from a spring with spring
constant k = 9 grams per second square moving in a fluid with damping constant d = 6
grams per second. Find the position function of this object for arbitrary initial position and
velocity.

Solution: The equation modeling the motion of the object is given by y′′ + 6y′ + 9y = 0.

The characteristic equation is

r2 + 6r + 9 = 0 ⇒ r =
1

2

(
−6±

√
36− 36

)
= −3, ⇒ r+ = r- = −3.

Therefore, the general solution of the equation above is

ygen(t) = c+e
−3t + c- t e

−3t.

C

Example 3: Find the solution y of the initial value problem

y′′ − y′ − 2y = 0, y(0) = 1, y′(0) = 5.

Solution: We find the roots of the characteristic polynomial

p(r) = r2 − r − 2 = 0 ⇒ r+- =
1

2

(
1±
√

1 + 8
)

=
1± 3

2
⇒


r+ = 2,

r- = −1.

So the general solution is ygen(t) = c+e
2t+c-e

−t. The initial conditions fix c+ and c-, because

1 = y(0) = c+ + c-

5 = y′(0) = 2c+ − c-

 ⇒


c+ = 2,

c- = −1.

Therefore, the unique solution to the initial value problem is

y(t) = 2e2t − e−t.

C
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Section Objective(s):

Part 1:

• Review: General and Fundamental Solutions.
• Guessing Fundamental Solutions for 2× 2 Systems.
• Solutions for 2× 2 Systems.

Part 2:

• Review: Solutions for 2× 2 Systems.
• The Complex Roots Case.
• Review of Complex Numbers.

Remarks:

• Recall the 2× 2 case:

Theorem 1. If r± are the roots of the characteristic polynomial of

y′′ + a1y
′ + a0y = 0, (2)

and if c+, c- are arbitrary constants, then we have the following:

(a) If r+ 6= r- , real or complex, the general solution of Eq. (2) is

ygen(t) = c+ e
r+t + c- e

r-t.

(b) If r+ = r- = r0 , real, the general solution of Eq. (2) is

ygen(t) = c+ e
r0t + c- te

r0t.

• Equations with characteristic polynomial having complex roots

have complex solutions .

• In some physical applications is important to have real solutions .

• Solutions of equations with complex roots describe

dissipative phenomena .



2 CONTENTS

2.2.2. The Complex Roots Case.

Example 4: Consider an object of mass m = 1 grams hanging from a spring with spring
constant k = 13 grams per second square moving in a fluid with damping constant d = 4
grams per second. Find the position function of this object for arbitrary initial position and
velocity.

Solution: The position y of the object must be solution of

y′′ + 4y′ + 13y = 0.

To find the solutions we first look for the roots of the characteristic polynomial,

r2 + 4r + 13 = 0 ⇒ r± =
1

2

(
−4±

√
16− 52

)
⇒ r± =

1

2

(
−4±

√
36
)
,

so we obtain the roots

r± = −2± 3i.

Since the roots of the characteristic polynomial are different,

ygen(t) = c̃+ e
(−2+3i)t + c̃- e

(−2−3i)t, c̃+, c̃- ∈ C.

Unfortunately, it is not clear from the expression above how the object is going to move.

C
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2.2.3. Review of Complex Numbers.

Suppose that a, b ∈ R. Then:

• Complex numbers have the form z = a+ ib , where i2 = −1 .

• The complex conjugate of z is the number z = a− ib .

• Re(z) = a, Im(z) = b are the real and imaginary parts of z

• Hence: Re(z) =
z + z

2
, Im(z) =

z − z
2i

.

• The exponential of a complex number is defined as

ea+ib =

∞∑
n=0

(a+ ib)n

n!
.

In particular, the following is true: ea+ib = ea eib .

• Euler’s formula: eib = cos(b) + i sin(b) .

• Hence, a complex number of the form ea+ib can be written as

ea+ib = ea
(
cos(b) + i sin(b)

)
,

ea−ib = ea
(
cos(b)− i sin(b)

)
.

• From ea+ib and ea−ib we get the real numbers

1

2

(
ea+ib + ea−ib

)
= ea cos(b),

1

2i

(
ea+ib − ea−ib

)
= ea sin(b).
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Theorem 2. (Real Valued Fundamental Solutions) If the equation

y′′ + a1 y
′ + a0 y = 0 with p(r) = r2 + a1r + a0

has coefficients such that a12 − 4a0 < 0 , then the roots of p are complex,

r+- = α± iβ with α = −a1
2
, β =

1

2

√
4a0 − a2

1 ,

and there are complex fundamental solutions of the differential equation,

ỹ+(t) = e(α+iβ)t, ỹ-(t) = e(α−iβ)t,

while real valued fundamental solutions of the differential equation are

y+(t) = eαt cos(βt), y-(t) = eαt sin(βt).

Furthermore, the general solution of the differential equation can be written either as

ygen(t) =
(
c1 cos(βt) + c2 sin(βt)

)
eαt,

where c1, c2 are arbitrary constants, or as

ygen(t) = Aeαt cos(βt− φ)

where A > 0 is the amplitude and φ ∈ [−π, π) is the phase shift .

Proof of Theorem 2: We start with the complex valued fundamental solutions

ỹ+(t) = e(α+iβ)t, ỹ-(t) = e(α−iβ)t.

We take the function ỹ+ and we use a property of complex exponentials,

ỹ+(t) = e(α+iβ)t = eαt eiβt = eαt
(
cos(βt) + i sin(βt)

)
,

where we used Euler’s formula eiθ = cos(θ) + i sin(θ). Repeat this calculation for y- we get,

ỹ+(t) = eαt
(
cos(βt) + i sin(βt)

)
,

ỹ-(t) = eαt
(
cos(βt)− i sin(βt)

)
.
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The superposition property says that addition and differences of solutions to homogeneous

equations are also solutions. So,

y+(t) =
1

2

(
ỹ+(t) + ỹ-(t)

)
, y-(t) =

1

2i

(
ỹ+(t)− ỹ-(t)

)
,

are also solutions to the differential equation. But a straightforward computation gives

y+(t) = eαt cos(βt), y-(t) = eαt sin(βt).

Therefore, the genreal solution is

ygen(t) =
(
c1 cos(ω0t) + c2 sin(βt)

)
eαt.

There is an equivalent way to express the general solution above given by

ygen(t) = Aeαt cos(ω0t− φ).

These two expressions for ygen are equivalent because of the trigonometric identity

A cos(βt− φ) = A cos(βt) cos(φ) +A sin(βt) sin(φ),

which holds for all A and φ, and βt. Then, it is not difficult to see that

c1 = A cos(φ),

c2 = A sin(φ).

 ⇔


A =

√
c21 + c22 ,

tan(φ) =
c2
c1
.

This establishes the Theorem.

�
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Example 5. (Real Solutions - Mathematicians Notation): Describe the movement
of the object in Example 4 above, which satisfies Newton’s equation

y′′ + 4y′ + 13y = 0,

with initial position of 2 centimeters and initial velocity of 2 centimeters per second.

Solution: We already found the roots of the characteristic polynomial,

r2 + 4r + 13 = 0 ⇒ r± =
1

2

(
−4±

√
16− 52

)
⇒ r± = −2± 3i.

So the complex valued fundamental solutions are

ỹ+(t) = e(−2+3i) t, ỹ-(t) = e(−2−3i) t.

We know that real valued fundamental solutions are given by

y+(t) = e−2t cos(3t), y-(t) = e−2t sin(3t).

So the real valued general solution can be written as

ygen(t) =
(
c+ cos(3t) + c- sin(3t)

)
e−2t, c+, c- ∈ R.

We now use the initial conditions, y(0) = 2, and y′(0) = 2,

2 = y(0) = c+

2 = y′(0) = 3c- − 2c+

 ⇒ c+ = 2, c- = 2,

therefore the solution is

y(t) =
(
2 cos(3t) + 2 sin(3t)

)
e−2t.

C
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Example 6. (Real Solution - Physicists Notation): Write the solution of the Exam-
ple 5 above in terms of the amplitude A and phase shift φ.

Solution: To understand the movement of the object we write the solution in terms of

amplitude and phase shift

y(t) = Ae−2t cos(3t− φ) ⇒ y′(t) = −2Ae−2t cos(3t− φ)− 3Ae−2t sin(3t− φ).

Let us use again the initial conditions y(0) = 2, and y′(0) = 2,

2 = y(0) = A cos(−φ)

2 = y′(0) = −2A cos(−φ)− 3A sin(−φ)

 ⇒


2 = A cos(φ)

2 = −2A cos(φ) + 3A sin(φ)

Using the first equation in the second one we get

2 = A cos(φ)

2 = −4 + 3A sin(φ)

 ⇒


2 = A cos(φ)

2 = A sin(φ)

From here it is not too difficult to see that

A =
√

22 + 22 = 2
√

(2), tan(φ) = 1.

Since φ ∈ [−π, π), the equation tan(φ) = 1 has two solutions in that interval,

φ1 =
π

4
, φ2 =

π

4
− π = −3π

4
.

But the φ we need satisfies that cos(φ) > 0 and sin(φ) > 0, which means φ =
π

4
, then

y(t) = 2
√

2 e−2t cos
(

3t− π

4

)
.

C
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Example 7. (Extra Problem): Find the movement of a 5kg mass attached to a spring

with constant k = 5kg/secs
2

moving in a medium with damping constant d = 5kg/secs,

with initial conditions y(0) =
√

3 and y′(0) = 0.

Solution: The equation is my′′ + dy′ + ky = 0 with m = 5, k = 5, d = 5, that is,

y′′ + y′ + y = 0.

The roots of the characteristic polynomial are

r± =
1

2

(
−1±

√
1− 4

)
⇒ r± = −1

2
± i
√

3

2
.

We can write the solution in terms of an amplitude and a phase shift,

y(t) = Ae−t/2 cos
(√3

2
t− φ

)
.

We now use the initial conditions to find out the amplitude A and phase-shift φ. T

y′(t) = −1

2
Ae−t/2 cos

(√3

2
t− φ

)
−
√

3

2
Ae−t/2 sin

(√3

2
t− φ

)
.

The initial conditions in the example imply,

√
3 = y(0) = A cos(φ), 0 = y′(0) = −1

2
A cos(φ) +

√
3

2
A sin(φ).

The second equation above allows us to compute the phase shift. Recall that φ ∈ [−π, π),

and the condition that tan(φ) = 1/
√

3 has two solutions in that interval,

tan(φ) =
1√
3
⇒ φ1 =

π

6
, or φ2 =

π

6
− π = −5π

6
.

If φ = −5π/6, then y(0) < 0, which is not out case. Hence we must choose φ = π/6.

√
3 = A cos

(π
6

)
= A

√
3

2
⇒ A = 2.

Therefore we obtain the solution

y(t) = 2 e−t/2 cos
(√3

2
t− π

6

)
.
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2.3. Nonhomogeneous Equations

Section Objective(s):

Part 1:

• The General Solution Theorem(NH).
• The Undetermined Coefficients Method.

Part 2:

• The Variation or Parameters Method.

Remarks:

• If y1 and y2 are solutions of the linear nonhomogeneous equation

y′′ + a1(t) y
′ + a0(t) y = f,

is then y1 + y2 also a solution? And how about 5y1?

(1)

L(y1) = f, L(y2) = f,

and

L(y1 + y2) = L(y1) + L(y2) = f + f = 2f.

(2)

L(5 y − 1) = 5L(y1) = 5 f.

• Consider the following exercise:

(1) Guess a simple solution of y′′ + y = 7.

y0 = 7.

(2) Find fundamental solutions of y′′ + y = 0.

r2 + 1 = 0 ⇒ r = ±i ⇒ y1 = cos(t), y2 = sin(t)

(3) Now give 3 different solutions of y′′ + y = 7.

y1 = 7 + sin(t), y2 = 7 + cos(t), y3 = 7 + 2 sin(t) + 3 cos(t)
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2.3.1. The General Solution Theorem.

Theorem 1. (General Solution (NH)) If y1 and y2 are fundamental solutions of

L(y1) = 0, L(y2) = 0,

where L(y) = y′′ + a1 y
′ + a0 y , and yp is one solu-

tion of L(yp) = f , then all solutions of the nonhomogeneous

equation L(y) = f are

y = c1 y1 + c2 y2 + yp, c1 c2 ∈ R.

Remark: The general solution of L(y) = f is

y(t) = c1 y1(t) + c2 y2(t) + yp(t),

where yp solves L(yp) = f and y1, y2 are fundamental solutions of L(y) = 0.

Proof of Theorem 1: Given any particular solution Let yp, that is L(yp) = f , any other

solution y of the same equation L(y) = f satisfies

L(y − yp) = L(y)− L(yp) = f − f = 0.

That is, y − yp is solution of the homogeneous equation. Therefore, this solution can be

written as linear combinations of a pair of fundamental solutions, y1, y2 of the homogeneous

equation,

y − yp = c1 y1 + c2 y2.

Since for every y solution of L(y) = f we can find constants c1, c2 such that the equation

above holds true, we have found a formula for all solutions of the nonhomogeneous equation.

This establishes the Theorem.

�
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2.3.2. The Undetermined Coefficients Method.

Example 1 (Guessing Solutions): If a1, a0 are arbitrary constants, guess a function yp
solution of

y′′ + a1 y
′ + a0 y = 3 e2t

Solution:

• f(t) = 3 e2t −→ yp(t) ?

• Since L(y) = y′′ + a1 y
′ + a0 y has constant coefficients, we guess

yp(t) = k e2t.

Because

L(yp) =
(
k e2t

)′′
+ a1

(
k e2t

)
+ a0

(
k e2t

)
= k

(
22 + a1 2 + a0

)
e2t

= k p(2) e2t.

It is a good idea to choose yp proportional to e2t because

if L(yp) = f, then

k p(2) e2t = 3 e2t ⇒ k p(2) = 3 ⇒ k =
3

p(2)
.

So we guessed right, and

yp(t) =
3

p(2)
e2t.

C
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Summary of the Undetermined Coefficients Method:

Problem Find yp solution of L(yp) = f(t) ,

where L(y) = y′′ + a1y
′ + a0y.

(1) First Guess: Given a simple f(t) , guess yp1(t) .

f(t) (Source) (K, m, a, b, given.) yp(t) (Guess) (k not given.)

Keat keat

Either tm or Kmt
m + · · ·+K0 kmt

m + · · ·+ k0

cos(bt) and/or sin(bt) k1 cos(bt) + k2 sin(bt)

(2) Possible Second Guess: If yp1 satisfies L(yp1) = 0 ,

then change the guess to yp2 = t yp1 .

(3) Possible Third Guess: If yp2 satisfies L(yp2) = 0 ,

then change the guess to yp3 = t2 yp2 .

(4) Find the Undetermined Coefficients: From L(yp) = f get k ,

where yp is yp1 or yp2 or yp3 .
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Example 2. (First Guess Right): Find all solutions to the nonhomogeneous equation

y′′ − 3y′ − 4y = 3 e2t.

Solution: From the problem we get L(y) = y′′ − 3y′ − 4y and f(t) = 3e2t.

(1) Find fundamental solutions y+, y- to the homogeneous equation L(y) = 0. Since the

homogeneous equation has constant coefficients we find the characteristic equation

r2 − 3r − 4 = 0 ⇒ r+ = 4, r- = −1, ⇒ y+(t) = e4t, y- = (t) = e−t.

(2) From the table: For f(t) = 3 e2t guess yp(t) = k e2t. The constant k is the undetermined

coefficient we must find.

(3) Since yp(t) = k e2t is not solution of the homogeneous equation, we do not need to

modify our guess. (Recall: L(y) = 0 iff exist constants c+, c- such that y(t) = c+ e
4t+c- e

−t.)

(4) Introduce yp into L(yp) = f and find k. So we do that,

(22 − 6− 4) k e2t = 3 e2t ⇒ −6k = 3 ⇒ k = −1

2
.

We guessed that yp must be proportional to the exponential e2t in order to cancel out the

exponentials in the equation above. We have obtained that

yp(t) = −1

2
e2t.

The undetermined coefficients method gives us a way to compute a particular solution yp of

the nonhomogeneous equation. We now use the general solution theorem, Theorem 2.5.1,

to write the general solution of the nonhomogeneous equation,

ygen(t) = c+ e
4t + c- e

−t − 1

2
e2t.

C
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Example 3. (First Guess Wrong): Find all solutions to the nonhomogeneous equation

y′′ − 3y′ − 4y = 3 e4t.

Solution: If we write the equation as L(y) = f , with f(t) = 3 e4t, then the operator L is

the same as in Example 2.5.1. So the solutions of the homogeneous equation L(y) = 0, are

the same as in that example,

y+(t) = e4t, y-(t) = e−t.

The source function is f(t) = 3 e4t, so the Table 1 says that we need to guess yp(t) = k e4t.

However, this function yp is solution of the homogeneous equation, because

yp = k y+ ⇒ Lyp) = 0.

We have to change our guess, as indicated in the undetermined coefficients method, step (3)

yp(t) = kt e4t.

This new guess is not solution of the homogeneous equation. So we proceed to compute the

constant k. We introduce the guess into L(yp) = f ,

y′p = (1 + 4t) k e4t, y′′p = (8 + 16t) k e4t ⇒
[
8− 3 + (16− 12− 4)t

]
k e4t = 3 e4t,

therefore, we get that

5k = 3 ⇒ k =
3

5
⇒ yp(t) =

3

5
t e4t.

The general solution theorem for nonhomogneneous equations says that

ygen(t) = c+ e
4t + c- e

−t +
3

5
t e4t.

C
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Example 4. (Extra Example: First Guess Right): Find all the solutions to the
nonhomogeneous equation

y′′ − 3y′ − 4y = 2 sin(t).

Solution: The equation is L(y) = f , with f(t) = 2 sin(t) and L as in Example 1. So,

y+(t) = e4t, y-(t) = e−t, satisfy L(y+) = 0 L(y-) = 0.

Since f(t) = 2 sin(t), we choose yp(t) = k1 cos(t) + k2 sin(t). This function yp is not solution

to the homogeneous equation. So we look for k1, k2 using the differential equation,

y′p = −k1 sin(t) + k2 cos(t), y′′p = −k1 cos(t)− k2 sin(t),

and then we obtain

[−k1 cos(t)− k2 sin(t)]− 3[−k1 sin(t) + k2 cos(t)]− 4[k1 cos(t) + k2 sin(t)] = 2 sin(t).

Reordering terms in the expression above we get

(−5k1 − 3k2) cos(t) + (3k1 − 5k2) sin(t) = 2 sin(t).

The last equation must hold for all t ∈ R. In particular, it must hold for t = π/2 and for

t = 0. At these two points we obtain, respectively,

3k1 − 5k2 = 2,

−5k1 − 3k2 = 0,

 ⇒


k1 =

3

17
,

k2 = − 5

17
.

So the particular solution to the nonhomogeneous equation is given by

yp(t) =
1

17

[
3 cos(t)− 5 sin(t)

]
.

The general solution theorem for nonhomogeneous equations implies

ygen(t) = c+ e
4t + c- e

−t +
1

17

[
3 cos(t)− 5 sin(t)

]
.

C
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Section Objective(s):

Part 1:

• The General Solution Theorem(NH).
• The Undetermined Coefficients Method.

Part 2:

• The Variation or Parameters Method.

Remarks:

• Recall: The general solution of L(y) = f is

y = c1 y1 + c2 y2 + yp,

where

L(y1) = 0, L(y2) = 0, and L(yp) = f.

• The Undetermined Coefficients Method (UCM) is a way to guess yp .

• The Variation of Parameters Method (VPM) gives a formula to yp .

• VPM works on more general equations than the UCM.

• VPM works on y′′ + a1(t) y
′ + a0(t) y = f(t).

• VPM usually takes longer to implement than the UCM.
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2.3.3. The Variation of Parameters Method.

Theorem 1. (Variation of Parameters) A particular solution to the equation

L(y) = f,

with L(y) = y′′ + a1(t) y
′ + a0(t) y and a1, a0, f continuous functions, is given by

yp = u1y1 + u2y2,

where y1, y2 are fundamental solutions of L(y) = 0 and u1, u2 are

u1(t) =

∫
−y2(t)f(t)

W12(t)
dt, u2(t) =

∫
y1(t)f(t)

W12(t)
dt,

where W12 is the Wronskian of y1 and y2.

Remarks:

• The Wronskian of functions y1 and y2 is

W12(t) =

∣∣∣∣∣∣∣
y1 y2

y′1 y′2

∣∣∣∣∣∣∣
• If y1 and y2 are fundamental solutions of y′′ + a1(t) y

′ + a0(t) y = 0,

then W12(t) 6= 0 for all t.

Proof of Theorem 1:

• The Reduction Order: y2 = v y1. Equation for v is simpler than for y2.

• Here we have y1 and y2 and we look for yp, so:

yp = u1 y1 + u2 y2.

We hope the equations for u1, u2 will be simpler than the equation for yp.

• But we started with one unknown yp, and now we have two unknowns u1 and u2.

• We are free to add one more equation to fix u1, u2.
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• We choose

u′1 y1 + u′2 y2 = 0
(
⇔ u2 =

∫
−y
′
1

y′2
u′1 dt

)
.

• We compute L(yp) = f , we need yp = u1 y1 + u2 y2, and y′p,

y′p = u′1 y1 + u1 y
′
1 + u′2 y2 + u2 y

′
2 ⇒ y′p = u1 y

′
1 + u2 y

′
2.

(recall, u′1 y1 + u′2 y2 = 0) and we need y′′p ,

y′′p = u′1 y
′
1 + u1 y

′′
1 + u′2 y

′
2 + u2 y

′′
2 .

• So the equation L(yp) = f is

(u′1 y
′
1 + u1 y

′′
1 + u′2 y

′
2 + u2 y

′′
2 ) + a1(u1 y

′
1 + u2 y

′
2) + a0(u1 y1 + u2 y2) = f

We reorder a few terms and we see that

u′1 y
′
1 + u′2 y

′
2 + u1 (y′′1 + a1 y

′
1 + a0 y1) + u2 (y′′2 + a1 y

′
2 + a0 y2) = f.

The functions y1 and y2 are solutions to the homogeneous equation,

y′′1 + a1 y
′
1 + a0 y1 = 0, y′′2 + a1 y

′
2 + a0 y2 = 0,

so u1 and u2 must be solution of a simpler equation that the one above, given by

u′1 y
′
1 + u′2 y

′
2 = f. (1)

• So we end with the equations

u′1 y
′
1 + u′2 y

′
2 = f

u′1 y1 + u′2 y2 = 0.

• This is a 2× 2 algebraic linear system for the unknowns u′1, u
′
2.

• Algebraic linear systems are simple to solve

u′2 = −y1
y2
u′1 ⇒ u′1y

′
1 −

y1y
′
2

y2
u′1 = f ⇒ u′1

(y′1y2 − y1y′2
y2

)
= f.
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• Recall that the Wronskian of two functions is W12 = y1y
′
2 − y′1y2, we get

u′1 = − y2f
W12

⇒ u′2 =
y1f

W12

.

�

Remark: The integration constants in u1, u2 can always be chosen zero .
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Example 1: Find the general solution of the nonhomogeneous equation

y′′ + 4y = −5 csc(2t).

Solution: We need fundamental solutions to the homogeneous problem.

r2 + 4 = 0 ⇒ r± = ±2i.

So, a pair of fundamental solutions is given by

y1(t) = cos(2t), y2(t) = sin(2t).

The Wronskian of these two functions is given by

Wy1y2(t) = y1y
′
2 − y2y

′
1 = cos(2t) · 2 · cos(2t) + sin(2t) · 2 · sin(2t) = 2.

We are now ready to compute the functions u1 and u2.

u′1 = − y2f
W12

, u′2 =
y1f

W12

.

So, the equation for u1 is the following,

u′1 =
5

sin(2t)

sin(2t)

2
=

5

2
⇒ u1 =

5

2
t,

u′2 = − 5

sin(2t)

cos(2t)

2
⇒ u2 = −5

2

∫
cos(2t)

sin(2t)
dt = −5

4
ln | sin(2t)|,

where we have chosen the constants of integration to be zero. So,

yp =
5

2
t cos(2t)− 5

4
ln | sin(2t)| · sin(2t).

Then, ygen(t) = c+ cos(2t) + c- sin(2t) + 5
2 t cos(2t)− 5

4 ln | sin(2t)| · sin(2t). c+, c- ∈ R.

C
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Example 2.: Find a particular solution to the differential equation

t2y′′ − 2y = 3t2 − 1,

knowing that y1 = t2 and y2 = 1/t are solutions to the homogeneous equation t2y′′−2y = 0.

Solution: We first rewrite the nonhomogeneous equation above in the form given in Theo-

rem 2.5.4. In this case we must divide the whole equation by t2,

y′′ − 2

t2
y = 3− 1

t2
⇒ f(t) = 3− 1

t2
.

We now proceed to compute the Wronskian of the fundamental solutions y1, y2,

W12(t) = (t2)
(−1

t2

)
− (2t)

(1

t

)
⇒ W12(t) = −3.

We now use the equation in Theorem 2.5.4 to obtain the functions u1 and u2,

u′1 = −1

t

(
3− 1

t2

) 1

−3

=
1

t
− 1

3
t−3 ⇒ u1 = ln(t) +

1

6
t−2,

u′2 = (t2)
(

3− 1

t2

) 1

−3

= −t2 +
1

3
⇒ u2 = −1

3
t3 +

1

3
t.

A particular solution to the nonhomogeneous equation above is ỹp = u1y1 + u2y2, that is,

ỹp =
[
ln(t) +

1

6
t−2
]
(t2) +

1

3
(−t3 + t)(t−1)

= t2 ln(t) +
1

6
− 1

3
t2 +

1

3

= t2 ln(t) +
1

2
− 1

3
t2

= t2 ln(t) +
1

2
− 1

3
y1(t).

However, a simpler expression for a solution of the nonhomogeneous equation above is

yp = t2 ln(t) +
1

2
.

C
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Example 3. (Extra Example: Resonance): Consider a 1kg mass attached to a spring

with a spring constant k = 4kg/sec
2
. Assume that damping can be ignored and also assume

there is an external force acting on the mass given by f(t) = sin(2t) acting on the body.

(1) Find an equation of the motion of the mass under general initial conditions.
(2) Describe the behavior of the amplitude of the oscillations as function of time.

Solution: The equation is

my′′ + dy′ + ky = f(t) ⇒ y′′ + 4y = sin(2t).

We use the undetermined coefficients. First we find the solutions to the homogeneous

equation

y′′ + 4y = 0 ⇒ r2 + 4 = 0 ⇒ r± = ±2i

So fundamental solutions are

y1(t) = cos(2t), y2(t) = sin(2t).

Therefore, the first gues for yp = k1 cos(2t) + k2 sin(2t) is wrong and we need to guess

yp(t) = k1t sin(2t) + k2t cos(2t),

Put this into the nonhomogeneous equation and we get k1 = 0 and k2 = −1

4
, so

yp = −1

4
t cos(2t)

the general solution is given by

y(t) = c1 cos(2t) + c2 sin(2t)− 1

4
t cos(2t).

This means that the amplitude becomes unbounded as time grows (about proportional

to t). This is the resonance effect!

C
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2.4. Springs, Circuits, and Resonance

Section Objective(s):

• Springs and Circuits.
• Forced Oscillations:

– Non-Resonant.
– Resonant.

Remarks: Review of the superposition property.

• If y1 and y2 are solutions of the linear nonhomogeneous equation

y′′ + a1(t) y
′ + a0(t) y = f,

is then y1 + y2 also a solution? And how about 5y1?

Question 1:

L(y1) = f, L(y2) = f,

L(y1 + y2) = L(y1) + L(y2) = f + f = 2f.

Question 2:

L(5 y1) = 5L(y1) = 5 f.

• Guess a simple solution of y′′ + y = 7.

y0 = 7.

• Find fundamental solutions of y′′ + y = 0.

r2 + 1 = 0 ⇒ r = ±i ⇒ y1 = cos(t), y2 = sin(t)

• Now give 3 different solutions of y′′ + y = 7.

y1 = 7 + sin(t), y2 = 7 + cos(t), y3 = 7 + 2 sin(t) + 3 cos(t)
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2.4.1. Springs and Circuits.

Spring Oscillations

y0

m

Figure 4. Mass-Spring system.

Newton’s equation:

my′′ + ky = f(t),

with f(t) an external force on the mass.
If we set m = 1, k = 25, we get

y′′ + 25 y = f(t) .

LC-Series Circuit

L
C V (t)

I(t) = electric current

Figure 5. An LC circuit.

• L: inductance.
• C: capacitance.
• V (t): voltage source.

Kirchhoff’s equation:

LI ′′ +
1

C
I = V ′(t).

If L = 1, 1
C = 25, f(t) = V ′(t), we get

y′′ + 25 y = f(t) .

These Springs and Circuits are Mathematically Equivalent

Remark: Both systems are still mathematically equivalent in the presence of friction.

• Newton’s equation with a friction coefficient d > 0 is

my′′ + d y′ + k y = f(t), m > 0, d > 0, k > 0.

• Kirchhoff’s equation with a resistance R > 0 is

Ly′′ +Ry′ +
1

C
y = V ′(t), L > 0, R > 0, C > 0.
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2.4.2. Forced Oscillations: Non-Resonant.

Example 1: (Non-Resonant): Solve the initial value problem

y′′ + 25 y = cos(νt), ν 6= 5, y(0) = 0, y′(0) = 0.

Solution:

Use the Undefined Coefficients Method. The gen. sol. of the homogeneous equation is

yh(t) = c1 cos(5t) + c2 sin(5t).

the source is f(t) = cos(νt) with ν 6= 5, so the correct guess for the particular solution is,

yp(t) = k1 cos(νt) + k2 sin(νt).

We compute its second derivative,

y′′p (t) = −ν2k1 cos(νt)− ν2k2 sin(νt).

We substitute y and y′′ in the non-homogeneous equation,

−ν2k1 cos(νt)− ν2k2 sin(νt) + 25k1 cos(νt) + 25k2 sin(νt) = cos(νt).

(k1(−ν2 + 25)− 1) cos(νt) + k2 (−ν2 − 25) sin(νt) = 0 ⇒ k1 =
1

(25− ν2)
, k2 = 0.

Therefore yp(t) =
1

(25− ν2)
cos(νt). The solution of the initial value problem is

y(t) = c1 cos(5t) + c2 sin(5t) +
1

(25− ν2)
cos(νt), y(0) = 0, y′(0) = 0.

The condition on y(0) = 0 implies

c1 +
1

(25− ν2)
= 0 ⇒ c1 = − 1

(25− ν2)
.

The condition y(0) = 0 implies c2 = 0, so the solution of the initial value problem is

y(t) =
1

(25− ν2)

(
cos(νt)− cos(5t)

)
. (1)

C
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2.4.3. Forced Oscillations: Non-Resonant.

Example 2: (Resonant): Solve the initial value problem

y′′ + 25 y = cos(5t), y(0) = 0, y′(0) = 0.

Solution:

Use the Undefined Coefficients Method. The gen. sol. of the homogeneous equation is

yh(t) = c1 cos(5t) + c2 sin(5t).

the source is f(t) = cos(5t), therefore the correct guess for the particular solution is,

yp(t) = k1t cos(5t) + k2t sin(5t).

We compute its first derivative,

y′p(t) = k1 cos(5t) + k2 sin(5t)− 5k1t sin(5t) + 5k2t cos(5t).

We compute the second derivative,

y′′p (t) = −10k1 sin(5t) + 10k2 cos(5t)− 25k1t cos(2t)− 25k2t sin(5t).

We substitute y and y′′ in the nonhomogeneous equation,

−10k1 sin(5t)+10k2 cos(5t)−25k1t cos(2t)−25k2t sin(5t)+25k1t cos(5t)+25k2t sin(5t) = cos(5t).

−10k1 sin(5t) + 10k2 cos(5t) = cos(5t) ⇒ k1 = 0 k2 =
1

10
.

Therefore yp(t) =
t

10
sin(5t). The solution of the initial value problem is

y(t) = c1 cos(5t) + c2 sin(5t) +
1

10
t sin(5t), y(0) = 0, y′(0) = 0.

Since y(0) = 0 implies c1 = 0, and y′(0) = 0 implies c2 = 0, so y(t) = yp(t),

y(t) =
t

10
sin(5t) .

C
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3.1. Introduction to the Laplace Transform

Section Objective(s):

• The Laplace Transform.

• Main Properties.

• Solving a Differential Equation.

Remarks:

• The Laplace Transform (LT) method introduces a new idea

to solve differential equations.

• The idea is to use integration by parts .

• Because of that the LT changes derivatives into multiplications .

• So, LT changes differential equations into algebraic equations.

L

[
differential

eq. for y(t).

]
(1)−→

Algebraic

eq. for L[y(t)].

(2)−→
Solve the

algebraic

eq. for L[y(t)].

(3)−→
Transform back

to obtain y(t).

(Use the table.)

• With the LT we can solve differential equations with general sources .

• Examples include:

– Solve for the motion of objects hit by impulsive forces .

– Solve for the current in an electric circuit having switches turn on and off .

• The Undetermined Coefficients Method is not powerful enough

to solve differential equations with such general sources.
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3.1.1. The Laplace Transform.

Definition 1. The Laplace transform of a function f on Df = [0,∞) is

F (s) =

∫ ∞
0

e−stf(t) dt,

defined for all s ∈ DF ⊂ R where the integral converges .

Remarks:

(a) Transformation notations for the Laplace transform: L[f ] = F .

L[f ](s) =

∫ ∞
0

e−st (f(t)) dt.

(b) Recall the definition of improper integrals:

∫ ∞
0

g(t) dt = lim
N→∞

∫ N

0

g(t) dt.

Example 1. (Computing a LT): Compute L[eat], where a ∈ R.

Solution: We start with the definition of the Laplace transform,

L[eat] =

∫ ∞
0

e−st(eat) dt

=

∫ ∞
0

e(a−s)t dt
(s=a)⇒

∫ ∞
0

1 dt =∞,

= lim
N→∞

∫ N

0

e(a−s)t dt, s 6= a,

= lim
N→∞

[ 1

(a− s)
e(a−s)t

∣∣∣N
0

]
=

1

(a− s)

(
lim

N→∞
e(a−s)N − 1

)
.

Now we have two remaining cases:

a− s > 0 ⇒ lim
N→∞

e(a−s)N =∞ and a− s < 0 ⇒ ⇒ lim
N→∞

e(a−s)N = 0,

so the integral converges only for s > a and the Laplace transform is given by

L[eat] =
1

(s− a)
, s > a.

C
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3.1.2. Main Properties.

Linearity

Theorem 1. (Linearity) If L[f ] and L[g] exist, then for all a, b ∈ R holds

L[af + bg] = aL[f ] + bL[g].

Proof of Theorem 1:

Let f and g be two functions, such that L[f ] and L[g] are defined and let c1, c2 ∈ R. Then,

L[c1f + c2g](s) =

∫ ∞
0

e−st(c1f(t) + c2g(t))dt

= c1

∫ ∞
0

e−stf(t)dt+ c2

∫ ∞
0

e−stg(t)dt

= c1L[f ](s) + c2L[g](s).

�

Remarks:

(a) A particular case of linearity is L[c f(t)] = cL[f(t).

(b) In the case that c is not constant we have L[c(t) f(t)] 6= c(t)L[f(t)] .

(c) Also, when c is not a constant L[c(t) f(t)] 6= L[c(t)]L[f(t)].
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Derivatives into Multiplication

Theorem 2. (Derivative into Multiplication) If both f and f ′ are continuous and
|f(t)| 6 k eat, with k, a > 0, all conditions on [0,∞), then L[f ′] exists for s > a and

L[f ′] = sL[f ]− f(0), s > a.

Proof of Theorem 2:

We compute

L[f ′] = lim
N→∞

∫ N

0

e−st f ′(t) dt.

But ∫ N

0

e−stf ′(t) dt =
[(
e−stf(t)

)∣∣∣N
0

−
∫ N

0

(−s)e−stf(t) dt
]

= e−sNf(N)− f(0) + s

∫ N

0

e−stf(t) dt.

Since f is bounded by an exponential, this means

lim
n→∞

e−sNf(N) = 0.

We now compute the limit of this expression above as N →∞.

L[f ′] = −f(0) + s lim
N→∞

∫ N

0

e−stf(t) dt.

Therefore,

L[f ′] = sL[f ]− f(0), s > a.

This establishes the Theorem. �

Exercise: Use the formula above to compute the LT of second (and higher) derivatives,

L[f ′′] = s2 L[f ]− s f(0)− f ′(0).

L[f ′′] = L[(f ′)′] = sL[f ′]− f ′(0) = s
(
sL[f ]− f(0)

)
− f ′(0).
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Laplace Transform Table: We collect the LT of simple functions.

f(t) F (s) = L[f(t)] DF

f(t) = 1 F (s) =
1

s
s > 0

f(t) = eat F (s) =
1

(s− a)
s > a

f(t) = tn F (s) =
n!

s(n+1)
s > 0

f(t) = sin(at) F (s) =
a

s2 + a2
s > 0

f(t) = cos(at) F (s) =
s

s2 + a2
s > 0

f(t) = sinh(at) F (s) =
a

s2 − a2
s > |a|

f(t) = cosh(at) F (s) =
s

s2 − a2
s > |a|

f(t) = tneat F (s) =
n!

(s− a)(n+1)
s > a

f(t) = eat sin(bt) F (s) =
b

(s− a)2 + b2
s > a

f(t) = eat cos(bt) F (s) =
(s− a)

(s− a)2 + b2
s > a

f(t) = eat sinh(bt) F (s) =
b

(s− a)2 − b2
s− a > |b|

f(t) = eat cosh(bt) F (s) =
(s− a)

(s− a)2 − b2
s− a > |b|
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3.1.3. Solving a Differential Equation.

Example 2. (Solving an IVP): Use the Laplace transform to find y, solution of

y′ = −5 y, y(0) = 2.

Solution: Remark: We know that the solution is y(t) = 2 e−5t.

We write the equation as

y′ + 5y = 0.

Taking the Laplace Transform of the ODE yields

L[y′ + 5y] = L[0] ⇒ L[y′] + 5L[y] = 0.

But the LT changes derivatives into multiplications,

(sL[y]− 2) + 5L[y] = 0.

Using the notation Y (s) = L[y], we get

s Y (s)− 2 + 5Y (s) = 0 ⇒ (s+ 5)Y (s) = 2 ⇒ Y (s) =
2

(s+ 5)
.

From the LT table we see that L[eat] =
1

(s− a)
, so for a = −5 we get

L[y] = 2L[e−5t] ⇒ L[y] = L[2 e−5t].

We then conclude that

y(t) = 2 e−5t.

C
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Example 3. (Extra Example): Find the solution of the IVP

y′′ − 4 y′ + 13 y = 0, y(0) = 0, y′(0) = 1.

Solution:

Taking the LT,

L[y′′ − 4y′ + 13y] = 0 ⇒ L[y′′]− 4L[y′] + 13L[y] = 0.

We change derivatives into multiplication,

(
s2 Y (s)− s y(0)− y′(0)

)
− 4
(
s Y (s)− y(0)

)
+ 13Y (s) = 0

(s2 − 4s+ 13)Y (s) = s y(0) + y′(0)− 4y(0) ⇒ (s2 − 4s+ 13)Y (s) = 1

Therefore we get

Y (s) =
1

s2 − 4s+ 13

But

s2 − 4s+ 13 = s2 − 2(2)s+ 4− 4 + 13 = (s− 2)2 + 9

Therefore,

L[y] =
1

(s− 2)2 + 32
=

1

3

( 3

(s− 2)2 + 32

)
In the LT Table we have L[eat sin(bt)] =

b

(s− a)2 + b2
. Therefore,

L[y] =
1

3
L[e2t sin(3t)].

We then conclude

y(t) =
1

3
e2t sin(3t).

C
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Example 3. (Compute Another LT): Compute L[sin(at)], where a ∈ R.

Solution: In this case we need to compute

L[sin(at)] =

∫ ∞
0

e−st sin(at) dt

= lim
N→∞

∫ N

0

e−st sin(at) dt

The definite integral above can be computed integrating by parts twice,∫ N

0

e−st sin(at) dt = −1

s

[
e−st sin(at)

]∣∣∣N
0

− a

s2

[
e−st cos(at)

]∣∣∣N
0

− a2

s2

∫ N

0

e−st sin(at) dt,

which implies that

(
1 +

a2

s2

)∫ N

0

e−st sin(at) dt = −1

s

[
e−st sin(at)

]∣∣∣N
0

− a

s2

[
e−st cos(at)

]∣∣∣N
0

.

then we get∫ N

0

e−st sin(at) dt =
s2

(s2 + a2)

[
−1

s

[
e−st sin(at)

]∣∣∣N
0

− a

s2

[
e−st cos(at)

]∣∣∣N
0

]
.

and finally we get∫ N

0

e−st sin(at) dt =
s2

(s2 + a2)

[
−1

s

[
e−sN sin(aN)− 0

]
− a

s2

[
e−sN cos(aN)− 1

]]
.

One can check that the limit N →∞ on the right hand side above does not exist for s 6 0,

so L[sin(at)] does not exist for s 6 0. In the case s > 0 it is not difficult to see that∫ ∞
0

e−st sin(at) dt =
( s2

s2 + a2

)[1

s
(0− 0)− a

s2
(0− 1)

]
so we obtain the final result

L[sin(at)] =
a

s2 + a2
, s > 0.

C
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3.2. The Initial Value Problem

Section Objective(s):

• Homogeneous IVP.
• Non-Homogeneous IVP.
• Higher Order IVP.

When can we apply the Laplace Transform Method?

(a) The ODEs have to be linear with constant coefficients .

(b) The sources can be discontinuous or Dirac’s deltas .

The big picture approach in using the LT to solve ODEs:

L

[
differential eq.

for y(t).

]
(1)−→

Algebraic eq.

for L[y(t)].

(2)−→
Solve the

algebraic eq.

for L[y(t)].

(3)−→
Transform back

to obtain y(t).

(Use the table.)

The One-to-One Property:

Theorem 1. (Injectivity of the Laplace Transform) If f , g are continuous on [0,∞)
and bounded by an exponential, then

L[f ] = L[g] ⇒ f = g.

Remark: We use one-to-one property when we solve differential equations.

• If we LT a differential equation for y and solve for L[y], we get

L[y(t)] = H(s),

• We find h(t) such that L[h] = H , so we get

L[y(t)] = L[h(t)] ⇒ y(t) = h(t).
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3.2.1. Homogeneous IVP.

Example 1: Use the Laplace transform to find the solution y to the initial value problem

y′′ − y′ − 2y = 0, y(0) = 1, y′(0) = 0.

Solution: First, compute the Laplace transform of the differential equation,

L[y′′ − y′ − 2y] = L[0] = 0.

The Laplace transform is a linear operation,

L[y′′]− L[y′]− 2L[y] = 0.

We know that the LT relates derivatives to multiplications,

[
s2 L[y]− s y(0)− y′(0)

]
−
[
sL[y]− y(0)

]
− 2L[y] = 0,

which is equivalent to the equation

(s2 − s− 2)L[y] = (s− 1) y(0) + y′(0).

The differential equation for y is now an algebraic equation for L[y]. The initial condition,

(s2 − s− 2)L[y] = (s− 1).

Solve for the unknown L[y] as follows,

L[y] =
(s− 1)

(s2 − s− 2)
.

The function on the right-hand side above does not appear in our LT Table, so we use

partial fractions to simplify it. First find the roots of the polynomial in the denominator,

s2 − s− 2 = 0 ⇒ s± =
1

2

[
1±
√

1 + 8
]
⇒


s+ = 2,

s− = −1,

that is, the polynomial has two real roots. In this case we factorize the denominator,

L[y] =
(s− 1)

(s− 2)(s+ 1)
.
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The partial fraction decomposition of the right-hand side in the equation above is the

following: Find constants a and b such that

(s− 1)

(s− 2)(s+ 1)
=

a

s− 2
+

b

s+ 1
.

A simple calculation shows

(s− 1)

(s− 2)(s+ 1)
=

a

s− 2
+

b

s+ 1
=
a (s+ 1) + b (s− 2)

(s− 2)(s+ 1)
.

Hence constants a and b must be solutions of the equations

(s− 1) = a (s+ 1) + b (s− 2)

Evaluate the equation above at s = 2 and s = −1. We get

If s = 2 ⇒ (2− 1) = a (2 + 1) + 0 ⇒ a =
1

3
,

If s = −1 ⇒ (−1− 1) = 0 + b (−1− 2) ⇒ a =
2

3
.

Hence,

L[y] =
1

3

1

(s− 2)
+

2

3

1

(s+ 1)
.

Using the Laplace transform table given in the previous class, we know that

L[eat] =
1

s− a
⇒ 1

s− 2
= L[e2t],

1

s+ 1
= L[e−t].

So we arrive at the equation

L[y] =
1

3
L[e2t] +

2

3
L[e−t] = L

[1

3

(
e2t + 2e−t

)]
We conclude that

y(t) =
1

3

(
e2t + 2e−t

)
.

C
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3.2.2. Non-Homogeneous IVP.

Example 2: Use the Laplace transform to find the solution y to the initial value problem

y′′ − 4y′ + 4y = 3 et, y(0) = 0, y′(0) = 0.

Solution: First, compute the Laplace transform of the differential equation,

L[y′′ − 4y′ + 4y] = L[3 et] = 3
( 1

s− 1

)
.

The Laplace transform is a linear operation,

L[y′′]− 4L[y′] + 4L[y] =
3

s− 1
.

The Laplace transform relates derivatives with multiplication,

[
s2 L[y]− s y(0)− y′(0)

]
− 4

[
sL[y]− y(0)

]
+ 4L[y] =

3

s− 1
,

But the initial conditions are y(0) = 0 and y′(0) = 0, so

(s2 − 4s+ 4)L[y] =
3

s− 1
.

Solve the algebraic equation for L[y],

L[y] =
3

(s− 1)(s2 − 4s+ 4)
.

We use partial fractions to simplify the right-hand side above. We start finding the roots

of the polynomial in the denominator,

s2 − 4s+ 4 = 0 ⇒ s± =
1

2

[
4±
√

16− 16
]
⇒ s+ = s− = 2.

that is, the polynomial has a single real root, so L[y] can be written as

L[y] =
3

(s− 1)(s− 2)2
.

The partial fraction decomposition of the righthand side above is

3

(s− 1)(s− 2)2
=

a

(s− 1)
+

b s+ c

(s− 2)2
=
a (s− 2)2 + (b s+ c)(s− 1)

(s− 1)(s− 2)2
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From the far right and left expressions above we get

3 = a (s− 2)2 + (b s+ c)(s− 1) = a (s2 − 4s+ 4) + b s2 − b s+ c s− c

Expanding all terms above, and reordering terms, we get

(a+ b) s2 + (−4a− b+ c) s+ (4a− c− 3) = 0.

Since this polynomial in s vanishes for all s ∈ R, we get that

a+ b = 0,

−4a− b+ c = 0,

4a− c− 3 = 0.


⇒


a = 3

b = −3

c = 9.

So we get

L[y] =
3

(s− 1)(s− 2)2
=

3

s− 1
+
−3s+ 9

(s− 2)2

One last trick is needed on the last term above,

−3s+ 9

(s− 2)2
=
−3(s− 2 + 2) + 9

(s− 2)2
=
−3(s− 2)

(s− 2)2
+
−6 + 9

(s− 2)2
= − 3

(s− 2)
+

3

(s− 2)2
.

So we finally get

L[y] =
3

s− 1
− 3

(s− 2)
+

3

(s− 2)2
.

From our Laplace transforms Table we know that

L[eat] =
1

s− a
⇒ 1

s− 2
= L[e2t],

L[teat] =
1

(s− a)2
⇒ 1

(s− 2)2
= L[te2t].

So we arrive at the formula

L[y] = 3L[et]− 3L[e2t] + 3L[t e2t] = L
[
3 (et − e2t + t e2t)

]
So we conclude that y(t) = 3 (et − e2t + t e2t). C
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3.2.3. Higher Order IVP.

Example 3: Use the Laplace transform to find the solution y to the initial value problem

y(4) − 4y = 0,
y(0) = 1, y′(0) = 0,

y′′(0) = −2, y′′′(0) = 0.

Solution: Compute the Laplace transform of the differential equation,

L[y(4) − 4y] = L[0] = 0.

The Laplace transform is a linear operation,

L[y(4)]− 4L[y] = 0,

and the Laplace transform relates derivatives with multiplications,

[
s4 L[y]− s3 y(0)− s2 y′(0)− s y′′(0)− y′′′(0)

]
− 4L[y] = 0.

From the initial conditions we get

[
s4 L[y]−s3−0+2s−0

]
−4L[y] = 0 ⇒ (s4−4)L[y] = s3−2s ⇒ L[y] =

(s3 − 2s)

(s4 − 4)
.

In this case we are lucky, because

L[y] =
s(s2 − 2)

(s2 − 2)(s2 + 2)
=

s

(s2 + 2)
.

Since

L[cos(at)] =
s

s2 + a2
,

we get that

L[y] = L[cos(
√

2t)] ⇒ y(t) = cos(
√

2t).

C
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3.3. Discontinuous Sources

Section Objective(s):

• Overview: Step Functions.
• Laplace Transform of Steps.
• Translation Properties of the LT.

3.3.1. Overview: Step Functions.

Definition 1. The step function at t = 0 is

u(t) =

{
0 t < 0,

1 t > 0.

Example 1: Graph the step u, uc(t) = u(t− c), and u−c(t) = u(t+ c), for c > 0.

Solution:

t

u

0

1
u(t)

t

u

0 c

u(t− c)

t

u

0−c

u(t+ c)

C

Example 2: Graph the bump function b(t) = u(t− a)− u(t− b), for a < b.

Solution: The bump function b is nonzero only on a finite interval [a, b], because

b(t) = u(t− a)− u(t− b) ⇔ b(t) =


0 t < a,

1 a 6 t < b

0 t > b.

t

u

0

1

a b

u(t− a)

t

u

0

1

a b

u(t− b)

t

u

0

1

a b

b(t)

C
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3.3.2. Translation Identities.

Theorem 2. (Translation Identities) If L[f(t)](s) exists for s > a, then

L[u(t− c)f(t− c)] = e−cs L[f(t)] , s > a, c > 0 (1)

L[ectf(t)] = L[f(t)](s− c) , s > a+ c, c ∈ R. (2)

Example 3: Take f(t) = cos(2t) and write the equations given the Theorem above.

Solution:

L[cos(2t)] =
s

s2 + 22

L[u(t− c) cos(2(t− c))] = e−cs L[cos(2t)] ⇒ L[u(t− c) cos(2(t− c))] = e−cs
s

s2 + 22
.

L[ect cos(2t)] = L[cos(2t)](s− c) ⇒ L[ect cos(2t)] =
(s− c)

(s− c)2 + 22
.

C

Example 4: Take f(t) = 1 and write the equations given the Theorem above.

Solution:

L[1] =
1

s

L[u(t− c)] = e−cs L[1] ⇒ L[u(t− c)] =
e−cs

s
.

L[ect] = L[1](s− c) ⇒ L[ect] =
1

(s− c)
.

C
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Example 5: Find the function f such that L[f(t)] =
e−4s

s2 + 5
.

Solution: Notice that

L[f(t)] = e−4s 1

s2 + 5
⇒ L[f(t)] =

1√
5
e−4s

√
5

s2 +
(√

5
)2 .

Recall that L[sin(at)] =
a

(s2 + a2)
, then

L[f(t)] =
1√
5
e−4s L[sin(

√
5t)].

But the translation identity e−cs L[f(t)] = L[u(t− c)f(t− c)] implies

L[f(t)] =
1√
5
L
[
u(t− 4) sin

(√
5 (t− 4)

)]
⇒ f(t) =

1√
5
u(t− 4) sin

(√
5 (t− 4)

)
.

C

Example 6: Find the function f(t) such that L[f(t)] =
(s− 1)

(s− 2)2 + 3
.

Solution: We first rewrite the right-hand side above as follows,

L[f(t)] =
(s− 1− 1 + 1)

(s− 2)2 + 3

=
(s− 2)

(s− 2)2 + 3
+

1

(s− 2)2 + 3

=
(s− 2)

(s− 2)2 +
(√

3
)2 +

1√
3

√
3

(s− 2)2 +
(√

3
)2 ,

= L[cos(
√

3 t)](s− 2) +
1√
3
L[sin(

√
3 t)](s− 2).

But the translation identity L[f(t)](s− c) = L[ectf(t)] implies

L[f(t)] = L
[
e2t cos

(√
3 t
)]

+
1√
3
,L
[
e2t sin

(√
3 t
)]
.

So, we conclude that

f(t) =
e2t

√
3

[√
3 cos

(√
3 t
)

+ sin
(√

3 t
)]
.

C
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3.3.3. Solving Differential Equations.

Example 7: Use the LT to find the solution to the initial IVP

y′′ + y′ +
5

4
y = b(t), y(0) = 0, y′(0) = 0, b(t) =

{
1 0 6 t < π
0 t > π.

(3)

Solution: The source function b can be written as b(t) = u(t)−u(t−π). The last expression

for b is particularly useful to find its Laplace Transform,

L[b(t)] = L[u(t)]− L[u(t− π)] =
1

s
+ e−πs

1

s
⇒ L[b(t)] = (1− e−πs) 1

s
.

Now Laplace Transform the whole equation,

L[y′′] + L[y′] +
5

4
L[y] = L[b].

Since the initial condition are y(0) = 0 and y′(0) = 0, we obtain

(
s2 + s+

5

4

)
L[y] =

(
1− e−πs

) 1

s
⇒ L[y] =

(
1− e−πs

) 1

s
(
s2 + s+ 5

4

) .
Introduce the function

H(s) =
1

s
(
s2 + s+ 5

4

) ⇒ y(t) = L−1[H(s)]− L−1[e−πsH(s)].

We use partial fractions to simplify H. We first find the roots of the denominator,

s2 + s+
5

4
= 0 ⇒ s± =

1

2

[
−1±

√
1− 5

]
,

so the roots are complex valued. An appropriate partial fraction decomposition is

H(s) =
1

s
(
s2 + s+ 5

4

) =
a

s
+

(bs+ c)(
s2 + s+ 5

4

)
Therefore, we get

1 = a
(
s2 + s+

5

4

)
+ s (bs+ c) = (a+ b) s2 + (a+ c) s+

5

4
a.

This equation implies that a, b, and c, satisfy the equations

a+ b = 0, a+ c = 0,
5

4
a = 1.
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The solution is, a =
4

5
, b = −4

5
, c = −4

5
. Hence, we have found that,

H(s) =
1(

s2 + s+ 5
4

)
s

=
4

5

[1

s
− (s+ 1)(

s2 + s+ 5
4

)]

Complete the square in the denominator,

s2 + s+
5

4
=
[
s2 + 2

(1

2

)
s+

1

4

]
− 1

4
+

5

4
=
(
s+

1

2

)2

+ 1.

Replace this expression in the definition of H, that is,

H(s) =
4

5

[1

s
− (s+ 1)[(

s+ 1
2

)2
+ 1
]]

Rewrite the polynomial in the numerator,

(s+ 1) =
(
s+

1

2
+

1

2

)
=
(
s+

1

2

)
+

1

2
,

hence we get

H(s) =
4

5

[1

s
−

(
s+ 1

2

)
[(
s+ 1

2

)2
+ 1
] − 1

2

1[(
s+ 1

2

)2
+ 1
]].

Use the Laplace Transform table to get H(s) equal to

H(s) =
4

5

[
L[1]− L

[
e−t/2 cos(t)

]
− 1

2
L[e−t/2 sin(t)]

]
,

equivalently

H(s) = L
[4

5

(
1− e−t/2 cos(t)− 1

2
e−t/2 sin(t)

)]
.

Denote

h(t) =
4

5

[
1− e−t/2 cos(t)− 1

2
e−t/2 sin(t)

]
. ⇒ H(s) = L[h(t)].

Recalling L[y(t)] = H(s) + e−πsH(s), we obtain L[y(t)] = L[h(t)] + e−πs L[h(t)], that is,

y(t) = h(t) + u(t− π)h(t− π).

C
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Example 8 (Extra Example): Use the LT to find the solution to the IVP

y′′ + y′ +
5

4
y = g(t), y(0) = 0, y′(0) = 0, g(t) =

{
sin(t) 0 6 t < π

0 t > π.
(4)

Solution: Rewrite the source function g using step functions, as follows,

g(t) =
[
u(t)− u(t− π)

]
sin(t),

since u(t) − u(t − π) is a box function, taking value one in the interval [0, π] and zero on

the complement. Finally, notice that the equation sin(t) = − sin(t − π) implies that the

function g can be expressed as follows,

g(t) = u(t) sin(t)− u(t− π) sin(t) ⇒ g(t) = u(t) sin(t) + u(t− π) sin(t− π).

The last expression for g is particularly useful to find its Laplace Transform,

L[g(t)] =
1

(s2 + 1)
+ e−πs

1

(s2 + 1)
.

With this last transform is not difficult to solve the differential equation. As usual, Laplace

Transform the whole equation,

L[y′′] + L[y′] +
5

4
L[y] = L[g].

Since the initial condition are y(0) = 0 and y′(0) = 0, we obtain

(
s2 + s+

5

4

)
L[y] =

(
1 + e−πs

) 1

(s2 + 1)
⇒ L[y] =

(
1 + e−πs

) 1(
s2 + s+ 5

4

)
(s2 + 1)

.

Introduce the function

H(s) =
1(

s2 + s+ 5
4

)
(s2 + 1)

⇒ y(t) = L−1[H(s)] + L−1[e−πsH(s)].

That is, we only need to find the Inverse Laplace Transform of H. We use partial fractions

to simplify the expression of H. We first find out whether the denominator has real or

complex roots:

s2 + s+
5

4
= 0 ⇒ s± =

1

2

[
−1±

√
1− 5

]
,
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so the roots are complex valued. An appropriate partial fraction decomposition is

H(s) =
1(

s2 + s+ 5
4

)
(s2 + 1)

=
(as+ b)(
s2 + s+ 5

4

) +
(cs+ d)

(s2 + 1)
.

Therefore, we get

1 = (as+ b)(s2 + 1) + (cs+ d)
(
s2 + s+

5

4

)
,

equivalently,

1 = (a+ c) s3 + (b+ c+ d) s2 +
(
a+

5

4
c+ d

)
s+

(
b+

5

4
d
)
.

This equation implies that a, b, c, and d, are solutions of

a+ c = 0, b+ c+ d = 0, a+
5

4
c+ d = 0, b+

5

4
d = 1.

Here is the solution to this system:

a =
16

17
, b =

12

17
, c = −16

17
, d =

4

17
.

We have found that,

H(s) =
4

17

[ (4s+ 3)(
s2 + s+ 5

4

) +
(−4s+ 1)

(s2 + 1)

]
.

Complete the square in the denominator,

s2 + s+
5

4
=
[
s2 + 2

(1

2

)
s+

1

4

]
− 1

4
+

5

4
=
(
s+

1

2

)2

+ 1.

H(s) =
4

17

[ (4s+ 3)[(
s+ 1

2

)2
+ 1
] +

(−4s+ 1)

(s2 + 1)

]
.

Rewrite the polynomial in the numerator,

(4s+ 3) = 4
(
s+

1

2
− 1

2

)
+ 3 = 4

(
s+

1

2

)
+ 1,

hence we get

H(s) =
4

17

[
4

(
s+ 1

2

)[(
s+ 1

2

)2
+ 1
] +

1[(
s+ 1

2

)2
+ 1
] − 4

s

(s2 + 1)
+

1

(s2 + 1)

]
.
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Use the Laplace Transform Table to get H(s) equal to

H(s) =
4

17

[
4L
[
e−t/2 cos(t)

]
+ L

[
e−t/2 sin(t)

]
− 4L[cos(t)] + L[sin(t)]

]
,

equivalently

H(s) = L
[ 4

17

(
4e−t/2 cos(t) + e−t/2 sin(t)− 4 cos(t) + sin(t)

)]
.

Denote

h(t) =
4

17

[
4e−t/2 cos(t) + e−t/2 sin(t)− 4 cos(t) + sin(t)

]
⇒ H(s) = L[h(t)].

Recalling L[y(t)] = H(s) + e−πsH(s), we obtain L[y(t)] = L[h(t)] + e−πs L[h(t)], that is,

y(t) = h(t) + u(t− π)h(t− π).

C
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3.4. Generalized Sources

Section Objective(s):

• The Dirac’s Delta.
• Applications and Properties.
• The Impulse Response Function.

Remarks:

• The Dirac’s delta is the main example of what it is called a

generalized function .

• Introduced by Paul Dirac while studying

quantum mechanics .

• We want that Dirac’s Delta, δ(t), to satisfy:

– δ(t) = 0 for all t 6= 0 .

– δ(0) =∞ .

–

∫ 1

−1

δ(t) dt = 1.

No function has these properties.

• Dirac’s delta is the limit of a sequence of functions.

• The integral of a Dirac’s delta is the limit of a sequence

of integrals.
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3.4.1. The Dirac Delta.

Definition 1. The Dirac delta generalized function is the limit

δ(t) = lim
n→∞

δn(t),

for every fixed t ∈ R of the sequence functions {δn}∞n=1,

δn(t) = n
[
u(t)− u

(
t− 1

n

)]
.

Remark: The sequence of bump functions intro-
duced above can be rewritten as follows,

δn(t) =


0 , t < 0

n , 0 6 t <
1

n

0 , t >
1

n
.

We then obtain the equivalent expression,

δ(t) =

{
0 for t 6= 0,

∞ for t = 0.

Remark: There are infinitely many sequences
{δn} of functions with the Dirac delta as their limit
as n→∞.

δn

t0

1

2

3

11/21/3

δ1(t)

δ2(t)

δ3(t)

Interactive Graph: Dirac’s Delta.

Remarks:

(a) The Dirac delta is the function zero on the domain R− {0} .

(b) The Dirac delta is not a function on R .

(c) We define:

∫ 1

−1

δ(t) dt = lim
n→∞

∫ 1

−1

δn(t) dt.

Theorem 1. ∫ 1

−1

δ(t) dt = 1.

http://mathstud.io/?input[0]=%3D%3D
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3.4.2. Applications and Properties.

Applications:

(a) Dirac’s delta generalized function is useful to describe

impulsive forces .

(b) An impulsive force transfers a finite momentum

in an infinitely short time .

(c) For example, a pendulum at rest that is hit by a hammer.

Main Properties:

Theorem 2. If f is continuous on (a, b) and c ∈ (a, b), then∫ b

a

f(t) δ(t− c) dt = f(c).

Proof of Theorem 2: We again compute the integral of a Dirac’s delta as a limit of a

sequence of integrals,∫ b

a

δ(t− c) f(t) dt = lim
n→∞

∫ b

a

δn(t− c) f(t) dt

= lim
n→∞

∫ b

a

n
[
u(t− c)− u

(
t− c− 1

n

)]
f(t) dt

= lim
n→∞

∫ c+ 1
n

c

n f(t) dt,
1

n
< (b− c).
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To get the last line we used that c ∈ [a, b]. Let F be any primitive of f , so F (t) =
∫
f(t) dt.

Then we can write,∫ b

a

δ(t− c) f(t) dt = lim
n→∞

n
[
F
(
c+

1

n

)
− F (c)

]
= lim
n→∞

1(
1
n

)[F (c+
1

n

)
− F (c)

]
, h =

1

n
,

= lim
h→0

F (c+ h)− F (c)

h

= F ′(c)

= f(c).

This establishes the Theorem.

�

Theorem 3. For all s ∈ R holds

L[δ(t− c)] =


e−cs for c > 0,

0 for c < 0.

Proof of Theorem 4.4.5: We use the previous Theorem on the integral that defines a

Laplace transform,

L[δ(t− c)] =

∫ ∞
0

e−st δ(t− c) dt =


e−cs for c > 0,

0 for c < 0,

This establishes the Theorem.

�
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Example 1: Find the solution y to the initial value problem

y′′ + y = δ(t− 3), y(0) = 0, y′(0) = 0.

Solution: The source is a generalized function, so we need to solve this problem using the

Laplace Transform. So we compute the Laplace Transform of the differential equation,

L[y′′] + L[y] = L[δ(t− 3)] ⇒ (s2 + 1)L[y] = e−3s,

where in the second equation we have already introduced the initial conditions y(0) = 0,

y′(0) = 0. We arrive to the equation

L[y] = e−3s 1

(s2 + 1)

L[y] = e−3s L[sin(t)]

Recalling the translation identity

e−cs L[f(t)] = L[u(t− c) f(t− c)],

we get that

L[y] = L[u(t− 3) sin(t− 3)],

which leads to the solution

y(t) = u(t− 3) sin(t− 3).

C
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3.4.3. The Impulse Response Function.

Definition 2. The impulse response function at the point c > 0 of the linear
operator

L(y) = y′′ + a1 y
′ + a0 y,

with a1, a0 constants, is the solution yδ of

L(yδ) = δ(t− c), yδ(0) = 0, y′δ(0) = 0.

Theorem 4. The function yδ is the impulse response function at c > 0 of the constant
coefficients operator L(y) = y′′ + a1 y

′ + a0 y iff holds

yδ = L−1
[e−cs
p(s)

]
.

where p is the characteristic polynomial of L.

Proof of Theorem 4: Compute the Laplace transform of the differential equation for for

the impulse response function yδ,

L[y′′] + a1 L[y′] + a0 L[y] = L[δ(t− c)] = e−cs.

Since the initial data for yδ is trivial, we get

(s2 + a1s+ a0)L[y] = e−cs.

Since p(s) = s2 + a1s+ a0 is the characteristic polynomial of L, we get

L[y] =
e−cs

p(s)
⇔ y(t) = L−1

[e−cs
p(s)

]
.

We notice that all the steps in this calculation are if and only ifs. This establishes the

Theorem.

�
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Example 2 (Extra Example): Use the Laplace Transform to show that the solutions to
the IVP below are the same, where

y′′ + a1y
′ + a0y = δ(t), y(0) = 0, y′(0) = 0.

and
y′′ + a1y

′ + a0y = 0, y(0) = 0, y′(0) = 1.

Provide a physics-based explanation of why these solutions coincide.

Solution:

For the first IVP we have

(s2 + a1 s+ a0)L[y] = L[δ(t)] = 1 ⇒ L[y] =
1

(s2 + a1 s+ a0)
.

For the second IVP we have

(s2L[y]− s y(0)− y′(0)) + a1(sL[y]− y(0)) + a0 L[y] = 0,

but the initial conditions imply

s2L[y]− 1 + a1 sL[y] + a0 L[y] = 0,

so we get

(s2 + a1 s+ a0)L[y] = 1 ⇒ L[y] =
1

(s2 + a1 s+ a0)
.

The action of the impulsive force is to produce a nonzero velocity at the initial time, because

it transfers a nontrivial momentum at a single point in time.

C
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3.5. Convolutions and Solutions

Section Objective(s):

• The Convolution of Two Functions.
• Main Properties of the Convolution.
• The Solution Decomposition Theorem.

Remarks:

• We introduce a new operation between two function, the convolution .

• The convolution is a nonlocal product

of two functions.

• We know that L[fg] 6= L[f ]L[g].

• The convolution of f , g is the function such that

L
[
Convolution(fg)

]
= L[f ]L[g].

• The convolution is defined for the Dirac’s delta .

• The Dirac’s delta is the

identity element for the convolution .



2 CONTENTS

3.5.1. The Convolution of Two Functions.

Definition 1. The convolution of functions f and g is a function f ∗ g given by

(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ) dτ.

Remark: The convolution is defined even when either f or g is a Dirac’s delta .

Example 1: Find f ∗ g the convolution of the functions f(t) = b(t) and g(t) = b(t), where
we denoted b(t) = u(t)− u(t− 1), the bump function on [0, 1].

Interactive Graph: Convolution of Bumps

Solution: The definition of convolution is,

(b ∗ b)(t) =

∫ t

0

b(τ)b(t− τ) dτ.

• b(τ) = 1 for τ ∈ [0, 1] and is zero otherwise.

• b(t− τ) = 1 for

0 6 t− τ 6 1 ⇒ −t 6 −τ 6 1− t ⇒ t > τ > −1 + t,

so τ ∈ [t− 1, t] and is zero otherwise.

• For t ∈ [0, 1], we have

(b ∗ b)(t) =

∫ t

0

1 dt = t.

For t ∈ [1, 2] we have

(b ∗ b)(t) =

∫ 1

t−1

1 dτ = 1− (t− 1) = 2− t.

For t ∈ [2,∞), (b ∗ b)(t) = 0. We then conclude that

(f ∗ g)(t) =


t, 0 ≤ t ≤ 1,

2− t, 1 < t ≤ 2,

0, t > 2.

C

0 t

0 6 t 6 1y

t

(t− 1) 1 t

1 6 t 6 2y

t

0 1

t > 2y

t

http://mathstud.io/?input[0]=%3D
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Example 2: Graph the convolution of

f(τ) = u(τ)− u(τ − 1),

g(τ) =

{
2 e−2τ for τ > 0

0 for τ < 0.

Interactive Graph: Convolution of Bump and Exponential (Slow)

Solution: Notice that

g(−τ) =


2 e2τ for τ 6 0

0 for τ > 0.

Then we have that

g(t− τ) = g(−(τ − t))


2 e2(τ−t) for τ 6 t

0 for τ > t.

C

http://mathstud.io/?input[0]=%3D
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3.5.2. Main Properties of the Convolution.

Theorem 1. (Laplace Transform) If L[f ] and L[g], exist, then

L[f ∗ g] = L[f ]L[g].

Remark: This is the origin of the convolution operation. Since

L[f ]L[g] 6= L[fg],

people were interested in finding a function h such that

L[f ]L[g] = L[h].

The answer is, h = f ∗ g

Idea of the Proof: Switch the order of the integrals.

Other Properties of Convolutions:

Theorem 2. For every piecewise continuous functions f , g, and h, hold:

(i) Commutativity: f ∗ g = g ∗ f ;

(ii) Associativity: f ∗ (g ∗ h) = (f ∗ g) ∗ h;

(iii) Distributivity: f ∗ (g + h) = f ∗ g + f ∗ h;

(iv) Neutral element: f ∗ 0 = 0;

(v) Identity element: f ∗ δ = f .
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Example 3: Find the function g such that f(t) =

∫ t

0

sin(4τ) g(t − τ) dτ has the Laplace

transform L[f ] =
s

(s2 + 16)((s− 1)2 + 9)
.

Solution: Since f(t) = sin(4t) ∗ g(t), we can write

s

(s2 + 16)((s− 1)2 + 9)
= L[f ] = L[sin(4t) ∗ g(t)] = L[sin(4t)]L[g] =

4

(s2 + 42)
L[g],

so we get that

4

(s2 + 42)
L[g] =

s

(s2 + 16)((s− 1)2 + 9)
⇒ L[g] =

1

4

s

(s− 1)2 + 32
.

We now rewrite the right-hand side of the last equation,

L[g] =
1

4

(s− 1 + 1)

(s− 1)2 + 32
⇒ L[g] =

1

4

( (s− 1)

(s− 1)2 + 32
+

1

3

3

(s− 1)2 + 32

)
,

that is,

L[g] =
1

4

(
L[cos(3t)](s− 1) +

1

3
L[sin(3t)](s− 1)

)
=

1

4

(
L[et cos(3t)] +

1

3
L[et sin(3t)]

)
,

which leads us to

g(t) =
1

4
et
(

cos(3t) +
1

3
sin(3t)

)

C
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3.5.3. The Solution Decomposition Theorem.

Theorem 3. (Solution Decomposition) The solution of

L(y) = g(t), y(0) = y0, y′(0) = y1,

where L(y) = y′′ + a1 y
′ + a0 y has constant coefficients, can be decomposed as

y(t) = yh(t) + (yδ ∗ g)(t),

where yh is the solution of the homogeneous initial value problem

L(yh) = 0, yh(0) = y0, y′h(0) = y1,

and yδ is the impulse response function of L.

Remarks:

(1) The solution decomposition above can be written in the equivalent way

y(t) = yh(t) +

∫ t

0

yδ(τ) g(t− τ) dτ.

(2) Recall that the impulse response function is the solution of

L(yδ) = δ(t), yδ(0) = 0, y′δ(0) = 0.

(3) Recall that the impulse response function can be written as

yδ = L−1
[ 1

p(s)

]
.
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Example 4: Use the Solution Decomposition Theorem to express the solution of

y′′ + 2 y′ + 2 y = g(t), y(0) = 1, y′(0) = −1.

Solution: We first find the impuse response function

yδ(t) = L−1
[ 1

p(s)

]
, p(s) = s2 + 2s+ 2.

since p has complex roots, we complete the square,

s2 + 2s+ 2 = s2 + 2s+ 1− 1 + 2 = (s+ 1)2 + 1,

so we get

yδ(t) = L−1
[ 1

(s+ 1)2 + 1

]
⇒ yδ(t) = e−t sin(t).

We now compute the solution to the homogeneous problem

y′′h + 2 y′h + 2 yh = 0, yh(0) = 1, y′h(0) = −1.

Using Laplace transforms we get

L[y′′h] + 2L[y′h] + 2L[yh] = 0,

and recalling the relations between the Laplace transform and derivatives,

(
s2 L[yh]− s yh(0)− y′h(0)

)
+ 2
(
L[y′h] = sL[yh]− yh(0)

)
+ 2L[yh] = 0,

using our initial conditions we get (s2 + 2s+ 2)L[yh]− s+ 1− 2 = 0, so

L[yh] =
(s+ 1)

(s2 + 2s+ 2)
=

(s+ 1)

(s+ 1)2 + 1
⇒ yh(t) = L

[
e−t cos(t)

]
.

Therefore, the solution to the original initial value problem is

y(t) = yh(t) + (yδ ∗ g)(t) ⇒ y(t) = e−t cos(t) +

∫ t

0

e−τ sin(τ) g(t− τ) dτ.

C
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Proof of Theorem 1:

L[f ]L[g] =
[∫ ∞

0

e−stf(t) dt
] [∫ ∞

0

e−st1g(t1) dt1

]
=

∫ ∞
0

e−st1g(t1)
(∫ ∞

0

e−stf(t) dt
)
dt1

=

∫ ∞
0

g(t1)
(∫ ∞

0

e−s(t+t1)f(t) dt
)
dt1,

Change of variables in the inside integral τ = t+ t1, hence dτ = dt. Then, we get

L[f ]L[g] =

∫ ∞
0

g(t1)
(∫ ∞

t1

e−sτf(τ − t1) dτ
)
dt1 =

∫ ∞
0

∫ ∞
t1

e−sτ g(t1) f(τ − t1) dτ dt1. (1)

Here is the key step. We must switch the order of integration.

L[f ]L[g] =

∫ ∞
0

∫ τ

0

e−sτ g(t1) f(τ − t1) dt1 dτ.

Then, is straightforward to check that

L[f ]L[g] =

∫ ∞
0

e−sτ
(∫ τ

0

g(t1) f(τ − t1) dt1
)
dτ

=

∫ ∞
0

e−sτ (g ∗ f)(τ) dt

= L[g ∗ f ]

So we conclude that

L[f ]L[g] = L[f ∗ g].

�



4.1. MODELING WITH FIRST ORDER SYSTEMS 1

4.1. Modeling with First Order Systems

Section Objective(s):

• Interacting Species.
• Predator-Prey.
• Spring-Mass as a First Order System.
• Equilibrium Solutions.

Remarks:

• We have studied how to solve several first order equations

y′ = f(t, y).

• We have also student how to solve second order linear equa-

tions

y′′ + a1 y
′ + a0 y = f(t).

• There are more complex physical system that cannot be decribed

with the equations above.

• Today we see two of such systems: interacting species

and predator- prey systems.

• Then we see that second order equations can be written as

first order systems.
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4.1.1. Review: Interacting Species.

Example 1: Construct a differential equation that describes the population of rabbits and
sheep coexisting in an environment with finite resources.

Solution:

• First assume that there are only rabbits, unlimited resources.

R′(t) = rRR(t), rR growth rate coefficient, rabbits.

• Now, assume only rabbits, limited resources.

R′(t) = rRR(t)
(

1− R(t)

KR

)
, KR carrying capacity, rabbits.

• Assume we have rabbits and sheeps, each with limited resources, not interacting;

for example they eat different foods.

R′(t) = rRR(t)
(

1− R(t)

KR

)
,

S′(t) = rS S(t)
(

1− S(t)

KS

)
.

• Finally, we add the interaction. These species compete.

R′(t) = rRR(t)
(

1− R(t)

KR

)
− c1R(t)S(t),

S′(t) = rS S(t)
(

1− S(t)

KS

)
− c2R(t)S(t),

where c1 > 0, c2 > 0 are the competing coefficients. The negative sign means both

R′ and S′ decrease because of the interaction.

• The product R(t)S(t) is a simple measure of how often the two population meet.

C
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Definition 1. The interacting species system for the functions x and y, which
depend on the independent variable t, is

x′ = rx x
(

1− x

xc

)
+ αx y

y′ = ry y
(

1− y

yc

)
+ β x y,

where the constants rx, ry and xc, xc are positive and α, β are real numbers. Further-
more, we have the following particular cases:

• The species compete iff α < 0 and β < 0 .

• The species cooperate iff α > 0 and β > 0 .

• The species y cooperates with x when α > 0 ,

and x competes with y when β < 0 .

Example 2: The interaction of of rabbits and elephants is given by

x′(t) =
1

2
x(t)− 1

20
x2(t)− x(t) y(t),

y′(t) = 3 y(t)− 1

300
y2(t)− 200x(t) y(t),

which variable represents the elephants? What is the growth rate and carrying capacity of
the elephants and of the rabbits?

Solution:

• The x grow slower than the y, since rx = 1/2 while ry = 3. So x are elephants.

• Since

x′(t) =
1

2
x(t)− 1

20
x2(t)− x(t) y(t) =

1

2
x(t)

(
1− 1

1
220

x(t)
)
− x(t) y(t),

the carrying capacity Kx = 10. Analogously Ky = 900 since

y′(t) = 3 y(t)− 1

300
y2(t)− 200x(t) y(t) = 3 y(t)

(
1− 1

3(300)
y(t)

)
− 200x(t) y(t),

So x are elephants and y are rabbits, the same enviroment supports 10 elephants

and 900 rabbits.

• The interaction affects x′ by a factor −1, and y′ by a factor 200. Then x are

elephants, they are much less affected than rabbits by the interaction. C
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4.1.2. Predator-Prey System.

Example 3: Construct a differential equation that describes the population of rabbits and
foxes coexisting in an environment with unlimited resources for the rabbits.

Solution:

• First assume that there are only rabbits, unlimited resources.

R′(t) = rRR(t), rR growth rate coefficient, rabbits.

• Now, assume that there are only foxes, no rabbits. Foxes only eat rabbits, so no

resources.

F ′(t) = −rF F (t), rF death rate coefficient, rabbits.

• Assume that the foxes meet the rabbits and eat them. This interaction has two

effects:

– The rabbit populations decreases its growth rate: R′ is smaller than with-

out the interaction.

– The foxes populations increases its growth rate: F ′ is larger than without

the interaction.

Since R(t)F (t) is a simple measure of how often the two populations meet,

R′(t) = rRR(t)− d1R(t)F (t),

F ′(t) = −rF F (t) + d2R(t)F (t),

C
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Definition 2. The predator-prey system for the predator function x and the prey
function y, which depend on the independent variable t, is

x′ = −ax x+ bx x y

y′ = ay y − by x y,

where the coefficients ax, bx, ay, and by are nonnegative.

Remark:

• A predator is called lethargic if they seldom catch prey but can

live for a long time on a single prey, for example boa constrictors.

• A predator is called active if they catch prey very often and they can

live for only a short time on a single prey, for example bobcats.

Example 4: Identify which of the systems below corresponds to a lethargic predator and
which one to an active predator.

x′ = 0.3x− 0.1xy, x̃′ = 0.3 x̃− 3 x̃ỹ

y′ = −0.1 y + 2xy, ỹ′ = −2 ỹ + 0.1 x̃ỹ.

Solution:

• The variables y and ỹ are the predators.

• The increase in y′ for eating a prey is largend than the increase in ỹ.

• So, y benefits more froma single prey than ỹ.

• So, y are snakes, and ỹ are bobcats.

C
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4.1.3. Spring-Mass as a First Order System.

Example 5. (Mass-Spring System): Consider an
object of mass m mass hanging at the bottom of a
spring with spring constant k, and moving in a fluid
with damping constant d. Assume that there is an ex-
ternal force f , which depends on t, acting on the object.

If y(t) is the displacement from the equilibrium posi-
tion at the time t, positive downwards, the equation of
motion for the variable y is

my′′ + d y′ + k y = f(t).

y

0
m

y(t)
m

Write the differential equation above as a first order system.

Solution:

• Introduce the variables x1 = y and x2 = y′.

• This definitions implies that these variables are related:

x′1 = y′ = x2 ⇒ x′1 = x2.

• The equation for x′2 is the following,

x′2 = y′′ = − d

m
y′ − k

m
y + f = − d

m
x2 −

k

m
x1 + f,

that is,

x′2 = − k
m
x1 −

d

m
x2 + f.

• So we obtained the first order system

x′1 = x2

x′2 = − k
m
x1 −

d

m
x2 + f.

• This system is first order, 2× 2, and linear. After our review of Linear Algebra,x1

x2


′

=

 0 1

− k
m − d

m


x1

x2

+

0

f

 .
C



4.1. MODELING WITH FIRST ORDER SYSTEMS 7

4.1.4. Equilibrium Solutions.

Remark: Equilibrium solutions are defined for autonomous ssystems

Definition 3. (Equilibrium Solutions) The equilibrium solutions
of the autonomous system

x′ = f(�Ct, x, y)

y′ = g(�Ct, x, y),

are solutions of the form x(t) = x0, y(t) = y0 , for all t,

which satisfy f(x0, y0) = 0 and g(x0, y0) = 0.

The point (x0, y0) in the xy-plane is called an equilibrium point of

the system.

Example 6: Find the equilibrium solutions of the following competing species system.

R′ = 3R (1− S −R)

S′ = 2S (2− S − 3R) .

Solution:

• The equation for the equilibrium solutions are

3R (1− S −R) = 0

2S (2− S − 3R) = 0.

 ⇒


R = 0 and S = 0,

R = 0 and S = 2,

S = 0 and R = 1,

so we get the points (0, 0), (0, 2), (1, 0).

• In addition we could have

1−H −R = 0

2−H − 3R = 0,

 ⇒ 1− 2R = 0 ⇒ R =
1

2
⇒ H =

1

2

which yields an additional equilibrium point,
(1

2
,

1

2

)
.

C
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Example 7. (Extra Example): Now consider a particular example of a predator-prey
system.

dR

dt
= 5R− 2RF

dF

dt
= −F + 0.5RF

Find the equilibrium solutions of the system. Discuss what they represent in the physical
situation of the model.

Solution:

• We need to solve

5R− 2RF = 0

−F + 0.5RF = 0.

Equivalently,

R(5− 2F ) = 0

F (−1 + 0.5R) = 0.

 ⇒


R = 0 and F = 0,

R = 2 and F =
5

2
,

• thus, the equilibrium points are (R0, F0) = (0, 0) and (R1, F1) = (2, 5/2).

• If R(t) = 0 and F (t) = 0, i.e. there are no rabbits and no foxes, the system is in

perfect balance (their numbers will not change).

• Similarly, R(t) = 2 and F (t) = 2.5 for all t ≥ 0 is a solution to the system of

differential equations that does not change with time - the system is in balance.

C
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4.2. Vector Fields and Qualitative Solutions

Section Objective(s):

• Vector and Direction Fields.
• Phase Portraits and Solution Curves.

Remarks:

• There are formulas for solutions of first order systems

of differential equations.

• But there are not such formulas for solutions of first or-

der, nonlinear systems .

• It is important to find qualitative properties of solu-

tions to nonlinear systems without solving the system.

• Qualitative graphs of solutions can be obtained from the equation ,

without solving the equation.

• One need to plot the vector field of the equation.
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4.2.1. Vector and Direction Fields.

Definition 1. (Vector Field) The vector field of the autonomous system

x′ = f(�Ct, x, y)

y′ = g(�Ct, x, y),

is the collection of vectors F(x, y) = 〈f(x, y), g(x, y)〉

at points (x, y) in the xy−plane.

Remark: The vector field

F(x, y) = 〈Fx, Fy〉 =

[
Fx
Fy

]

is a vector with origin at (x, y) , which has horizontal component Fx

and vertical component Fy .

Example 1: If the vector field is F(x, y) = 〈x+ 2y, 4x− 2y〉, draw the vector F(1, 1).

Solution:

We first compute F(1, 1) = 〈1 + 2, 5− 2〉 = 〈3, 2〉, so F(1, 1) = 〈3, 2〉 =

3

2

.

F (1, 1)

Fx = 3

Fy = 2

(1, 1)

y

x

C
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Example 2: Consider an object of mass m = 1 hanging from a pring with spring constant
k = 1, oscillating in the air.

(1) Write the differential equation for this mass-spring system as a first order system.
(2) Draw the vector field of this system at several points on the plane.

Solution:

Part (1) The second order equation for the variable y(t) is

y′′ + y = 0.

We introduce x1 = y and x2 = y′.

Remark: Instead of x and y we use the variables x1 and x2. Similarly, we denote vector

fields as F(x1, x2) = 〈F1, F2〉 =

F1

F2


Then we get the system

x′1 = x2

x′2 = −x1.

The vector field is F(x1, x2) = 〈x2,−x1〉 =

 x2

−x1

 .
Part (2) Let us plot the vector field F(x1, x2) at various points in the x1x2−plane:

F(1, 0) = 〈0,−1〉

F(0, 1) = 〈1, 0〉

F(−1, 0) = 〈0, 1〉

F(0,−1) = 〈−1, 0〉

F(2, 2) = 〈2,−2〉

F(2,−2) = 〈−2,−2〉

F(−2,−2) = 〈−2, 2〉

F(−2, 2) = 〈2, 2〉

x2

x1

C
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x2

x10

F (x1, x2) = 〈x2,−x1〉

Figure 6. The vector field F (x1, x2) = 〈x2,−x1〉 associated to the equation
x′1 = x2, x′2 = −x1 which is the first order system of y′′ + y = 0.

Remark: A direction field is a normalized version

of a vector field. All the vectors have length one .

x2

x10

Figure 7. Direction field of the vector field F (x1, x2) = 〈x2,−x1〉.
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Example 3: Match each of the following direction fields to one of the systems below.

x′ = x− 1

y′ = y − 1

x′ = −y
y′ = x

x′ = −1 + y

y′ = 1− x
x′ = −y
y′ = −x

Fig. 2 Fig. 1 Fig. 4 Fig. 3

Hint: (1) Compute the equilibrium points. (2) Evaluate the field along a subset.

y

x0

Figure 1.

y

x0

Figure 2.

y

x0

Figure 3.

y

x0

Figure 4.
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4.2.2. Phase Portraits and Solution Curves.

Remark: Direction and Vector fields are useful to draw solution curves .

The resulting picture is called a phase portrait .

Theorem 1. If x(t) and y(t) are solutions of the autonomous differential system

x′(t) = f(x(t), y(t))

y′(t) = g(x(t), y(t)),

then the solution curve r(t) = (x(t), y(t)) on the xy-plane is

tangent to the vector field F(x, y) = 〈f, g〉, that is,

r′(t) = F(r(t)).

Example 4: Use the direction field of the mass-spring system to draw qualitative graphs
of its solutions.

Solution:
The equation is

y′′ + y = 0 ⇒

{
x′1 = x2

x′2 = −x1

⇒ F(x1, x2) = 〈x2,−x1〉.

x2

x10
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Example 5: Use the direction field of the predator prey system below to draw qualitative
graphs of the solutions to that system,

R′ = 5R− 2RF

F ′ = −F +
1

2
RF

F

R0

Interactive Graph: Predator-Prey System.

http://mathstud.io/?input[0]=%3D%3D&input[1]=ISU0MERTb2x2ZVJLMyhMaXN0JTIwZGZkeCUyQyUyMExpc3QlMjB2YXIlMkMlMjBOdW1iZXJMaXN0JTIwaWNzJTJDJTIwTnVtYmVyTGlzdCUyMHhyYW5nZSUyQyUyME51bWJlciUyMGglM0QwLjAxJTJDJTIwTnVtYmVyJTIwaFBsb3QlM0QwLjEpJTBBbnVtZXJpY2FsJTBBJTBBJTJGJTJGQ29udmVydCUyMGhQbG90JTIwdG8lMjBjb3JyZWN0JTIwaFBsb3QlMjBpZiUyMGludmFsaWQlMEFpZiglMjBoUGxvdCUyMCUzQyUyMGglMjApJTBBJTIwaFBsb3QlM0RoJTBBZW5kJTBBJTBBJTJGJTJGRGV0ZXJtaW5lJTIwaWYlMjBpbnB1dCUyMGlzJTIwdmFsaWQlMEFpZiglMjBTaXplKGRmZHgpJTIwISUzRCUyMChTaXplKHZhciktMSklMjApJTBBJTIwTWVzc2FnZSglMjJOdW1iZXIlMjBvZiUyMGRpZmZlcmVudGlhbCUyMGVxdWF0aW9ucyUyMGFuZCUyMHZhcmlhYmxlcyUyMGdpdmVuJTIwYXJlJTIwaW5jb25zaXN0ZW50LiUyMiklMEFlbmQlMEFpZiglMjBTaXplKGljcyklMjAhJTNEJTIwKFNpemUodmFyKS0xKSUyMCklMEElMjBNZXNzYWdlKCUyMk51bWJlciUyMG9mJTIwaW5pdGlhbCUyMGNvbmRpdGlvbnMlMjBtdXN0JTIwYmUlMjBlcXVhbCUyMHRvJTIwdGhlJTIwbnVtYmVyJTIwb2YlMjBpbmRlcGVuZGFudCUyMHZhcmlhYmxlcy4lMjAlMjBpY3MlMjBpcyUyMGdpdmVuJTIwYXMlMjAlNUJ5MV8wJTJDLi4uJTJDeW5fMCU1RC4lMjIpJTBBZW5kJTBBaWYoJTIwU2l6ZSh4cmFuZ2UpJTIwISUzRCUyMDIpJTBBJTIwTWVzc2FnZSglMjJSYW5nZSUyMGlmJTIwaW5kZXBlbmRhbnQlMjB2YXJpYWJsZSUyMG11c3QlMjBiZSUyMGdpdmVuJTIwYXMlMjAlNUJ4MCUyQ3hmJTVELiUyMiklMEFlbmQlMEElMEElMEElMkYlMkZEZXRlcm1pbmUlMjBzb2x2ZXIlMjBwYXJhbWV0ZXJzJTBBcGxvdFN0ZXBzJTNEKHhyYW5nZSgyKS14cmFuZ2UoMSkpJTJGaFBsb3QlMkIxJTBBJTBBJTBBJTJGJTJGRGF0YSUyMG1hdHJpY2VzJTIwYW5kJTIwaW5pdGlhbCUyMGNvbmRpdGlvbnMlMEFYJTNETWF0cml4KDElMkNwbG90U3RlcHMpJTBBWSUzRE1hdHJpeChTaXplKGRmZHgpJTJDcGxvdFN0ZXBzKSUwQVkoYWxsJTJDMSklM0RUcmFuc3Bvc2UoJTVCaWNzJTVEKSUwQVgoMSUyQzEpJTNEeHJhbmdlKDEpJTBBJTBBJTBBJTJGJTJGRXVsZXIncyUyMG1ldGhvZCUwQWxvb3Aoa18lMkMxJTJDcGxvdFN0ZXBzLTElMkMxKSUwQSUyMG5ld1hZJTNERFNvbHZlUkszU3RlcFF1aWNrKGRmZHglMkN2YXIlMkNMaXN0KFkoYWxsJTJDa18pKSUyQyU1QlgoMSUyQ2tfKSUyQ1goMSUyQ2tfKSUyQmhQbG90JTVEJTJDaCklMEElMjBYKDElMkNrXyUyQjEpJTNEbmV3WFkoMSklMEElMjBZKGFsbCUyQ2tfJTJCMSklM0RUcmFuc3Bvc2UoJTVCRGVsZXRlKG5ld1hZJTJDMSklNUQpJTBBZW5kJTBBJTBBJTBBcmV0dXJuKEFwcGVuZChYJTJDWSkp&input[2]=%3D%3D
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Example 6. (Look at Home): Consider the predator prey system

x′ = 2x− 1

5
x2 − xy

y′ = −5y +
3

2
xy.

The direction field of that system is given below, with one solution curve plotted in red.

Figure 5. The horizontal x-axis represents the prey, the vertical y-axis
represents the predator. The red dot highlights an initial condition. (The
vectors point in the direction where the segments get thinner.)

Each component of the solution curve plotted in red above are plotted below as functions
of time.

Figure 6. The horizontal t-axis represents time, and in the vertical axis
we plot the the prey population (in purple) and the predator population
(in blue).

Interactive Graph: Predator-Prey System with Limited Food.

http://mathstud.io/?input[0]=%3D%3D&input[1]=&input[2]=%3D
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5.1. Systems of Algebraic Linear Equations

Section Objective(s):

• The Row Picture.
• The Column Picture.
• The Matrix Picture.

Remarks:

• Before trying to solve systems of differential equations

we need to know basic concepts of linear algebra .

• Solving linear algebraic equations by substitution is called the

row picture . (One equation at a time.)

• Linear algebraic equation can be thought as a linear combination

of vectors . This is the column picture .

• The concept of vector space comes from the row picture .

• Linear algebraic equation can be thought as a a matrix acting on

vectors . This is the matrix picture .

• From the matrix picture we get the idea that matrices are

functions on the space of vectors .
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5.1.1. The Row Picture.

Remark: The field of linear algebra started when people tried to solve

systems of linear algebraic equations .

Example 1: Find all solutions (x, y) of the 2× 2 linear system

2x− y = 0

−x+ 2y = 3.

Provide both a geometrical and an analytical solution.

Solution:

y = 2x

−x+ 4x = 3 ⇒ x = 1

y = 2.

Answer: (x = 1, y = 2).
0

2x− y = 0

−x+ 2y = 3
(1, 2)

y

x

Theorem 1. Given a 2× 2 linear system, only one of the following statements holds:

(i) There exists a unique solution;

(ii) There exist infinitely many solutions;

(iii) There exists no solution.

Proof:

y

x

y

x

y

x
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5.1.2. The Column Picture.

Remark: The concept of a linear combination of vectors, and the

idea of vector space come from the column picture .

Example 2: Write the system in Example 1 as a linear combination of column vectors,

2x− y = 0

−x+ 2y = 3.

Solution:

We know that
(2) x+ (−1) y = 0,

(−1) x+ (2) y = 3.

We introduce new objects, column vectors[
2
−1

]
x+

[
−1

2

]
y =

[
0
3

]
.

We denote column vectors as follows,

a1 =

[
2
−1

]
, a2 =

[
−1

2

]
, b =

[
0
3

]
.

We can represent these vectors in the plane.

The solution is (x = 1, y = 2). This defines the linear combination of column vectors,[
2
−1

]
+

[
−1

2

]
2 =

[
0
3

]
.

So we define [
−1
2

]
2 =

[
(−1)2
(2)2

]
,

[
2
−1

]
+

[
−2

4

]
=

[
2− 2
−1 + 4

]
.

0
a1

a2

b

y

x 0
a1

b
2a2

y

x

C
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Remark: The example above is the motivation for the following definition.

Definition 1. The linear combination of the n-vectors

u =

u1

...
un

 , v =

v1

...
vn

 ,
with the real numbers a and b, is defined as

au + bv = a

u1

...
un

+ b

v1

...
vn

 =

au1 + bv1

...
aun + bvn

 .
Remark: Theorem 1 can also be proven using linear combination of column vectors.

Theorem 1. Given a 2× 2 linear system, only one of the following statements holds:

(i) There exists a unique solution;

(ii) There exist infinitely many solutions;

(iii) There exists no solution.

Proof:

u1x+ v1y = b1

u2x+ v2y = b2

}
⇔

{[
u1

u2

]
x+

[
v1

v2

]
y =

[
b1
b2

]
.

y

x

y

x

y

x

u

v
b

x2

x1

u

vbx2

x1

u

v

b

x2

x1
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5.1.3. The Matrix Picture.

Remark: The concept that a matrix is a function on vectors

comes from the matrix picture.

Example 3: Write the system in Example 1 as a matrix acting on a column vector,

2x− y = 0

−x+ 2y = 3.

Solution:

Rewrite the system as [
2 −1
−1 2

] [
x1

x2

]
=

[
0
3

]
.

Define the matrix-vector product such that[
2 −1
−1 2

] [
x1

x2

]
=

[
2x1 − x2

−x1 + 2x2

]
,

Introduce the matrix notation

A =

[
2 −1
−1 2

]
, x =

[
x1

x2

]
, b =

[
0
3

]
.

Then, the linear system above is interpreted as:

Ax = b.

Given A and b we need to find x.

C

Remark: The example above motivates the following definition.

Definition 2. An m× n matrix A is an array of numbers

A =


a11 · · · a1n

...
...

am1 · · · amn

 ,
m rows,

n columns,

,

where aij ∈ R or C, for i = 1, · · · ,m, j = 1, · · · , n. A square matrix

is an n× n matrix, and the diagonal coefficients in a square

matrix are aii .

Remark: A matrix is a function that acts on a vector and

the result is another vector.
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Remark: We define linear combinations and multiplications

of matrices.

• Addition of two matrices of the same size:

A+B =

a11 · · · a1n

...
...

am1 · · · amn

+

 b11 · · · b1n
...

...
bm1 · · · bmn

 =

 a11 + b11 · · · a1n + b1n
...

...
am1 + bm1 · · · amn + bmn



• Multiplication of a matrix A by a scalar c:

cA = c

a11 · · · a1n

...
...

am1 · · · amn

 =

 ca11 · · · ca1n

...
...

cam1 · · · camn



• Matrix multiplication is defined for matrices such that the numbers of columns in

the first matrix matches the numbers of rows in the second matrix.

A
m× n

times B
n× `

defines AB
m× `

AB =

[
a11 a12

a21 a22

] [
b11 b12

b21 b22

]
=

[
(a11b11 + a12b21) (a11b12 + a12b22)
(a21b11 + a22b21) (a21b12 + a22b22)

]
.

Example 4: Compute AB and BA, where A =

[
1 2
1 2

]
and B =

[
−1 1

1 −1

]
.

Solution: We find that

AB =

1 2

1 2


−1 1

1 −1

 =

1 −1

1 −1

 ,

BA =

−1 1

1 −1


1 2

1 2

 =

0 0

0 0

 .
Notice that in this case AB 6= BA. The product is not commutative.

Notice that BA = 0 but A 6= 0 and B 6= 0. C
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5.2. Vector Spaces

Section Objective(s):

• Vector Spaces, Subspaces, and Spans.
• Linear (In)dependence.
• Basis and Dimension.

Remarks:

• The row picture of linear algebraic equations originates the idea

of a vector space.

• A subspace is a smaller vector space inside a

larger vector space.

• The span of a few vectors is the set of all linear combinations

of these vectors.

• The span of a vectors creates a subspace .

• Vectors are linearly independent if none of them

is linear combination of the others.

• A basis of V is the largest l.i. set in V .

• A basis of V is the smallest spanning set in V .

• The dimension of V is the number of basis vectors .

• The dimension of V measures how big is V .
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5.2.1. Vector Spaces, Subspaces, and Spans.

Definition 1. The vector space Rn, over R, is the set of n-vectors with

real components, together with the operation of linear combination ,

u + v =



u1

u2

...

un


+



v1

v2

...

vn


=



u1 + v1

u2 + v2

...

un + vn


, au = a



u1

u2

...

un


=



au1

au2

...

aun


, a ∈ R.

Remarks:

• The vector space Cn, over C, is the set of n vectors with complex

components, together with the linear combination operation.

• We will use V to denote the vector space Rn or Cn ,

and F to denote the field of scalars R of C.

Definition 2. The subset W ⊆ V of a vector space V over the field of scalars F is

called a subspace of V iff for all u, v ∈W and all a, b ∈ F,

au + bv ∈W

Example 1: Planes and lines through the origin are subspaces of R3.

x1

x2

x3

A subspace must contain
[
0
0

]
.

W

Not in W

x1

x2

No circles, no nonlinear curves are subspaces.
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Example 2: Which of the following sets W are subspaces of the vector space V ?

(1) V = R2, W =

{
u =

[
u1

u2

]
such that u2 = 0

}
.

Yes, horizontal line containing

[
0
0

]
.

(2) V = R2, W =

{
u =

[
u1

u2

]
such that u2 = 1

}
.

No, horizontal line not containing

[
0
0

]
.

(3) V = R2, W =

{
u =

[
u1

u2

]
such that u1 + u2 = 0

}
.

Yes, line slope -1 containing

[
0
0

]
.[

u1

u2

]
=

[
−u2

u2

]
= u2

[
−1
1

]
.

(4) V = R3, W =

u =

u1

u2

u3

 such that u2 = 2u3

.

Yes, plane of vectors

 u1

2u3

u3

 = u1

1
0
0

+ u3

0
2
1

.
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Remark: We finally introduce the definition of a span of a finite set of vectors.

Definition 3. The Span of a finite set S = {u1, . . . , un}

in a vector space V over the field of scalars F is

Span(S) = {u ∈ V such that u = c1u1 + · · ·+ cnun, where c1, . . . , cn ∈ F}.

Theorem 1. The Span(S) in a vector space V is a subspace of V .

Proof:

• The Span(S) contains all possible linear combinations of the elements in S.

• So Span(S) is a vector space.

• Span(S) ⊂ V , then the Span is a subspace.

Example 3: Give a geometric description of the following.

(1) Span({v1, v2}) in R3, where v1 =

1
1
0

 and v2 =

2
2
0

. Line

(2) Span({v1, v2}) in R3, where v1 =

1
1
0

 and v2 =

2
0
0

. Plane
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5.2.2. Linear (In)dependence.

Definition 4. A finite set of vectors {v1, . . . , vk} in a vector space

is called linearly dependent iff there exists a set of scalars

{c1, . . . , ck} , not all of them zero, such that,

c1v1 + · · ·+ ckvk = 0.

The set {v1, . . . , vk} is called linearly independent

iff the only solution of the equation above is

c1 = 0, . . . , ck = 0.

Remarks:

• Linear dependence means a vector is l.c. of the others.

• Linear independence means no vector is l.c. of the others.

Example 4: Determine if the following sets are linearly independent and justify your
claim.

(1)

{[
1
0

]
,

[
0
1

]
,

[
−2
3

]}
. Linear dependent.

[
−2
3

]
= −2

[
1
0

]
+ 3

[
0
1

]
⇔ 2

[
1
0

]
− 3

[
0
1

]
+

[
−2
3

]
=

[
0
0

]
.

(2)


1

0
0

 ,
0

1
2

 ,
0

3
0

. Linear independent.

c1

1
0
0

+ c2

0
1
2

+ c3

0
3
0

 =

0
0
0

 ⇒


c1 = 0

c2 + 3c3 = 0

2c2 = 0,

⇒


c1 = 0

c2 = 0

c3 = 0.
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5.2.3. Basis and Dimension.

Definition 5. A set S ⊂ V is a basis of a vector space V = {Rn,Cn} iff

(1) S is linearly independent

and

(2) Span(S) = V.

Example 5: Determine if the following sets provide bases for the given vector space.

(1) V = R3, S =


1

0
0

 ,
0

1
0

. No, S is too small.

(2) V = R2, S =

{[
1
0

]
,

[
2
0

]}
. No, the Span(S) is the horizontal line containing

[
0
0

]
.

(3) V = R3, S =


1

0
0

 ,
0

1
2

 ,
0

3
0

. Yes, S is l.i. and Span(S) = R3.
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Theorem 2. The number of vectors in any basis of a vector

space V = {Rn,Cn} is the same as in any other basis of V .

Definition 7. The dimension of a vector space V = {Rn,Cn} is n,

the number of vectors in any basis of V.

Example 6: Give an example of two different bases of R2.

{[
1
0

]
,

[
0
1

]}
,

{[
1
1

]
,

[
−1
1

]}
.

Example 7: Determine the dimension of the vector space given by

W = Span


0

0
2

 ,
0

2
2

 ,
0

3
0

 ,
0

4
5


W has dimension 2.
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5.3. Invertible Matrices. Eigenvalues and Eigenvectors

Section Objective(s):

• Invertible Matrices.
• Determinant of a Matrix.
• Eigenvalues and Eigenvectors of a Matrix.

Remarks:

• .



2 CONTENTS

Example 1: Solve the linear system Ax = b given below and find the matrix Ã such that
the solution can be written as x = Ãb.

Ax = b, A =

[
a b
c d

]
, x =

[
x1

x2

]
, b =

[
b1
b2

]
.

Solution:

a b

c d


x1

x2

 =

b1
b2

 ⇒
a x1 + b x2 = b1

c x1 + d x2 = b2

d
(
a x1 + b x2 = b1

)
−b
(
c x1 + d x2 = b2

)
 ⇒ (ad− bc)x1 + (bd− bd)x2 = d b1 − b b2

Introduce ∆ = ad− bc. Assume that ∆ 6= 0, then

x1 =
1

∆
(d b1 − b b2).

A similar calculation gives

x2 =
1

∆
(−c b1 + a b2).

This result can be written in matrix form as follows,

x =

x1

x2

 =
1

∆

 d b1 − b b2

−c b1 + a b2

 =
1

∆

 d −b

−c a


b1
b2

 = Ã b,

so we get that

Ã =
1

∆

 d −b

−c a

 .
The matrix Ã is the inverse of matrix A, and it is denoted as A−1, that is,

Ax = b, A =

a b

c d

 ⇒ x = A−1b, A−1 =
1

∆

 d −b

−c a

 , ∆ = ad− bc 6= 0.

C
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Definition 1. A square matrix A is invertible iff there is a matrix A−1 so that(
A−1

)
A = In A

(
A−1

)
= In .

Example 2: Verify that the matrix and its inverse are given by

A =

[
2 2
1 3

]
, A−1 =

1

4

[
3 −2
−1 2

]
.

Solution:

We have to compute the products,

A
(
A−1

)
=

2 2

1 3

 1

4

 3 −2

−1 2

 =
1

4

4 0

0 4

 ⇒ A
(
A−1

)
= I2.

It is simple to check that the equation
(
A−1

)
A = I2 also holds.

C

Theorem 1. Given a 2× 2 matrix A, let ∆ be the number

A =

[
a b
c d

]
, ∆ = ad− bc .

Then, A is invertible iff ∆ 6= 0. Furthermore, if A is invertible, its inverse is

A−1 =
1

∆

[
d −b
−c a

]
.

Remarks:

(a) The number ∆ = det(A) is called the determinant of A.

(b) ∆ determines whether A is invertible or not.
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Example 3: Compute the inverse of matrix A =

[
2 2
1 3

]
, given in Example 8.2.15.

Solution: We first compute ∆ = 6− 4 = 4. Since ∆ 6= 0, then A−1 exists and

A−1 =
1

4

 3 −2

−1 2

 .

C

Example 4: Find a matrix X such that AXB = I, where

A =

[
1 3
2 1

]
, B =

[
2 1
1 2

]
, I =

[
1 0
0 1

]
.

Solution:

Is A invertible? det(A) =

∣∣∣∣∣∣∣
1 3

2 1

∣∣∣∣∣∣∣ = 1− 6 = −5 6= 0, so Yes.

Is B invertible? det(B) =

∣∣∣∣∣∣∣
2 1

1 2

∣∣∣∣∣∣∣ = 4− 1 = 3 6= 0, so Yes.

We then compute their inverses,

A−1 =
1

−5

 1 −3

−2 1

 , B =
1

3

 2 −1

−1 2

 .
We can now compute X,

AXB = I ⇒ A−1(AXB)B−1 = A−1IB−1 ⇒ X = A−1B−1.

Therefore,

X =
1

−5

 1 −3

−2 1

 1

3

 2 −1

−1 2

 = − 1

15

 5 −7

−5 4


so we obtain

X =

−1

3

7

15
1

3
− 4

15

 .

C
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Definition 2. The determinant of a 2× 2 matrix A =

[
a11 a12

a21 a22

]
is

det(A) =

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21 .

Definition 3. The determinant of a 3× 3 matrix A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 is

det(A) =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣ .

Example 5: Compute the determinant of the 3× 3 matrix,1 3 −1
2 1 1
3 2 1


Solution: ∣∣∣∣∣∣∣∣∣∣

1 3 −1

2 1 1

3 2 1

∣∣∣∣∣∣∣∣∣∣
= (1)

∣∣∣∣∣∣∣
1 1

2 1

∣∣∣∣∣∣∣− 3

∣∣∣∣∣∣∣
2 1

3 1

∣∣∣∣∣∣∣+ (−1)

∣∣∣∣∣∣∣
2 1

3 2

∣∣∣∣∣∣∣
= (1− 2)− 3 (2− 3)− (4− 3)

= −1 + 3− 1

= 1.

C

Exercise: Show that the determinant of an upper triangular matrix (one all of whose entries
below the main diagonal are zero) is the product of the diagonal coefficients. How about a
lower triangular matrix?
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5.3.1. Eigenvalues and Eigenvectors of a Matrix.

Definition 4. A number λ and a nonzero n-vector v are an eigenvalue and eigen-
vector (eigenpair) of a square matrix A iff they satisfy the equation

Av = λv .

Remarks:

(a) An eigenvector v determines a particular direction in the space that

remains invariant under the action of the matrix A.

(b) That is, if v is an eigenvector, so is av for a ∈ R .

A(av) = aAv = aλv = λ(av) .

Example 6: Verify that the pair λ1, v1 and the pair λ2, v2 are eigenvalue and eigenvector
pairs of matrix A given below,

A =

[
1 3
3 1

]
,


λ1 = 4 v1 =

[
1
1

]
,

λ2 = −2 v2 =

[
−1

1

]
.

Solution: We just must verify the definition of eigenvalue and eigenvector given above. We

start with the first pair,

Av1 =

1 3

3 1


1

1

 =

4

4

 = 4

1

1

 = λ1v1 ⇒ Av1 = λ1v1.

A similar calculation for the second pair implies,

Av2 =

1 3

3 1


−1

1

 =

 2

−2

 = −2

−1

1

 = λ2v2 ⇒ Av2 = λ2v2.

C
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Remark: How do we find the eigenvalues and eigenvectors of a square matrix?

Theorem 2. (Eigenvalues-Eigenvectors)

(a) All the eigenvalues λ of an n× n matrix A are the solutions of

det(A− λI) = 0 .

(b) Given an eigenvalue λ of an n× n matrix A, the corresponding eigenvectors v are
the nonzero solutions to the homogeneous linear system

(A− λI)v = 0 .

Remark: An eigenvalue λ is a number such that A− λI is not invertible .

Example 7: Find the eigenvalues λ and eigenvectors v of the matrix A =

[
1 3
3 1

]
.

Solution: We first find the eigenvalues as the solutions of the Eq. (??). Compute

A− λI =

1 3

3 1

− λ
1 0

0 1

 =

1 3

3 1

−
λ 0

0 λ

 =

(1− λ) 3

3 (1− λ)

 .
Then we compute its determinant,

0 = det(A− λI) =

∣∣∣∣∣∣∣
(1− λ) 3

3 (1− λ)

∣∣∣∣∣∣∣ = (λ− 1)2 − 9 ⇒


λ+ = 4,

λ- = −2.

We have obtained two eigenvalues, so now we introduce λ+ = 4 into Eq. (??), that is,

A− 4I =

1− 4 3

3 1− 4

 =

−3 3

3 −3

 .
Then we solve for v+ the equation

(A− 4I)v+ = 0 ⇔

−3 3

3 −3


v+1
v+2

 =

0

0

 .
The solution can be found using Gauss elimination operations, as follows,−3 3

3 −3

→
1 −1

3 −3

→
1 −1

0 0

 ⇒


v+1 = v+2 ,

v+2 free.
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All solutions to the equation above are then given by

v+ =

v+2
v+2

 =

1

1

 v+2 ⇒ v+ =

1

1

 ,
where we have chosen v+2 = 1. A similar calculation provides the eigenvector v- associated

with the eigenvalue λ- = −2, that is, first compute the matrix

A+ 2I =

3 3

3 3


then we solve for v- the equation

(A+ 2I)v- = 0 ⇔

3 3

3 3


v-1
v-2

 =

0

0

 .
The solution can be found using Gauss elimination operations, as follows,3 3

3 3

→
1 1

3 3

→
1 1

0 0

 ⇒


v-1 = −v-2 ,

v-2 free.

All solutions to the equation above are then given by

v- =

−v-2
v-2

 =

−1

1

 v-2 ⇒ v- =

−1

1

 ,
where we have chosen v-2 = 1. We therefore conclude that the eigenvalues and eigenvectors

of the matrix A above are given by

λ+ = 4, v+ =

1

1

 , λ- = −2, v- =

−1

1

 .

C
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5.4. Eigenvalues and Eigenvectors.

Section Objective(s):

• Eigenvalues and Eigenvectors.
• Computing Eigenpairs.

Remarks:

• A matrix acting on a vector usually changes the direction of the vector.

• An eigenvector of a matrix A determines a particular direction

in space that is invariant under the action of A.

• The eigenvectors of the coefficient matrix of a lin-

ear differential system will play an important role to find solu-

tions to the system.
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5.4.1. Eigenvalues and Eigenvectors.

Definition 1. A number λ and a nonzero n-vector v are an eigenvalue

and eigenvector also called eigenpair , of a square

matrix A iff they satisfy the equation

Av = λv.

Remark: The length of an eigenvector is not important ,

because if v is an eigenvector, so is (av) for a ∈ R .

A(av) = aAv = aλv = λ(av).

Example 1: Verify that the pair λ1, v1 and the pair λ2, v2 are eigenpairs of matrix A,

A =

[
0 1
−2 −3

]
,


λ1 = −1 v1 =

[
1
−1

]
,

λ2 = −2 v2 =

[
1
−2

]
.

Solution: We just must verify the definition of eigenvalue and eigenvector given above. We

start with the first pair,

Av1 =

 0 1

−2 −3


 1

−1

 =

−1

1

 = −1 ·

 1

−1

 = λ1v1 ⇒ Av1 = λ1v1.

A similar calculation for the second pair implies,

Av2 =

 0 1

−2 −3


 1

−2

 =

−2

4

 = −2

 1

−2

 = λ2v2 ⇒ Av2 = λ2v2.

C

Interactive Graph: A Geometrical Meaning of Eigenpairs.

http://mathstud.io/?input[0]=%3D%3D
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5.4.2. Computing Eigenpairs.

Remarks:

• The eigenpairs equation can be written as

(A− λI) v = 0, v 6= 0.

• This equation says that the matrix (A− λI) is not invertible .

• There is a way to determine whether this matrix is invertible ,

det(A− λI) = 0.

Theorem 1. (Eigenvalues-Eigenvectors)

(a) All the eigenvalues λ of an n× n matrix A are the solutions of

det(A− λI) = 0.

(b) Given an eigenvalue λ of an n× n matrix A, the corresponding eigenvectors v are
the nonzero solutions to the homogeneous linear system

(A− λI)v = 0.

Remarks:

• We look for numbers λ such that the matrix (A− λI)

is not invertible.

• Given an n×nmatrixA, the function p(λ) = det(A− λI)

is a polynomial degree n .

• This polynomial p(λ) = det(A− λI) is called

the characteristic polynomial of matrix A.
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Example 2: Find the eigenvalues λ and eigenvectors v of the matrix A =

[
1 3
3 1

]
.

Solution:

We first find the eigenvalues as the solutions of the equation det(A− λI) = 0.

A− λI =

1 3

3 1

− λ
1 0

0 1

 =

1 3

3 1

−
λ 0

0 λ

 =

(1− λ) 3

3 (1− λ)

 .
Then we compute its determinant,

0 = det(A− λI) =

∣∣∣∣∣∣∣
(1− λ) 3

3 (1− λ)

∣∣∣∣∣∣∣ = (λ− 1)2 − 9 ⇒


λ+ = 4,

λ- = −2.

We have obtained two eigenvalues, so now we introduce λ+ = 4 into Eq. (??), that is,

A− 4I =

1− 4 3

3 1− 4

 =

−3 3

3 −3

 .
Then we solve for v+ the equation

(A− 4I)v+ = 0 ⇔

−3 3

3 −3


v+1
v+2

 =

0

0

 .
The solution can be found using Gauss elimination operations, as follows,−3 3

3 −3

→
1 −1

3 −3

→
1 −1

0 0

 ⇒


v+1 = v+2 ,

v+2 free.

All solutions to the equation above are then given by

v+ =

v+2
v+2

 =

1

1

 v+2 ⇒ v+ =

1

1

 ,
where we have chosen v+2 = 1. A similar calculation provides the eigenvector v- associated

with the eigenvalue λ- = −2, that is, first compute the matrix

A+ 2I =

3 3

3 3
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then we solve for v- the equation

(A+ 2I)v- = 0 ⇔

3 3

3 3


v-1
v-2

 =

0

0

 .
The solution can be found using Gauss elimination operations, as follows,3 3

3 3

→
1 1

3 3

→
1 1

0 0

 ⇒


v-1 = −v-2 ,

v-2 free.

All solutions to the equation above are then given by

v- =

−v-2
v-2

 =

−1

1

 v-2 ⇒ v- =

−1

1

 ,
where we have chosen v-2 = 1. We therefore conclude that the eigenvalues and eigenvectors

of the matrix A above are given by

λ+ = 4, v+ =

1

1

 , λ- = −2, v- =

−1

1

 .

C
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Example 3: Find the eigenvalues λ and eigenvectors v of the matrix A =

[
2 1
0 2

]
.

Solution:

We first find the eigenvalues as the solutions of the equation det(A− λI) = 0.

A− λI =

2 1

0 2

− λ
1 0

0 1

 =

2 1

0 2

−
λ 0

0 λ

 =

(2− λ) 1

0 (2− λ)

 .
Then we compute its determinant,

0 = det(A− λI) =

∣∣∣∣∣∣∣
(2− λ) 1

0 (2− λ)

∣∣∣∣∣∣∣ = (λ− 2)2 − 0 ⇒ λ0 = 2.

We have obtained only eigenvalue. Now we introduce it into the equation voe v,

A− 2I =

0 1

0 0

 ,
then we solve for v the equation

(A− 2I)v = 0 ⇔

0 1

0 0


v1
v2

 =

0

0

 ⇒ v2 = 0.

All solutions to the equation above are then given by

v =

v2
v2

 =

1

0

 v1 ⇒ v =

1

0

 ,
where we have chosen v+1 = 1. So we have only one eigenpair,

λ = 2, v =

1

0

 .

C
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5.5. Diagonalizable Matrices

Section Objective(s):

• Diagonal Matrices.
• Diagonalizable Matrix.

Remarks:

• Diagonal matrices are simple to work with, but

they do not appear so often in physical applications.

• General matrices are difficult to work with, since the matrix product

is complicated and not commutative .

• Diagonalizable matrices are an intermediate case:

– They are general enough to often appear in physical

applications.

– The are simple enough to work with.

– Functions of diagonalizable matrices are simple

to compute.
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5.5.1. Diagonal Matrices.

Definition 1. An n× n matrix A is diagonal iff

A =

a11 · · · 0
...

. . .
...

0 · · · ann

 .
Remarks:

• Notation:

a11 · · · 0
...

. . .
...

0 · · · ann

 = diag
[
a11, · · · , ann

]
.

• Matrix operations are simple with diagonal matrices.

Example 1: Given A =

[
2 0
0 7

]
, compute A2, A3, and An for a general natural number n.

Solution:

A2 =

2 0

0 7


2 0

0 7

 =

22 0

0 72

 ,

A3 = A2A =

22 0

0 72


2 0

0 7

 =

22 0

0 72


By induction, using An = A(n−1)A, one gets

An =

2n 0

0 7n

 .

C

Remarks: Consider a diagonal matrix D = diag
[
a11, · · · , ann

]
:

• Then Dn = diag
[
an11, · · · , annn

]
.

• The eigenvalues of a D are a11, · · · , ann .

• The corresponding eigenvectors are

v1 =

1
...
0

 , · · · , vn =

0
...
1

 , since for example A =

a11 · · · 0
...

. . .
...

0 · · · ann


1

...
0

 = a11

1
...
0

 .
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5.5.2. Diagonalizable Matrices.

Remarks:

• Diagonal matrices do not appear often in physical applications.

• But diagonalizable matrices are very common in physical aplica-
tions.

Definition 2. A square matrix A is diagonalizable iff there exists

an invertible matrix P and a diagonal matrix D such that

A = PDP−1.

Remark: A = PDP−1 is equivalent to P−1AP = D .

Example 2: Show that the matrix A =

[
1 3
3 1

]
is diagonalizable with P =

[
1 −1
1 1

]
.

Solution:

A = PDP−1 ⇒ P−1AP = D, P−1 =
1

2

 1 1

−1 1



P−1AP =
1

2

 1 1

−1 1


1 3

3 1


1 −1

1 1

 =
1

2

 1 1

−1 1


4 2

4 −2

 =

4 0

0 −2

 = D

Remark: Notice, P = [v1, v2], D = diag[λ1, λ2], with v1, λ1 and v2, λ2 eigenpairs of

A,

v(1) =

1

1

 , v(2) =

−1

1

 , λ1 = 4, λ2 = −2.

C
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Example 3: If A is a 2× 2 with eigenpairs λ1, v1 and λ2, v2, then show that

AP = PD, where P =
[
v1, v2

]
, D = diag

[
λ1, λ2

]
.

Solution:

AP = A
[
v1, v2

]
=
[
Av1, Av2

]
=
[
λ1v1, λ2v2

]
=
[
v1, v2

] λ1 0

0 λ2

 = PD.

Since

AP = PD ⇒ A = PDP−1.

C

Remark: The next result says that this result and its converse are true for n× n matrices.
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Theorem 1. An n × n matrix A is diagonalizable iff A has

n eigenvectors linearly independent.

Furthermore, if λi, vi, for i = 1, · · · , n, are eigenpairs of A, then A = PDP−1, where

P =
[
v1, · · · , vn

]
, D = diag

[
λ1, · · · , λn

]
.

Example 4: Is the matrix A =

3 0 1
0 3 2
0 0 1

. diagonalizable?

Solution:

• 0 = det(A− λI) =

∣∣∣∣∣∣∣∣∣∣
(3− λ) 0 1

0 (3− λ) 2

0 0 (1− λ)

∣∣∣∣∣∣∣∣∣∣
= (3− λ)2(1− λ)

• So λ1 = 1, λ2 = 3.

• For λ1 = 1,


2 0 1

0 2 2

0 0 0



v1

v2

v3

 =


0

0

0

 so


2v1 = −v3

v2 = −v3

v3 free

⇒ v1 =


−1

−2

2

.

• For λ2 = 3,


0 0 1

0 0 2

0 0 −2



v1

v2

v3

 =


0

0

0

 so


v1 free

v2 free

v3 = 0

⇒ v2 =


1

0

0

 , v3 =


0

1

0

.

• Then, A has three eigenvectors linearly independent, so A is diagonalizable and

A = PDP−1, where D = diag
[
1, 3, 3

]
, P =


−1 1 0

−2 0 1

2 0 0

 .

C
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Remark: Matrix P is not unique , since the eigenvectors are not unique .

Another choice is A = P̃ D̃P̃−1 with P̃ =

 2 2 0
4 0 5
−4 0 0

 D̃ =

 1 0 0
0 3 0
0 0 3

 .

Example 5: Is the matrix B =

3 1 1
0 3 2
0 0 1

 diagonalizable?

Solution:

• 0 = det(B − λI) =

∣∣∣∣∣∣∣∣∣∣
(3− λ) 1 1

0 (3− λ) 2

0 0 (1− λ)

∣∣∣∣∣∣∣∣∣∣
= (3− λ)2(1− λ)

• So λ1 = 1, λ2 = 3.

• For λ1 = 1,


2 1 1

0 2 2

0 0 0



v1

v2

v3

 =


0

0

0

 so


2v1 + v2 = −v3

v2 = −v3

v3 free

⇒ v1 =


0

−1

1

.

• For λ2 = 3,


0 1 1

0 0 2

0 0 −2



v1

v2

v3

 =


0

0

0

 so


v1 + v3 = 0

v2 free

v3 = 0

⇒ v2 =


0

1

0

.

• Then, B has only two eigenvectors linearly independent, so B is not diagonalizable.

C
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5.6. The Matrix Exponential

Section Objective(s):

• The Exponential of a Matrix.
– Diagonal Matrices.
– Diagonalizable Matrix.

• Properties of the Matrix Exponential.

Remarks:

• We know how to compute linear combinations of matrices.

• We know how to compute multiplication of matrices

• With these operation it is possible to define functions of matrices.

• We define functions of matrices using power series.
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5.6.1. The Exponential of a Matrix.

Review: Recall the definition of the exponential of real numbers.

• f(x) = ex is defined as:

– For n natural number, en = e · · · e, for n-times .

– Then, e0 = 1 , and for negative integers −n

e−n =
1

en
.

– Then, for rational numbers, m/n , with m, n integers,

e
m
n = n

√
em.

– Then, for irrational numbers x, is done by a limit,

ex = lim
m
n→x

e
m
n .

It is not clear how to extend this definition to matrices.

• The exponential is the inverse of the natural log:

ex = y ⇔ ln(y) = x,

and ln(y), is

ln(x) =

∫ x

1

1

y
dy, x ∈ (0,∞).

It is not clear how to extend this definition to matrices.

• The exponential function can be defined also by its Taylor series ,

ex =

∞∑
k=0

xk

k!
= 1 +

x

1!
+
x2

2!
+
x3

3!
+ · · · .

This series expression can be generalized square matrices.

Definition 1. The exponential of a square matrix A is

eA =

∞∑
n=0

An

n!
= I +

A

1!
+
A2

2!
+
A3

3!
+ · · · .

Remark: It can be shown that the infinite sum above converges for all square matrices.
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5.6.2. The Exponential of a Matrix: Diagonal Matrices.

Example 1: Compute eA, where A =

[
2 0
0 7

]
.

Solution:

We start with the definition of the exponential

eA =

∞∑
n=0

An

n!
=

∞∑
n=0

1

n!

2 0

0 7


n

.

But, 2 0

0 7


2

=

2 0

0 7


2 0

0 7

 =

22 0

0 72

 .
It is simple to see that, since the matrix A is diagonal,2 0

0 7


n

=

2n 0

0 7n

 .
Therefore,

eA =

∞∑
n=0

1

n!

2n 0

0 7n

 =

∞∑
n=0

 2n

n! 0

0 7n

n!

 =

∑∞n=0
2n

n! 0

0
∑∞
n=0

7n

n!

 .

Since

∞∑
n=0

an

n!
= ea, for a = 2, 7, we obtain that

e

2 0

0 7


=

e2 0

0 e7

 .

C
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Theorem 1. If D = diag
[
d1, · · · , dn

]
, then

e
diag

[
d1, · · · , dn

]
= diag

[
ed1 , · · · , edn

]
.
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5.6.3. The Exponential of a Matrix: Diagonalizable Matrices.

Remarks:

• The exponential of a diagonalizable matrix is also simple to com-

pute.

• We start computing powers of a diagonalizable matrix.

Theorem 2. If A is diagonalizable, with

A = PDP−1 = P diag
[
a11, · · · , ann

]
P−1,

then

A2 = PD2P−1 = P diag
[
(a11)2, · · · , (ann)2

]
P−1,

An = PDnP−1 = P diag
[
(a11)n, · · · , (ann)n

]
P−1.

Proof of Theorem 2:

First the case A2,

A2 = AA

= (PDP−1)(PDP−1)

= PD2P−1

Then induction. Assume that An−1 = PDn−1P−1, then

An = An−1A

= (PDn−1P−1)(PDP−1)

= PDnP−1

�
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Theorem 3. The exponential of a diagonalizable matrix A, with

A = PDP−1 and D diagonal , is

eA = PeDP−1.

Proof of Theorem 3: Recall that

An = PDnP−1.

We then compute the exponential of A as follows,

eA =

∞∑
k=0

1

k!
An =

∞∑
k=0

1

k!
(PDP−1)n =

∞∑
k=0

1

k!
(PDnP−1),

On the far right we can take common factor P on the left and P−1 on the right,

eA = P
( ∞∑
k=0

1

k!
Dn
)
P−1.

The sum in between parenthesis is eD,

eA = PeDP−1.

This establishes the Theorem.

�
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Example 2: Compute eAt, where A =

[
1 3
3 1

]
and t ∈ R.

Solution: To compute eAt we need the decomposition A = PDP−1, which in turns im-

plies that At = P (Dt)P−1. Matrices P and D are constructed with the eigenvectors and

eigenvalues of matrix A. We computed them in the previous examples.

λ1 = 4, v1 =

1

1

 and λ2 = −2, v2 =

−1

1

 .
Introduce P and D as follows,

P =

1 −1

1 1

 ⇒ P−1 =
1

2

 1 1

−1 1

 , D =

4 0

0 −2

 .
Then, the exponential function is given by

eAt = PeDtP−1 =

1 −1

1 1


e4t 0

0 e−2t

 1

2

 1 1

−1 1

 .
Usually one leaves the function in this form. If we multiply the three matrices out we get

eAt =
1

2

(e4t + e−2t) (e4t − e−2t)

(e4t − e−2t) (e4t + e−2t)

 .

C
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5.6.4. Properties of the Matrix Exponential.

Remark: We now summarize the main properties of the matrix exponential.

Theorem 4. If A is an n× n matrix and s, t are real numbers, then

• Group property

eAs eAt = eA(s+t).

• Inverse exponential (
eA
)−1

= e−A.

• Derivative of the exponential,

d

dt
eAt = AeAt = eAtA.

• If A, B are n× n matrices such that AB = BA , then

eA+B = eA eB .
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6.1. Two-Dimensional Linear Systems

Section Objective(s):

• 2× 2 Linear Differential Systems.
• Diagonalizable Systems.

– Real Distinct Eigenvalues.
– Complex Eigenvalues.
– Repeated Eigenvalues.

• Non-Diagonalizable Systems.
– Repeated Eigenvalues.

Remarks:

• We introduce 2× 2 systems of linear differential

equations.

• We focus on homogeneous systems with constant

coefficients.

• If the homogeneous linear differential system is diagonalizable ,

then we have a formula for all the solutions.

• If the homogeneous linear differential system is not diagonalizable ,

then the formula above give only half the solutions.

• The other half of the solutions can be found generalizing ideas

from second order scalar equations with repeated

roots of their characteristic polynomial .
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6.1.1. 2× 2 Linear Differential Systems.

Definition 1. A 2× 2 first order linear differential system is the equation

x′(t) = A(t) x(t) + b(t),

where the coefficient matrix A, the source vector b, and the unknown vector x are

A(t) =

a11(t) a12(t)

a21(t) a22(t)

 , b(t) =

b1(t)
b2(t)

 , x(t) =

x1(t)

x2(t)

 .
The system above is called:

• homogeneous iff b = 0,

• of constant coefficients iff A is constant,

• diagonalizable iff A is diagonalizable.

Remarks:

• In this class we focus on homogeneous systems with

constant coefficients.

• Diagonal systems are very simple to solve.

Example 1: Find functions x1, x2 solutions of the first order, 2× 2, constant coefficients,
homogeneous differential system

x′1 = 3x1,

x′2 = 2x2.

Solution: In this case, the system is decoupled, so we are just solving 2 (independent)

scalar equations. Recall that x1(t) = c1e
3t and x2(t) = c2e

2t. In vector notation we get

x(t) =

x1(t)

x2(t)

 =

c1 e3t

c2 e
2t

 = c1

1

0

 e3t + c2

0

1

 e2t

C
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6.1.2. Diagonalizable Systems: Real Eigenvalues.

Example 2: Now, we consider a system where the equations are coupled. Find functions
x1, x2 solutions of the follwoing system of ODEs

x′1 = x1 + 3x2,

x′2 = 3x1 + x2.

Solution: We saw that solving a decoupled system (diagonal matrix) is easy. If we have a

diagonalizable matrix, A = PDP−1, i.e., D = P−1AP . Multiply the differential equation

x′ = Ax by P−1,

(P−1x)′ = (P−1AP )(P−1x),

so introduce y = P−1x, and the equation of y is then

y′ = Dy.

To find P and D for the given matrix, find the eigenpairs of A. The solution is

λ1 = 4, v1 =

1

1

 , and λ- = −2, v2 =

−1

1

 .
Therefore, matrix A is diagonalizable with

P =

1 −1

1 1

 , D =

4 0

0 −2

 , P−1 =
1

2

 1 1

−1 1

 .
That is,

y =

y1
y2

 =
1

2

 1 1

−1 1


x1

x2

 =
1

2

 x1 + x2

−x1 + x2

 ⇒


y1 =

1

2
(x1 + x2)

y2 =
1

2
(−x1 + x2)

.

The differential equation for y is y′ = D y, hencey1
y2


′

=

4 0

0 −2


y1
y2

 ⇒


y′1 = 4y1

y′2 = −2y2

⇒


y1 = c1 e

4t

y2 = c2 e
−2t

.
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We now transform back to x = Py,

x =

x1

x2

 =

1 −1

1 1


 c1 e4t

c2 e
−2t

 =

c1 e4t − c2 e−2t

c1 e
4t + c2 e

−2t


that is,

x(t) =

x1(t)

x2(t)

 = c1

1

1

 e4t + c1

−1

1

 e−2t

.

C
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Theorem 1. (Homogeneous Diagonalizable Systems) If an n×n constant matrix A is

diagonalizable , with eigenpairs

(λ1, v1), · · · , (λn, vn),

then the general solution of x′ = Ax is

x(t) = c1 e
λ1t v1 + · · ·+ cn e

λnt vn.

Remark: Each function xk(t) = eλkt vk is solution of the system x′ = Ax, because

x′k = λk e
λkt vk,

Axk =
(
A vk

)
eλkt =

(
λk vk

)
eλkt = λk e

λkt vk.

Example 3: Use the theorem above to find the general solution of the IVP

x′ = Ax, A =

[
3 −2
10 −6

]
, x(0) =

[
1
3

]
.

Solution: Find the eigenpairs of A. The solution is

λ+ = −1, v+ =

[
1
2

]
, and λ- = −2, v- =

[
2
5

]
.

So the general solution is

x(t) = c+ e
−t
[
1
2

]
+ c- e

−2t

[
2
5

]
.

Now we find the coefficients c+ and c- that satisfy the initial condition[
1
3

]
= x(0) = c+

[
1
2

]
+ c-

[
2
5

]
⇒

[
1 2
2 5

] [
c+
c-

]
=

[
1
3

]
The inverse of the coefficient matrix is[

1 2
2 5

]−1

=
1

5− 4

[
5 −2
−2 1

]−1

⇒
[
c+
c-

]
=

[
5 −2
−2 1

] [
1
3

]
=

[
−1

1

]
We conclude that c+ = −1 and c- = 1, hence

x(t) = −e−t
[
1
2

]
+ e−2t

[
2
5

]
⇔ x(t) =

[
−e−t + 2 e−2t

−2 e−t + 5 e−2t

]
.

C
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6.1.3. Diagonalizable Systems: Complex Eigenvalues.

Remarks:

• A real matrix can have complex eigenvalues.
• But in this case, the eigenpairs come in conjugate pairs, λ− = λ+, and v− = v+.

Theorem 2. (Complex and Real Solutions) If a 2× 2 matrix A has eigenpairs

λ± = α± iβ, v± = a± ib,
where α, β, a, and b real, then the equation x′ = Ax has fundamental solutions

x+(t) = eλ+t v+, x-(t) = eλ-t v-,

but it also has real-valued fundamental solutions

x1(t) =
(
a cos(βt)− b sin(βt)

)
eαt,

x2(t) =
(
a sin(βt) + b cos(βt)

)
eαt.

Proof of Theorem 2: We know that the solutions x± are linearly independent. Now,

x± = (a± ib) e(α±iβ)t

= eαt(a± ib) e±iβt

= eαt(a± ib)
(
cos(βt)± i sin(βt)

)
= eαt

(
a cos(βt)− b sin(βt)

)
± ieαt

(
a sin(βt) + b cos(βt)

)
.

Therefore, we get

x+ = eαt
(
a cos(βt)− b sin(βt)

)
+ ieαt

(
a sin(βt) + b cos(βt)

)
x− = eαt

(
a cos(βt)− b sin(βt)

)
− ieαt

(
a sin(βt) + b cos(βt)

)
.

Since the differential equation x′ = Ax is linear, the functions below are also solutions,

x1 =
1

2

(
x+ + x-

)
=
(
a cos(βt)− b sin(βt)

)
eαt,

x2 =
1

2i

(
x+ − x-

)
=
(
a sin(βt) + b cos(βt)

)
eαt.

�
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Example 4: Find real-valued fundamental solutions to the differential equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: Fist find the eigenvalues of matrix A above,

0 =

∣∣∣∣∣∣∣
(2− λ) 3

−3 (2− λ)

∣∣∣∣∣∣∣ = (λ− 2)2 + 9 ⇒ λ± = 2± 3i.

Then find the respective eigenvectors. The one corresponding to λ+ is the solution of the

homogeneous linear system with coefficients given by2− (2 + 3i) 3

−3 2− (2 + 3i)

 =

−3i 3

−3 −3i

→
−i 1

−1 −i

→
 1 i

−1 −i

→
1 i

0 0

 .

Therefore the eigenvector v(+) =

v+1
v+2

 is given by

v
(+)
1 = −iv(+)

2 ⇒ v
(+)
2 = 1, v

(+)
1 = −i, ⇒ v(+) =

−i
1

 , λ+ = 2 + 3i.

The second eigenvector is the complex conjugate of the eigenvector found above, that is,

v(-) =

i
1

 , λ- = 2− 3i.

Notice that

v(±) =

0

1

±
−1

0

 i.
Then, the real and imaginary parts of the eigenvalues and of the eigenvectors are given by

α = 2, β = 3, a =

0

1

 , b =

−1

0

 .
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So a real-valued expression for a fundamental set of solutions is given by

x(1) =
(0

1

 cos(3t)−

−1

0

 sin(3t)
)
e2t ⇒ x(1) =

sin(3t)

cos(3t)

 e2t,

x(2) =
(0

1

 sin(3t) +

−1

0

 cos(3t)
)
e2t ⇒ x(2) =

− cos(3t)

sin(3t)

 e2t.

C
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6.1.4. Diagonalizable Systems: Repeated Eigenvalues.

Remark: 2× 2 linear differential systems with a diagonalizable coef-

ficient matrix with a repeated eigenvalue are very simple to solve.

Theorem 3. (Diagonalizable with Repeated Eigenvalues) Every 2 × 2 diagonalizable
matrix with a repeated eigenvalue λ0 must have the form

A = λ0I.

Proof of Theorem 3: Since matrix A diagonalizable, there exists a matrix P invertible

such that A = PDP−1. Since A is 2× 2 with a repeated eigenvalue λ0, then

D =

λ0 0

0 λ0

 = λ0 I2.

Put these two fatcs together,

A = Pλ0IP
−1 = λ0P P

−1 = λ0I.

�

Remark: : The differential equation x′ = λ0I x is already decoupled .

x′1 = λ0 x1

x′2 = λ0 x2

}
⇒ too simple.
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6.1.5. Non-Diagonalizable Systems: Repeated Eigenvalues.

Example 5: Find fundamental solutions to the system

x′ = Ax, A =

[
−6 4
−1 −2

]
Solution: We start computing the eigenvalues of A.

p(λ) =

∣∣∣∣∣∣∣
−6− λ 4

−1 −2− λ

∣∣∣∣∣∣∣ = (λ+ 6)(λ+ 2) + 4 = λ2 + 8λ+ 16 = (λ+ 4)2.

We have a repeated eigenvalue λ0 = −4. The eigenvector v is the solution of (A+ 4I)v = 0,−6 + 4 4

−1 −2 + 4


v1
v2

 =

0

0

 . ⇒

−2 4

−1 2


v1
v2

 =

0

0

 .
So we have only one equation

v1 = 2v2 ⇒ v =

v1
v2

 =

2

1

 v2

and choosing v2 = 1 we get the eigenpair λ0 = −4, v =

2

1

. So one fundamental solution is

x1 =

2

1

 e−4t.

However, we do not know what is a second fundamental solution in this case.

C
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Theorem 4. (Non-Diagonalizable with a Repeated Eigenvalue) If a 2×2 matrix A has

a repeated eigenvalue λ0 with only one eigen direction

determined by v0, then x′(t) = Ax(t) has the linearly independent solutions

x1(t) = eλt v, x2(t) = eλt
(
v t+ w

)
,

where the vector w is one solution of the algebraic linear system

(A− λI)w = v.

Example 5-continued: Find the fundamental solutions of the differential equation

x′ = Ax, A =

[
−6 4
−1 −2

]
.

Solution: We already know that an eigenpair of A is

λ = −1, v =

2

1

 .
Any other eigenvector associated to λ = −1 is proportional to the eigenvector above. The

matrix A is not diagonalizable, so we solve for a vector w the linear system (A+ 4I)w = v,−2 4

−1 2


w1

w2

 =

2

1

 ⇒ −w1 + 2w2 = 1 ⇒ w1 = 2w2 − 1.

Therefore,

w =

w1

w2

 =

2w2 − 1

w2

 ⇒ w =

2

1

 w2 +

−1

0

 .
So, given any solution w, the cv + w is also a solution for any c ∈ R. We choose w2 = 0,

w =

−1

0

 .
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Therefore, a fundamental set of solutions to the differential equation above is formed by

x1(t) = e−4t

2

1

 , x2(t) = e−4t
(
t

2

1

+

−1

0

).

C
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6.2. Two-Dimensional Phase Portraits

Section Objective(s):

• Real Distinct Eigenvalues.
– λ− < λ+ < 0, Sink (Stable).
– 0 < λ− < λ+, Source (Unstable).
– λ− < 0 < λ+0, Saddle (Unstable).

• Complex Eigenvalues.

6.2.1. Review.

Theorem 1. The solutions of x′ = Ax, with A a 2 × 2 matrix, depend on the
eigenpairs of A, say λ+-

, v+-
, as follows.

(a) If λ+ 6= λ- and real, then A is diagonalizable and

x+(t) = v+ e
λ+t, x-(t) = v- e

λ-t,

(b) If λ+ = α± βi and v+-
= a± bi, then A is diagonalizable and

x1(t) = (a cos(βt)− b sin(βt)) eαt,

x2(t) = (a sin(βt) + b cos(βt)) eαt.

(c) If λ+ = λ- = λ0 and A is diagonalizable, then A = λ0I and

x+(t) =

[
1
0

]
eλ0t, x-(t) =

[
0
1

]
eλ0t,

(d) If λ+ = λ- = λ0 and A is not diagonalizable, then

x+(t) = v eλ0t, x-(t) = (t v + w) eλ0t,

where

(A− λ0I)v = 0, (A− λ0I)w = v.
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Example 1: Sketch a phase portrait and component plots of the of fundamental solutions
of x′ = Ax, where the matrix A is given by

A =

[
0 2
−2 0

]
.

Solution: The eigenpairs of the matrix are λ± = ±2i and v± =

[
1
±i

]
, thus the real-valued

fundamental solutions are

x1(t) =

[
1
0

]
cos(2t)−

[
0
1

]
sin(2t) =

[
cos(2t)
− sin(2t)

]
x2(t) =

[
1
0

]
sin(2t) +

[
0
1

]
cos(2t) =

[
sin(2t)
cos(2t)

]
So, both solutions satisfy

‖x1(t)‖ =

√
cos2(2t) + sin2(2t) = 1, ‖x2(t)‖ =

√
sin2(2t) + cos2(2t) = 1,

so their curve in the x1x2-plane is a (part of a) circle radius 1, centered at the origin. The
initial points are

x1(0) =

[
1
0

]
, x2(0) =

[
0
1

]
.

• Graph each component of x1(t) =

[
x1(t)
x2(t)

]
as function of t.

x1

t

x2

t

• Sketch a phase portrait.
x2

x1

Check the following Interactive Graph.

http://mathstud.io/?input[0]=JTJGJTJGJTIwMngyJTIwTGluZWFyJTIwRGlmZmVyZW50aWFsJTIwU3lzdGVtcyUyMHgnJTIwJTNEJTIwQXglMEElMkYlMkYlMjBNYXRyaXglMjBBJTIwd2l0aCUyMENvbXBsZXglMjBFaWdlbnZhbHVlcyUwQSUyRiolMEFFaWdlbnZhbHVlcyUzQSUyMCUwQWxwJTIwJTNEJTIwYWxwaGElMjAlMkIlMjBpJTIwYmV0YSUwQUxtJTIwJTNEJTIwYWxwaGElMjAtJTIwaSUyMGJldGElMEElMEFFaWdlbnZlY3RvcnMlMEF2cCUyMCUzRCUyMGElMjAlMkIlMjBpJTIwYiUwQXZtJTIwJTNEJTIwYSUyMC0lMjBpJTIwYiUwQSUwQVRoZSUyMHZlY3RvcnMlMjBhJTIwZ2l2ZW4lMjBieSUyMGl0cyUyMGxlbmd0aCUyQyUyMGFMZW5ndGglMkMlMjAlMEFhbmQlMjBpdHMlMjBhbmdsZSUyMHdpdGglMjB0aGUlMjB4JTIwYXhpcyUyQyUyMGFBbmdsZS4lMEElMEFTaW1pbGFybHklMjBmb3IlMjB2ZWN0b3IlMjBiJTJDJTIwYkxlbmd0aCUyMGFuZCUyMGJBbmdsZS4lMEElMEFCbHVlJTIwZGVub3RlcyUyMHRoZSUyMHNvbHV0aW9uJTBBWHAodCklMjAlM0QlMjAlMjAoYSUyMGNvcyhiZXRhJTIwdCklMjAtJTIwYiUyMHNpbihiZXRhJTIwdCkpJTIwZSU1RShhbHBoYSUyMHQpJTBBJTBBR3JlZW4lMjBkZW5vdGVzJTIwdGhlJTIwc29sdXRpb24lMEFYbSh0KSUyMCUzRCUyMCUyMChhJTIwc2luKGJldGElMjB0KSUyMCUyQiUyMGIlMjBjb3MoYmV0YSUyMHQpKSUyMGUlNUUoYWxwaGElMjB0KSUwQSUwQVQxJTIwaXMlMjB0aGUlMjB0aW1lJTIwcGFyYW1ldGVyLiUwQSolMkYlMEElMEF1MSUzRDYlMEF1MiUzRDYlMEElMEFTbGlkZXIoVGltZSUyQyUyMC11MS4udTIlMjAtJTNFJTIwMC4wMSUyQzApJTBBVDElMjAlM0QlMjBUaW1lKiU0MHBpJTBBJTBBU2xpZGVyKEJsdWUlMkMlMjAwLi41JTIwLSUzRSUyMDElMkMlMjAzKSUwQVNsaWRlcihHcmVlbiUyQyUyMDAuLjUlMjAtJTNFJTIwMSUyQyUyMDApJTBBJTBBU2xpZGVyKGFscGhhJTJDJTIwLTAuNS4uMC41JTIwLSUzRSUyMDAuMDElMkMlMjAwLjAwKSUwQVNsaWRlcihiZXRhJTJDJTIwMC4uNSUyMC0lM0UlMjAwLjElMkMxKSUwQSUwQVNsaWRlcihhQW5nbGUlMkMlMjAwLi4zNjAlMjAtJTNFJTIwMSUyQyUyMDApJTBBU2xpZGVyKGFMZW5ndGglMkMlMjAwLi41JTIwLSUzRSUyMDAuMSUyQyUyMDIpJTBBJTBBU2xpZGVyKGJBbmdsZSUyQyUyMDAuLjM2MCUyMC0lM0UlMjAxJTJDJTIwOTApJTBBU2xpZGVyKGJMZW5ndGglMkMlMjAwLi41JTIwLSUzRSUyMDAuMSUyQyUyMDIpJTBBJTBBYTElMjAlM0QlMjBhTGVuZ3RoKmNvcyhhQW5nbGUqJTQwcGklMkYxODApJTBBYTIlMjAlM0QlMjBhTGVuZ3RoKnNpbihhQW5nbGUqJTQwcGklMkYxODApJTBBJTBBYjElMjAlM0QlMjBiTGVuZ3RoKmNvcyhiQW5nbGUqJTQwcGklMkYxODApJTBBYjIlMjAlM0QlMjBiTGVuZ3RoKnNpbihiQW5nbGUqJTQwcGklMkYxODApJTBBJTBBWHAxKHQpJTIwJTNEJTIwKGExKmNvcyhiZXRhKnQpLWIxKnNpbihiZXRhKnQpKSolNDBlJTVFKGFscGhhKnQpJTBBWHAyKHQpJTIwJTNEJTIwKGEyKmNvcyhiZXRhKnQpLWIyKnNpbihiZXRhKnQpKSolNDBlJTVFKGFscGhhKnQpJTBBJTBBWG0xKHQpJTIwJTNEJTIwKGExKnNpbihiZXRhKnQpJTJCYjEqY29zKGJldGEqdCkpKiU0MGUlNUUoYWxwaGEqdCklMEFYbTIodCklMjAlM0QlMjAoYTIqc2luKGJldGEqdCklMkJiMipjb3MoYmV0YSp0KSkqJTQwZSU1RShhbHBoYSp0KSUwQSUwQVBhcmFtZXRyaWNQbG90KFhwMShUMSkqdSUyQyUyMFhwMihUMSkqdSUyQyUyMHUlM0QlNUIwJTJDMSUyQzEwJTVEJTJDJTIwbGluZVdpZHRoJTIwJTNEJTIwQmx1ZSUyQ2NvbG9yJTNEYmx1ZSklMEFQYXJhbWV0cmljUGxvdChYcDEodSklMkMlMjBYcDIodSklMkMlMjBjb2xvciUzRGJsdWUlMkMlMjBsaW5lRGFzaCUzRCU1QjUlMkM1JTVEJTJDJTIwdSUzRCU1Qi11MSolNDBwaSUyQ3UyKiU0MHBpJTVEJTJDJTIwbGluZVdpZHRoJTIwJTNEQmx1ZSklMEElMEFQYXJhbWV0cmljUGxvdChYbTEoVDEpKnUlMkMlMjBYbTIoVDEpKnUlMkMlMjB1JTNEJTVCMCUyQzElMkMxMCU1RCUyQyUyMGxpbmVXaWR0aCUyMCUzRCUyMEdyZWVuJTJDY29sb3IlM0RncmVlbiklMEFQYXJhbWV0cmljUGxvdChYbTEodSklMkMlMjBYbTIodSklMkMlMjBjb2xvciUzRGdyZWVuJTJDJTIwbGluZURhc2glM0QlNUI1JTJDNSU1RCUyQyUyMHUlM0QlNUItdTEqJTQwcGklMkN1MiolNDBwaSU1RCUyQyUyMGxpbmV3aWR0aCUzREdyZWVuKSUwQSUwQVBhcmFtZXRyaWNQbG90KGExKnUlMkNhMip1JTJDJTIwdSUzRCU1QjAlMkMxJTJDMTAlNUQlMkMlMjBjb2xvciUzRGxpZ2h0Ymx1ZSUyQyUyMGxpbmVXaWR0aCUzRDMpJTBBUGFyYW1ldHJpY1Bsb3QoYTElMkNhMiUyQ2xpbmVXaWR0aCUyMCUzRCUyMDUlMkMlMjBjb2xvciUzRGxpZ2h0Ymx1ZSklMEElMEFQYXJhbWV0cmljUGxvdChiMSp1JTJDYjIqdSUyQyUyMHUlM0QlNUIwJTJDMSUyQzEwJTVEJTJDJTIwY29sb3IlM0RsaWdodGdyZWVuJTJDJTIwbGluZVdpZHRoJTNEMyklMEFQYXJhbWV0cmljUGxvdChiMSUyQ2IyJTJDbGluZVdpZHRoJTIwJTNEJTIwNSUyQyUyMGNvbG9yJTNEbGlnaHRncmVlbiklMEElMEFQbG90KDEwJTJDY29sb3IlM0R3aGl0ZSUyQyUyMGxpbmV3aWR0aCUzRDAlMkMlMjB4JTNEJTVCLTEwJTJDMTAlNUQlMkMlMjB5JTNEJTVCLTEwJTJDMTAlNUQpJTBBUGxvdCh3aWR0aCUzRDgwMCUyQ2hlaWdodCUzRDgwMCk%3D
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6.2.2. Real Distinct Eigenvalues.

Case λ- < λ+ < 0: Sink (Stable)

Example 2: Sketch a phase portrait of the solutions of the system,

x′ = Ax, A =

[
−2 −2
−1 −3

]
,

Hint: The eigenpairs of this matrix are λ1 = −4, v1 = 〈1, 1〉, and λ2 = −1, v2 = 〈−2, 1〉.

Solution:

x(t) = c1 e
−4t v1 + c2 e

−t v2 = c1 e
−4t

1

1

+ c2 e
−t

−2

1

 =

x1(t)

x2(t)

 .
• First plot the fundamental solutions: x1(t) = e−4t v1 and x2(t) = e−t v2.

• Then choose one more solution to plot: c1 = c2 = 1, that is.

x(t) = e−4t v1 + e−t v2.

– Find x(0) = v1 + v2.

– For t� 1 we get x1(t)→ 0 and x2(t)→ 0, but such that x(t)→ e−t v2.

– For t� −1 we get x1(t)→∞ and x2(t)→∞, but such that x(t)→ e4|t| v1.

Check the following Interactive Graph.

http://mathstud.io/?input[0]=
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Remark: Use the Interactive Graph to find the phase portraits of the solutions to the
following cases:

Case 0 < λ- < λ+ Source (Unstable)

Example 3: Find the phase portrait of the solutions of the system

x′ = Ax, A =

[
2 2
1 3

]
,

Hint: The eigenpairs of this matrix are λ1 = 4, v1 = 〈1, 1〉, and λ2 = 1, v2 = 〈−2, 1〉.

Case λ- < 0 < λ+ Saddle (Unstable)

Example 4: Find the phase portrait of the solutions of the system

x′ = Ax, A =

[
−2 −3
−3 −2

]
,

Hint: The eigenpairs of this matrix are λ1 = −5, v1 = 〈1, 1〉, and λ2 = 1, v2 = 〈−1, 1〉.

http://mathstud.io/?input[0]=
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6.2.3. Complex Eigenvalues.

Case λ± = α± βi: Spiral (Ellipse if α = 0).

• α > 0, Source (Unstable).
• α = 0, Center.
• α < 0, Sink (Stable).

Remark: Use the Interactive Graph to help understand the phase portraits of the solu-
tions to the following example.

Example 5: Find the phase portrait of the solutions of the system

x′ = Ax, A =

[
−2 −3
3 −2

]
.

Hint: The eigenpairs of this matrix are λ± = −2± 3i, v± = 〈±i, 1〉.

x(t) = c1 e
−2t

[
− sin(3t)

cos(3t)

]
+ c2 e

−2t

[
cos(3t)
sin(3t)

]

http://mathstud.io/?input[0]=%3D
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Remark: Summary:

x2 0 < λ− < λ+

x1

c+ = 1, c- = 0

c+ = 0, c- = 1

v+

v-

c+ = −1, c- = 0

c+ = 0, c- = −1

c+ = 1, c- = 1

c+ = 1, c- = −1

c+ = −1, c- = −1

c+ = −1, c- = 1

0

x2 λ− < 0 < λ+

x1

c+ = 1, c- = 0

c+ = −1, c- = 0

c+ = 0, c- = 1

c+ = 0, c- = −1

v+v-

c+ = 1, c- = 1

c+ = 1, c- = −1

c+ = −1, c- = −1

c+ = −1, c- = 1

0

x2 λ− < λ+ < 0

x1

c+ = 1, c- = 0

c+ = 0, c- = 1

v+

v-

c+ = −1, c- = 0

c+ = 0, c- = −1

c+ = 1, c- = 1

c+ = −1, c- = 1

c+ = 1, c- = −1

c+ = −1, c- = −1

0
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Remark: Summary:

x2 α > 0

x1

x1

x2

ab

0

x2 α = 0

x1

x1

x2

ab

0

x2 α < 0

x1

x1

x2

a
b

0
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6.3. Nonlinear Systems of Equations

Section Objective(s):

Part One:

• Two-Dimensional Nonlinear Systems.
• Critical Points and Linearization.
• The Hartman-Grobman Theorem.

Part Two:

• Competing Species: Extinction.
• Competing Species: Coexistence.

Remarks:

• We know how to solve systems of linear differential equations.

• But systems of nonlinear differential equations are harder to solve.

• In this section we find qualitative properties of the solutions to

nonlinear systems.

• We first find the critical points of the nonlinear system.

• We then find the behavior of solutions to nonlinear systems near

the critical points. (Linearizations.)

• Finally, we glue together the information from all the criti-

cal points to get a qualitative phase portrait of solutions to the

nonlinear system.

• We focus on two versions of the competing species system:

– The case when one species goes extinct.

– The case when both species coexist.
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6.3.1. Two-Dimensional Nonlinear Systems.

Example 1: (The Nonlinear Pendulum)

m(`θ)′′ = −mg sin(θ),

that is

θ′′ +
g

`
sin(θ) = 0.

Introduce x1 = θ and x2 = θ′,

x′1 = x2

x′2 = −g
`

sin(x1).

C

θ

`

m

Example 2: (Predator-Prey)
Let x be the predator and y be the prey. Then, the equation is

x′1 = −a x1 + b x1x2,

x′2 = −c x1x2 + d x2.

C

Example 3: (Competing Species)
Let x1 be the rabbit population and x2 be the sheep population, both competing for the
same food resources. The equation is

x′1 = r1 x1

(
1− x1

K1
− αx2

)
,

x′2 = r2 x2

(
1− x2

K2
− β x1

)
.

C
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6.3.2. Critical Points and Linearization.

Definition 1. A critical point of a system x′ = f (x) is the end point of a

vector xc solution of

f (xc) = 0.

Remarks:

(a) Recall that x = (x1, x2) is a point on the x1x2-plane while x = 〈x1, x2〉 is a

vector with origin at (0, 0) and end point at x = (x1, x2).

(b) xc is solution of x′(t) = f (x), since

(xc)
′ = 0 = f (xc).

(c) In components, the field is f =

[
f1
f2

]
, and the vector xc =

[
xc1
xc2

]
is solution of

f1(xc1, xc2) = 0,

f2(xc1, xc2) = 0.

When there are more than one critical point we write xci , with i = 0, 1, 2, · · · .

Example 4: Find all the critical points of the two-dimensional (decoupled) system

x′1 = −x1 + (x1)
3

x′2 = −2x2.

Solution: We need to find all constant vectors x =

x1

x2

 solutions of

−x1 + (x1)
3 = 0, −2x2 = 0.

From the second equation we get x2 = 0. From the first equation we get

x1

(
(x1)

2 − 1
)

= 0 ⇒ x1 = 0, or x1 = ±1.

Therefore, we got three critical points, xc0 =

0

0

, xc1 =

1

0

, xc2 =

−1

0

.

C
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Definition 2. The linearization of a 2 × 2 system x′ = f (x) at a

critical point given by xc is the 2× 2 linear system

u′ = (Dfc) u,

where the Jacobian matrix at xc is,

Dfc =

 ∂f1∂x1

∣∣∣
xc

∂f1
∂x2

∣∣∣
xc

∂f2
∂x1

∣∣∣
xc

∂f2
∂x2

∣∣∣
xc

 =

[
∂1f1 ∂2f1
∂1f2 ∂2f2

]
.

Remark: : In components, the nonlinear system its linearization are

x′1 = f1(x1, x2),

x′2 = f2(x1, x2),
,

[
u1

u2

]′
=

[
∂1f1 ∂2f1
∂1f2 ∂2f2

] [
u1

u2

]
.

Example 5: Find the linearization at every critical point of the nonlinear system

x′1 = −x1 + (x1)
3

x′2 = −2x2.

Solution: We found earlier that this system has three critial points,

x0 =

0

0

 , x1 =

1

0

 , x2 =

−1

0

 .
This means we need to compute three linearizations, one for each critical point. We start

computing the derivative matrix at an arbitrary point x,

Df(x) =

 ∂f1∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

 =

 ∂
∂x1

(−x1 + x3
1 ) ∂

∂x2
(−x1 + x3

1 )

∂
∂x1

(−2x2)
∂
∂x2

(−2x2)

 ,
so we get that

Df(x) =

−1 + 3x2
1 0

0 −2

 .
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We only need to evaluate this matrix Df at the critical points. We start with x0,

x0 =

0

0

 ⇒ Df0 =

−1 0

0 −2

 ⇒

u1

u2


′

=

−1 0

0 −2


u1

u2


The Jacobian at x1 and x2 is the same, so we get the same linearization at these points,

x1 =

1

0

 ⇒ Df1 =

2 0

0 −2

 ⇒

u1

u2


′

=

2 0

0 −2


u1

u2



x2 =

−1

0

 ⇒ Df2 =

2 0

0 −2

 ⇒

u1

u2


′

=

2 0

0 −2


u1

u2



C
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6.3.3. The Hartman-Grobman Theorem.

Remark: The linearization of a nonlinear system allow us to classify the critical points of
nonlinear systems. linearization.

Definition 3. A critical point xc of a 2× 2 system x′ = f (x) is:

(a) an sink iff both eigenvalues of Dfc have negative real part;

(b) a source iff both eigenvalues of Dfc have positive real part;

(c) a saddle iff one eigenvalue of Dfc is positive and the other is negative;

(d) a center iff both eigenvalues of Dfc are pure imaginary;

A critical point xc is called hyperbolic iff it belongs to cases (a-c), that is,
the real part of all eigenvalues of Dfc are nonzero.

Theorem 1. (Hartman-Grobman) Consider a 2× 2 nonlinear autonomous system,

x′ = f (x),

with f continuously differentiable, and consider its linearization at a

hyperbolic critical point given by xc,

u′ = (Dfc) u.

Then, there is a neighborhood of xc where all the solutions of the linear system

can be transformed into solutions of the nonlinear system by a

continuous, invertible, transformation.

Remark: The theorem above says that the phase portrait of the linearization

at a hyperbolic critical point is enough to determine the qualitative

picture of the phase portrait of the nonlinear system near that critical

point.
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Example 6: Use the Hartman-Grobman theorem to sketch the phase portrait of

x′1 = −x1 + (x1)
3

x′2 = −2x2.

Solution: We already know that this system has three critical points,

x0 =

0

0

 , x1 =

1

0

 , x2 =

−1

0

 .
We have already computed the linearizations at these critical points too.

Df0 =

−1 0

0 −2

 , Df1 = Df2 =

2 0

0 −2

 .
We now need to compute the eigenvalues of the Jacobian matrices above.

• For the critical point x0 we have λ+ = −1, λ- = −2, so x0 is an attractor.

• For the critical points x1 and x2 we have λ+ = 2, λ- = −2, so x1 and x2 are saddle

points.

x2

x10

C
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6.3.4. Competing Species: Extinction.

Example 7: Find the linearization at every critical point of the competing species system

r′ = r (3− r − 2 s),

s′ = s (2− s− r),

Remark: We call this model a rabbits-sheep model, where r(t) is the rabbit population and
s(t) is the sheep population at the time t.

Solution: We start finding all the critical points of the rabbit-sheep system.

r (3− r − 2 s) = 0,

s (2− s− r) = 0.

There are four solutions to the equations above:

(1) r = 0 and s = 0;
(2) r = 0 and 2− s− r = 0;
(3) 3− r − 2 s = 0 and s = 0;
(4) 3− r − 2 s = 0 and 2− s− r = 0.

From these equations we get

(1) (r = 0, s = 0);
(2) (r = 0, s = 2);
(3) (r = 3, s = 0);
(4) the intersection of the lines s = (3− r)/2 and s = (2− r) which is given by

3− r
2

= 2− r ⇒ 3− r = 4− 2r ⇒ r = 1, ⇒ (r = 1, s = 1).

Summarizing, we got the four critical points

x0 = (0, 0), x1 = (0, 2), x2 = (3, 0), x3 = (1, 1).

we can always think the points as the end points of the vectors

x0 =

[
0
0

]
, x1 =

[
0
2

]
, x2 =

[
3
0

]
, x3 =

[
1
1

]
.

x2

x10



6.3. NONLINEAR SYSTEMS OF EQUATIONS 9

Now we find the linearization of the rabbit-sheep system. If x =

r
s

, the system is x′ =

F(x),

F(x) =

F1

F2

 =

r (3− r − 2 s)

s (2− s− r)

 .
The derivative of F at an arbitrary point x is

DF (x) =

∂F1∂r ∂F1
∂s

∂F2
∂r

∂F2
∂s

 =

(3− 2 r − 2 s) −2 r

−s (2− 2 s− r)

 .
We now evaluate the matrix DF (x) at each of the critical points we found.

(0)

At x0 =

0

0

 we get (DF0) =

3 0

0 2

 ⇒


λ0+ = 3

λ0- = 2.

The critical point x0 is a source node. To sketch the phase portrait we will need the

corresponding eigenvectors, v+
0 =

1

0

 and v-
0 =

0

1

.

(1)

At x1 =

0

2

 we get (Df1) =

−1 0

−2 −2

 ⇒


λ0+ = −1

λ0- = −2.

The critical point x1 is an sink node. One can check that the corresponding eigenvec-

tors are v+
1 =

 1

−2

 and v-
1 =

0

1

.

(2)

At x2 =

3

0

 we get (Df2) =

−3 −6

0 −1

 ⇒


λ0+ = −1

λ0- = −3.

The critical point x2 is an source node. One can check that the corresponding eigen-

vectors are v+
2 =

−3

1

 and v-
2 =

1

0

.

(3)

At x3 =

1

1

 we get (Df3) =

−1 −2

−1 −1

 ⇒


λ0+ = −1 +

√
2

λ0- = −2−
√

2.



10 CONTENTS

The critical point x3 is a saddle node. One can check that the corresponding eigen-

vectors are v+
3 =

−√2

1

 and v-
3 =

√2

1

.

x2 basin for sheep

x1

basin for rabbits

basin boundary

0

C
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6.3.5. Competing Species: Coexistence.

Example 7: Find the linearization at every critical point of the competing species system

r′ = r (1− r − s),

s′ =
s

4
(3− 4 s− 2 r),

Remark: This is also a rabbits-sheep model, where r(t) is the rabbit population and s(t)
is the sheep population at the time t.

Solution: Th equation for the critical points are

r (1− r − s) = 0,

s

4
(3− 4 s− 2 r) = 0.

Check that the critical points for this system are

x0 = (0, 0), x1 =
(

0,
3

4

)
, x2 = (1, 0), x3 =

(1

2
,

1

2

)
.

The fector field of this system is

F =

 r (1− r − s)
1
4 s (3− 4 s− 2 r)


The derivative of F is

DF (x) =

∂F1∂r ∂F1
∂s

∂F2
∂r

∂F2
∂s

 =

(1− 2 r − s) −r

− 1
2 s ( 3

4 − 2 s− 1
2 r)

 .

Then, one can check that the critical points above satisfy the following:

(0)

x0 =

0

0

 , (DF0) =

1 0

0 3
4

 ⇒



λ0+ = 1, v+
0 =

1

0

 ,

λ0- =
3

4
, v+

0 =

0

1

 .
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(1)

x1 =

0

3
4

 , (DF1) =

 1
4 0

− 3
8 − 3

4

 ⇒



λ1+ =
1

4
, v+

1 =

 8

−3

 ,

λ1- = −3

4
, v+

1 =

0

1

 .
(2)

x2 =

1

0

 , (DF2) =

−1 −1

0 1
4

 ⇒



λ2+ =
1

4
, v+

2 =

 4

−5

 ,

λ2- = −1, v+
2 =

1

0

 .

x3 =

 1
2

1
2

 , (DF3) =

− 1
2 − 1

2

− 1
4 − 1

2

 ⇒



λ3+ =
1

4
(−2 +

√
2), v+

3 =

√2

−1

 ,

λ3- =
1

4
(−2−

√
2), v+

3 =

√2

1

 .

x2

x10

C
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7.1. Simple Eigenfunction Problems

Section Objective(s):

• Two-Point Boundary Value Problems.
• Comparing IVP vs BVP.
• Eigenfunction Problems.

Remark:

• The main idea of this chapter is to solve the heat equation.

• This is a partial differential equation.

• We need two main ideas to solve that equation.

(1) Boundary value problems and

eigenfunction problems.

(2) Fourier series expansions.

• In this section we study the first idea: boundary value

problems and eigenfunctions .
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7.1.1. Two-Point Boundary Value Problems.

Definition 1. A two-point boundary value problem (BVP) is the following: Find
solutions to the differential equation

y′′ + a1(x) y′ + a0(x) y = b(x)

satisfying the boundary conditions (BC)

b1 y(x1) + b2 y
′(x1) = y1,

b̃1 y(x2) + b̃2 y
′(x2) = y2,

where b1, b2, b̃1, b̃2, y1, y2, x1, x2 are given and x1 6= x2.

Remarks:

(a) The two boundary conditions are held at different points, x1 6= x2 .
(b) Both y and y′ may appear in the boundary condition.

Example 1: We now show four examples of boundary value problems that differ only on
the boundary conditions: Solve the different equation

y′′ + a1 y
′ + a0 y = b(x)

with the boundary conditions at x1 = 0 and x2 = 1 given below.

(1a)

Boundary Condition:

{
y(0) = y1,

y(1) = y2,

}
which is the case

{
b1 = 1 , b2 = 0 ,

b̃1 = 1 , b̃2 = 0 .

}
(1b)

Boundary Condition:

{
y(0) = y1,

y′(1) = y2,

}
which is the case

{
b1 = 1 , b2 = 0 ,

b̃1 = 0 , b̃2 = 1 .

}
(1c)

Boundary Condition:

{
y′(0) = y1,

y(1) = y2,

}
which is the case

{
b1 = 0 , b2 = 1 ,

b̃1 = 1 , b̃2 = 0 .

}
(1d)

Boundary Condition:

{
y′(0) = y1,

y′(1) = y2,

}
which is the case

{
b1 = 0 , b2 = 1 ,

b̃1 = 0 , b̃2 = 1 .

}
C
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7.1.2. Comparing IVP vs BVP.

Definition 2. (IVP) Find a solution of y′′ + a1 y
′ + a0 y = 0 satisfying the initial

condition (IC)

y(t0) = y0, y′(t0) = y1.

Remarks:

• The variable t represents time .

• The variable y represents position .

• The IC are position and velocity at the initial time.

Definition 3. (BVP) Find a solution y of y′′+a1 y
′+a0 y = 0 satisfying the boundary

condition (BC)

y(x0) = y0, y(x1) = y1.

Remarks:

• The variable x represents position .

• The variable y may represent temperature .

• The BC are temperature at two different positions .

Theorem 1. The equation y′′ + a1 y
′ + a0 y = 0 with IC y(t0) = y0 and y′(t0) = y1

has a unique solution y for each choice of the IC.

Theorem 2. (BVP) The equation y′′+a1 y
′+a0 y = 0 with BC y(0) = y0 and y(L) = y1,

with L 6= 0 and with r± roots of p(r) = r2 + a1r + a0 satisfy the following:

(A) If r+ 6= r-, reals, then the BVP above has a unique solution .

(B) If r± are complex, then the solution of the BVP above belongs to only one of the
following three possibilities:

(i) There exists a unique solution .

(ii) There exists infinitely many solutions .

(iii) There exists no solution .
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Proof of Theorem 2: The general solution is

y(x) = c+ e
t+x + c- e

r-x.

The BC are

y0 = y(0) = c+ + c-

y1 = y(L) = c+ e
c+L + c- e

c-L

 ⇒

 1 1

er+L er-L


c+
c-

 =

y0
y1

 .
This system for c+, c- has a unique solution iff

0 6=

∣∣∣∣∣∣∣
1 1

er+L er-L

∣∣∣∣∣∣∣ ⇒ er-L − er+L 6= 0.

Part (A): If r+ 6= r-, reals, then er-L 6= er+L, hence there is a unique solution c+, c-, which

fixes a unique solution y of the BVP.

Part (B): If r± = α± iβ, then

er+-L = e(α±iβ)L = eαL(cos(βL)± i sin(βL)),

therefore

er-L − er+L = eαL
(
cos(βL)− i sin(βL)− cos(βL)− i sin(βL)

)
= −2i eαL sin(βL) = 0 ⇔ βL = nπ.

So for βL 6= nπ the BVP has a unique solution, case (Bi).

For βL = nπ the BVP has either no solution or infinitely many solutions, cases (Bii)

and (Biii).

�
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Example 2: Find all solutions to the BVPs y′′ + y = 0 with the BCs:

(a)

{
y(0) = 1,

y(π) = 0.
(b)

{
y(0) = 1,

y(π/2) = 1.
(c)

{
y(0) = 1,

y(π) = −1.

Solution: We first find the roots of the characteristic polynomial r2 + 1 = 0, that is,

r± = ±i. So the general solution of the differential equation is

y(x) = c1 cos(x) + c2 sin(x).

BC (a):

1 = y(0) = c1 ⇒ c1 = 1.

0 = y(π) = −c1 ⇒ c1 = 0.

Therefore, there is no solution.

BC (b):

1 = y(0) = c1 ⇒ c1 = 1.

1 = y(π/2) = c2 ⇒ c2 = 1.

So there is a unique solution y(x) = cos(x) + sin(x).

BC (c):

1 = y(0) = c1 ⇒ c1 = 1.

−1 = y(π) = −c1 ⇒ c2 = 1.

Therefore, c2 is arbitrary, so we have infinitely many solutions

y(x) = cos(x) + c2 sin(x), c2 ∈ R.

C
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7.1.3. Eigenfunction Problems.

Remark: Let us recall the eigenvector problem of a square matrix: Given a square matrix
A, find a number λ and a nonzero vector v solution of

Av = λ v.

Definition 4. An eigenfunction problem is the following: Given a linear operator
L(y) = a2 y

′′ + a1 y
′ + a0 y, find a number λ and a nonzero function y solution of

L(y) = λy,

and homogeneous boundary conditions at x1 6= x2 ,

b1 y(x1) + b2 y
′(x1) = 0,

b̃1 y(x2) + b̃2 y
′(x2) = 0,

Remarks:

• Notice that y = 0 is always a solution of the BVP above.

• Eigenfunctions are the nonzero solutions of the BVP above.

• The eigenfunction problem is a BVP with infinitely many solu-

tions.

• So, we look for λ such that the operator L(y)− λ y has characteristic

polynomial with complex roots .

• So, λ is such that L(y)− λ y has oscillatory solu-

tions.

• We focus on the linear operator L(y) = −y′′ .

Example 3: Find all numbers λ and nonzero functions y solutions of the BVP

−y′′ = λ y, with y(0) = 0, y(L) = 0, L > 0.

Solution:

The equation is y′ + λ y = 0. We have three cases: (a) λ < 0, (b) λ = 0, and (c) λ > 0.

Case (a): λ = −µ2 < 0, so the equation is y′′ − µ2y = 0. The characteristic equation is

r2 − µ2 = 0 ⇒ r+- = ±µ.
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The general solution is y = c+ e
µx + c- e

−µx. The BC imply

0 = y(0) = c+ + c-, 0 = y(L) = c+ e
µL + c- e

−µL.

So from the first equation we get c+ = −c-, so

0 = −c- eµL + c- e
−µL ⇒ −c-(eµL − e−µL) = 0 ⇒ c- = 0, c+ = 0.

So we get only the solution y = 0.

Case (b): λ = 0, so the differential equation is

y′′ = 0 ⇒ y = c0 + c1x.

The BC imply

0 = y(0) = c0, 0 = y(L) = c1L ⇒ c1 = 0.

So we get the only solution is y = 0.

Case (c): λ = µ2 > 0, so the equation is y′′ + µ2y = 0. The characteristic equation is

r2 + µ2 = 0 ⇒ r+- = ±µi.

The general solution is y = c+ cos(µx) + c- sin(µx). The BC imply

0 = y(0) = c+, 0 = y(L) = c+ cos(µL) + c- sin(µL) = c- sin(µL),

therefore, we get

c- sin(µL) = 0, c- 6= 0 ⇒ sin(µL) = 0 ⇒ µnL = nπ.

So we get µn = nπ/L, hence the eigenvalue eigenfunction pairs are

λn =
(nπ
L

)2

, yn(x) = cn sin
(nπx
L

)
.

C
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Example 4: Find the numbers λ and the nonzero functions y solutions of the BVP

−y′′ = λy, y(0) = 0, y′(L) = 0, L > 0.

Solution:

The equation is y′′ + λy = 0. We have three cases: (a) λ < 0, (b) λ = 0, and (c) λ > 0.

Case (a): Let λ = −µ2, with µ > 0, so the equation is y′′ − µ2 y = 0. The characteristic

equation is

r2 − µ2 = 0 ⇒ r+- = ±µ,

The general solution is y(x) = c1e
−µx + c2e

µx. The BC imply

0 = y(0) = c1 + c2,

0 = y′(L) = −µc1e−µL + µc2e
µL

 ⇒

 1 1

−µe−µL µeµL


c1
c2

 =

0

0

 .
The matrix above is invertible, because∣∣∣∣∣∣∣

1 1

−µe−µL µeµL

∣∣∣∣∣∣∣ = µ
(
eµL + e−µL

)
6= 0.

Therefore, the linear system above for c1, c2 has a unique solution given by c1 = c2 = 0.

Hence, we get the only solution y = 0. This means there are no eigenfunctions with negative

eigenvalues.

Case (b): Let λ = 0, so the differential equation is

y′′ = 0 ⇒ y(x) = c1 + c2x, c1, c2 ∈ R.

The boundary conditions imply the following conditions on c1 and c2,

0 = y(0) = c1, 0 = y′(L) = c2.

So the only solution is y = 0. This means there are no eigenfunctions with eigenvalue λ = 0.

Case (c): Let λ = µ2, with µ > 0, so the equation is y′′ + µ2 y = 0. The characteristic

equation is

r2 + µ2 = 0 ⇒ r+- = ±µ i.
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The general solution is y(x) = c1 cos(µx) + c2 sin(µx). The BC imply

0 = y(0) = c1,

0 = y′(L) = −µc1 sin(µL) + µc2 cos(µL)

 ⇒ c2 cos(µL) = 0.

Since we are interested in non-zero solutions y, we look for solutions with c2 6= 0. This

implies that µ cannot be arbitrary but must satisfy the equation

cos(µL) = 0 ⇔ µnL = (2n− 1)
π

2
, n > 1.

We therefore conclude that the eigenvalues and eigenfunctions are given by

λn = − (2n− 1)2π2

4L2
, yn(x) = cn sin

( (2n− 1)πx

2L

)
, n > 1.

Since we only need one eigenfunction for each eigenvalue, we choose cn = 1, and we get

λn = − (2n− 1)2π2

4L2
, yn(x) = sin

( (2n− 1)πx

2L

)
, n > 1.

C



7.2. OVERVIEW OF FOURIER SERIES 1

7.2. Overview of Fourier series

Section Objective(s):

• Vectors and the Dot Product in Rn.
• Fourier Expansion of Functions.
• Odd or Even Functions.
• Sine and Cosine Series.

Remarks:

• We start with the Fourier expansion of a vector in R3 .

• We review a few concepts:

– The dot product of two vectors.

– Orthogonal and orthonormal vectors.

– The decomposition of a vector in an orthonormal basis.

• We then introduce the Fourier expansion of a continuous function .

• We need the following concepts:

– The dot product of two functions.

– Orthogonal and orthonormal functions.

– The decomposition of a function in an orthonormal basis.

• We finish with two particular cases, the Fourier expansion of even

functions and of odd functions.
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7.2.1. Vectors and the Dot Product in Rn.

Remark: We review basic concepts about vectors in R3.

Definition 1. The dot product of u = 〈u1, u2, u3〉, v = 〈v1, v2, v3〉 is

u · v = u1v1 + u2v2 + u3v3.

Remark: The dot product above satisfies the following properties.

Theorem 1. For every u, v, w ∈ R3 and every a, b ∈ R the following holds true:

(a) Positivity: u · u = 0 iff u = 0; and u · u > 0 for u 6= 0.

(b) Symmetry: u · v = v · u.

(c) Linearity: (au + bv) ·w = a (u ·w) + b (v ·w).

Theorem 2. The dot product of two vectors u, v ∈ R3 is

u · v = ‖u ‖‖v ‖ cos(θ),

with ‖u ‖, ‖v ‖ the magnitude of the vectors, and θ ∈ [0, π] the angle in between them.

x

y

z

v

u

θ

Remarks:

• The magnitude of a vector u can be written
as

‖u ‖ =
√

u · u.

• A vector u is a unit vector iff

‖u ‖ = 1.

Theorem 3. The vectors u, v are orthogonal iff u · v = 0 .
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Example 1: The set {i, j , k} is an orthonormal set of R3.

i

j

k

v

x

y

z
Orthonormal means:

• Orthogonality:

i · j = 0,

i · k = 0,

j · k = 0.

• Normality:

i · i = 1,

j · j = 1,

k · k = 1.

C

Theorem 4. (Fourier Expansion) The orthonormal set {i, j , k} is an orthonormal

basis , that is, every v ∈ R3 can be decomposed as

v = vx i + vy j + vz k.

The orthonormality of the vector set implies a formula for the vector components

vx = v · i, vy = v · j , vz = v · k.

Remark: The decomposition above allows us to introduce vector approximations.

v(1) v(2)

v(3) = v

x

y

z

Vector Approximations:

v(1) = vx i,

v(2) = vx i + vy j ,

v(3) = vx i + vy j + vz k.
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7.2.2. Fourier Expansion of Functions.

Remark: The ideas described above for vectors in R3 can be extended to functions.

Definition 2. The inner product of functions f , g on [−L,L] is

f · g =

∫ L

−L
f(x) g(x) dx.

Theorem 5. For every functions f , g, h and every a, b ∈ R holds,

(a) Positivity: f · f = 0 iff f = 0; and f · f > 0 for f 6= 0.

(b) Symmetry: f · g = g · f .

(c) Linearity: (a f + b g) · h = a (f · h) + b (g · h).

Remarks:

• The magnitude of a function f is

‖f‖ =
√
f · f =

(∫ L

−L

(
f(x)

)2
dx
)1/2

.

• A function f is a unit function iff ‖f‖ = 1 .

Definition 3. Two functions f , g are orthogonal iff f · g = 0 .

Theorem 6. An example of an orthogonal set in the space of

continuous functions on [−L,L] is{
u0 =

1

2
, un = cos

(nπx
L

)
, vn = sin

(nπx
L

)}∞
n=1

.

Remark: Often in the literature is used the following orthnormal set:

{
ũ0 =

1√
2L
, ũn =

1√
L

cos
(nπx
L

)
, ṽn =

1√
L

sin
(nπx
L

)}∞
n=1

.
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Remark: The orthogonality of the set above is a consequence of the following:

Theorem 7. (Orthogonality) The following relations hold for all n, m ∈ N,∫ L

−L
cos
(nπx
L

)
cos
(mπx

L

)
dx =


0 n 6= m,

L n = m 6= 0,

2L n = m = 0,∫ L

−L
sin
(nπx
L

)
sin
(mπx

L

)
dx =

{
0 n 6= m,

L n = m,∫ L

−L
cos
(nπx
L

)
sin
(mπx

L

)
dx = 0 .

Proof: Just recall the following trigonometric identities:

cos(θ) cos(φ) =
1

2

[
cos(θ + φ) + cos(θ − φ)

]
,

sin(θ) sin(φ) =
1

2

[
cos(θ − φ)− cos(θ + φ)

]
,

sin(θ) cos(φ) =
1

2

[
sin(θ + φ) + sin(θ − φ)

]
.

So, From the trigonometric identities above we obtain∫ L

−L
cos
(nπx
L

)
cos
(mπx

L

)
dx =

1

2

∫ L

−L
cos
[ (n+m)πx

L

]
dx+

1

2

∫ L

−L
cos
[ (n−m)πx

L

]
dx.

First, assume n > 0 or m > 0, then the first term vanishes, since

1

2

∫ L

−L
cos
[ (n+m)πx

L

]
dx =

L

2(n+m)π
sin
[ (n+m)πx

L

]∣∣∣L
−L

= 0.

Still for n > 0 or m > 0, assume that n 6= m, then the second term above is

1

2

∫ L

−L
cos
[ (n−m)πx

L

]
dx =

L

2(n−m)π
sin
[ (n−m)πx

L

]∣∣∣L
−L

= 0.

Again, still for n > 0 or m > 0, assume that n = m 6= 0, then

1

2

∫ L

−L
cos
[ (n−m)πx

L

]
dx =

1

2

∫ L

−L
dx = L.

Finally, in the case that both n = m = 0 is simple to see that∫ L

−L
cos
(nπx
L

)
cos
(mπx

L

)
dx =

∫ L

−L
dx = 2L.

The remaining equations in the theorem are proven in a similar way. �
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Theorem 8. (Fourier Expansion) The orthogonal set

{
u0 =

1

2
, un = cos

(nπx
L

)
, vn = sin

(nπx
L

)}∞
n=1

is an orthogonal basis of the space of continuous functions on [−L,L],

that is, any continuous function on [−L,L] can be decomposed as

f(x) =
a0
2

+

∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
.

Moreover, the coefficients above are given by the formulas

a0 =
1

L

∫ L

−L
f(x) dx,

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx,

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx.

Furthermore, if f is piecewise continuous , then the function

fF (x) =
a0
2

+

∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
,

satisfies fF (x) = f(x) for all x where f is continuous , while

for all x0 where f is discontinuous it holds

fF (x0) =
1

2

(
lim
x→x+

0

f(x) + lim
x→x−

0

f(x)
)



7.2. OVERVIEW OF FOURIER SERIES 7

Example 2: Find the Fourier expansion of f(x) =


x

3
, for x ∈ [0, 3]

0, for x ∈ [−3, 0).

Solution: The Fourier expansion of f is

fF (x) =
a0
2

+

∞∑
n=1

an cos
(nπx
L

)
+ bn sin

(nπx
L

)
In our case L = 3. We start computing bn for n > 1,

bn =
1

3

∫ 3

−3

f(x) sin
(nπx

3

)
dx

=
1

3

∫ 3

0

x

3
sin
(nπx

3

)
dx

=
1

9

(
− 3x

nπ
cos
(nπx

3

)
+

9

n2π2
sin
(nπx

3

))∣∣∣3
0

=
1

9

(
− 9

nπ
cos(nπ) + 0 + 0− 0

)
⇒ bn =

(−1)(n+1)

nπ
.

A similar calculation gives us an = 0 for n > 1,

an =
1

3

∫ 3

−3

f(x) cos
(nπx

3

)
dx

=
1

3

∫ 3

0

x

3
cos
(nπx

3

)
dx

=
1

9

( 3x

nπ
sin
(nπx

3

)
+

9

n2π2
cos
(nπx

3

))∣∣∣3
0

=
1

9

(
0 +

9

n2π2
cos(nπ)− 0− 9

n2π2

)
⇒ an =

((−1)n − 1)

n2π2
.

Finally, we compute a0,

a0 =
1

3

∫ 3

0

x

3
dx =

1

9

x2

2

∣∣∣3
0

=
1

2
.

Therefore, we get

f(x) =
1

4
+

∞∑
n=1

[ ((−1)n − 1)

n2π2
cos
(nπx

3

)
+

(−1)(n+1)

nπ
sin
(nπx

3

)]
.

C
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7.2.3. Odd or Even Functions.

Definition 4. A function f on [−L,L] is:

• even iff f(−x) = f(x) for all x ∈ [−L,L];

• odd iff f(−x) = −f(x) for all x ∈ [−L,L].

Example 3: The function y = x2 is even , while the function y = x3 is odd .

y = x2

x

y

y = x3

x

y

Theorem 9. If fe, ge are even and ho, `o are odd functions, then:

(1) a fe + b ge is even for all a, b ∈ R.

(2) a ho + b `o is odd for all a, b ∈ R.

(3) fe ge is even .

(4) ho `o is even .

(5) fe ho is odd .

(6)

∫ L

−L
fe dx = 2

∫ L

0

fe dx .

(7)

∫ L

−L
ho dx = 0 .

Remark:

y = x2

++

x

y

+

−

y = x3

x

y
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7.2.4. Sine and Cosine Series.

Theorem 10. Let f be a function on [−L,L] with a Fourier expansion

f(x) =
a0
2

+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
.

(a) If the function f is even , the Fourier series above is called a

cosine series , since bn = 0 and

f(x) =
a0
2

+

∞∑
n=1

an cos
(nπx
L

)

(b) If the function f is odd , then the Fourier series above is called a

sine series , since an = 0 and

f(x) =

∞∑
n=1

bn sin
(nπx
L

)

Proof:

Part (a): Suppose that f is even, then for n > 1 we get

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx,

but f is even and the Sine is odd, so the integrand is odd. Therefore bn = 0.

Part (b): Suppose that f is odd, then for n > 1 we get

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx,

but f is odd and the Cosine is even, so the integrand is odd. Therefore an = 0. Finally

a0 =
1

L

∫ L

−L
f(x) dx,

but f is odd, hence a0 = 0.

�
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Example 4: Find the Fourier expansion of f(x) =

{
1, for x ∈ [0, 3]

−1, for x ∈ [−3, 0).

Solution: The Fourier expansion of f is

fF (x) =
a0
2

+

∞∑
n=1

an cos
(nπx
L

)
+ bn sin

(nπx
L

)
In our case L = 3. We start computing bn for n > 1,

bn =
1

3

∫ 3

−3

f(x) sin
(nπx

3

)
dx

=
1

3

(∫ 0

−3

(−1) sin
(nπx

3

)
dx+

∫ 3

0

sin
(nπx

3

)
dx
)

=
2

3

∫ 3

0

sin
(nπx

3

)
dx

=
2

3

3

nπ
(−1) cos

(nπx
3

)∣∣∣3
0

=
2

nπ

(
−(−1)n + 1

)
⇒ bn =

2

nπ
((−1)(n+1) + 1).

A similar calculation shows an = 0 for n > 1. Finally

a0 =
1

3

(∫ 0

−3

dx+

∫ 3

0

dx
)

=
1

3
(−3 + 3) = 0.

Therefore, we get

fF (x) =

∞∑
n=1

2

nπ
((−1)(n+1) + 1) sin

(nπx
L

)
.

Remark: The Fourier approximation of order N > 1 is

fN (x) =

N∑
n=1

2

nπ
((−1)(n+1) + 1) sin

(nπx
L

)
.

C
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Example 5 (Extra Example): Find the Fourier series expansion of the function

f(x) =

{
x x ∈ [0, 1],

−x x ∈ [−1, 0).

Solution: Since f is even, then bn = 0. And since L = 1, we get

f(x) =
a0
2

+

∞∑
n=1

an cos(nπx),

We start with a0. Since f is even, a0 is given by

a0 = 2

∫ 1

0

f(x) dx = 2

∫ 1

0

x dx = 2
x2

2

∣∣∣1
0
⇒ a0 = 1.

Now we compute the an for n > 1. Since f and the cosines are even, so is their product,

an = 2

∫ 1

0

x cos(nπx) dx

= 2
( x

nπ
sin(nπx) +

1

n2π2
cos(nπx)

)∣∣∣1
0

=
2

n2π2

(
cos(nπ)− 1

)
⇒ an =

2

n2π2

(
(−1)n − 1

)
.

So,

f(x) =
1

2
+

∞∑
n=1

2

n2π2

(
(−1)n − 1

)
cos(nπx).

C
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Example 6 (Extra Example): Find the Fourier series expansion of the function

f(x) =

{
1− x x ∈ [0, 1]

1 + x x ∈ [−1, 0).

Solution: Since f is even, then bn = 0. And since L = 1, we get

f(x) =
a0

2
+

∞∑
n=1

an cos(nπx),

We start computing a0,

a0 =

∫ 1

−1

f(x) dx

=

∫ 0

−1

(1 + x) dx+

∫ 1

0

(1− x) dx

=
(
x+

x2

2

)∣∣∣0
−1

+
(
x− x2

2

)∣∣∣1
0

=
(

1− 1

2

)
+
(
1− 1

2

)
⇒ a0 = 1.

Similarly,

an =

∫ 1

−1

f(x) cos(nπx) dx

=

∫ 0

−1

(1 + x) cos(nπx) dx+

∫ 1

0

(1− x) cos(nπx) dx.

Recalling the integrals∫
cos(nπx) dx =

1

nπ
sin(nπx),∫

x cos(nπx) dx =
x

nπ
sin(nπx) +

1

n2π2
cos(nπx),

it is not difficult to see that

an =
1

nπ
sin(nπx)

∣∣∣0
−1

+
[ x
nπ

sin(nπx) +
1

n2π2
cos(nπx)

]∣∣∣0
−1

+
1

nπ
sin(nπx)

∣∣∣1
0
−
[ x
nπ

sin(nπx) +
1

n2π2
cos(nπx)

]∣∣∣1
0

=
[ 1

n2π2
− 1

n2π2
cos(−nπ)

]
−
[ 1

n2π2
cos(−nπ)− 1

n2π2

]
,

we then conclude that

an =
2

n2π2

[
1− cos(−nπ)

]
=

2

n2π2

(
1− (−1)n

)
.

So,

f(x) =
1

2
+

∞∑
n=1

2

n2π2

(
1− (−1)n

)
cos(nπx).

C
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7.3. The Heat Equation

Section Objective(s):

• The Heat Equation (One-Space Dim).
• The IBVP: Dirichlet Conditions.
• The IBVP: Neumann Conditions.

Remarks:

• We solve a partial differential equation: the heat equation.

• This is both a BVP and an IVP.

• We solve the heat equation using the separation of variables

method.

• One first solves the BVP , which is an eigenfunction prob-

lem.

• The general solution of the BVP is a linear combination

of all these eigenfunctions.

• One then uses the Fourier expansion formulas to find the unique

combination of all eigenfunctions that satisfy the prescribed

initial condition.

• We solve the heat equation for two types of boundary conditions: Dirichlet

conditions and Neumann conditions.



2 CONTENTS

7.3.1. The Heat Equation in (One-Space Dim).

Definition 1. The heat equation in one-space dimension, for

the function u depending on t and x is

∂tu(t, x) = k ∂2
xu(t, x), for t ∈ [0,∞), x ∈ [0, L],

where k > 0 is a constant.

Remarks:

• u is the temperature of a solid material.

• t is time , x is space .

• k > 0 is the heat conductivity .

• The partial differential equation above has infinitely many solu-

tions.

• We look for solutions satisfying both:

– Boundary conditions.

– Initial conditions.

z

x

y

0 L

u(t, 0) = 0
u(t, L) = 0

Insulation

Insulation

t

x

u(t, 0) = 0 u(t, L) = 0

u(0, x) = f(x)

∂tu = k ∂2x u

0 L

Boundary Conditions:


u(t, 0) = 0,

u(t, L) = 0.

Initial Conditions:


u(0, x) = f(x),

f(0) = f(L) = 0.
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7.3.2. The IBVP: Dirichlet Conditions.

Theorem 1 (Dirichlet). The BVP for the one-space dimensional heat equation,

∂tu = k ∂2
xu, BC: u(t, 0) = 0, u(t, L) = 0,

where k > 0, L > 0 are constants, has infinitely many solutions

u(t, x) =

∞∑
n=1

cn e
−k(nπL )2t sin

(nπx
L

)
, cn ∈ R.

Furthermore, for every continuous function f on [0, L] satisfying

f(0) = f(L) = 0 , there is a unique solution u of the boundary

value problem above that also satisfies the initial condition

u(0, x) = f(x).

This solution u is given by the expression above, where the coefficients cn are

cn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx.

Remarks:

(a) This is an Initial-Boundary Value Problem (IBVP) .

(b) The boundary conditions are called Dirichlet boundary conditions.

Remark: The physical meaning of the initial-boundary conditions is simple.

(1) The boundary conditions is to keep the temperature at the sides of

the bar constant .

(2) The initial condition is the initial temperature on the whole bar.

Remark: The proof is based on the separation of variables method.

(1) Look for simple solutions of the BVP .

(2) Linear combination of simple solutions are solutions. (Superposition.)

(3) Determine the free constants using the initial condition .
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Proof of the Theorem: First look for simple solutions of the heat equation. These simple

solutions have the variables separated in two functions,

u(t, x) = v(t)w(x).

This separation of variables in the function also separates the heat equation,

v̇(t)w(x) = k v(t)w′′(x) ⇒ 1

k

v̇(t)

v(t)
=
w′′(x)

w(x)
,

where we used the notation v̇ = dv/dt and w′ = dw/dx. The only solution to the equation

above is that both sides are equal the same constant, call it −λ,

1

k

v̇(t)

v(t)
= −λ, and

w′′(x)

w(x)
= −λ.

This separation of variables also translates to the boundary condition,

u(t, 0) = v(t)w(0) = 0 for all t > 0

u(t, L) = v(t)w(L) = 0 for all t > 0

 ⇒ w(0) = w(L) = 0.

Therefore, we have two solve to differential equations:

v̇(t) = −kλ v(t), and w′′(x) + λw(x) = 0, w(0) = w(L) = 0.

The first equation is first order and simple to solve. The solution depends on λ,

vλ(t) = cλ e
−kλt, cλ = vλ(0).

The second equation is an eigenfunction problem, which we solved in the previous section,

λn =
(nπ
L

)2

, wn(x) = sin
(nπx
L

)
, n = 1, 2, · · · .

Since we now know the values of λn, we introduce them in vλ, now called vn,

vn(t) = cn e
−k(nπL )2t.
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Therefore, we got a simple solution of the heat equation BVP,

un(t, x) = cn e
−k(nπL )2t sin

(nπx
L

)
,

where n = 1, 2, · · · . Since the boundary conditions for un are homogeneous, then any linear

combination of the un is also a solution of the heat equation with homogenous boundary

conditions. So the most general solution of the BVP for the heat equation is

u(t, x) =

∞∑
n=1

cn e
−k(nπL )2t sin

(nπx
L

)
.

Here the cn are arbitrary constants. Now we look for the solution of the heat equation that

in addition satisfies the initial condition u(0, x) = f(x), where f(0) = f(L) = 0. This initial

condition is a condition on the constants cn, because f(x) = u(0, x) is

f(x) =

∞∑
n=1

cn sin
(nπx
L

)
.

The problem now is, given f , find the coefficients cn such that the equation above holds.

One way to find the cn is to use the Fourier formulas from the previous section. These

formulas apply to functions on [−L,L]. So, given f on [0, L], we extend it to the domain

[−L,L] as an odd function,

fodd(x) = f(x) and fodd(−x) = −f(x), x ∈ [0, L]

Since f(0) = 0, we get that fodd is continuous on [−L,L]. So fodd has a Fourier series

expansion. Since fodd is odd, the Fourier series is a sine series

fodd(x) =

∞∑
n=1

bn sin
(nπx
L

)
and the coefficients are given by the formula

bn =
1

L

∫ L

−L
fodd(x) sin

(nπx
L

)
dx =

2

L

∫ L

0

f(x) sin
(nπx
L

)
dx.

Since fodd(x) = f(x) for x ∈ [0, L], then cn = bn. This establishes the Theorem.

�
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Example 1: (Dirichlet): Find the solution to the initial-boundary value problem

4 ∂tu = ∂2
xu, t > 0, x ∈ [0, 2],

with initial and boundary conditions given by

IC: u(0, x) =


0 x ∈

[
0,

2

3

)
,

5 x ∈
[2
3
,

4

3

]
,

0 x ∈
(4

3
, 2
]
,

BC:

{
u(t, 0) = 0,

u(t, 2) = 0.

Solution: We look for simple solutions of the form u(t, x) = v(t)w(x),

4w(x)
dv

dt
(t) = v(t)

d2w

dx2
(x) ⇒ 4v̇(t)

v(t)
=
w′′(x)

w(x)
= −λ.

So, the equations for v and w are

v̇(t) = −λ
4
v(t), w′′(x) + λw(x) = 0.

The solution for v depends on λ, and is given by

vλ(t) = cλ e
−λ4 t, cλ = vλ(0).

Next, we turn to the equation for w, and we solve the BVP

w′′(x) + λw(x) = 0, with BC w(0) = w(2) = 0.

This is an eigenfunction problem for w and λ. This problem has solution only for λ > 0,
since only in that case the characteristic polynomial has complex roots. Let λ = µ2, then

p(r) = r2 + µ2 = 0 ⇒ r± = ±µ i.
The general solution of the differential equation is

wn(x) = c1 cos(µx) + c2 sin(µx).

The first boundary conditions on w implies

0 = w(0) = c1, ⇒ w(x) = c2 sin(µx).

The second boundary condition on w implies

0 = w(2) = c2 sin(µ2), c2 6= 0, ⇒ sin(µ2) = 0.

Then, µn2 = nπ, that is, µn =
nπ

2
. Choosing c2 = 1, we conclude,

λn =
(nπ

2

)2

, wn(x) = sin
(nπx

2

)
, n = 1, 2, · · · .

Using the values of λn found above in the formula for vλ we get

vn(t) = cn e
− 1

4 (nπ4 )2t, cn = vn(0).

Therefore, we get

u(t, x) =

∞∑
n=1

cn e
−(nπ4 )2t sin

(nπx
2

)
.
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The initial condition is

f(x) = u(0, x) =


0 x ∈

[
0,

2

3

)
,

5 x ∈
[2
3
,

4

3

]
,

0 x ∈
(4

3
, 2
]
.

We extend this function to [−2, 2] as an odd function, so we obtain the same sine function,

fodd(x) = f(x) and fodd(−x) = −f(x), where x ∈ [0, 2].

The Fourier expansion of fodd on [−2, 2] is a sine series

fodd(x) =

∞∑
n=1

bn sin
(nπx

2

)
.

The coefficients bn are given by

bn =
2

2

∫ 2

0

f(x) sin
(nπx

2

)
dx =

∫ 4/3

2/3

5 sin
(nπx

2

)
dx = − 10

nπ
cos
(nπx

2

)∣∣∣4/3
2/3
.

So we get

bn = − 10

nπ

(
cos
(2nπ

3

)
− cos

(nπ
3

))
.

Since fodd(x) = f(x) for x ∈ [0, 2] we get that cn = bn. So, the solution of the initial-
boundary value problem for the heat equation contains is

u(t, x) =
10

π

∞∑
n=1

1

n

(
cos
(nπ

3

)
− cos

(2nπ

3

))
e−(nπ4 )2t sin

(nπx
2

)
.

C
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7.3.3. The IBVP: Neumann Conditions.

Theorem 2 (Neumann). The BVP for the one-space dimensional heat equation,

∂tu = k ∂2
xu, BC: ∂xu(t, 0) = 0, ∂xu(t, L) = 0,

where k > 0, L > 0 are constants, has infinitely many solutions

u(t, x) =
c0
2

+

∞∑
n=1

cn e
−k(nπL )2t cos

(nπx
L

)
, cn ∈ R.

Furthermore, for every continuous function f on [0, L] satisfying

f ′(0) = f ′(L) = 0 , there is a unique solution u of the boundary

value problem above that also satisfies the initial condition

u(0, x) = f(x).

This solution u is given by the expression above, where the coefficients cn are

cn =
2

L

∫ L

0

f(x) cos
(nπx
L

)
dx, n = 0, 1, 2, · · · .

Remarks:

(a) This is an Initial-Boundary Value Problem (IBVP) .

(b) The boundary conditions are called Neumann boundary conditions.

Remark: The physical meaning of the initial-boundary conditions is simple.

(1) The boundary conditions is to keep the heat flux at the sides of the bar

constant .

(2) The initial condition is the initial temperature on the whole bar.

Remark: One can use Dirichlet conditions on one side and Neumann

on the other side. This is called a mixed boundary condition.

Remark: The proof is based on the separation of variables method.
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Proof of the Theorem: First look for simple solutions of the heat equation. These simple
solutions have the variables separated in two functions,

u(t, x) = v(t)w(x).

This separation of variables in the function also separates the heat equation,

v̇(t)w(x) = k v(t)w′′(x) ⇒ 1

k

v̇(t)

v(t)
=
w′′(x)

w(x)
,

where we used the notation v̇ = dv/dt and w′ = dw/dx. The only solution to the equation
above is that both sides are equal the same constant, call it −λ,

1

k

v̇(t)

v(t)
= −λ, and

w′′(x)

w(x)
= −λ.

This separation of variables also translates to the boundary condition,

∂xu(t, 0) = v(t)w′(0) = 0 for all t > 0

∂xu(t, L) = v(t)w′(L) = 0 for all t > 0

}
⇒ w′(0) = w′(L) = 0.

Therefore, we have two solve to differential equations:

v̇(t) = −kλ v(t), and w′′(x) + λw(x) = 0, w′(0) = w′(L) = 0.

The first equation is first order and simple to solve. The solution depends on λ,

vλ(t) = cλ e
−kλt, cλ = vλ(0).

The second equation is an eigenfunction problem, which has solutions only for λ > 0, since
for λ < 0 the associated characteristic polynomial has real and different roots. In the case
λ = 0 we get,

w′′(x) = 0, w′(0) = w′(L) = 0 ⇒ w(x) = c ∈ R.
Since any constant is solution for λ = 0, we choose the eigenfunction w0 = 1/2. In the case
λ > 0, we write λ = µ2, for µ > 0, we get the general solution

w(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions apply on the derivative,

w′(x) = −µc1 sin(µx) + µc2 cos(µx).

The boundary conditions are

0 = w′(0) = µc2 ⇒ c2 = 0.

So the function is w(x) = µc1 cos(µx). The second boundary condition is

0 = w′(L) = −µc1 sin(µL) ⇒ sin(µL) = 0 ⇒ µnL = nπ, n = 1, 2, · · · .
So we get the eigenvalues and eigenfunctions

λ0 = 0, w0 =
1

2
, and λn =

(nπ
L

)2

, wn(x) = cos
(nπx
L

)
, n = 1, 2, · · · .

Since we now know the values of λn, we introduce them in vλ, now called vn,

vn(t) = cn e
−k(nπL )2t.

Therefore, we got a simple solution of the heat equation BVP,

u0 =
1

2
, and un(t, x) = cn e

−k(nπL )2t cos
(nπx
L

)
, n = 1, 2, · · · .

Since the boundary conditions for un are homogeneous, then any linear combination of the
un is also a solution of the heat equation with homogenous boundary conditions. So the
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most general solution of the BVP for the heat equation is

u(t, x) =
c0
2

+

∞∑
n=1

cn e
−k(nπL )2t cos

(nπx
L

)
.

Here the cn are arbitrary constants. Now we look for the solution of the heat equation that
in addition satisfies the initial condition u(0, x) = f(x), where f ′(0) = f ′(L) = 0. This
initial condition is a condition on the constants cn, because f(x) = u(0, x) is

f(x) =
c0
2

+

∞∑
n=1

cn cos
(nπx
L

)
.

The problem now is, given f , find the coefficients cn such that the equation above holds.
One way to find the cn is to use the Fourier formulas from the previous section. These
formulas apply to functions on [−L,L]. So, given f on [0, L], we extend it to the domain
[−L,L] as an even function,

feven(x) = f(x) and feven(−x) = f(x), x ∈ [0, L]

We get that feven is continuous on [−L,L]. So feven has a Fourier series expansion. Since
feven is even, the Fourier series is a cosine series

feven(x) =
a0
2

+

∞∑
n=1

an cos
(nπx
L

)
and the coefficients are given by the formula

an =
1

L

∫ L

−L
feven(x) cos

(nπx
L

)
dx =

2

L

∫ L

0

f(x) cos
(nπx
L

)
dx, n = 0, 1, 2, · · · .

Since feven(x) = f(x) for x ∈ [0, L], then cn = an for n = 0, 1, 2, · · · . This establishes the
Theorem.

�
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Example 2: (Neumann): Find the solution to the initial-boundary value problem

∂tu = ∂2
xu, t > 0, x ∈ [0, 3],

with initial and boundary conditions given by

IC: u(0, x) =


7 x ∈

[3
2
, 3
]
,

0 x ∈
[
0,

3

2

)
,

BC:

{
u′(t, 0) = 0,

u′(t, 3) = 0.

Solution: We look for simple solutions of the form u(t, x) = v(t)w(x),

w(x)
dv

dt
(t) = v(t)

d2w

dx2
(x) ⇒ v̇(t)

v(t)
=
w′′(x)

w(x)
= −λ.

This separation of variables also translates to the boundary condition,

∂xu(t, 0) = v(t)w′(0) = 0 for all t > 0

∂xu(t, 3) = v(t)w′(3) = 0 for all t > 0

}
⇒ w′(0) = w′(3) = 0.

So, the equations for v and w are

v̇(t) = −λ v(t), and w′′(x) + λw(x) = 0 w′(0) = w′(3) = 0.

The solution for v depends on λ, and is given by

vλ(t) = cλ e
−λt, cλ = vλ(0).

The equation for w is an eigenfunction problem that has solution for λ > 0, since for λ < 0
the associated characteristic polynomial has real and different roots. In the case λ = 0,

w′′(x) = 0, w′(0) = w′(3) = 0 ⇒ w(x) = c ∈ R.
Since any constant is solution for λ = 0, we choose the eigenfunction w0 = 1/2. In the case
λ > 0, we write λ = µ2, for µ > 0,

p(r) = r2 + µ2 = 0 ⇒ r± = ±µ i.
The general solution of the differential equation is

wn(x) = c1 cos(µx) + c2 sin(µx).

Its derivative is
w′(x) = −µ c1 sin(µx) + µ c2 cos(µx).

The first boundary conditions on w implies

0 = w′(0) = µ c2, ⇒ c2 = 0 ⇒ w(x) = c1 cos(µx).

The second boundary condition on w implies

0 = w′(3) = −µ c1 sin(µ3), c1 6= 0, ⇒ sin(µ3) = 0.

Then, µn3 = nπ, for n = 1, 2, · · · . That is, µn =
nπ

3
. Choosing c2 = 1, and recaling the

case λ = 0,

λ0 = 0, w0 =
1

2
, and λn =

(nπ
3

)2

, wn(x) = cos
(nπx

3

)
, n = 1, 2, · · · .

Using the values of λn found above in the formula for vλ we get

vn(t) = cn e
−(nπ3 )2t, cn = vn(0), n = 0, 1, 2, · · · .
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Therefore, we get

u(t, x) =
c0
2

+

∞∑
n=1

cn e
−(nπ3 )2t cos

(nπx
2

)
.

The initial condition is

f(x) = u(0, x) =


7 x ∈

[3
2
, 3
]
,

0 x ∈
[
0,

3

2

)
,

We extend f to [−3, 3] as an even function

feven(x) =


7 x ∈

[3
2
, 3
]
,

0 x ∈
[
−3

2
,

3

2

)
,

7 x ∈
[
−3,−3

2

]
.

Since feven is even, its Fourier expansion is a cosine series

feven(x) =
a0
2

+

∞∑
n=1

an cos
(nπx

3

)
.

The coefficient a0 is given by

a0 =
2

3

∫ 3

0

f(x) dx =
2

3

∫ 3

3/2

7 dx =
2

3
7

3

2
⇒ a0 = 7.

Now the coefficients an for n > 1 are given by

an =
2

3

∫ 3

0

f(x) cos
(nπx

3

)
dx =

2

3

∫ 3

3/2

7 cos
(nπx

3

)
dx

=
2

3
7

3

nπ
sin
(nπx

3

)∣∣∣3
3/2

=
2

3
7

3

nπ

(
0− sin

(nπ
2

))
an = − 14

nπ
sin(nπ).

But for n = 2k we have that sin(2kπ/2) = sin(kπ) = 0, while for n = 2k − 1 we have that
sin((2k − 1)π/2) = (−1)k−1. Therefore

a2k = 0, a2k−1 =
14(−1)k

(2k − 1)π
, k = 1, 2, · · · .

We then obtain the Fourier series expansion of feven,

feven(x) =
7

2
+

∞∑
k=1

14(−1)k

(2k − 1)π
cos
( (2k − 1)πx

3

)
But the function f has exactly the same Fourier expansion on [0, 3], which means that

c0 = 7, c2k = 0, c(2k−1) =
14(−1)k

(2k − 1)π
.

So the solution of the initial-boundary value problem for the heat equation is

u(t, x) =
7

2
+

∞∑
k=1

14(−1)k

(2k − 1)π
e−(

(2k−1)π
3 )2t cos

( (2k − 1)πx

3

)
.

C
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