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1.1. Bacteria Reproduce like Rabbits

Section Objective(s):
e Overview of Differential Equations.
e The Difference Equation.
e The Continuum Equation.
e Summary and Consistency.

1.1.1. Overview of Differential Equations.

Remarks:

(a) A differential equation is an equation , the unknown is
a function , and both the function and its
derivatives may appear in the equation.

(b) Differential equations are essential for a mathematical

description of nature.

(¢) In this section we show that differential equations can be obtained

from difference equations.

(d) We focus on a specific problem—a quantitative description of bacteria growth

under certain conditions including unlimited space and food.
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1.1.2. The Difference Equation.
The Problem: We want to know how bacteria grow in time when they have

unlimited space and food supplies.

The Experiments:
(1) First Experiment: We put an P(0) bacteria in a small region at the center of a petri

dish, which is full bacteria food.

> Boclerca. ol Bul‘erc'a. ol

N\ Zewme 714l

Food

FIGURE 1. Bacteria growth experiment with unlimited food and space.

(2) We measure the bacteria population after regular time intervals.

e The time interval between measurements is At; = 1 hour

e Denote the bacteria population after n time intervals by P(nAt;) = P(n)

e Introduce the initial bacteria population P(0) = P(0) ,

(3) Our first n measurements are the following,

P(1) = Py + AP, AP =K Py,
P(2) = P(1) + AP, AP, = K, P(1),
P(n)=P(n—1)+ AP,, AP, = K1 P(n—1),

Summary so far:
P(nAty) = P((n — 1)Aty) + K1 P((n — 1)Aty), K; depends on the bacteria.

1 At
(4) Second Experiment: We reduce the time interval to Aty = 3= 71

when we take measurements. We find:

P(’I’LAtQ) = P((TL — 1)At1) + K2 P((n - 1)At2), n = 172, te 7]\77
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K
where Ko = —

At
(5) Experiment m-th: We use a time interval At,, = —

P(nAty) = P((n — 1)Atw) + Km P((n — 1)At,,),

Ky

where K,,, = — . Therefore,

K K1 At
Kp=— = K,=-—-—=""1

= K, =rAt,,,
m Aty m "

The constant r depends only on the type of bacteria.

(6) Summary: If we drop the subindex m, we get

K =rAt,

n=12--

where

where At is any time interval. Therefore, the final conclusion

T =

. We get
N,
Ky
Aty
of all

our experiments is the following: The population of bacteria P(nAt) after n > 1 time

intervals At > 0 is given by the difference equation

P(nAt) = P((n — 1)AL) + 1 At P((n — 1)At),

where r > 0 is a constant that depends on the particular type of bacteria.
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1.1.3. Solving the Difference Equation.

The difference equation relates P(nAt) with P((n — 1)At)

To solve the difference equation means to relate P(nAt) with P(0)

The difference equation above can be solved, and the result is summarized below.

Theorem 2. The difference equation

P(nAt) = P((n — 1)At) + r At P((n — 1)At),

relating P(nAt) with P((n — 1)At) has the solution

P(nAt) = (1+ 1 At)™ P(0),

relating P(nAt) with P(0)

Proof: We now that:
P(nAt) = (1+rAt) P((n — 1)At),

but
P((n—1)At) = (1 +r At) P((n — 2)At),

and so on till we reach Py. Therefore,

P(nAt) = (1+r At) P((n — 1)At)

= (1+7At)*> P((n — 2)At)

=(1+rAt)" P.
So, the solution of the discrete equation is

P(nAt) = (1+ 7 A" P.
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1.1.4. The Continuum Equation.

We study the difference population equation and its solutions in the

continuum limit:

At — 0, such that nAt=1t>0, isconstant.

t
Hence n = AL — 0 . The result is:

Theorem 3. The continuum limit of the difference equation
P(nAt) = P((n — 1)At) + r At P((n — 1)At),
is the differential equation

P'(t) =r P(t).

Remark: The differential equation is called the exponential growth

Proof: We start renaming n as n + 1, so the discrete equation is

P((n+1)At) = P(nAt) + r At P(nA).

From here it is simple to see that

P(nAt + At) — P(nAt) = r At P(nA).

We use that n At = ¢, then

Dividing by At we get

The continuum limit is
P(t+ At) — P(t)

AT A TP

Since t is held constant and At — 0, the left-hand side above is P,

P(t+ At) — P(t)

P'(t) = lim = P(t)=rP(t)

At—0 At

equation.
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1.1.5. Solving the Continuum Equation.

Theorem 4. There is only one solution P to the initial value problem

P'(t) =r P(t), P(0) = P,

where P, is a constant, given by

P(t) = PO e"t.

Proof: Divide the differential equation by P,

P'(1)
P(1)

=T
We now integrate both sides with respect to time,
P'(t)
dt = [ rdt.
[ 7=/
The integral on the right-hand side is simple to do, we need to integrate a constant,

P'(t)
/ Pl dt = rt + co,

where ¢g is an arbitrary constant. On the left-hand side we can introduce a substitution
p=Pt) = dp=P(t)dt.

Then, the the equation above becomes

d

@ _ rt + co.

b
The integral above is simple to do and the result is

In |p| = rt + co.

We now replace back p = P(t), and we can solve for P,

In|P@t)|=rt+co = [|Pt)]=e"T0=cfte0 = P(t) = (£e©)e™.
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Denote ¢ = (£e®), then all the solutions to the exponential growth equation are,
P(t) =ce™, ceR.
We now use the initial condition, P(0) = Py,
Py=P0)=ce®=¢c = c¢=DP,,
So we get P(t) = Pye™.

1.1.6. Summary and Consistency.

We can summarize all this in the following picture

Difference description At —0 Continuous description

P(nAt) = (14 rAt) P((n — 1)At) — P'(t) =rP(t)

\: \:
Soving the equation Solving the equation

1 A

Consistenc :

P(nAt) = (141 At)" Py onIEney P(t) = Pye™

Theorem 5. (Consistency) The continuum limit of the solu-

tions of the difference population equations are the solutions of the continuum popu-

lation equation,

P(nAt)=(1+rAt)" Py — P(t)=Pye™.

(The proof is in the Lecture Notes.)
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1.2. Introduction to Modeling

Section Objective(s):
Part 1:

e Linear Growth and Decay

e Exponential Growth and Decay.
Part 2:

e Migration Terms.

e The Logistic Equation.
e Interacting Species.

Remarks:

e Modeling is a mathematical description of a physical system using

differential equations

e Linear models are models such that their solutions contain
linear functions of the independent variable.

e Exponential models are models such that their solu-
tions contain exponential functions of the independent
variable.

e Exponential models describe population systems
having infinite food resources.

e Population models may contain a migration term.

e The logistic equation is a population model with finite

food resources.

e The interacting species model describes the inter-

action of two species with finite food resources.
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1.2.1. Linear Growth and Decay.

Remarks:
e Linear models describe physical situations where a function changes in a linear
way with respect to its independent variable

e The models can be discrete or continuous

Example 1 (Discrete Model): Consider a swimming pool that is initially empty. Every
minute a bucket of K gallons is added to the pool. Write a mathematical model describing
the amount of water W as function of the number n of minutes.

Solution:
W(n+1)—W(n) =K, W(0) = 0.

Example 2 (Continuous Model): Consider a swimming pool that is initially empty.
Water is added to the pool using a hose at a constant rate of K gallons per minute. Write
a mathematical model describing the amount of water W as function of time ¢.

Solution:

The solution is

W(t) = Kt.
This is why these models are called linear growth models: the solution is a linear function
of the independent variable t.

Remarks:

e K>0 describe water added to the pool.

e K <0 describe water taken out of the pool.
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1.2.2. Exponential Growth and Decay.

Remarks:
e Exponential models describe physical situations where a function changes in an
exponential way with respect to its independent variable

e Examples are population models with unlimited food resources.

e The models can be discrete or continuous

Example 1 (Discrete Model): Consider a bacteria population in a Petri dish having
unlimited food resources. Denote by P(n) the bacteria population after n hours, where
P(0) is the initial bacteria population. The increment in the bacteria population every hour
is equal to r times the amount of bacteria in the previous hour. Write a mathematical model
describing the amount of bacteria P as function of the number n of hours.

Solution:
P(n+1)— P(n) =rP(n), P(0) is the initial population.
<

Example 2 (Continuous Model): Counsider a bacteria population in a Petri dish having
unlimited food resources. Denote by P(t) the bacteria population at the time ¢, where
P(0) is the initial bacteria population. The rate of change in the bacteria population at the
time ¢ is equal to r times the amount of bacteria at that time. Write a mathematical model
describing the amount of bacteria P as function of time ¢.

Solution:
P'(t) =rP(t), P(0) is the initial population.

The solution is

P/

=T = In(P(t)=rt+c = Plt)=e"t=¢e"e" = P0)=c¢"

P(t) = P(0)e™.

This is why these models are called exponential growth models: the solution is an exponential
function of the independent variable . <

Remarks:

e 7 is the population rate change per capita

er>0 describe exponential growth models.

e 1r <0 describe exponential decay models.

Read in Lecture Notes:

e Radioactive half-life.
e Using radioactive decay to date remains.
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1.2.3. Migration Terms.

Example 3 (Immigration): Describe a village population when they have unlimited
food, the rate of population growth per capita is 7 > 0, and they have an immigration rate
of K persons per unit time.

Solution:
P'(t)y=rP(t)+ K,

P P'(t) _
rP(t)+K_1 - /rP(t)+Kdt_/dt

/dp —t+c = 1/L—Hc
p+ K 0 r) p+K/r 0

Injp+ K/r|=rt+c; = |Plt)+K/r|=e"T =¢e"e?

Pt)+ K/r=cye™ = P(t)=cpe™ — K/r.

Remarks:

e K is the migration constant

e When K >0 the constant is called immigration

e When K <0 the constant is called emigration
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1.2.4. The Logistic Equation.

Remark: The logistic equation is a population model with finite food resources.
If the population P(t) is small : P'(t)~rP(t) >0
If the population P(t) is large : P'(t) <0

Definition 1. The logistic equation for the function P, which depends on the
independent variable ¢, is

P(t
P'(t) :7'P(t)<1— 1§>), (1.2.1)
r > 01is the growth constant and P, > 0 is the carrying capacity

Example 1: Suppose the function P is solution to the logistic equation

P'(t) =r P(t) (1 - P}g:)).

(a) For what values of P is the population in equilibrium—that is, time independent?
(b) For what values of P is the population increasing in time?
(¢) For what values of P is the population decreasing in time?

Solution:

(a) If P is an equilibrium solution, then P constant, so, P’ = 0. The equation says

_ _ P _ .
0:P’=rP(1—F) —~ P=0 or P=P,.

(b) If P is increasing, then P’ > 0, then
P(t
P’(t):rP(t)(1—£>>0, r>0, P>0

implies

<1—$)>0 = 0<P()<P..

(c¢) If P is decreasing, then P’ < 0, but

(1-@)«) ~ P(t)> P,

since P cannot be negative.

Discuss the meaning of the carrying capacity.
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1.2.5. Interacting Species.

Problem: Write a simple model to describe how rabbits and sheep populations evolve in
time when they compete on finite food resources on a particular piece of land.

Solution:
e Suppose the species do not interact. R are rabbits and S are sheep.

R = ’I“TR(l - Rﬁ)

S’zrss(l—sﬁ),

where 7., 75 are the growth rates and R,, S, are the carrying capacities.

e Introduce the effect or sheep on rabbits.

R':rTR(l—Rﬂ)—clRS, c1 > 0.

C

The product measures the encounters on the field.

e Introduce the effect of or rabbits on sheep.

S/:Tss(l—sé)_CQRS, co > 0.

C

The product measures the encounters on the field.
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Definition 2. The interacting species equation for the functions = and y, which
depend on the independent variable t, are

, T
x :rmz(l— —) +axy
T

y’zryy(lfﬂ) + By,
Ye

where the constants r,, 7, and z., x. are positive and «, 8 are real numbers.

Example 1.2.1. The following systems are models of the populations of pair of species
that either compete for resources (an increase in one species decreases the growth rate
in the other) or cooperate (an increase in one species increases the growth rate in the
other). For each of the following systems identify the independent and dependent variables,
the parameters, such as growth rates, carrying capacities, measure of interactions between
species. Do the species compete of cooperate?

(a) (b)

dx x? de 22
E:clx—clfl—blxy E:x_€+5xy
fli:czy—cQ[i—ngy. %z?y—yg—i—%vy.
Solution:
(a) (b)

e The species compete. e The species coperate.

e ¢ is the independent variable. e ¢ is the independent variable.

e ., y are the dependent variables. e 1, y are the dependent variables.

® c1, co are the growth rates. e 1, 2 are the growth rates.

e K, K, are the carrying capacities. e 5,12 (not 6) are the carrying capac-

e by, by are the competition coeffi- ities.
cients. e 5, 2 are the competition coefficients.

Question: If x are elephants and y are chipmunks, then is by > by or by > b7

Answer: by > by.
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1.3. Qualitative Analysis

Section Objective(s):
e The Existence of Solutions Theorem.
e Direction Fields.
e Autonomous Equations.

Remarks:
e If the equation is nice enough , then there are solu-
tions.
e However, there is no explicit formula for the solutions of
all differential equations.
e The simple functions we know are not enough

to write their solutions.

e Simple functions are power, rational functions

exponentials, logs, trigonometric functions

e There are more equations than simple functions

needed to write their solutions.

e It is important to study qualitative methods

to describe solutions to differential equations.

e We get information about the solutions of differential equations
without solving the equation.
(a) Direction Fields Method , works with all
equations.
(b) Autonomous Equations Method , works

with particular equations.
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1.3.1. The Existence of Solutions Theorem.

Theorem 1.3.1. (Picard-Lindel6f) Consider the initial value problem

y'(t) = fty®),  ylto) = o

If the function f and its partial derivative 0, f are continuous on some rectangle on
the ty-plane containing the point (o, y,) in its interior,

then there is a unique solution y of the initial value

problem above on an open interval I containing the point %,.

Remarks:

(1) An initial value problem means to find a solution to

both a differential equation and an initial condition.
(2) There is no formula for the solution in this Theorem.
(3) Results with no formula are still useful
Y
1 y1(t)
Example 1.3.1. Determine whether y2(0) ya(t)
the functions y; and ¥y given by their
graphs in Fig. 2 can be solutions of the Yo
same differential equation satisfying the 1(0)
hypotheses in the Picard-Lindeléf Theo- ' >,
rem.
FIGURE 2. The graph of two functions.
Solution:
e No.

Solution graphs do not intersect.

If they did, at (o, yo) the IVP would have two solutions;

But the Theorem above says IVP always have only one solution.

So no intersections.
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1.3.2. Direction Fields.

Remark: We interpret f(t,y) at each point (¢,y) on the ty-plane as

the value of a slope of a segment

Definition 1.6.3. The direction field of the differential equation

y'(t) = f(ty(t)

is the graph on the ty-plane of f(t,y)

as slopes of segments
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Find the direction field of the equation y’ = sin(y), and sketch a few

solutions to the differential equation for different initial conditions.

Example 1.6.11

Solution: We first mention that the equation above can be solved and the solutions are

Sin(yo)
(1 + Cos(yo))

sin(y)
(1 + cos(y))

for any yg € R. This is an equation that defines the solution function y. There are no

derivatives in the equation, so this is not a differential equation; We call it an algebraic

But the direction

equation. However, the graphs of these solutions are not simple to do.

field is simple to plot and it can be seen in Fig. 3. From that direction field one can see

what the graph of the solutions look like.
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FIGURE 3. Direction field for the equation 3’ = sin(y).
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1.3.3. Autonomous Equations.

Definition 6.1.1. A first order equation is autonomous iff
y = feKy) 7
d
where 3y’ = 0%’ and the function f does not depend explicitly on ¢.

Remark: An important example of an autonomous equation is

the logistic equation

Remark: The logistic equation can be solved exactly.

B P.P,
P+ (P.— F,) ert’

P(t) P(0) = P,.

Example 6.1.7: Sketch a qualitative graph of solutions of

y’zry(l—%) y(0) = o, r>0, K >0.
Solution:
(1) Graph f(y) =ry(1 —y/K)
fy
rK /4
0 K/2 K \ "y

(2) Find the critical points: y. is a critical point iff f(y.) =0

fly)=ryl—y/K) = y=0, y =K.
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(3) Find the increasing-decreasing intervals of f.

fy

rK/4

J N
Y
Y
A

0 K/2 K \

(4) We can skip the concavity regions.
(5) Move the horizontal y-axis into a vertical axis, and add a horizontal ¢-axis.

Yy

(618)

K Stable

CD

K/2

Unstable N
0 t

@V
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1.4. Separable Equations

Section Objective(s):
e Separable Differential Equations
e Euler Homogeneous Equations
e Solving Euler Homogeneous Equations

Remarks:

e Separable differential equations are simple to solve

Integrate on both sides just works.

e Euler homogeneous equations are not separable

Euler homogeneous equations can be transformed into

separable equations.

One then solves the separable equation and then

transforms back the solution
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1.4.1. Separable Differential Equations.

Definition 1. A separable differential equation for the function y is

where h, g are given functions.

Remark:
h(y)y' = g(y)
e The left-hand side depends explicitly only on y, so any ¢ dependence is through y.
e The right-hand side depends only on ¢.
e And the left-hand side is of the form (something on y) x y/'.

Example 1.4.1. Find all solutions y to the differential equation
yl
s = cos(2t).

Solution: The differential equation above is separable, with

o(t) = cos(2t),  h(y) = ——.

therefore, it can be integrated as follows:

implies that
dy / 1 1.
—— = [ cos(2t)dt+¢c¢ <& — = —sin(2t)+c.
/- (21 = sin(20)

So, we get the implicit and explicit form of the solution,

2

11
= —sin(2t =
s +e eyl = e

y()
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Remark: Let’s find the general rule for the solution formula:

- 11
—— ¢’ = cos(2t) = y 32 sin(2t) + ¢
hy)y' = g(t), = H(y)=G(t) +c
1 1
h(y):—?, = H(y)=§
g(t) = cos(2t), N Gt) = %sin(Qt)

where H is an antiderivative of h, that is, H(y) = [ h(y) dy.

and G is an antiderivative of g, that is, G(t) = [ g(¢) dt.

Theorem 1. (Separable Equations) If h, g are continuous, with h # 0, then

H(y(t) = G(H)+¢, ceR,

where H and G are antiderivatives of h, and g

Remark: An antiderivative of h(y) is H(y) = [ h(y) dy, and an antiderivative of g(t)

is given by G(t) = [ g(t) dt.



4 CONTENTS

1.4.2. Euler Homogeneous Equations.

Definition 2. An Euler homogeneous differential equation has the form

o)

Example 1.4.2.

(1) r_ 3+2 (y/t)g (2) r_ cos(y) (3) r_ t? + 3y2
(y/t) 2t 2ty
(1) This is Euler Homogeneous.
(2) This is Not Euler Homogeneous.
(3) This is Euler homogeneous.
, 2432 .
Example 1.4.3. Show that ¢y = T is Euler Homogeneous.
Y
Solution:
! 143(Y)
g = B3y (4397 () Lo (5)
2ty 2ty (i) 9 (Q)
t2 t
Theorem 2. If there is an integer n such that

plet, cy) = " p(t,y), qlet,cy) = " q(t, y), for all constant ¢ > 0,

p(t,y)
q(t,y)

then y' = is Euler homogeneous.

Proof: Choose ¢ = %, then

p(ty) _ p(ty) 1/t _ pt/ty/) _ pQ/9/Y) _ o

q(t,y)  q(t,y) 1/t q(t/t,y/t)  q(1l,y/t)
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1.4.3. Solving Euler Homogeneous Equations.

Theorem 3. The Euler homogeneous equation
/=52
for the function y determines a separable equation for v = % , given by
vt
(F(v)—v) t

Proof: If y = f(t,y) is Euler homogeneous, then we known that it can be written as
y = F(y/t), where F(y/t) = f(1,y/t). Introduce the function v = y/t into the differential
equation,

y = F(v).

We still need to replace 3’ in terms of v. This is done as follows,
y(t)y=to(t) = y'@t)=v(t)+t0'(t).

Introducing these expressions into the differential equation for y we get

. ;o (F(v)f’u) v 1
v+t =F(v) = v—f = m—z

The equation on the far right is separable. This establishes the Theorem.
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2 + 3y?
Example 1.4.4. Find all solutions y of the differential equation y' = %
Y
Solution: The equation is Euler homogeneous, since
12 4322 (12 + 32 2 + 342
et cy) = St N - f(t.y).

2(ct)(cy) c(2ty) 2ty
Next we compute the function F. Since the numerator and denominator are homogeneous

degree “2” we multiply the right-hand side of the equation by “1” in the form (1/¢2)/(1/t?),

y)z
- 1+3(t

S ()

1

J = (t? +3y%) (72)
2ty 1
(2

Now we introduce the change of functions v = y/t,

. 14302

2v
Since y = twv, then 3y = v + t v/, which implies

1+ 302 N tv/*1+3v2 71+3f0272v271+v2

tv =
vty 2v 2v v 2v 2v

We obtained the separable equation

v, 1 N 2v
v= = —
1402 t 1+ 02

v dt = /%dtJrco.
The substitution u = 1 + v?(¢) implies du = 2v(t) v'(t) dt, so

/a;—u = % +c = Inw)=mht)+c = u=enOF0
But u = e 5o denoting ¢; = €%, then u = ¢1t. So, we get

2
1+’ =t = 1+<%) =t = ylt)=£tVet -1
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1.5. Linear Equations

Section Objective(s):
e Constant Coefficient Equations.
e Variable Coefficient Equations.
e The Integrating Factor Method.

Remarks:

e The study equations of the form 3" = a(t)y + b(t)

e Constant coefficients linear equations are separable
e We review how to solve these equations.
e Variable coefficients linear equations may not be separable

e And integrating on both sides of the equation actually does not work

e A new idea is needed to solve variable coefficients
equations.
e The new idea is to transform the linear equation into

a total derivative

v =a)y+bt) —  (d(ty®)) =0

e This is what integrating factor method does
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1.5.1. Linear Constant Coefficient Equations.

Definition 1. A linear differential equation on the function y is

Yy =a(t)y+b(t)

The equation has constant coefficients if both a and b are constants,

otherwise the equation has variable coefficients.

Example 1. (Constant Coefficients): Solve linear constant coefficients equations using

that they are separable equations

b
We wrote the equation iy’ = ay + b as follows ¢’ = a (y + 7). The critical step was the
a

following: since b/a is constant, then (b/a)’ = 0, hence

(1+5) =a(v+2)

At this point the equation was simple to solve,

(er%))/:a = ln(’y—&—g
b

T )/:a = 1n(‘y+g’>=co+at.

We now computed the exponential on both sides, to get
b co+tat C at b C at
’y—}—f‘:e*’ =e“¢ = y+ - = (Le?)e™,
a a

and calling ¢ = e we got the formula y(t) = ce™ — =,
a
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Example 2. (Variable Coefficients with b = 0): Solve linear variable coefficients

, using that they are separable equations

equations, ¥’ = a(t)y

Solution:
L—alty = () =al) = (y®))=Al)+c,

where A = [ adt, is a primitive or antiderivative of a. Therefore,

y(t) = £t — LAl o o y(t) = ceA) c = Fe®.

Example 3.: Find all solutions of The solutions of 3’ = 2t y.

Solution: ,
y(t) =ce'”, where ce R .

Remark: The case b/a non-constant cannot be solved with this idea.
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1.5.2. Variable Coefficient Equations.

Theorem 1. (Variable Coefficients) If the functions a, b are continuous, then
y' =a(t)y+ b(t), (1.5.1)

has infinitely many solutions given by

y(t) = ceAD) 4 AW / =40 b(t) dt, (1.5.2)

where A(t) = [a(t)dt and ¢ € R.

Remarks:

(a) The expression in Eq. (1.5.2) is called the general solution

(b) We solve these equations using the integrating factor method

(¢) The function pu(t) = e=4® is the integrating factor

Example 4. (Integrating Factor Method): Find all the solutions of the equation
ty' = =2y +4t2,  with t > 0.

Solution: Rewrite the equation as

2 2
y = 7Y +4t & a(t) = 7 b(t) = 4t. (1.5.3)
Rewrite again,
2
y 4+ =y = 4t.
t
Multiply by a function p,
2
py' + 5y = pat.
Choose p solution of
2 / / 2 2 2
Sp=p s W) =3 5 () =2m) =) = () = 422

We choose i = t2. Multiply the differential equation by this s,

2y F 2oty =4tt? = (tPy) =43
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If we write the right-hand side also as a derivative,
y) =) = (Py-tH) =0
So a potential function is ¢ (¢, y(t)) = t> y(t) — t*. Integrating on both sides we obtain

ty—tt=c = ty=c+t* = y(t)zt%—FtQ.
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Example 5. (Initial Value Problem): Find the solution to the initial value problem
ty' + 2y = 4t2, t>0, y(1) = 2.

Solution: The general solution is y(t) = t% + t2. The initial condition implies that
Lo
2=y(l)=c+1 = c¢=1 = y(t):t3+t :
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Example 6. (Extra Example 1): Find all solutions to the differential equation

3
y’:Eert", for ¢t>0.

Solution: Rewrite the equation with y on only one side,

3
e
U

Multiply the differential equation by a function p, which we determine later,

3

u(t) (y’ - %y) =tut) = pt)y - pb)y =1 ).

We need to choose a positive function p having the following property,

3 3 W)

“Sut) =p) = - = = 5 = (mb)’

Integrating,
3 —
in(lul) = - [ Fdt = =3 1n(e) + e =Wl e = = (o) PO,

so we get = (£e®) |[t|~3. We need only one integrating factor, so we choose p = t=2. We

now go back to the differential equation for y and we multiply it by this integrating factor,

3
t_3(y’ - ;y) — 173 o 3y 3ty =2
3

t !
Using that —3¢=% = (¢73)" and t? = (g) , we get

ren G - ea-) - (e

t3
This last equation is a total derivative of a potential function t(t,y) =t~y — 3 Since the

equation is a total derivative, this confirms that we got a correct integrating factor. Now
we need to integrate the total derivative, which is simple to do,
43 43 +6
thy-g=c = tTPy=cto = yl)=ct’+ o,

where c is an arbitrary constant.
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Example 7. (Extra Example 2): Find the solution of
ty' = 2y + 4t cos(4t), Yy (E) =0.

Solution: Rewrite the equation as

2 2
y' — Tu= 4t cos(4t) & a(t) = o b(t) = 4t* cos(4t).

Multiply by a function p,

2
ny — ThY= w4t% cos(4t).

Choose p solution of

2 2 _
“Tu=p = W(p) =-5 = (e = -2 =) =

We choose p = t% Multiply the differential equation by this pu,

y 2y Y\
A F = 4cos(4t) = (t—2) = 4 cos(4t).

If we write the right-hand side also as a derivative,

(t%)l = (Sin(4t))l = (t% - sin(4t))/ =0.

(1.5.4)

So a potential function is 9 (t,y(t)) = 5 — sin(4t). Integrating on both sides we obtain

t% —sin(4t) =c = y(t) = ct® + t*sin(4t).

Using the initial condition, we find ¢ = —1, so the solution to the IVP is

y(t) = —t? + t*sin(4t).
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1.6. Approximate Solutions

Section Objective(s):
e The Existence of Solutions Theorem.
e The Picard Iteration.
e Linear vs Nonlinear Equations.

Remarks:

e If the equation is nice enough , then there are

The theorem is proved using the Picard iteration

solutions.

e The Picard iteration creates a sequence of functions

The solution of the equation is the limit of the sequence

e We compare results on solutions of

linear and

nonlinear equations.
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1.6.1. The Existence of Solutions Theorem.

Theorem 1.3.1. (Picard-Lindeléf) Consider the initial value problem

y'(t) = fty®),  ylto) =t

If the function f and its partial derivative 0, f are continuous on some rectangle on
the ty-plane containing the point (¢, y,) in its interior,

then there is a unique solution y of the initial value

problem above on a smaller rectangle containing the condition (t,,yo).

Idea of the Proof: The Picard Iteration.
(a) Transform the differential equation into an integral equation:
t t t
[vds= [ feunis = w0 =)+ [ 1sue)ds
to to to
where we have used the Fundamental Theorem of Calculus on the left-hand side of the
first equation to get the second equation.

(b) Introduce a sequence of functions, called approximate solutions, as follows:

yo(t) = y(to),
per () = ylte) + [ flsyu(s)ds, >0

Remark: One can show that lim y,(t) = y(t) exists and this limit satisfies
n—r oo

y(t) = y(to) + [ f(s,y(s))ds

to

and y is differentiable, so it also satisfies ¢y’ = f(¢,y).
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1.6.2. The Picard Iteration.

Example 1: Use three iterations of Picard’s iteration procedure to find and approximate
solution to
Yy =2y+3 y(0) = 1.

Remark: We can compute the solution using the integrating factor method.

3
ey —2y)=e?3 = e*2ty:f§e*2t+c = yt)=ce* —

oW

?

and the initial condition implies

w
ot
ot
[~
s
N W

Solution: We first transform the differential equation into an integral equation.
t t t
/ y/(s)ds = / @y(s) +3)ds = y(t) - y(0) = / (2y(s) +3) ds.
0 0 0
Using the initial condition, y(0) = 1,
t
y(t)=1 +/ (2y(s) + 3)ds.
0
We now define the sequence of approximate solutions:
t
=10 =1, pa(®)=1+ [ 2un(s) +3)ds, 030
0
We now compute the first elements in the sequence. We said yg = 1, now y; is given by
t t
n=0, y(t)= 1—|—/ (2yo(s) +3)ds = 1+/ 5ds =1+ 5t.
0 0
So y; = 1+ 5t. Now we compute 2,
t t t
Yo = 1—|—/ (2y1(s)+3)ds = 1+/ (2(145s)+3) ds = yp = 1—|—/ (5+10s) ds = 1+5t+5t°.
0 0 0
So we've got y2(t) = 1 + 5t + 5t2. Now ys,

t t
y3:1+/(2y2($)—|—3)d3:1+/(2(1+55+582)+3)ds
0 0
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so we have,

¢ 10
yy:y+/(5+un+1m%ds:1+5r+m2+§¢?
0

) 10 . . .
So we obtained y3(t) = 1 + 5t + 5t% + 0 t3. We now rewrite this expression so we can get
a power series expansion that can be written in terms of simple functions. The first step is

done already, to write the powers of ¢t as t", for n = 1,2, 3,

y3(t) = 1+ 5t" + 5¢2 + @t?’

We now multiply by one each term so we get the factorials n! on each term

t t? 5 13
ys(t):1+5ﬁ+5(2)5+5(2 )5

We then realize that we can rewrite the expression above in terms of power of (2t), that is,

B 5 (2t)*
ys(t) =1+ 51

(2t)?
21

(2t)3 5 (2t)? (2t)3)

5 5
2 3273 _1+§((2t)+ ST

From this last expressions simple to guess the n-th approximation

o T T N

N
yn(t) =1+ g (2t)+ @0F  @O° (215)N) 1 +g 3 (2t)"

Recall now that the power series expansion for the exponential
o0 k > k
at _ N (@) (at)
e = Z ko 1+ Z k!
k=1

Then, the limit N — oo is given by

S ey,

!
= K

DO | Ot

y(t) = lim yy(t) =1+

N—o00

o (20)F 5 ot
> =1+>(e* —1),
i 2

One last rewriting of the solution and we obtain
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1.6.3. Linear vs Nonlinear Equations.

Recall: The main theorem about solutions of linear equations.

Theorem 1. Given continuous functions a,b with domain (¢,,¢,), and constants
to € (t1,12), Yo € R, then the initial value problem

y/ = a(t) Y+ b(t), y(to) = Yo,

has the unique solution on the domain (¢,t,), given by

t
y(t) = yoet®) 4 AW / e~ A b(s) ds,

to

where A(t) = /t a(s)ds

to

Solutions to linear equations satisfy:

(a) There is an explicit formula for all solutions.
(b) For every initial condition y, there is a unique solution.
(c) For every IC y, the domain of y(t) is fixed, (t1,t2)

Solutions to nonlinear equations satisfy:

(1) There is no explicit formula for the solution of
every nonlinear differential equation.
(2) Given an initial condition (o, o)

there may be more than one solution

(3) Given an initial condition (,,y,) the domain of the solution y(t)

may change with v,

Example 2. (Linear vs. Non-Linear ODEs): The solutions of the following equations
are examples of the properties above. Identify which example corresponds to which property
and explain your reasoning.

t2
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Example 3. (Extendability of solutions to linear equations): In the initial value
problems below find the maximum domain where the solution is certain to exist.

(1) tt-=5)y =y, y(=1)=4
2) *—4)y —5mt)y=3t, y(1)=2

Solution:

Y

t(t —5)

(—00,0) U (0,5) U (5, 00).

(1) The equation is y' = , so the equation is defined on

The initial condition is at ¢ = —1, so the interval where the equation is defined

and contains the initial condition is

I = (—00,0).

51n(t)y 3t
@1 @1

(2) The equation is y’' = , so the equation is defined on

(0,2) U (2, 00).

The initial condition is at ¢t = 1, so the interval where the equation is defined and

contains the initial condition is

I=(0,2).
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Example 4. (Extra Example): Use three iterations of Picard’s iteration procedure to
find an approximate solution of

y' =5ty,  y(0) =1
Solution: We first transform the differential equation into an integral equation.
t t t
/ y'(s)ds = / bsy(s)ds = y(t)—y(0) = / 5sy(s)ds.
0 0 0
Using the initial condition, y(0) = 1,
t
y(t)=1 +/ 5sy(s) ds.
0
We now define the sequence of approximate solutions:
t
Yo=y(0)=1, ypt1(t)=1 +/ S5syn(s)ds, m>=0.
0

We now compute the first four elements in the sequence. The first one is yo = y(0) = 1, the

second one y; is given by
i 5
n=0, yl(t)=1+/5sds:1+§t2.
0
So y1 = 1+ (5/2)t?. Now we compute ya,
t
y2:1+/ 5sy1(s)ds
0
t 5
=1 5s (14 = d
+/O s ( +2s) s
t 52,
=1 5s+ —s°)d
+/0 (55 + 5 s°) ds

5 52
=14+ ¢+ ¢
Tt

5 2
5752 + 2 t*. A similar calculation gives us ys,

So we obtained ya(t) = 1+
t

ys =1 —|—/ 5sya(s) ds
0

K 5 52
:1+/O 55(1+552+2—354)d5
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2 23

5 52 53
=14+ =2+ =t 4+ —— 45,
Tl g g

t 52 53
y3:1+/ (5s+—s3+—s5)ds
0

2 3

So we obtained y3(t) =1+ §t2 + 2 th 4 213 t%. We now rewrite this expression so we can

get a power series expansion that can be written in terms of simple functions. The first step

is to write the powers of ¢ as t™, for n = 1,2, 3,

(t2)2 + 25733 ( 2)3.

— 5 2\1 52

Now we multiply by one each term to get the right facctorials, n! on each term,

B 5 (t2)1 52 (t2)2 53 (t2)3
v =1+t o T 3

No we realize that the factor 5/2 can be written together with the powers of 2,

542 5 12\2 5 42\3
(it)+(§t)+(§t)'
1! 21 3!

ys(t) =1+

From this last expression is simple to guess the n-th approximation

Y (312)¢
v () =1+ 2
k=1
which can be proven by induction. Therefore,
t)= 1li t)=1 3 (%tz)k
y(t) = Jim yn(t) = +; o

Recall now that the power series expansion for the exponential

at = (at)k = (at)k
e :Z(k!) —1+;(k!).

k=0

so we get
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2.1. Second Order Linear Equations: General Properties

Section Objective(s):
e Second Order Linear Equations.
e Conservation of Mechanical Energy.
e Properties of Homogeneous Equations.

Remarks:

e We now study second order differential equations.

e The main example is Newton’s law of motion

e We have an existence result about solutions these equations

without a formula for the solutions

e We study ways to find properties of the solutions

without solving the equations.

e One way is with the conservation of the energy

e We end this section studying properties of homogeneous

equations.
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2.1.1. Second Order Linear Equations.

Definition 1. A second order linear differential equation on y is

Y 4 ai(t)y +ao(t)y = b(t),

where a,, a,, b are given functions. The differential equation above:

(a) is homogeneous iff the source b(t) =0 for all ¢t € R;
(b) has constant coefficients iff a, and a, are constants;
(¢) has variable coefficients iff either a, or a, is not constant.

Theorem 1. (IVP) If the a,, ao, b are continuous on (t,,t,) and t, € (¢4, 1,), then there

is a unique y on (¢, t,) solution of the initial value problem

Y+ at)y +act)y=0(t),  ylte) =4, Y (to) =1y

Example 1. (Newton’s Second Law of Motion): The main example of a second order

linear equation is Newton’s law of motion

The moving particle is described by its position, velocity and acceleration.

e The function y is the position of a particle.
e The function y = v is the velocity of a particle.
e The function a = 3" is the acceleration of a particle.

The force may depend on time, position, and velocity. So, Newton’s equation is the differ-

ential equation

my" = f(t,y,y).
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Example 2. (Mass-Spring without Friction):
Consider mass hanging at the bottom of a spring. Set
y to be a vertical coordinate, with y = 0 at the equi-
librium position of the mass-spring. Then, Hooke’s
Law states the force done by the spring on the mass
is proportional to the stretching distance y and in the
opposite to the stretching,

/7007707777777 777777077777077077777077077074

f=—ky, k>0,

Newton’s equation for this system, my” = f, is

my’ =—-ky = |my' +ky=0| Yy

Example 3. (Mass-Spring with Friction): Consider mass hanging at the bottom of
a spring describe in the example above. Suppose now that the whole system is oscillating
inside a water bath. In this case appears an extra force, the friction between the oscillating

mass and the water, given by
fa=—dy, d> 0.

This friction, or damping force, opposes the movement. Then, Newton’s equation, my” = f,
in this case is

my” = —ky—dy = |my ' +dy +ky=0]|
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2.1.2. Conservation of Mechanical Energy.

Theorem 2.1.1 (Conservation of the Energy). All solutions of the Mass-Spring System

without friction

my” +ky=0,
satisfy that the quantity
B(t) = gm (v(t)) + 2k (3(0))”
where v =3/ , 18 constant in time.

Proof:

1 / "o / (y/)Q y2
(my"+ky)y =0 = my'y' +kyy =0 = —(m 5 +k?>20
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Example 4. (Conservation of the Energy): An object of mass m = 1 grams hanging
at the bottom of a spring with a spring constant k£ = 2 grams per second square. Denote
by y vertical coordinate, positive downwards, and y = 0 is the spring-mass resting position.

(1) Write the equation of motion for this object.
(2) Write the expression of the energy of this system.

(3) If the initial position of the object is y(0) = 1 and its initial velocity is y(0) = 2, find
the maximum value of the object velocity, vmax > 0 achieved during its motion.

Solution:

(1) The equation of motion is y” + 2y = 0.

(2) The energy is obtained from

/

W +2)y =0 = y'y+yy = *(

1
so the energy is E(t) = 5 v? 4 9%, where v = 7//.
(3) The energy is conserved: E(t) = C. And C is the initial energy E(t) = E(0), so

1 1
5 0+ 92(0) = 50%(0) +42(0),
But the initial conditions say that y(0) = 1, and v(0) = 2, so
1 20y _ L Lo 204
2v(t)+y(t)—24+l = 2v(t)+y(t)—3.

From the expression above we see that the maximum speed vp,ax is achieved when

y(t) = 0. At these times we get

1
5“121’13)( =3 = VUmax = \/6
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Example 1. (Extendability of Solutions): Find the maximum domain where the
solution of the initial value problem below is certain to exist.

G—Uy”—&yh%%i{gy:t@—lx y(2) =1, y'(2) = 0.
3t

Solution: The equation is 3" — y + y = t, so, the equation coefficients are

(t—1) (t—3)

defined on the domain

(—00,1)U(1,3)U(3,00) = solution is defined on (—o0,1) or (1,3) or (3,00)

The initial condition is at ¢t = 2, so the interval where the equation and the initial condition
are defined is

D=(1,3).
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2.1.3. Properties of Homogeneous Equations.

Remark: We introduce the (operator) notation

v+ a1y +ay=>bt) & Ly)=0bt) with L(y)=9"+ay +aoy.

Theorem 2.1.5. (Superposition Property) If y,, y, are solutions of the homogeneous

equations L(y,) =0 and L(y,) =0 , where L(y) =vy" +a, ¥y + a0y,

then for every constants c;, ¢, holds

L(C1 Y1+ Co y2) =0.

Remark: This result is not true for nonhomogeneous equations.

Proof:

Liciys +coy2) = (crys + ¢ yz)/l +a,(cys + ¢ yz)/ + ao (c1ys + o o)
=y +ayl +aoy) + Yy + ary; + acys)

e L(ys) + 2 L(ya)

O

Theorem (General Solution). If y,, y,, with y, # cy, for any ¢ € R, are solutions

of L(y,) =0 and L(y,) =0 , where L(y) =y" + a:y' + ao y,

then every solution y of L(y) =0 can be written as

y(t) = crya(t) + cava(t), 1,0 €R.

Remark: Solutions y, and y, of L(y) = 0 with y, # cy, are called

fundamental solutions
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Example 5. (Superposition Property): If y; is solution of
y' +ary +ay =0, (1)

and y — 2 is solution of
Y +ary +apy = cos(2t), (2)
then determine whether the following statements are True or False.

1) y1 + y2 solves the homogeneous equation (1)

3

4) 2y, solves the non-homogeneous equation (2)

(1)
(2) y1 + yo solves the non-homogeneous equation (2)
(3) 2y solves the homogeneous equation (1)

(4)

Solution:

<

2

Example 6. (Fundamental Solutions): Show that y, = e and y, = e~ 2! are funda-

mental solutions to the equation
y//+y/_2y:0.
Solution: y,, y, are L.i., so we only need to show that L(y,) = 0 and L(y,) = 0.

Ly) =9/ +y, =2y =e' +e' — 2" = (1+1-2)e' =0,

L(y.) =y +yh =2y =4de 2 — 272 —2e72 = (4 — 2 —2)e " = 0.

Example 7.: Since y; = 1 is solution of
y// +y/ — 2y = 2.
find two more different solutions.

Solution:

yo(t) =1+¢",  ya(t) =1+e 2
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2.2. Homogenous Constant Coefficients Equations

Section Objective(s):
Part 1:
e Review: General and Fundamental Solutions.
e Guessing Fundamental Solutions for 2 x 2 Systems.
e Solutions for 2 x 2 Systems.
Part 2:
e Review: Solutions for 2 x 2 Systems.
e The Complex Roots Case.
e Real Solutions for Complex Roots.

Remarks:

e Recall:

Theorem (General Solution). If y,, y,, with y, # cy, for any ¢ € R, are

solutions of L(y,) =0 and L(y,) =0 , where
L(y) =y" + a, vy’ + aoy, then every solution y of
L(y)=0 can be written as

y(t) = yl(t) + ¢ yz(t); ¢, € R

e Solutions y; and y, of L(y) = 0 with y, # cy, are called

fundamental solutions

e If we know 2 fundamental solutions , then we know
all solutions of the homogeneous equation.
e For 2 x 2 system we guess the fundamental

solutions.
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2.2.1. Guessing Fundamental Solutions for 2 x 2 Systems.

Example 1. (Guessing Fundamental Solutions): Find all solutions to the equation

y" + 5y + 6y = 0.

Solution: Trial and Error:
e We try with simple functions: y(t) = t", y(t) = €™, y(t) = cos(at), etc.

e Power functions: y = t". We need 3/ = nt"" ! and v/ = n(n — 1) t" 2.

n(n—1)t"=2 450t~ £ 6" =0 for all teR = no solution.

e Exponential functions: y(t) = e™. We need y' = re™, and y” = r? e,

e 4 5re™ 6 =0 = (*+5+6)e"=0 = (r*+5r+6)=0

Therefore we get two values: r; = —2 and 75 = —3. So two fundamental

solutions,

7215 —
y1=e¢e -, Y2 =¢€

3t
The General solution Theorem Says the general solution is

y(t) =ce ? fcye .
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Definition 1. The characteristic polynomial and characteristic equation of
the differential equation

y// +a1y/+ao =0 a0 €R,

are, respectively,

p(r)y=r*+ar+a and p(r)=0.

Theorem 1. If ry are the roots of the characteristic polynomial of

Y+ ay +ay =0, (1)

if ¢,, c. are arbitrary constants, then we have the following:

(a) If r, #£ 1. , real or complex, then the general solution of Eq. (2) is

Ygen(t) = o€ +coe’ .

(b) fr.=r_.=mr, , real, then the general solution of Eq. (2) is

Ygen (t) = ¢, €l + c_te™".

Proof of Theorem 1:
Case (a): Since 7, # r_, then ™! # ce™*, so we get y, # cy-. Since r, are roots of the

characteristic polynomial,
p(r.) =0,  p(r) =0,

then y, solve the differential equation. Indeed,
L(y.) = (r? + ayry + ao) €™ = p(r,) e = 0.
Case (b): If ., = r_ = ry, then we know that y, = ¢! is a solution, since
L(yo) = (r3 + asro + ao) €' = p(r,) €™ = 0.

We now need to find a second solution y, not proportional to y;. We use the Reduction

of Order Method:

va(t) =v(t) () = wu(t) =v(t)e™,
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and we put this expression in the differential equation (2),
(V" + 2rov” + vrf) €™ + (v 4 rov) ase™" + ave™ = 0.
We cancel the exponential out of the equation and we reorder terms,
v+ (210 + ay) v+ (12 + ayro + ao) v = 0.
Recall that r, is a root of the characteristic polynomial
rg + ayro + ay =0,
Also recall that r, is the only root,

U

5 3 a? —4day=—— = 2ro+a, =0.

To =

Therefore

and the second solution is
Ya(t) = (c1 + cat) s (1).

e Choosing ¢, = 0 is bad, ¥y, is proportional to y;.

e So ¢, # 0. We choose ¢, =1, and we get
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Example 2: Consider an object of mass m = 1 grams hanging from a spring with spring
constant k = 9 grams per second square moving in a fluid with damping constant d = 6
grams per second. Find the position function of this object for arbitrary initial position and
velocity.

Solution: The equation modeling the motion of the object is given by y” + 6y’ + 9y = 0.

The characteristic equation is

P?+6r+9=0 = r=

(—6++36-36) =—3, = r.=r =-3.

N | =

Therefore, the general solution of the equation above is

Ygen(t) = cre ™3 +c te .

Example 3: Find the solution y of the initial value problem
y' -y —2y=0, y(0)=1,  y'(0)=5.

Solution: We find the roots of the characteristic polynomial

1 1+£3
pr)=r*-r—-2=0 = Tizi(li\/l—i—S):T

So the general solution is Ygen (t) = c.e?® +c_e~*. The initial conditions fix ¢, and c., because

1=y0)=c+c ¢ =2,
5=1'(0) =2c, — c- c.=—1.

Therefore, the unique solution to the initial value problem is

y(t) = 2% — et
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Section Objective(s):
Part 1:
e Review: General and Fundamental Solutions.
e Guessing Fundamental Solutions for 2 x 2 Systems.
e Solutions for 2 x 2 Systems.
Part 2:
e Review: Solutions for 2 x 2 Systems.
e The Complex Roots Case.
e Review of Complex Numbers.

Remarks:
e Recall the 2 x 2 case:

Theorem 1. If ry are the roots of the characteristic polynomial of

yl/ + a1yl +apy =0,

and if ¢,, c. are arbitrary constants, then we have the following:

Ygen(t) = coe™' + e’

(b) fr,=r_.=r, , real, the general solution of Eq. (2) is

Ygen (t) = ¢, €l + c_te™".

(a) If r, #r. , real or complex, the general solution of Eq. (2) is

e Equations with characteristic polynomial having complex roots

have complex solutions

e In some physical applications is important to have real solutions

e Solutions of equations with complex roots describe

dissipative phenomena




2 CONTENTS

2.2.2. The Complex Roots Case.

Example 4: Consider an object of mass m = 1 grams hanging from a spring with spring
constant k = 13 grams per second square moving in a fluid with damping constant d = 4
grams per second. Find the position function of this object for arbitrary initial position and
velocity.

Solution: The position y of the object must be solution of

Yy + 4y + 13y = 0.

To find the solutions we first look for the roots of the characteristic polynomial,

1 1
P dr+13=0 = ry= F(-4EVIE=52) = i = (-4+V36),
so we obtain the roots
ry = —2 4 3i.

Since the roots of the characteristic polynomial are different,
Ygon (t) = G, eT2H30 L G (72780t G G e,

Unfortunately, it is not clear from the expression above how the object is going to move.
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2.2.3. Review of Complex Numbers.

Suppose that a,b € R. Then:

e Complex numbers have the form z = a + b , where i = —1

e The complex conjugate of z is the number Z = a — b

e Re(z) = a, Im(z) = b are the real and imaginary parts of z

z+ 7z z—Z
I =
2 Im(2) = —

e Hence: Re(z) =

e The exponential of a complex number is defined as

ea+ib — i (a‘ + Zb)n

|
ot n:

In particular, the following is true: e2+® = e® e

e Euler’s formula: e = cos(b) + i sin(b)

e Hence, a complex number of the form et can be written as

e tib — e (cos(b) + isin(b)),

e?mi = g0 (cos(b) — isin(b)).

e From e®*% and e*~* we get the real numbers

(ea+ib+ea7ib) — e COS(b),

N =

1 ) )
§(6a+1b _ ea—zb) = e sin(b).
1
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Theorem 2. (Real Valued Fundamental Solutions) If the equation

y' +ay +ay=0 with — p(r) =% 4+ ayr + ao

has coefficients such that a1 — 4a, < 0 , then the roots of p are complex,
. . a; 1
r, = a*1i8 with a=-- ﬂ:i da, — a?,

and there are complex fundamental solutions of the differential equation,
Bo(1) = I () = elom,
while real valued fundamental solutions of the differential equation are
y.(t) = e* cos(p3t), y(t) = e* sin(Bt).
Furthermore, the general solution of the differential equation can be written either as
Ygen(t) = (c1 cos(ft) + ¢, sin(ﬂt)) e,
where ¢, ¢, are arbitrary constants, or as
Ygen(t) = A e cos(Bt — ¢)

where A > 0 is the amplitude and ¢ € [—m, ) is the phase shift

Proof of Theorem 2: We start with the complex valued fundamental solutions
Gu(t) = elatib)t, g.(t) = ela—iB)t.
We take the function y. and we use a property of complex exponentials,
G (t) = elatif)t — gat gift — cat (cos(Bt) + isin(fBt)),
where we used Euler’s formula e = cos(#) +isin(#). Repeat this calculation for y_ we get,

7.(t) = e** (cos(Bt) + isin(Bt)),

g-(t) = e (cos(Bt) — isin(Bt)).
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The superposition property says that addition and differences of solutions to homogeneous

equations are also solutions. So,

are also solutions to the differential equation. But a straightforward computation gives
y.(t) = e* cos(Bt), y-(t) = e sin(Bt).
Therefore, the genreal solution is
Ygen (t) = (cy cos(wot) + ¢, sin(Bt)) e,
There is an equivalent way to express the general solution above given by
Ygen(t) = A e cos(wot — ¢).
These two expressions for ysen are equivalent because of the trigonometric identity
Acos(St — ¢) = Acos(ft) cos(¢p) + Asin(5t) sin(¢),

which holds for all A and ¢, and t. Then, it is not difficult to see that

¢, = Acos(d), A=/ +¢2,
Ca

c, = Asin(9). tan(¢) =

C1

This establishes the Theorem.
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Example 5. (Real Solutions - Mathematicians Notation): Describe the movement
of the object in Example 4 above, which satisfies Newton’s equation

y' +4y +13y =0,

with initial position of 2 centimeters and initial velocity of 2 centimeters per second.

Solution: We already found the roots of the characteristic polynomial,

(-4£V16-52) = ri=-2+3i

DN | =

rP4+4r4+13=0 = ry=
So the complex valued fundamental solutions are
Go(t) = T g (1) = (2300t
We know that real valued fundamental solutions are given by
y.(t) = e cos(3t), wy(t) = e sin(3t).
So the real valued general solution can be written as
Ygen(t) = (c. cos(3t) + c_sin(3t)) e >, c., c. €R.

We now use the initial conditions, y(0) = 2, and ¢/(0) = 2,
2=y(0)=c
2 =14y'(0) = 3c- — 2¢,

therefore the solution is

y(t) = (2cos(3t) + 2sin(3t)) e "
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Example 6. (Real Solution - Physicists Notation): Write the solution of the Exam-
ple 5 above in terms of the amplitude A and phase shift ¢.

Solution: To understand the movement of the object we write the solution in terms of
amplitude and phase shift

y(t) = Ae *cos(3t — ) = 3y (t) = —2Ae * cos(3t — ) — 3Ae ' sin(3t — ¢).

Let us use again the initial conditions y(0) = 2, and y/(0) = 2,
2 =y(0) = Acos(—9¢) 2= Acos(¢)
2 =1y'(0) = —2A cos(—¢) — 3Asin(—9¢) 2 = —2Acos(¢) + 3Asin(¢)
Using the first equation in the second one we get
2 = Acos(o) 2 = Acos(o)
2= —4+ 3Asin(¢) 2 = Asin(¢)

From here it is not too difficult to see that
A=+224+22=2\/(2), tan(¢) = 1.

Since ¢ € [—m, ), the equation tan(¢) = 1 has two solutions in that interval,

3
- = ——.

¢1 = ¢2:% 1

s
43

But the ¢ we need satisfies that cos(¢) > 0 and sin(¢) > 0, which means ¢ = %, then

y(t) = 2v2 e cos (3t - %)
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Example 7. (Extra Problem): Find the movement of a 5kg mass attached to a spring
with constant k = 5kg/secs2 moving in a medium with damping constant d = 5kg/secs,
with initial conditions y(0) = /3 and y'(0) = 0.

Solution: The equation is my” + dy’ + ky = 0 with m =5, k = 5, d = 5, that is,
y'+y' +y=0.
The roots of the characteristic polynomial are

r4+ =

S5

(-1£V1-4) = ri:—%ﬁ:i—.

N =

We can write the solution in terms of an amplitude and a phase shift,
3
y(t) = Ae™t/? cos(g t— (b).

We now use the initial conditions to find out the amplitude A and phase-shift ¢. T

1 3 3 3

y(t)=—=Ae /2 cos(£ t— ¢) - £ Aet/? sin(£ t— (b).

2 2 2 2

The initial conditions in the example imply,
1 3
V3 =y(0) = Acos(e), 0=1y'(0)= ~3 Acos(¢) + g Asin(¢).

The second equation above allows us to compute the phase shift. Recall that ¢ € [—7,7),

and the condition that tan(¢) = 1/4/3 has two solutions in that interval,

tan(¢) = % = ¢1= %, o

If ¢ = —57/6, then y(0) < 0, which is not out case. Hence we must choose ¢ = 7/6.

ﬂzAcos(%)zA? = A=2.

Therefore we obtain the solution

e tl2ees (V34T
y(t) =2e cos(2t 6)'
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2.3. Nonhomogeneous Equations

Section Objective(s):
Part 1:

e The General Solution Theorem(NH).

e The Undetermined Coefficients Method.
Part 2:

e The Variation or Parameters Method.

Remarks:

e If y; and y, are solutions of the linear nonhomogeneous equation

Y +as(t)y +aot)y = f,

is then y; + yo also a solution? And how about 5y 7

(1)
L(y) =f, Lly2) = f,

and

L(yi +y2) = L(y1) + L(y2) = f+ f =2f.

(2)
L(5y—1) =5L(y1) =5 1.

e Consider the following exercise:

(1) Guess a simple solution of " +y = 7.

Yo =T7.
(2) Find fundamental solutions of " +y = 0.
P+1=0 = r=+i = gy =cos(t), y=sin(t)

(3) Now give 3 different solutions of y” +y = 7.

y1 =7+sin(t), yo=7+cos(t), ys=7+2sin(t)+ 3cos(t)
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2.3.1. The General Solution Theorem.

Theorem 1. (General Solution (NH)) If ¢, and y, are fundamental solutions of

Ly) =0, L(y) =0,

where L(y) =v" +a,y' + aoy , and y, is one solu-
tion of L(y,) = f , then all solutions of the nonhomogeneous
equation L(y) = f are

Yy=Cciy+ calya+ Yp, cic €R.

Remark: The general solution of L(y) = f is

y(t) = crya(t) + 2 ya(t) + yp(t)7

where y,, solves L(y,) = f and y;, y, are fundamental solutions of L(y) = 0.

Proof of Theorem 1: Given any particular solution Let y,, that is L(y,) = f, any other

solution y of the same equation L(y) = f satisfies

Ly —yp) = L(y) — L(yp) = f — f = 0.

That is, y — y, is solution of the homogeneous equation. Therefore, this solution can be

written as linear combinations of a pair of fundamental solutions, y,, y, of the homogeneous

equation,

Y—Yp =C1Y1+ CaYa.

Since for every y solution of L(y) = f we can find constants ¢, ¢, such that the equation

above holds true, we have found a formula for all solutions of the nonhomogeneous equation.

This establishes the Theorem.
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2.3.2. The Undetermined Coefficients Method.

Example 1 (Guessing Solutions): If a4, a, are arbitrary constants, guess a function y,
solution of
' +ay +acy = 3e?

Solution:

o f(t)=3e* — y,(t)?

e Since L(y) = y” + a; y' + ao y has constant coefficients, we guess
yp(t) =k e,
Because
L(y,) = (k ezt)n +a; (ke?) + ao (ke*)

= k:(22 +a,2+ ao) et

= kp(2)e*.
It is a good idea to choose y, proportional to €2 because

if L(y,) =f, then

3
kp(2)e?* =3 = kp(2)=3 = k= —.
p(2) p(2) )

So we guessed right, and
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Summary of the Undetermined Coefficients Method:

Problem Find y, solution of L(y,) = f(t) ,

where L(y) = y" + a1y + aoy.

(1) First Guess: Given a simple f() , guess yp, (t)
f(t) (Source) (K, m, a, b, given.) || y,(t) (Guess) (k not given.)
Keat keat
Either t™ or K,,t"™ + --- + K, kp t™ 4+ -+ + kg
cos(bt) and/or sin(bt) k; cos(bt) + k, sin(bt)
(2) Possible Second Guess: If y,, satisfies L(yp,) =0

then change the guess to y,, = ty,,

(3) Possible Third Guess: If y,, satisfies L(y,,) =0 ,

then change the guess to y,, = ty,,

(4) Find the Undetermined Coefficients: From L(y,) = f get k

where y,, 1S yp, OF Yp, OT Yp,.
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Example 2. (First Guess Right): Find all solutions to the nonhomogeneous equation

y" — 3y’ — 4y = 3%

Solution: From the problem we get L(y) = y” — 3y’ — 4y and f(t) = 3e?t.

(1) Find fundamental solutions y., y- to the homogeneous equation L(y) = 0. Since the

homogeneous equation has constant coefficients we find the characteristic equation
2 =3r—4=0 = r.,=4, r=-1, = yt)=" y=@t) ="

(2) From the table: For f(t) = 3e* guess y,(t) = k e*’. The constant k is the undetermined
coefficient we must find.
3) Since y,(t) = ke?! is not solution of the homogeneous equation, we do not need to
p

modify our guess. (Recall: L(y) = 0 iff exist constants c,, c. such that y(t) = c, e*® +c_e™".)
(4) Introduce y, into L(y,) = f and find k. So we do that,

1
(22 -6 -4 ke =3 = —6k=3 = k= —5
We guessed that y, must be proportional to the exponential 2! in order to cancel out the
exponentials in the equation above. We have obtained that

1
yp(t) = -3 et

The undetermined coefficients method gives us a way to compute a particular solution y, of
the nonhomogeneous equation. We now use the general solution theorem, Theorem 2.5.1,

to write the general solution of the nonhomogeneous equation,

1
Ygen(t) = cre*t +coe”t — 3 et
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Example 3. (First Guess Wrong): Find all solutions to the nonhomogeneous equation
y" — 3y’ — 4y = 3¢t

Solution: If we write the equation as L(y) = f, with f(t) = 3e*, then the operator L is
the same as in Example 2.5.1. So the solutions of the homogeneous equation L(y) = 0, are

the same as in that example,

The source function is f(t) = 3 e, so the Table 1 says that we need to guess y,(t) = k.

However, this function g, is solution of the homogeneous equation, because
yp=ky. = Ly,)=0.
We have to change our guess, as indicated in the undetermined coefficients method, step (3)
yp(t) = kt e

This new guess is not solution of the homogeneous equation. So we proceed to compute the

constant k. We introduce the guess into L(y,) = f,
yo=(1+4t) ke, Y/ =@B+16t)ke" = [8—3+ (16— 12— 4)t] ke =3¢,

therefore, we get that

The general solution theorem for nonhomogneneous equations says that

3
Ygen(t) = cr et + et + Sttt

5
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Example 4. (Extra Example: First Guess Right): Find all the solutions to the
nonhomogeneous equation
y" — 3y — 4y = 2sin(t).

Solution: The equation is L(y) = f, with f(t) = 2sin(¢) and L as in Example 1. So,
y(t) =e,  y(t)=e", satisfy L(y.)=0  L(y) =0.

Since f(t) = 2sin(t), we choose y,(t) = k; cos(t) + k, sin(¢). This function y, is not solution

to the homogeneous equation. So we look for k;, k, using the differential equation,
y,, = —kysin(t) + k, cos(t), Yy, = —k; cos(t) — kysin(t),
and then we obtain
[—Fky cos(t) — kysin(t)] — 3[—k, sin(t) + k, cos(t)] — 4[k, cos(t) 4 kysin(t)] = 2sin(t).
Reordering terms in the expression above we get
(—5ky — 3ky) cos(t) + (3ky — bk,) sin(t) = 2sin(t).

The last equation must hold for all ¢ € R. In particular, it must hold for ¢ = 7/2 and for

t = 0. At these two points we obtain, respectively,

3k1_5k2:2, k1:ﬁ7

5

—5k, — 3k, =0, kQ:—l—?.

So the particular solution to the nonhomogeneous equation is given by

Yp(t) = % [3cos(t) — 5sin(t)].

The general solution theorem for nonhomogeneous equations implies

1
Ygen(t) = coe®t +coet + 17 [3cos(t) — 5sin(t)].
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Section Objective(s):
Part 1:

e The General Solution Theorem(NH).
e The Undetermined Coefficients Method.

Part 2:
e The Variation or Parameters Method.

Remarks:

o Recall: The general solution of L(y) = f is

Y=C1Yr+ Y2 + Yp,

where

The Undetermined Coefficients Method (UCM) is a way to guess yj,

The Variation of Parameters Method (VPM) gives a formula to y,

e VPM works on more general equations than the UCM.

e VPM works on  ¢" 4 a,(t) ¢y + ao(t) y = f(¢).

e VPM usually takes longer to implement than the UCM.
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2.3.3. The Variation of Parameters Method.

Theorem 1. (Variation of Parameters) A particular solution to the equation

L(y) = f,

with L(y) = y" + a.(t) ¥ + ao(t) y and a4, a,, f continuous functions, is given by

Yp = WY1 + UpYa,

where y,, y, are fundamental solutions of L(y) = 0 and u,, u, are

ui(t):/—Wdt, us(t) = yiw(’?f(t(;)dt,

where Wi, is the Wronskian of y, and y,.

Remarks:

e The Wronskian of functions y; and ys is

Y1 Y2
v v
e If y; and ys are fundamental solutions of y” + a,(t) y’ + as(t) y = 0,

then Wis(t) # 0 for all ¢.

Proof of Theorem 1:

e The Reduction Order: ys = vy;. Equation for v is simpler than for ys.

e Here we have y; and y, and we look for y,, so:

Yp = Us Y1 + Uz Yo.

We hope the equations for u,, u, will be simpler than the equation for y,,.
e But we started with one unknown y,, and now we have two unknowns u; and us.

e We are free to add one more equation to fix u,, u,.



2.3. NONHOMOGENEOUS EQUATIONS 3

We choose
y/
uiy +uyy, =0 ( & uzz/——iu;dt).
Ya
We compute L(y,) = f, we need y, = u; y1 + uz Y2, and y,,,
;o / / / r ’ /
Yp =Us Y1 T U Yy + Uy Yo U Yy = Yy = U Yy + U Y,
(recall, uj y; + ujy, = 0) and we need y,/,
Yy = Uy s+ u Yy Uy Yy + unyy
So the equation L(y,) = f is
(uh s+ uryy +uy Y+ uayy ) +as(us yy + uays) + ao(us ys + Uz ) = f
We reorder a few terms and we see that
wy s+ up Yy us (Y sy + aoys) +us (Y +asys + aoye) = f.
The functions y; and y, are solutions to the homogeneous equation,
1! / _ 1 / —
Yy T a1y, +acys =0, Yp T a1y, + oy, =0,

so u; and u, must be solution of a simpler equation that the one above, given by

uy Yy up Yy = - (1)
So we end with the equations

up Y+ up Yy = f

/ /
uy Yy + uy Yo = 0.

This is a 2 x 2 algebraic linear system for the unknowns u}, ).

Algebraic linear systems are simple to solve

’ o /
ul = 0 A A Y1Ya u=f = UQ(M) —f
Y2 Yo Yo
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e Recall that the Wronskian of two functions is Wi, = y,y, — yiy., we get

u = — Yo f = = Y f

5 = .

Remark: The integration constants in u,, u, can always be chosen zero .
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Example 1: Find the general solution of the nonhomogeneous equation

y" + 4y = —5csc(2t).

Solution: We need fundamental solutions to the homogeneous problem.
rP44=0 = rp=+2.
So, a pair of fundamental solutions is given by
Y1 (t) = cos(2t), Yo (t) = sin(2t).
The Wronskian of these two functions is given by
Wy (t) = Y195 — y2yy = cos(2t) - 2 - cos(2t) + sin(2t) - 2 - sin(2t) = 2.

We are now ready to compute the functions u,; and u,.

u = — ny u = ﬂ
! W12 ’ 2 W12 '
So, the equation for u, is the following,
_ 5 sin(2) 5 N B §t
B = sin(2t) 2 2 =g
5  cos(2t) 5 [ cos(2t) 5 .
I _ == dt = ——1 2t
“ sin(2t) 2 - 2 / sin(2t) 4 n|sin(20)l,

where we have chosen the constants of integration to be zero. So,
5 5 . .
Yp = §t cos(2t) — I In | sin(2t)] - sin(2t).

Then,  yYgen(t) = i cos(2t) + c-sin(2t) + St cos(2t) — 3 In|sin(2t)| - sin(2t). ¢y - €R.
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Example 2.: Find a particular solution to the differential equation
2y — 2y =3t — 1,

knowing that 3, = t? and y, = 1/t are solutions to the homogeneous equation t2y" —2y = 0.
g

Solution: We first rewrite the nonhomogeneous equation above in the form given in Theo-

rem 2.5.4. In this case we must divide the whole equation by #2,

2 1 1
V'-my=3-5 = fO=3-4

We now proceed to compute the Wronskian of the fundamental solutions y,, v,,

maxﬂ::@%(%g)-@n(%) = W) =-3

We now use the equation in Theorem 2.5.4 to obtain the functions u,; and us,,

1 1y 1 S 1N 1

w=—30-7) = (3-7) 5
11 1 1,1
=———t3 =In(t) + =t 2 =t 4+- = = -3+ -t
{3 = w=hO+ 3 v =gty

A particular solution to the nonhomogeneous equation above is g, = u;y; + u,y,, that is,

o = ) + +172) () + L4+ )7

Wl = W

1 1
=?ln(t)+=>— >+ =
n()—|—6 3 +

1 1
=tIn(t) + = — -
nt)+35-3

1 1
2
t M0+2 3m®

However, a simpler expression for a solution of the nonhomogeneous equation above is

1
yp = t2 ln(t) + 5.
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Example 3. (Extra Example: Resonance): Consider a 1kg mass attached to a spring
with a spring constant k = 4kg/ sec’. Assume that damping can be ignored and also assume
there is an external force acting on the mass given by f(t) = sin(2t) acting on the body.

(1) Find an equation of the motion of the mass under general initial conditions.
(2) Describe the behavior of the amplitude of the oscillations as function of time.

Solution: The equation is
my” +dy +ky=f(t) = ¢’ +4y=-sin(2t).

We use the undetermined coefficients. First we find the solutions to the homogeneous
equation

Y +4y=0 = r’4+4=0 = ri==2

So fundamental solutions are
y1(t) = cos(2t), y2(t) = sin(2t).
Therefore, the first gues for y, = k1 cos(2t) + ko sin(2t) is wrong and we need to guess
Yp(t) = kit sin(2t) + kot cos(2t),
Put this into the nonhomogeneous equation and we get k1 = 0 and kg = —p e
1
Yp = fzt cos(2t)
the general solution is given by
. 1
y(t) = ¢1 cos(2t) + o sin(2t) — Ztcos(2t).

This means that the amplitude becomes unbounded as time grows (about proportional

to t). This is the resonance effect!
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2.4. Springs, Circuits, and Resonance

Section Objective(s):
e Springs and Circuits.
e Forced Oscillations:
— Non-Resonant.
— Resonant.

Remarks: Review of the superposition property.

e If y; and ys are solutions of the linear nonhomogeneous equation

y' +a(t)y +ao(t)y = [,

is then y; + y2 also a solution? And how about 5y;?
Question 1:

L(Z/1) =/, L(y2) =/,
L(y1 +y2) = L(y1) + L(y2) = f + f = 2f.

Question 2:

Lby)=5L(y1) =51

e Guess a simple solution of 4"/ +y = 7.
Yo = 7.

e Find fundamental solutions of y” +y = 0.
P+1=0 = r=+i =y =cos(t), y=sin(t)

e Now give 3 different solutions of ¢y +y = 7.

y1 =T7+sin(t), y2=7+cos(t), ys =7+ 2sin(t)+ 3cos(t)
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2.4.1. Springs and Circuits.

Spring Oscillations LC-Series Circuit

C V()

0 Y , .
I(t) = electric current

FIGURE 4. Mass-Spring system.
FIGURE 5. An LC circuit.

e [: inductance.
e (' capacitance.
o V(t): voltage source.

Newton’s equation: Kirchhoff’s equation:

my//_'_ky:f(t), LI”"‘%I:V/(t)
with f(¢) an external force on the mass. 6L =1, % =25 f(t)=V'(t), we get

If we set m =1, k = 25, we get

y' 425y = f(t) \

y'+25y = f(t)|

These Springs and Circuits are Mathematically Equivalent

Remark: Both systems are still mathematically equivalent in the presence of friction.

e Newton’s equation with a friction coefficient d > 0 is

my" +dy +ky=f(t), m>0, d>0, k>0,

e Kirchhoff’s equation with a resistance R > 0 is

1
Ly”+Rg/+5y=V’(t), L>0, R>0, C>0.



2.4. SPRINGS, CIRCUITS, AND RESONANCE

2.4.2. Forced Oscillations: Non-Resonant.

Example 1: (Non-Resonant): Solve the initial value problem
y" + 25y = cos(vt), v #5, y(0) =0, %'(0)=0.

Solution:

Use the Undefined Coefficients Method. The gen. sol. of the homogeneous equation is

yn(t) = c1 cos(5t) + o sin(5t).

the source is f(t) = cos(vt) with v # 5, so the correct guess for the particular solution is,

Yp(t) = k1 cos(vt) + ko sin(vt).
We compute its second derivative,
y;,/(t) = —1?%k; cos(vt) — v kg sin(vt).
We substitute y and y” in the non-homogeneous equation,

—v2k; cos(vt) — vk sin(vt) + 25k; cos(vt) + 25kg sin(vt) = cos(vt).

1

(k1 (—v? +25) — 1) cos(vt) + ky (—* — 25)sin(vt) =0 = k= (@ =7

Therefore y,(t) = cos(vt). The solution of the initial value problem is

1
(25 — 12)

y(t) = c1 cos(5t) + o sin(5t) + cos(vt), y(0)=0, %(0)=0.

1
(25 — 1v?2)
The condition on y(0) = 0 implies

1 1
“Homom ! T AT By

The condition y(0) = 0 implies c2 = 0, so the solution of the initial value problem is

y(t) = ﬁ(cos(ut) — cos(5t)) |

ko = 0.
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2.4.3. Forced Oscillations: Non-Resonant.

Example 2: (Resonant): Solve the initial value problem

y' +25y =cos(5t),  y(0)=0, y'(0)=0.

Solution:

Use the Undefined Coeflicients Method. The gen. sol. of the homogeneous equation is
yn(t) = c1 cos(bt) + co sin(5t).
the source is f(t) = cos(5t), therefore the correct guess for the particular solution is,
Yp(t) = kit cos(5t) + kot sin(5t).
We compute its first derivative,
Yy, (t) = k1 cos(5t) + ko sin(5t) — 5kt sin(5t) + Syt cos(5t).
We compute the second derivative,
Y, (t) = —10k; sin(5t) 4 10k cos(5t) — 25k1t cos(2t) — 25kt sin(5t).
We substitute y and y” in the nonhomogeneous equation,
—10ky sin(5t)+10ky cos(5t) —25k; t cos(2t) —25kst sin(5t) 425k t cos(5t)+25kat sin(5t) = cos(5t).

1
—10k; sin(5t) + 10kg cos(5t) = cos(bt) = k1 =0 ko = 0"

t
Therefore y,(t) = 10 sin(5t). The solution of the initial value problem is
1
y(t) = c1 cos(5t) + o sin(5t) + Etsin(St), y(0) =0, %(0)=0.

Since y(0) = 0 implies ¢; = 0, and y'(0) = 0 implies co = 0, so y(t) = y,(t),

y(t) = lio sin(5¢) |
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3.1. Introduction to the Laplace Transform

Section Objective(s):
e The Laplace Transform.

e Main Properties.

e Solving a Differential Equation.

Remarks:

e The Laplace Transform (LT) method introduces a new idea

to solve differential equations.

e The idea is to use integration by parts

e Because of that the LT changes derivatives into multiplications
e So, LT changes differential equations into algebraic equations.
Solve the Transform back

differential Algebraic
@), & LON algebraic B 4o obtain y(t).
eq. for y(t).

eq. for L[y(t)]. eq. for Ly(t)]. (Use the table.)

e With the LT we can solve differential equations with general sources

e Examples include:

— Solve for the motion of objects hit by impulsive forces

— Solve for the current in an electric circuit having switches turn on and off

e The Undetermined Coefficients Method is not powerful enough

to solve differential equations with such general sources.
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3.1.1. The Laplace Transform.

Definition 1. The Laplace transform of a function f on Dy = [0,00) is

F(s) = /°o et () dt,

0

defined for all s € D C R where the integral converges

Remarks:

(a) Transformation notations for the Laplace transform: L[f] = F

Clf)(s) = / st () dt.

(b) Recall the definition of improper integrals:

N

/0 g(t)dt:ngnoo ; g(t) dt.

Example 1. (Computing a LT): Compute L[], where a € R.

Solution: We start with the definition of the Laplace transform,
Lle™] = / e *H(e™) dt
0

:/ ela=ot gy 5 /1dt=oo,
0 0

N
= lim ela=)t gy, s #a,
N—00 0
1 N
= lim [ ela=s)t }
N—0c0 (a — S) 0
1
= ( lim el*=*N — 1).
(a — 5) N—o0
Now we have two remaining cases:
a—s>0 = lim eV = and a—s<0 = =  lim e N =,
N—00 N—00

so the integral converges only for s > a and the Laplace transform is given by
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3.1.2. Main Properties.

Linearity

Theorem 1. (Linearity) If £[f] and L[g] exist, then for all a, b € R holds

Llaf +bg] = a L[ f] + b L]g].

Proof of Theorem 1:

Let f and ¢ be two functions, such that £[f] and L[g] are defined and let ¢1,c2 € R. Then,

Llerf + cagl(s) = /:O e (cLf(t) + cag(t))dt
= cl/O e St f(t)dt + C2/0 e *tg(t)dt

= a1 L[f1(s) + c2L]g(s)-

Remarks:

(a) A particular case of linearity is L[c f(t)] = c L[f(¢).

(b) In the case that cis not constant we have L[c(t) f(t)] # c(t) L[f(t)]

(c) Also, when cis not a constant L[c(t) f(t)] # L[c(t)] L]f(t)].




4 CONTENTS

Derivatives into Multiplication

Theorem 2. (Derivative into Multiplication) If both f and f’ are continuous and
|f(t)] < ke, with k,a > 0, all conditions on [0,00), then L£[f’] exists for s > a and

LIf) = sLIfl - f(0),  s>a

Proof of Theorem 2:

We compute

But

Since f is bounded by an exponential, this means

lim e *N f(N) = 0.

n—oo

We now compute the limit of this expression above as N — oo.

LI = =1 +s Jim [ et

[

Therefore,
LIf) = sLIf) - f(0),  s>a.

This establishes the Theorem.

Exercise: Use the formula above to compute the LT of second (and higher) derivatives,

LIf") = s> L[f] = 5 £(0) — £'(0).

LI = LI(f)] = sLIf'] = f/(0) = s(sL[f] = f(0)) — (0).
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Laplace Transform Table: We collect the LT of simple functions.

ft) F(s) = L[f(t)] Dp

f(t) =1 F(s) == 550
F(t) = eat F(s)= ! ; s>a

Ft) = F(s) = s 550

£(t) = sin(at) F(s) = SQLLGQ s>0

F(t) = cos(at) F(s) = ﬁ $>0

f(t) = sinh(at) F(s) = 5——s s> lal
f(t) = coshat) F(s) = 5——s s> lal
F(t) = treat F) = o Z)!<n+1> s>a

F(t) = e sin(bt) F(s) = m s>a

F(t) = e cos(bt) F(s) = <s£sa)2a}rb2 s>a

F(t) = et sinh(bt) F(5) = = a;’2 e s—a>
£(t) = e cosh(bt) F(s) = e Esa;“l - s—a> b
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3.1.3. Solving a Differential Equation.

Example 2. (Solving an IVP): Use the Laplace transform to find y, solution of

Solution: Remark: We know that the solution is y(t) = 2 et

We write the equation as

y' +5y = 0.
Taking the Laplace Transform of the ODE yields
Lly' +5yl=L[0] = L[y]+5L[y]=0.
But the LT changes derivatives into multiplications,
(sLly] —2)+5L[y|] = 0.

Using the notation Y(s) = L[y], we get

2

sY(s)—2+5Y(s)=0 = (s+5Y(s)=2 = Y(s):(8+5).

From the LT table we see that L[e*] =

1
, so for a = —5 we get
(s —a)
Llyl=2L] = L[y =L2e™].

We then conclude that
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Example 3. (Extra Example): Find the solution of the IVP
y'—4y' +13y=0,  y(0)=0, Y (0)=1

Solution:

Taking the LT,

Ly —4y +13y] =0 = L}y —4L[y]+13L[y] =0.
We change derivatives into multiplication,

(s*Y(s) —sy(0) —y'(0)) —4(sY(s) —y(0)) + 13Y(s) =0

(s —4s +13) Y(s) = 5y(0) +¢'(0) —4y(0) = (s —4s+13)Y(s) =1

Therefore we get

But
2 —4s+13=5"-2(2)s+4—-4+13=(5-2)>+9

Therefore,

1 1 3
E[y] = (8—2)2+32 :§<(s_2)2+32)

In the LT Table we have L[e® sin(bt)] = Therefore,

b
(s —a)2+b?
Lly] = %£[62t sin(3t)].

We then conclude

1
y(t) = 3 e sin(3t).
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Example 3. (Compute Another LT): Compute L[sin(at)], where a € R.

Solution: In this case we need to compute

L[sin(at)] = /00 e tsin(at) dt

N

= lim e *'sin(at) dt
N—o0 o

The definite integral above can be computed integrating by parts twice,

N

N 1 N
/ e Stsin(at) dt = s [e=*" sin(at)] - — / e Stsin(at) dt,
0 0

— :—2 [e=*" cos(at)]

0

which implies that

2

N
(1 + 3—2) /O e Stsin(at) dt = —é [e=*" sin(at)]

then we get

N —st 2 82 1 —st 2 N a —st . N
i e *'sin(at) dt = D] [—g [e=*" sin(at)] T [e=*" cos(at)] . ]
and finally we get
N 2
—st : S 1 —sN _: a —sN )
/0 e sin(at) dt = 1 a7 [—; [e=*"sin(aN) — 0] — 2 le=*N cos(aN) — 1]}

One can check that the limit N — oo on the right hand side above does not exist for s < 0,
so L[sin(at)] does not exist for s < 0. In the case s > 0 it is not difficult to see that
2

/OOO e sinfat) dt = () [1 0-0)—L©-1)

s2+a2/ls 52
so we obtain the final result

L[sin(at)] = szji;(ﬁ s> 0.
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3.2. The Initial Value Problem

Section Objective(s):
e Homogeneous IVP.

e Non-Homogeneous IVP.
e Higher Order IVP.

When can we apply the Laplace Transform Method?

(a) The ODEs have to be linear with constant coefficients

(b) The sources can be discontinuous or Dirac’s deltas

The big picture approach in using the LT to solve ODEs:

differential Algebrai Solve the Transform back
ifferential eq. ebraic eq.
d ﬂ & d ﬂ algebraic eq. ﬁ to obtain y(t).
for y(t). for Ly(t)].
for Ly(t)]. (Use the table.)

The One-to-One Property:

Theorem 1. (Injectivity of the Laplace Transform) If f, ¢g are continuous on [0, c0)
and bounded by an exponential, then

Llfl=Llgl = f=g

Remark: We use one-to-one property when we solve differential equations.

e If we LT a differential equation for y and solve for L[y], we get
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3.2.1. Homogeneous IVP.

Example 1: Use the Laplace transform to find the solution y to the initial value problem
y'—y' —2y=0, y(0)=1,  y(0)=0.

Solution: First, compute the Laplace transform of the differential equation,

Lly" —y' —2y] = L[0] = 0.
The Laplace transform is a linear operation,

Lly"] - LIyl —2L[y] = 0.
We know that the LT relates derivatives to multiplications,

(2 L1y = sy(0) ~ ' (0)] = [s LIy = y(®)] —2£y] =0,
which is equivalent to the equation
(s* =5 = 2) Lly] = (s = 1) y(0) +'(0).

The differential equation for y is now an algebraic equation for L[y]. The initial condition,

(82 —s—2)Lly] = (s —1).

Solve for the unknown L[y] as follows,

(s=1)

ﬁ[y] = m

The function on the right-hand side above does mot appear in our LT Table, so we use
partial fractions to simplify it. First find the roots of the polynomial in the denominator,

5"1‘:27
$?—5—-2=0 = sy=

1+vV1i+8] =

N | =

s_=—1,

that is, the polynomial has two real roots. In this case we factorize the denominator,

(s—1)

= ey
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The partial fraction decomposition of the right-hand side in the equation above is the

following: Find constants a and b such that

(s—1) a b

G-2)(+1) s—2 s+l

A simple calculation shows

(s—1) a b a(s+1)+b(s—2)

G-+ s5-2 s+1  (5-2)6+1D)

Hence constants a and b must be solutions of the equations

(s—1)=a(s+1)+b(s—2)

Evaluate the equation above at s =2 and s = —1. We get
fs=2 = (2-1)=a2+1)+0 = a:é,
If s=-1 = (-1-1)=0+b(-1-2) = azg.
Hence,
1 1 2 1
=3G9 3G+

Using the Laplace transform table given in the previous class, we know that

1 1 1
at] _ _ pra2t _ —t
Le¥l=-—, = =L, =L
So we arrive at the equation
Lo 2 a0 iy Lo —t
Lly) = 5 Lle™] + 5 Lle™] = £[5 (e +2¢7)]
We conclude that
1
y(t) = 5(e* +2¢7")



4 CONTENTS

3.2.2. Non-Homogeneous IVP.

Example 2: Use the Laplace transform to find the solution y to the initial value problem

y' =4y +4y=3¢e",  y(0)=0, ' (0)=0.

Solution: First, compute the Laplace transform of the differential equation,

1
"o _ ) _
Lly" — 4y + 4y] = L]3 €'] 3(5—1)'

The Laplace transform is a linear operation,

L' —4LY]+ALY = —-

The Laplace transform relates derivatives with multiplication,

[2 LIy = sy(0) — ' (0)] =4[5 £ly] — y(O)] + 2 £l] = —,

But the initial conditions are y(0) = 0 and y'(0) = 0, so

3
s—1°

(s> —4s+4) L[y =

Solve the algebraic equation for L[y],

3
(s —1)(s2—4s+4)

Lly] =

We use partial fractions to simplify the right-hand side above. We start finding the roots

of the polynomial in the denominator,
9 1
s°—4s+4=0 = si:§[4i 16-16) = sp=s_=2

that is, the polynomial has a single real root, so L[y| can be written as

3
==

The partial fraction decomposition of the righthand side above is

3 a bs+c a(s—2)2+(bs+c)(s—1)

G-D6-22 (-1 (=272 (s-1)(s—2p
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From the far right and left expressions above we get
3=a(s—2)%+(bs+c)(s—1)=a(s*—4s+4)+bs* —bs+cs—c
Expanding all terms above, and reordering terms, we get
(a+b)s*+ (—4a—b+c)s+ (4a—c—3)=0.

Since this polynomial in s vanishes for all s € R, we get that
a+b=0, a=3
—4a—b+c=0, = b=-3
da—c—-3=0. c=9.
So we get

3 3 3549
W= e—22 5ot o2

One last trick is needed on the last term above,

3549  —3(s-2+2)+9 -3(s—-2) —6+9 3 3

G-27 (=27  (5-2° (s-27 (s-2) (s—2¢

So we finally get
3 3 n 3
s—1 (s—=2) (s—2)%

From our Laplace transforms Table we know that

L[eat]:s—a s—2

el=t—p 7 ooy

So we arrive at the formula
Lly] =3L[e"] —3L[e*]+3L[te*] = L[3(e' — ' +te*)]

So we conclude that  y(t) = 3 (e — e +te).
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3.2.3. Higher Order IVP.

Example 3: Use the Laplace transform to find the solution y to the initial value problem
y(O) =1, y/(o) =0,

@ _4y=0
Yy Yy > y”(O) — 9 y///(o) 0.

Solution: Compute the Laplace transform of the differential equation,
Ly —4y] = £[0] = 0.
The Laplace transform is a linear operation,
LIy 4Ly =0,
and the Laplace transform relates derivatives with multiplications,
[ £ly) = ° y(0) = 82/ (0) = 5" (0) — " (0)] — 4 £[y] = 0.

From the initial conditions we get

(s® —2s)

[54L[y]—s3—0+25—0}—4£[y]:0 = (s"-4)Lp =525 = Lol ="ra—p

In this case we are lucky, because

2
W= s
Since
Lleos(at)] = 5.
we get that

Ly = Llcos(V2t)] = y(t) = cos(V2t).
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3.3. Discontinuous Sources

Section Objective(s):
e Overview: Step Functions.
e Laplace Transform of Steps.
e Translation Properties of the LT.

3.3.1. Overview: Step Functions.

Definition 1. The step function at t =0 is

Example 1: Graph the step u, u.(t) = u(t — ¢), and u_.(t) = u(t + ¢), for ¢ > 0.

Solution:

u u u
u(t) u(t — ) u(t + )

1 | G— ¢

0 t 0 c t —c 0 t

<
Example 2: Graph the bump function b(t) = u(t — a) — u(t — b), for a < b.
Solution: The bump function b is nonzero only on a finite interval [a, b], because
0 t<a,
b(t)=u(t—a) —u(t—>b) < bt)=<1 a<t<b
0 t=b.
U u u
u(t —a) u(t —0b) b(t)
1 1 1 1 1 1 1
0 a b t 0 a b t 0 a b
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3.3.2. Translation Identities.

Theorem 2. (Translation Identities) If L[f(¢)](s) exists for s > a, then

Llu(t—c)f(t—c)] =e “ LIf(t)] , s> a, c=20 (1)

Lle f(t)] = L[f(#)](s —c) , s>a+c, ceR. (2)

Example 3: Take f(t) = cos(2t) and write the equations given the Theorem above.

Solution:

L[COS(2t)] = m

S

Llu(t —c) cos(2(t —¢))] = e~ L[cos(2t)] = Llu(t—c) cos(2(t—c))] =e"* 2192

Le cos(2t)] = L[cos(2t)](s —¢) = L[ cos(2t)] = (5550)26—3—22

Example 4: Take f(t) = 1 and write the equations given the Theorem above.

Solution:
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6—43

Example 5: Find the function f such that L[f(¢)] =

s24+5
Solution: Notice that
L=t S = L] = et f ok
Recall that L[sin(at)] = 2 j_ a7y’ then
CIf()] = % e=42 £lsin(vV/51)].

1

! i = —u(t —4)sin —
Lf(t)] = ﬁﬁ[u(t —sin(vV5(t—4)] = ft)= 7 (t —4)sin(V5 (t — 4)).
Example 6: Find the function f(¢) such that L[f(t)] = ﬁ
(s —2)2+3

Solution: We first rewrite the right-hand side above as follows,

T e
o (s—-2) 1
N (5—2)2+3+(5—2)2—|—3
_ (s —2) L V3

)

(s—2)2+ (V3)* V3 (s—22+(V3)°

1 .
= L[cos(V31)](s — 2) + 7 L[sin(vV31)](s — 2).

But the translation identity £[f(t)](s — ¢) = L[e! f(¢)] implies

2t 1 2
LIft)] =L]e cos(\/gt)} + ﬁ,ﬁ[e Sln(\/gt)].

So, we conclude that
f) =" V3 cos(V3t) +sin(v31) |.
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3.3.3. Solving Differential Equations.

Example 7: Use the LT to find the solution to the initial IVP

1 0<t<w

y”+y’+§y=b(t), y(0)=0,  ¥'(0)=0, b(t):{o t>. )

Solution: The source function b can be written as b(t) = u(t) —u(t—m). The last expression
for b is particularly useful to find its Laplace Transform,

L[b(t)] = Llu(t)] = Llu(t —m)] = % +e % = Lbt)]=1—-eT) 1

S

Now Laplace Transform the whole equation,
" / 5
Lly"I + LIy ]+ 7 Lyl = L[b]-

Since the initial condition are y(0) = 0 and y’(0) = 0, we obtain

1

(03— 07 mErort

1
4 S

= Llyl=(1-¢eT)

Introduce the function

1

H(S)_s(52+s+i)

We use partial fractions to simplify H. We first find the roots of the denominator,

5
s24s+-=0 = sy=

1 [-1+v1-5],

DN | =

so the roots are complex valued. An appropriate partial fraction decomposition is

B 1 _a (bs +c¢)
BRI IR CERT)

Therefore, we get
2 5 2 5
1:a(s +s+1> +s(bs+c)=(a+b)s +(a+c)s+1a.
This equation implies that a, b, and ¢, satisfy the equations

a+b=0, a+c=0, a=1.
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4 4
The solution is, a = R b= —5 c= 5 Hence, we have found that,
1 471 1
H@p:———————:f[f——iiil—}
(52+s+%>s 5ls (52+s+%)

Complete the square in the denominator,

s2+s+§—[82+2<1>3+1}—1+§—<s+1)2+1
4 2 41 4 4 2 ’

Replace this expression in the definition of H, that is,

B =3 [2o )]

S [s+8)"+1]

Rewrite the polynomial in the numerator,
(s+1) (+1+1) (+1)+1
S = — — = — —
T o)) Ty

hence we get

471 (8 + %) 1 1
H(S):f{fi 1)2 2 1)2 }
o [ls+) 1 2 s+2) +1]
Use the Laplace Transform table to get H(s) equal to

equivalently

Denote

h(t) = g{l — e Y2 cos(t) — %e‘t/Q sin(t)] = H(s) = L[h(t)].

Recalling L[y(t)] = H(s) + e " H(s), we obtain L[y(t)] = L[h(t)] + e~ "° L]h(t)], that is,

y(t) = h(t) + u(t — m)h(t — 7).
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Example 8 (Extra Example): Use the LT to find the solution to the IVP

sin(t) 0<t<m

y' +y + gy =g(t), y(0)=0, Y 0)=0, g(t)= { 0 t>m. @

Solution: Rewrite the source function g using step functions, as follows,

g(t) = [u(t) — u(t — 7)] sin(t),

since u(t) — u(t — m) is a box function, taking value one in the interval [0, 7] and zero on
the complement. Finally, notice that the equation sin(¢) = —sin(¢ — «) implies that the

function g can be expressed as follows,
g(t) = u(t) sin(t) —u(t —m) sin(t) = g(t) = u(t) sin(t) + u(t — 7) sin(t — ).

The last expression for g is particularly useful to find its Laplace Transform,

1 1
Llg(t)] = m +e (8274-1)

With this last transform is not difficult to solve the differential equation. As usual, Laplace

Transform the whole equation,
" / 5
Lly"]+ LIy T+ Lly] = Llg]-

Since the initial condition are y(0) = 0 and y’(0) = 0, we obtain

1
(52+s+%>(52+1)

<s2 + 5+ Z) Lly]=(1+eT™) = Llyl=(1+e™)

&+

Introduce the function

H(s) = 1 Syt = LU H($)] + £ e ™ H(s)).

(32+s+§)(s2+1)

That is, we only need to find the Inverse Laplace Transform of H. We use partial fractions
to simplify the expression of H. We first find out whether the denominator has real or
complex roots:

5
s2+s+-=0 = si=

1 [-1+V1-75],

DN | =
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so the roots are complex valued. An appropriate partial fraction decomposition is

B 1 _ (as+Db) (cs +d)
)= (s*+s+3)(s2+1)  (2+s+3) (s2+1)

Therefore, we get

1= (as+b)(82+1)+(cs+d>(52+s+g),

equivalently,
3 9 5 5
l=(a+c¢)s+(b+c+d)s +<a+zc+d>s+<b+1d>.
This equation implies that a, b, ¢, and d, are solutions of
5 5
a+c=0, b+c+d=0, a+zc+d:0, b+1d:1.

Here is the solution to this system:

16 12 16 4
a*ﬁv b*ﬁv 0*7177; d*ﬁ
We have found that,
(s)—i[ (4s 4+ 3) (—4s+1)}
1T l(s24s+3) 0 (241 1

Complete the square in the denominator,

52+$+§—[824—2(1)34—1}—1+§—(5+1>2+1
4 2 41 44 2 '

4 (4s +3) (—4s+1)
(s) = 17[[(S+§)2+1] i (s241) }

Rewrite the polynomial in the numerator,

(43+3):4(3+%—%)+3:4<s+%)+1,

hence we get

(s+3) 1 s )
ey A TR A )
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Use the Laplace Transform Table to get H(s) equal to

H(s) = % [4 L [e_t/Q cos(t)] + L [e_t/Q sin(t)] — 4 L[cos(t)] + E[sin(t)]} ,

equivalently

H(s)=L [% (46_t/2 cos(t) + e t/?sin(t) — 4 cos(t) + sin(t))] .

Denote
h(t) = % [4€_t/2 cos(t) + et/ ?sin(t) — 4cos(t) + sin(t)] = H(s) = L[h(t)].

Recalling L[y(t)] = H(s) + e~ ™ H(s), we obtain L[y(t)] = L[h(t)] + e~ ™ L[h(t)], that is,

y(t) = h(t) + u(t — m)h(t — ).
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3.4. Generalized Sources

Section Objective(s):
e The Dirac’s Delta.

e Applications and Properties.
e The Impulse Response Function.

Remarks:

e The Dirac’s delta is the main example of what it is called a

generalized function

e Introduced by Paul Dirac while studying

quantum mechanics

e We want that Dirac’s Delta, d(t), to satisfy:

- 0(t)=0 for all t # 0
- 0(0) =00
1
- o(t)dt = 1.
-1
No function has these properties.
e Dirac’s delta is the limit of a sequence of functions.

e The integral of a Dirac’s delta is the limit of a sequence

of integrals.
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3.4.1. The Dirac Delta.

n—oo

Definition 1. The Dirac delta generalized function is the limit
5(t) = lim 9,(¢),

for every fixed ¢ € R of the sequence functions {d,}52 ;,

Remark: The sequence of bump functions intro-
duced above can be rewritten as follows,

0 , t<0
1
5 (t) _ n , 0<t< —
"
0 .t
n
We then obtain the equivalent expression,
0 for t#0,
5(t) = ’
0 for t=0.

Remark: There are infinitely many sequences
{6, } of functions with the Dirac delta as their limit
as n — o0o.

Interactive Graph: Dirac’s Delta.

Remarks:
(a) The Dirac delta is the function zero

05(t)

0 (t)

d:(t)

o

—

-

~

R e
P e e m oo - -
(B )

on the domain R — {0}

(b) The Dirac delta is not a function

on R

(c) We define: /1 d(t)dt = lim /1 0 (1) dt.

J—-1 n—oo —1

Theorem 1.

/_ 11 5(t) dt
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3.4.2. Applications and Properties.

Applications:

(a) Dirac’s delta generalized function is useful to describe

impulsive forces

(b) An impulsive force transfers a finite momentum

in an infinitely short time

(¢) For example, a pendulum at rest that is hit by a hammer.

i Exou,,/,/e : A pevdulem o res? Zhelt s he?

a  hovawer.

Ll T e

-

4

Main Properties:

by

Theorem 2. If f is continuous on (a,b) and ¢ € (a,b), then

b
[ @8- pde = p(o).

Proof of Theorem 2: We again compute the integral of a Dirac’s delta as a limit of a

sequence of integrals,

/b6(t S fdi= tim [ 6t — o) f(0)di

:nli_{réc bn{u(t—c)—u(t—c—%)} f(t)dt

a

= lim / n f(t) dt, — < (b—c).

n— 00 n
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To get the last line we used that ¢ € [a,b]. Let F be any primitive of f, so F(t) = [ f(t)dt.

Then we can write,

This establishes the Theorem.

Theorem 3. For all s € R holds

Proof of Theorem 4.4.5: We use the previous Theorem on the integral that defines a

Laplace transform,
e for ¢=>0,

0 for ¢<0,

This establishes the Theorem.
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Example 1: Find the solution y to the initial value problem
y'+y=6(t-3), y0)=0  y(0)=0.

Solution: The source is a generalized function, so we need to solve this problem using the

Laplace Transform. So we compute the Laplace Transform of the differential equation,
Ly 1+ Lyl =L[6t—-3)] = (>+1)L[yl=e3,

where in the second equation we have already introduced the initial conditions y(0) = 0,

y'(0) = 0. We arrive to the equation

Recalling the translation identity

e LIf(t)] = Llu(t — ¢) f(t - )],

we get that
Lly] = Llu(t = 3) sin(t — 3)],

which leads to the solution

y(t) = u(t — 3) sin(t — 3).



6 CONTENTS

3.4.3. The Impulse Response Function.

Definition 2. The tmpulse response function at the point ¢ > 0 of the linear
operator

Lly)=y"+ay +aoy,
with ay, ao constants, is the solution ys of

L(y5) = 5(t - C)v y5(0> =0, yg(O) = 0.

Theorem 4. The function ys is the impulse response function at ¢ > 0 of the constant
coefficients operator L(y) = " 4+ a, ¥’ + a0 y iff holds

where p is the characteristic polynomial of L.

Proof of Theorem 4: Compute the Laplace transform of the differential equation for for

the impulse response function ys,
Lly"] +a LIY']+ a0 L[y] = L[5(t — c)] = e~
Since the initial data for ys is trivial, we get
(5% + a5 + ao) Ly] = e~ .

Since p(s) = 82 + ay5 + a, is the characteristic polynomial of L, we get

clyl = o yn=c25]

We notice that all the steps in this calculation are if and only ifs. This establishes the

Theorem.
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Example 2 (Extra Example): Use the Laplace Transform to show that the solutions to
the IVP below are the same, where

y'+awy +ay=96(t), y0)=0 ¢ (0)=0.
and
y'+ a1y’ +aoy=0,  y(0)=0,  y(0)=1
Provide a physics-based explanation of why these solutions coincide.

Solution:

For the first IVP we have
(2 +ass+a) Lyl = L)) =1 = Ly =
For the second IVP we have
(s*Lly] = sy(0) = 1/ (0)) + as(sLIy] — y(0)) + ao L[y] = 0,
but the initial conditions imply
s2Lly] — 1+ ay sL[y] + ao L]y] = 0,

so we get
1

2 _ - -
(5" +ass+ao) LIyl =1 = ‘C[y]_(32+als+ao)'

The action of the impulsive force is to produce a nonzero velocity at the initial time, because

it transfers a nontrivial momentum at a single point in time.
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3.5. Convolutions and Solutions

Section Objective(s):
e The Convolution of Two Functions.
e Main Properties of the Convolution.
e The Solution Decomposition Theorem.

Remarks:

e We introduce a new operation between two function, the convolution

e The convolution is a nonlocal product

of two functions.

e We know that L[fg] # L[f] L]g].

e The convolution of f, g is the function such that

L[Convolution(fg)| = L[f] L[g].

e The convolution is defined for the Dirac’s delta

e The Dirac’s delta is the

identity element for the convolution
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3.5.1. The Convolution of Two Functions.

Definition 1. The convolution of functions f and g is a function f * g given by

(f  0)(t /f gt —7)d

Remark: The convolution is defined even when either f or g is a Dirac’s delta

Example 1: Find f * g the convolution of the functions f(t) = b(t) and g(t) = b(t), where
we denoted b(t) = u(t) — u(t — 1), the bump function on [0, 1].

Interactive Graph: Convolution of Bumps

Solution: The definition of convolution is,

(bxb)(t) = /0 b(T)b(t — 7) dr.

e b(1) =1 for 7 € [0,1] and is zero otherwise. y 0<t<1

o b(t—7)=1for

0<t—7<1 = —t<—7L1l—-t = t>172>2-1+1t,

so T € [t — 1,1] and is zero otherwise.

e For t € [0, 1], we have

vt o1<t<e
t
(b*b)(t):/ldt:t. ---
0 :
For ¢ € [1,2] we have : .
(t—1)1 t i
1
(b*b)(t):/ ldr=1-(t—-1)=2—1t.
t—1
yh > 2
For t € [2,00), (b*0)(t) = 0. We then conclude that
t 0<t<l, E :
0, t>2.


http://mathstud.io/?input[0]=%3D

3.5. CONVOLUTIONS AND SOLUTIONS 3
Example 2: Graph the convolution of
f(r) = u(r) —u(r = 1),
2¢7% for 70
9(1) =
0 for 7<0.
Interactive Graph: Convolution of Bump and Exponential (Slow)
Solution: Notice that
2¢%7 for 7<0
g(=7) =
0 for 7>0.
Then we have that
2201 for 1 <t
gt —7)=g(=(r—1))
0 for T>t.
l=-02 zu/ Z-o2 Fecig)
— 5 ——— 7
M n L
T T 2 3 7y it T T T 2 3 : T o i
20 f,—l,g; 20 Z-25 20 Z=7
T 2 3 0 T T T T T z 3 O 3 = 2
0= fag o= fe§ "=
i i s b : o1 S : 7 s : P4 ] €
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3.5.2. Main Properties of the Convolution.

Theorem 1. (Laplace Transform) If £[f] and L[g], exist, then

L[f * g = L[f] L[g]-

Remark: This is the origin of the convolution operation. Since
LIf1Llgl # L[f 9],

people were interested in finding a function A such that

The answer is, h=fxg
Idea of the Proof: Switch the order of the integrals.

Other Properties of Convolutions:

Theorem 2. For every piecewise continuous functions f, g, and h, hold:
(i) Commutativity: f*g=gx* f;

(ii) Associativity: f* (g h) = (f * g) * h;
(iii) Distributivity: f*(g+h) = f*xg+ f = h;

(iv) Neutral element: f 0 = 0;

(v) Identity element: f 4§ = f.
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¢
Example 3: Find the function g such that f(t) = / sin(47) g(t — 7) d7 has the Laplace
0
s

transform  L[f] = EESBICESEEOR

Solution: Since f(t) = sin(4¢) * g(t), we can write

S . . 4
(s2+16)((s—1)2+9) L[f] = Llsin(4t)  g(t)] = L[sin(4t)] L[g] = (YD) Llg],
so we get that
4 Lol — S Lol — 1 s
M=oty © it

We now rewrite the right-hand side of the last equation,

1 (s—=1+1) 1 (s—1) 1 3

Lol =3 Goapeve = Hd=3 ((5—1)2+32 *3 (5—1)2+32)’
that is,
Clg] = i (leos(30))(s 1) + é/l[sin(?)t)](s 1) = % (let cos(an)] + éﬁ[et sin(31)]).

which leads us to

g(t) = iet (COS(3t) + % Sin(3t)>
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3.5.3. The Solution Decomposition Theorem.

Theorem 3. (Solution Decomposition) The solution of

L(y) =g(t), y(0) =g, ¥(0)=y,
where L(y) = y” 4+ a, ¢y + a0 y has constant coefficients, can be decomposed as

y(t) = yn(t) + (ys * 9) (1),
where y;, is the solution of the homogeneous initial value problem
L(yn) =0, yn(0) =50, 9,(0) =i,

and ys is the impulse response function of L.

Remarks:

(1) The solution decomposition above can be written in the equivalent way

ot

y(t) = yn(t) + / ys () g(t — 7) dr.

0
(2) Recall that the impulse response function is the solution of
L(ys) = 6(t), vs(0) =0, y5(0)=0.

(3) Recall that the impulse response function can be written as
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Example 4: Use the Solution Decomposition Theorem to express the solution of
y'+2y +2y=9g@), y(0)=1, y'(0)=-1

Solution: We first find the impuse response function
ys(t) = L1 {—} , p(s) = s? + 25+ 2.
since p has complex roots, we complete the square,
2 425+2=52+25+1—-1+2=(s+1)>+1,

so we get

ys(t) =L [m} = ys(t) = e ' sin(t).

We now compute the solution to the homogeneous problem
Vh +20h+ 200 =0, y(0)=1, ¢, (0)=-1L

Using Laplace transforms we get

Llyp) + 2 LIyh] +2LIyn] = 0,
and recalling the relations between the Laplace transform and derivatives,

(s* Lyn] = syn(0) = y3,(0)) +2(Lyn] = s Llya] — yn(0)) + 2L[ya] = 0,
using our initial conditions we get (s? +2s+2) L[ys] —s+1—2=0, so
(s+1) (s+1)

Clonl = (2+25+2)  (s+12+1 un(t) = E[eft Cos(t)}'

Therefore, the solution to the original initial value problem is

y(t) =yn(t) + (ys x9)(t) = y(t) =e " cos(t) +/0 e " sin(r) g(t —7) dr.
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Proof of Theorem 1:
clrela = [~ erswal] [T e tngten ao]

= /OOO e Sg(ty) (/OO e Sf(t) dt) dt,

0

- /ooo g(t1)</oo et £(4) dt) dt,,

0

Change of variables in the inside integral 7 =t + t;, hence dr = dt. Then, we get

£[f]£[g]:/Ooog(tl)(/looe_”f(T—tl)dT) dtiz/ooc /:oe_STg(tl)f(T—tl)deti. (1)

t

Here is the key step. We must switch the order of integration.

L[f]L[g] = /OOO /OT e g(ty) f(r —ty) dt, dr.

Then, is straightforward to check that

So we conclude that
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4.1. Modeling with First Order Systems

Section Objective(s):

Interacting Species.

Predator-Prey.

Spring-Mass as a First Order System.

[ ]
[ ]
[ ]
e Equilibrium Solutions.

Remarks:
e We have studied how to solve several first order equations
y' = ft.y).
e We have also student how to solve second order linear equa-
tions
y'+aiy +acy = f(t).
e There are more complex physical system that cannot be decribed

with the equations above.

e Today we see two of such systems: interacting species

and predator- prey systems.

e Then we see that second order equations can be written as

first order systems.
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4.1.1. Review: Interacting Species.

Example 1: Construct a differential equation that describes the population of rabbits and
sheep coexisting in an environment with finite resources.

Solution:

e First assume that there are only rabbits, unlimited resources.
R'(t) =rr R(t), rr growth rate coefficient, rabbits.
e Now, assume only rabbits, limited resources.
/ R(1) : : .
R'(t) =rr R(t) (1 — K—), Kpg carrying capacity, rabbits.
R

e Assume we have rabbits and sheeps, each with limited resources, not interacting;

for example they eat different foods.

e Finally, we add the interaction. These species compete.

R'(t) = rg R(t) (1 - ]%)) — 1 R(t) S(t),
S'(t) = rs S(t)( - %Z)) — ey R(t) S(8),

where ¢; > 0, co > 0 are the competing coefficients. The negative sign means both
R’ and S’ decrease because of the interaction.

e The product R(t) S(t) is a simple measure of how often the two population meet.
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Definition 1. The interacting species system for the functions x and y, which
depend on the independent variable ¢, is

x':rzx(lfi) +axy

Te

’_ Y

y —Tyy(lff) +Bzy,
Ye

where the constants r, r, and z., z. are positive and «, 3 are real numbers. Further-
more, we have the following particular cases:

e The species compete iffa<0and <0

e The species cooperate iffa>0and g8 >0

e The species y cooperates with x when o« > 0 ,
and x competes with y when 5 <0

Example 2: The interaction of of rabbits and elephants is given by

# (1) = 5 alt) — oo ()~ w(t) (1),
() =39(0) — 555 47() — 2002(0)y(0),

which variable represents the elephants? What is the growth rate and carrying capacity of
the elephants and of the rabbits?

Solution:

e The = grow slower than the y, since r, = 1/2 while r, = 3. So z are elephants.

e Since

# (1) = 5 alt) — g5 7(0) — 2(t) y(t) = 5 2(0) (1~ 1o 2(0) — #(B) (o),

the carrying capacity K, = 10. Analogously K, = 900 since

1
3(300)

V(1) = 3y(t) — 2= 3 () — 2002(t)y(1) = 3y(0) (1 -

T (1)) = 2002(t) (1)

So x are elephants and y are rabbits, the same enviroment supports 10 elephants
and 900 rabbits.
e The interaction affects 2’ by a factor —1, and 3’ by a factor 200. Then x are

elephants, they are much less affected than rabbits by the interaction. <
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4.1.2. Predator-Prey System.

Example 3: Construct a differential equation that describes the population of rabbits and
foxes coexisting in an environment with unlimited resources for the rabbits.

Solution:

e First assume that there are only rabbits, unlimited resources.
R'(t) = rr R(t), rr  growth rate coefficient, rabbits.

e Now, assume that there are only foxes, no rabbits. Foxes only eat rabbits, so no

resources.

F'(t) = —rp F(t), rr  death rate coefficient, rabbits.

e Assume that the foxes meet the rabbits and eat them. This interaction has two
effects:
— The rabbit populations decreases its growth rate: R’ is smaller than with-
out the interaction.
— The foxes populations increases its growth rate: I is larger than without
the interaction.

Since R(t) F'(t) is a simple measure of how often the two populations meet,

R(t) = rr R(t) — dy R(t) F (1),

F'(t) = —rp F(t) + do R(t) F(1),
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Definition 2. The predator-prey system for the predator function x and the prey
function y, which depend on the independent variable ¢, is

¥ =—azr+byy

Y =ayy—byxy,

where the coefficients a,, b,, ay, and b, are nonnegative.

Remark:

e A predator is called lethargic if they seldom catch prey but can

live for a long time on a single prey, for example boa constrictors.

e A predator is called active if they catch prey very often and they can

live for only a short time on a single prey, for example bobcats.

Example 4: Identify which of the systems below corresponds to a lethargic predator and
which one to an active predator.

7' =03z —0.1zy, i =03%— 3%

y' = —0.1y + 2y, g =24+ 0.1Z¢.

Solution:

e The variables y and g are the predators.

The increase in y' for eating a prey is largend than the increase in §.

So, y benefits more froma single prey than .

So, y are snakes, and g are bobcats.
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4.1.3. Spring-Mass as a First Order System.

Example 5. (Mass-Spring System): Consider an
object of mass m mass hanging at the bottom of a
spring with spring constant k£, and moving in a fluid
with damping constant d. Assume that there is an ex-
ternal force f, which depends on t, acting on the object.

If y(t) is the displacement from the equilibrium posi-
tion at the time t, positive downwards, the equation of
motion for the variable y is

my" +dy +ky = f(t).

Write the differential equation above as a first order system.

Solution:

e Introduce the variables 1 = y and xo = ¥/'.

e This definitions implies that these variables are related:

d k d k
ay=y' ' =——y - —y+f=——r2— —w1 +/,
m m m m
that is,
k d
L
m m

e So we obtained the first order system

Illimg

k d
Th=——x1 — — 22+ f.
m m

e This system is first order, 2 x 2, and linear. After our review of Linear Algebra,

/

T 0 1 X1 0
= +
) I S M Y I P
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4.1.4. Equilibrium Solutions.

Remark: Equilibrium solutions are defined for autonomous ssystems

Definition 3. (Equilibrium Solutions) The equilibrium solutions
of the autonomous system

H\
Il
~
—~
=<
8

~

<
I
e}
—~
3?‘(
<

are solutions of the form z(t) = zo, y(t) = yo , for all ¢,

which satisfy f(zo,y0) =0 and g(zo, yo) = 0.

The point (zg, o) in the zy-plane is called an equilibrium point of

the system.

Example 6: Find the equilibrium solutions of the following competing species system.
R =3R(1-S-R)
S’ =25(2—-S5-3R).

Solution:

e The equation for the equilibrium solutions are

R=0 and S=0,

3BR(1-S—-R)=0
= R=0 and S=2,

25(2—-S—-3R)=0.
S=0 and R=1,

so we get the points (0,0), (0,2), (1,0).
e In addition we could have
1-H—-R=0

= 1-2R=0 = R:% R
2—H-3R=0,

11
which yields an additional equilibrium point, (5, 5)
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Example 7. (Extra Example): Now consider a particular example of a predator-prey
system.

AR _ e p  oRE
dt

dF

Y _FL05RF
dat +

Find the equilibrium solutions of the system. Discuss what they represent in the physical
situation of the model.

Solution:

e We need to solve

5R—2RF =0
—F +0.5RF =0.
Equivalently,
R(5—-2F)=0 R=0 and F =0,
- 5
F(-1+4+0.5R) =0. R=2 and F:§7

e thus, the equilibrium points are (Rg, Fy) = (0,0) and (Ry, F1) = (2,5/2).

o If R(t) =0 and F(t) = 0, i.e. there are no rabbits and no foxes, the system is in
perfect balance (their numbers will not change).

e Similarly, R(t) = 2 and F(t) = 2.5 for all ¢ > 0 is a solution to the system of

differential equations that does not change with time - the system is in balance.
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4.2. Vector Fields and Qualitative Solutions

Section Objective(s):
e Vector and Direction Fields.
e Phase Portraits and Solution Curves.

Remarks:

e There are formulas for solutions of first order systems

of differential equations.

e But there are not such formulas for solutions of first or-

der, nonlinear systems

e It is important to find qualitative properties of solu-

tions to nonlinear systems without solving the system.

e Qualitative graphs of solutions can be obtained from the equation

without solving the equation.

e One need to plot the vector field of the equation.
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4.2.1. Vector and Direction Fields.

Definition 1. (Vector Field) The vector field of the autonomous system

' = f(f z,y)

y/ = g(anvy)»

is the collection of vectors F(z,y) = (f(x,y), g(z,y))

at points (x,y) in the xy—plane.

Remark: The vector field

F(z,y) = (F,, F,) = E:j

is a vector with origin at (z,y) , which has horizontal component F,

and vertical component F,

Example 1: If the vector field is F(x,y) = (x + 2y, 4a — 2y), draw the vector F(1,1).

Solution:

3
We first compute F(1,1) = (14+2,5—2) = (3,2), so F(1,1) = (3,2) =

2

&V
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Example 2: Consider an object of mass m = 1 hanging from a pring with spring constant
k =1, oscillating in the air.

(1) Write the differential equation for this mass-spring system as a first order system.

(2) Draw the vector field of this system at several points on the plane.

Solution:

Part (1) The second order equation for the variable y(t) is

y”—f—y:O.

We introduce z7 =y and 2 = ¥/.

Remark: Instead of x and y we use the variables x; and zo. Similarly, we denote vector

F;
fields as F(x1,x2) = (F1, Fy) = '
Iy

Then we get the system

Ty = X2
/
./E2 = —T1
T2

The vector field is F(z1,22) = (2, —x1) =
2

Part (2) Let us plot the vector field F(z1,2z2) at various points in the zyz2—plane:

F(1,0) = (0, —1) /"9”2

F(0,1) = (1,0) / |
F(—1,0) = (0,1) “ | \
F(0,-1) = (1,0 ][ \ \

F(2,2) = (2,-2) \ P lL "
F(2,-2) = (-2,-2) \

F(72ﬂ 72) - <727 2> /

F(-2,2) = (2,2)
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FIGURE 6. The vector field F(x,, x,) = (z,, —,) associated to the equation
x} = x9, b, = —x1 which is the first order system of y” +y = 0.

Remark: A direction field is a normalized

of a vector field. All the vectors have length one

FIGURE 7. Direction field of the vector field F(xy,x,) = (x5, —1).

version
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Example 3: Match each of the following direction fields to one of the systems below.

¥=x-1 ¥ =—y ¥=-1+y ¥ =—y
y=y-1 y == y=1-ua y'=-x
Fig. 2 Fig. 1 Fig. 4 Fig. 3

Hint: (1) Compute the equilibrium points. (2) Evaluate the field along a subset.

Yy

RS NSN
A RSN

~—]

(,V/V
r A

=

=
7

FIGURE 2.

~ -

o |«
Y

8

P S SESEN N
P A A RN
A VNN

FIGURE 3. FIGURE 4.
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4.2.2. Phase Portraits and Solution Curves.

Remark: Direction and Vector fields are useful to draw solution curves

The resulting picture is called a phase portrait

Theorem 1. If z(t) and y(t) are solutions of the autonomous differential system

then the solution curve r(t) = (z(t),y(t)) on the zy-plane is
tangent to the vector field F(z,y) = (f, g), that is,

Example 4: Use the direction field of the mass-spring system to draw qualitative graphs
of its solutions.

Solution:
The equation is

" x’l = T2
Yy +y=0 = , =  F(x1,22) = (X9, —x1).
2

>
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Example 5: Use the direction field of the predator prey system below to draw qualitative
graphs of the solutions to that system,

R =5R—-2RF

1
F'=—F+ 3 RF

Mﬂ\ﬂ\\\\\\\\\\\\\\‘\\
,/ T A S
/ ST
f R R
ﬁ&/k+*$¢¢¢¢Q¢QQQQQQQQQQQQ\
fi / PRI
{ / \\\\\\\\\\\\\\\\\\\

NI

Ve ST ST

\\CC{*+b0@@acc44444444&44/

v v v v v ¥ v

N S S S
S~

— > > P O

—— > - > > >

...............

Interactive Graph: Predator-Prey System.
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Example 6. (Look at Home): Consider the predator prey system

1
T x 5 z° -y

3
y' = —by + 3 7Y

The direction field of that system is given below, with one solution curve plotted in red.

~ NN N N NN

N Y A A A

\._./////.(11//1
VANSEr e Ll
RN e P R R
\Nme eSS LA L AL
N ALl AL
= 24P & AT @AV AT A 4T
REEPIVP AP AP A7IP AP RIY;
ettt e e L el
@ AT AT @ AT AT AT AT & 4
PREP AP AP AP AP AP WP

o —a —t e —a e e — =
, A e e

FiGURE 5. The horizontal z-axis represents the prey, the vertical y-axis
represents the predator. The red dot highlights an initial condition. (The
vectors point in the direction where the segments get thinner.)

Each component of the solution curve plotted in red above are plotted below as functions
of time.

FIGURE 6. The horizontal t-axis represents time, and in the vertical axis

we plot the the prey population (in purple) and the predator population
(in blue).

Interactive Graph: Predator-Prey System with Limited Food.
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5.1. Systems of Algebraic Linear Equations

Section Objective(s):
e The Row Picture.
e The Column Picture.
e The Matrix Picture.

Remarks:

e Before trying to solve systems of differential equations

we need to know basic concepts of linear algebra

e Solving linear algebraic equations by substitution is called the

row picture . (One equation at a time.)

e Linear algebraic equation can be thought as a linear combination

of vectors . This is the column picture

e The concept of vector space comes from the row picture

e Linear algebraic equation can be thought as a a matrix acting on

vectors . This is the matrix picture

e From the matrix picture we get the idea that matrices are

functions on the space of vectors
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5.1.1. The Row Picture.

Remark: The field of linear algebra started when people tried to solve

systems of linear algebraic equations

Example 1: Find all solutions (z,y) of the 2 x 2 linear system

2z —y=0
—r 42y =3.
Provide both a geometrical and an analytical solution.
Solution:
y“
20 —y =0
/
y =2z
—z +4x = =1 (1,2)
r+4dr=3 = =z o2y =3
y =2
Answer: (x =1,y = 2) 0 s

Theorem 1. Given a 2 X 2 linear system, only one of the following statements holds:

(i) There exists a unique solution;

(ii) There exist infinitely many solutions;

(iii) There exists no solution.

Proof:

yﬂ yﬂ yﬂ

Sy
By
8
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5.1.2. The Column Picture.

Remark: The concept of a linear combination of vectors, and the

idea of vector space come from the column picture

Example 2: Write the system in Example 1 as a linear combination of column vectors,
20—y =10
—x 42y =3.
Solution:

We know that
(2)z+(-1)y=0,

(-1)z+(2)y=3.
We introduce new objects, column vectors

) e [a] o=l

We denote column vectors as follows,

o = [21} e = [_21} e [(?j |

We can represent these vectors in the plane.

The solution is (x = 1,y = 2). This defines the linear combination of column vectors,

=[]
I3 e R | i e

yll yll

So we define

20,2

a; a;




4 CONTENTS

Remark: The example above is the motivation for the following definition.

Definition 1. The linear combination of the n-vectors

U U1

Un Un

with the real numbers a and b, is defined as

Uy V1 auy + buvy
+b| | =

11’” /UTL

au—+bv=a

auy + by,

Remark: Theorem 1 can also be proven using linear combination of column vectors.

Theorem 1. Given a 2 X 2 linear system, only one of the following statements holds:

(i) There exists a unique solution;

(ii) There exist infinitely many solutions;

(iii) There exists no solution.

Proof:

uir + vy = by
UsT + VoY = by

yh y 4 y4
/] /
z x x
y b y
x2 v zo 4 v x2
b u
u U
1 g T
v
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5.1.3. The Matrix Picture.

Remark: The concept that a matrix is a function on vectors

comes from the matrix picture.

Example 3: Write the system in Example 1 as a matrix acting on a column vector,
20—y =10
—x 42y =3.

Solution:

Rewrite the system as

5] BB

Define the matrix-vector product such that

2 1) |z| | 22y — @,
-1 2| |z |-z, + 22|

Introduce the matrix notation

A:[_Zl _21]» “’:m b:m'

Then, the linear system above is interpreted as:

Ax=0b.
Given A and b we need to find .
<
Remark: The example above motivates the following definition.
Definition 2. An m X n matrix A is an array of numbers
aixz - Qlin
m rows,
A= s :
n columns,
am1 e Qmn,
wherea;; € RorC, fori=1,---,m,j=1,--- ,n. Asquare matrix
isann X n matrix, and the diagonal coefficients in a square
matrix are a;;
Remark: A matrix is a function that acts on a vector and

the result is another vector.
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Remark: We define linear combinations and multiplications

of matrices.

e Addition of two matrices of the same size:

aiy - Qip bin - bin ayn +bun - a by
AtB=| ] =1

m1 - Amn bml o bmn am1 + bml o Gmn + bmn
e Multiplication of a matrix A by a scalar c:

aix - Qin cayyp v Cain
cA=c| : : =

Am1 e Umn Cam1 T Clmn

e Matrix multiplication is defined for matrices such that the numbers of columns in

the first matrix matches the numbers of rows in the second matrix.

A times B defines AB
mxmn nx/{ m x {

AR — |@1 @2 bii biz| _ (a11b11 + a12b21)  (ar1bi2 + a12b22)
az1 a2 bar  bao (azlbn +a22b21) (a21b12—|—a22b22)'

Example 4: Compute AB and BA, where A = E g] and B = {_11 _11].

Solution: We find that

1 2] (-1 1 1 -1
AB - = s
1 2 1 -1 1 -1
-1 1 1 2 0 0
BA = =
1 -1] 1|1 2 0 0

Notice that in this case AB # BA. The product is not commutative.

Notice that BA =0 but A # 0 and B # 0. <
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5.2. Vector Spaces

Section Objective(s):
e Vector Spaces, Subspaces, and Spans.

e Linear (In)dependence.
e Basis and Dimension.

Remarks:

e The row picture of linear algebraic equations originates the idea

of a vector space.

e A subspace is a smaller vector space inside a

larger vector space.

e The span of a few vectors is the set of all linear combinations

of these vectors.

e The span of a vectors creates a subspace

e Vectors are linearly independent if none of them

is linear combination of the others.

e A basis of V is the largest 1.i. set inV.
e A basis of V is the smallest spanning set in V.
e The dimension of V is the number of basis vectors

e The dimension of V measures how big isV.
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5.2.1. Vector Spaces, Subspaces, and Spans.

Definition 1. The vector space R", over R, is the set of n-vectors with

real components, together with the operation of linear combination ,

U1 U1 w1 + v U1 auq
U Vo Ug + Vo U2 aus
u+v= + = , au=a = , a € R.
Uy, Un Uy + Up Uy, AUy,
Remarks:
e The vector space C™, over C, is the set of n vectors with complex
components, together with the linear combination operation.

e We will use V' to denote the vector space R™ or C" ,

and F to denote the field of scalars R of C.

Definition 2. The subset W C V of a vector space V over the field of scalars F is

called a subspace of V iff for all u,v € W and all a,b € T,

au+bve W

Example 1: Planes and lines through the origin are subspaces of R3.

3
€2

Not in W

T

A subspace must contain

0} No circles, no nonlinear curves are subspaces.
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Example 2: Which of the following sets W are subspaces of the vector space V7
1) V=RL W= {u: [51} such that ug = 0}.
2

Yes, horizontal line containing [8} .

(2) V=R W= {u— {Zl} such that us = 1}.
2

No, horizontal line not containing {8} .

B) V=RELW=<{u= Y1 such that uy +up =0 .
Uz

Yes, line slope -1 containing [8] .

) =[] =[]

Uy
(4) V=R3 W ={ u= |uz| such that uy = 2us
us
U1 1 0
Yes, plane of vectors |2usz| =wuy |0 +us |2].
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Remark: We finally introduce the definition of a span of a finite set of vectors.

Definition 3. The Span of a finite set S = {uy,...,u,}

in a vector space V over the field of scalars FF is

Span(S) = {uw € V such that u=ciu; + - -+ + ¢ u,, wherecq,...,c, € F}.

Theorem 1. The Span(S) in a vector space V is a subspace of V.

Proof:

e The Span(.S) contains all possible linear combinations of the elements in S.
e So Span(S) is a vector space.

e Span(S) C V, then the Span is a subspace.

Example 3: Give a geometric description of the following.

- > _

(1) Span({v1,v2}) in R?, where v; = |[1| and v, = |2|. Line
_O_ _0_
1 o

(2) Span({vi,v2}) in R?, where v; = |1| and v, = |0|. Plane
0 0
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5.2.2. Linear (In)dependence.

Definition 4.

A finite set of vectors {vy,..., v}

in a vector space

is called linearly dependent

{Cl,..

.,Ck}

vy + -+ v = 0.

The set {vy,..., v}

iff there exists a set of scalars

, not all of them zero, such that,

is called linearly independent

iff the only solution of the equation above is

0120, ey Ck.:O.

Remarks:

e Linear dependence means a vector

is l.c. of the others.

e Linear independence means no vector

is l.c. of the others.

Example 4: Determine if the following sets are linearly independent and justify your

claim.

1 0 0
(2) O, (1|, 3| p. Linear independent.
0 2 0
1 0 0 0 c1=0 c1=0
c1 |0 +eco |1] 4¢3 |3 = {0 = co+3c3 =0 = =0
0 2 0 0 2¢y = 0, 3 = 0.
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5.2.3. Basis and Dimension.

Definition 5. A set S C V is a basis of a vector space V = {R",C"} iff

(1) S is linearly independent

and

(2) Span(S) =V.

Example 5: Determine if the following sets provide bases for the given vector space.

1 0
(1) V=R3 S=<¢ [0]|,]|1| . No, S is too small.
0 0

(2) V=R?* S = { Ll)] , B} } No, the Span(S) is the horizontal line containing [8}

(3) V=R3 S=<S10|,|1|,]|3] 7. Yes, Sis Li. and Span(S) = R3.
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Theorem 2. The number of vectors in any basis of a vector
space V = {R",C"} is the same as in any other basis of V.
Definition 7. The dimension of a vector space V = {R",C"} is n,

the number of vectors in any basis of V.

Example 6: Give an example of two different bases of R2.

Example 7: Determine the dimension of the vector space given by

0 0 0 0
W =Span< (0, |2], (3], |4
2 2 0 5

W has dimension 2.



5.3. INVERTIBLE MATRICES. EIGENVALUES AND EIGENVECTORS

5.3. Invertible Matrices. Eigenvalues and Eigenvectors

Section Objective(s):
e Invertible Matrices.
e Determinant of a Matrix.
e Eigenvalues and Eigenvectors of a Matrix.

Remarks:
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Example 1: Solve the linear system Az = b given below and find the matrix A such that
the solution can be written as x = Ab.

_ _ a b _ X1 o bl
B
Solution:
a b 1 by ary+bxrs =b
= =
c d| |w2 ba cry +day = by

d(aml +bxy = bl)
= (ad—bc)an-i—(bd—bd)xg:dbl—bbg
—b (6331 +dxg = bg)

Introduce A = ad — be. Assume that A = 0, then

1
Xr, = Z(dbl — bbg)
A similar calculation gives

1
To = Z(—Cbl + abg).

This result can be written in matrix form as follows,

x 1 | dby—0bb 1 (d —=b||b -
xr = ! :Z ! ° :K ' :Ab7
To —cby +aby —c a by
so we get that
- 1]d —=b
A=—
A —c a

The matrix A is the inverse of matrix A, and it is denoted as A1, that is,

a b 1|d —b
Az = b, A= = w:A_llh A_le )
c d

—C a

A =ad—bc # 0.
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Definition 1. A square matrix A is invertible iff there is a matrix A~! so that

Example 2: Verify that the matrix and its inverse are given by
12 2 113 =2
A_L 3]’ A _4{—1 2}

Solution:

We have to compute the products,

= A(Ail) = I5.

It is simple to check that the equation (A_l)A = I, also holds.

Theorem 1. Given a 2 x 2 matrix A, let A be the number

A:{Z Z}, A =ad —bc

Then, A is invertible iff A # 0. Furthermore, if A is invertible, its inverse is

1|1 d —b
-1 _ *
St EA

Remarks:
(a) The number A = det(A) is called the determinant of A.

(b) A determines whether A is invertible or not.
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] , given in Example 8.2.15.

Example 3: Compute the inverse of matrix A = L g

Solution: We first compute A = 6 — 4 = 4. Since A # 0, then A~! exists and

Example 4: Find a matrix X such that AXB = I, where

NN A

Solution:
1 3

Is A invertible? det(A) = =1-6=-5%#0,s0 Yes.
2 1
2 1

Is B invertible? det(B) = =4—-1=3%#0, so Yes.
1 2

We then compute their inverses,

We can now compute X,

AXB=1 = A YAXB)B'=A"'YB"' = X=A'B"l.

Therefore,
1 1 =312 -1 1 5 =7
X=— - =_——
Do 1|31 2 151 5 4
so we obtain
7
_ 3 15
X = 1
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Definition 2. The determinant of a 2 x 2 matrix A = [all alQ} is

a21 A22
a1l a2
det(A) = = 11022 — A120921
a1 Q22
ai; a2 Q13
Definition 3. The determinant of a 3 x 3 matrix A = |as; a2 as3]| is

az1 asz2 ass

ailp  aiz2 a13

a a a a a a
det(A) = |a21 aso as3| = aq 22 23 —aqs 21 23 +a13 21 22 )
az2  a33 az1 433 asl  a32
as1 as2 ass
Example 5: Compute the determinant of the 3 x 3 matrix,
1 3 -1
2 1 1
3 2 1
Solution:
1 3 -1
1 1 2 1 2 1
2 1 1]=(1) -3 + (-1
2 1 3 1 3 2
3 2 1

=(1-2)-3(2-3)—(4-3)

-1+3-1

<

Exercise: Show that the determinant of an upper triangular matrix (one all of whose entries
below the main diagonal are zero) is the product of the diagonal coefficients. How about a
lower triangular matrix?
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5.3.1. Eigenvalues and Eigenvectors of a Matrix.

Definition 4. A number A and a nonzero n-vector v are an eigenvalue and eigen-
vector (eigenpair) of a square matrix A iff they satisfy the equation

Av=\v

Remarks:
(a) An eigenvector v determines a particular direction in the space that

under the action of the matrix A.

remains invariant

(b) That is, if v is an eigenvector, so is av for a € R

A(av) = a Av = alv = A(av)

Example 6: Verify that the pair A;, v; and the pair \,, v, are eigenvalue and eigenvector

pairs of matrix A given below,
1

A =4 v = [J ,

-1

1 3}
Ay = —2 'vQ{l}

A= {3 1
Solution: We just must verify the definition of eigenvalue and eigenvector given above. We

start with the first pair,

1 3 1 4 1
A’Ul = = =4 = )\1'01 = A’Ul = /\11)1.
1

A similar calculation for the second pair implies,

1 3] [—-1 2 -1
=-2 =v, = Av,=\v,.

Av, = =
3 1 1 —2 1
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Remark: How do we find the eigenvalues and eigenvectors of a square matrix?

Theorem 2. (Eigenvalues-Eigenvectors)
(a) All the eigenvalues \ of an n X n matrix A are the solutions of

det(A — AI) =0

(b) Given an eigenvalue A of an n X n matrix A, the corresponding eigenvectors v are
the nonzero solutions to the homogeneous linear system

(A—A)v=10

Remark: An eigenvalue A is a number such that A — Al is not invertible
. . . . 1 3
Example 7: Find the eigenvalues A and eigenvectors v of the matrix A = 3 1l

Solution: We first find the eigenvalues as the solutions of the Eq. (??). Compute

1 3 10 1 3 A0 (1-X 3
31 0 1 31 0 A 3 (1=X

Then we compute its determinant,

1-x 3 A=4,
0 =det(A—\) = =A-1?-9 =

3 (1-)) A= 2.

We have obtained two eigenvalues, so now we introduce A, = 4 into Eq. (??), that is,

1-4 3 -3 3
A—4l = =
3 1—-4 3 -3
Then we solve for v* the equation
-3 3 vy 0
(A—4Dv' =0 < =
3 =3| |v; 0

-3 3 1 -1 1 -1 vy = vy,

3 -3 3 -3 0 0 vy free.
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All solutions to the equation above are then given by

+ U; 1 + + 1
v = = v, = v = ,
(M 1 1

where we have chosen v; = 1. A similar calculation provides the eigenvector v~ associated

with the eigenvalue \_ = —2, that is, first compute the matrix
3
A+2I =
3 3

then we solve for v~ the equation

3
(A+2Hv =0 < =

w
w
<
N
o

v, 1 1

where we have chosen v, = 1. We therefore conclude that the eigenvalues and eigenvectors

of the matrix A above are given by
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5.4. Eigenvalues and Eigenvectors.

Section Objective(s):
e Figenvalues and Eigenvectors.
e Computing Eigenpairs.

Remarks:

e A matrix acting on a vector usually changes the direction of the vector.

e An eigenvector of a matrix A determines a particular direction

in space that is invariant under the action of A.
e The eigenvectors of the coefficient matrix of a lin-
ear differential system will play an important role to find solu-

tions to the system.
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5.4.1. Eigenvalues and Eigenvectors.

Definition 1. A number A and a nonzero n-vector v are an eigenvalue

and eigenvector also called eigenpair , of a square

matrix A iff they satisfy the equation

Av = .

Remark: The length of an eigenvector is not important

because if v is an eigenvector, so is (av) for a € R

A(av) = a Av = alv = \(av).

Example 1: Verify that the pair A;, v, and the pair \,, v, are eigenpairs of matrix A,

1

Lo 1 M=t ”1:[—1]’
-2 =3)7 1
)\2:_2 Uy = _2.

Solution: We just must verify the definition of eigenvalue and eigenvector given above. We

start with the first pair,

0 1 1 -1 1
A’Ul = — = —1- = )\1'01 = A'Ul - A1v1-
-2 -3 -1 1 -1

A similar calculation for the second pair implies,

0 1 1 -2 1
A'UQ = - = _2 == )\2'02 = A'Uz = )\2/02.
-2 =3 [-2 4 -2

Interactive Graph: A Geometrical Meaning of Eigenpairs.


http://mathstud.io/?input[0]=%3D%3D
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5.4.2. Computing Eigenpairs.

Remarks:
e The eigenpairs equation can be written as

(A=X)v=0, v#0.

e This equation says that the matrix (4 — \I) is not invertible

e There is a way to determine whether this matrix is invertible ,

det(A —AI) =0.

Theorem 1. (Eigenvalues-Eigenvectors)
(a) All the eigenvalues A of an n X n matrix A are the solutions of

det(A — \I) = 0.

(b) Given an eigenvalue A of an n X n matrix A, the corresponding eigenvectors v are
the nonzero solutions to the homogeneous linear system

(A= A)v=0.

Remarks:
e We look for numbers A such that the matrix (4 — AI)

is not _invertible.

o Given an nxn matrix A, the function p(\) = det(A — \I)

is a polynomial degree n

e This polynomial p(\) = det(A — A1) is called

the characteristic polynomial of matrix A.
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Example 2: Find the eigenvalues A and eigenvectors v of the matrix A = B ﬂ .

Solution:

We first find the eigenvalues as the solutions of the equation det(A — AI) = 0.

13 10 13 A0 (1-) 3

N
\
>~
~
Il
\
>~
Il
\

31 01 31 0 A 3 (1-X)

Then we compute its determinant,

1-A) 3 ) A=4,
0 = det(A— AI) = =A-1%-9 =

3 (1=X) A= —2.

We have obtained two eigenvalues, so now we introduce A, = 4 into Eq. (??), that is,

Then we solve for v* the equation

(A—d)v" =0 < =

3 -3 3 =3 0 0 vl

where we have chosen v; = 1. A similar calculation provides the eigenvector v~ associated

with the eigenvalue \. = —2, that is, first compute the matrix

A+21=
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then we solve for v~ the equation
3
(A+2Hv =0 < =

The solution can be found using Gauss elimination operations, as follows,

3 3 11 11 Uy = — Uy,

3 3 3 3 0 0 v

, free.

All solutions to the equation above are then given by

-, -1 -1
v, 1 1
where we have chosen v, = 1. We therefore conclude that the eigenvalues and eigenvectors

of the matrix A above are given by



6 CONTENTS

21

Example 3: Find the eigenvalues A and eigenvectors v of the matrix A = {0 9

Solution:

We first find the eigenvalues as the solutions of the equation det(A — AI) = 0.

2 1 10 2 1 A0 2-x 1
0 2 0 1 0 2 0 A 0 (2=

Then we compute its determinant,

(2—-X\) 1
0 =det(A—\) = =A=22-0 = N=2
0 (2- 1)

We have obtained only eigenvalue. Now we introduce it into the equation voe v,

A—-2]= ,
0 0
then we solve for v the equation
0 1| |v 0
(A—QI)'U:O <~ = = '02:0
0 0] |v, 0

Vs 0 0
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5.5. Diagonalizable Matrices

Section Objective(s):
e Diagonal Matrices.
e Diagonalizable Matrix.

Remarks:
e Diagonal matrices are simple to work with, but
they do not appear so often in physical applications.
e General matrices are difficult to work with, since the matrix product

is complicated and not commutative

e Diagonalizable matrices are an intermediate case:
— They are general enough to often appear in physical
applications.
— The are simple enough to work with.
— Functions of diagonalizable matrices are simple

to compute.
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5.5.1. Diagonal Matrices.

Definition 1. An n x n matrix A is diagonal iff
all DY 0
A= :
0 Ann
Remarks:
a/ll ... O
e Notation: . | =diag [an, e ,ann} .
0 - ap
e Matrix operations are simple with diagonal matrices.

Example 1: Given A = B (7)] , compute A2, A3 and A™ for a general natural number n.

Solution:
2 0 2 0 220
A% = = ,
0 7 0 7 0 72
22 0| (2 0 22 0
A% = A%A = =

0 7| |0 7 0 7

By induction, using A" = A~V A, one gets

2" 0
An/ —
o 7™
<
Remarks: Consider a diagonal matrix D = diag [an, cee ,aym}:
e Then D" = diag [a’f’l, e ,aﬁn]
e The eigenvalues of a D are ajy, - , Gnp

e The corresponding eigenvectors are

1 0 aiq 0 1 1

vi= ||, ,v,=]:|, sincefor example A= | : : | =ar



5.5. DIAGONALIZABLE MATRICES 3

5.5.2. Diagonalizable Matrices.

Remarks:
e Diagonal matrices do not appear often in physical applications.
e But diagonalizable matrices are very common in physical aplica-
tions.
Definition 2. A square matrix A is diagonalizable iff there exists

an invertible matrix P and a diagonal matrix D such that
A=PDP".

Remark: A = PDP~! is equivalent to P~'AP = D

Example 2: Show that the matrix A = [Zl’) ﬂ is diagonalizable with P = F _1} .

1 1
Solution:
111 1
A=pPDP™' = P l'AP=D, Pl'=_
211 1
1 11 3] {1 =1 1 1|14 2 4 0
PlAP = == = =D
—1 1|3 1|t 1] 2|1 1|4 -2 0 —2
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Example 3: If A is a 2 x 2 with eigenpairs A1, v; and Ay, vs, then show that
AP = PD, where P= ['Ul, ’UQ], D= diag [)\1, )\2} .

Solution:

A0
AP =A ['Ul,’vgjl = [A’Ul,A’UQ] = [/\11)1,/\2'02] = [’Ul,’l)g] ! = PD.

0 Az

Since

AP=PD = A=PDpP L

<

Remark: The next result says that this result and its converse are true for n x n matrices.
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Theorem 1. An n X n matrix A is diagonalizable iff A has

n eigenvectors linearly independent.

Furthermore, if A\;, v;, for i = 1,--- ,n, are eigenpairs of A, then A = PDP~!, where

P:[vlv"'vvn}a D:dlag[)\lvv)\n]

3 01
Example 4: Is the matrix A= |0 3 2|. diagonalizable?
0 0 1
Solution:
3-2X) 0 1
e O0=det(A-X)=| 0 (3-)) 2 |=0B-X2(1-X)
0 0 (1-2))
e So A\ =1, Ay =3.
2 0 1| |un 0 2v1 = s ~1
o For \y =1, |0 2 2| |vy| = |0] s0 vy =—v3 = U= [-2].
_O 0 0 U3 0 U3 free 2
00 1]]n 0 vy free 1 0
e For \o =3, |0 0 2 vo| = |0 S0 § v free = vo = [0, v3=|1].
0 0 2| |ug| [0 s =0 0 0

e Then, A has three eigenvectors linearly independent, so A is diagonalizable and

-1 10
A=PDP™', where D =diag[1,3,3], P=|-2 0 1
2 0 0
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Remark: Matrix P is not unique , since the eigenvectors are not unique
o ) 2 20 . 1 00
Another choice is A= PDP ' withP=|4 0 5 D=0 3 0
-4 0 0 0 0 3
3 1 1
Example 5: Is the matrix B= [0 3 2| diagonalizable?
0 0 1
Solution:
3-X) 1 1
e 0=det(B-X)=| 0 (3-)) 2 |=B-N*1-)
0 0 (I—=2X)
® SO)\1:1,A2:3.
2 1 1| [u| |0 2v1+ vy =~ 0
e For \y =1, |0 2 2| |vy| = |0] s0 Vg = —vU3 = U1 = [—1].
_0 0 0] |vs 0 vg free 1
01 1| |u|l Jo vt v =0 0
e For \a =3, |0 0 2 vy| = 0] so vy free = v = |[1].
_0 0 —2| |vs 0 vg = 0 0

Then, B has only two eigenvectors linearly independent, so B is not diagonalizable.
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5.6. The Matrix Exponential

Section Objective(s):
e The Exponential of a Matrix.
— Diagonal Matrices.
— Diagonalizable Matrix.
e Properties of the Matrix Exponential.

Remarks:
e We know how to compute linear combinations of matrices.
e We know how to compute multiplication of matrices
e With these operation it is possible to define functions of matrices.
e We define functions of matrices using power series.
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5.6.1. The Exponential of a Matrix.

Review: Recall the definition of the exponential of real numbers.
o f(x) =e" is defined as:

— For n natural number, ¢ = ¢e- - - ¢, for n-times

— Then, e’ =1 , and for negative integers —n
e "= i
en
— Then, for rational numbers, m/n , with m, n integers,

— Then, for irrational numbers z, is done by a limit,
e’ = lim en
%%a:
It is not clear how to extend this definition to matrices.

e The exponential is the inverse of the natural log:

and In(y), is

1
In(z) = / —dy, x € (0,00).
1 Y
It is not clear how to extend this definition to matrices.

e The exponential function can be defined also by its Taylor series

x .k 2 3

e NV _ g P T

D e TR I

k=0
This series expression can be generalized square matrices.
Definition 1. The exponential of a square matrix A is
o0
A™ A A2 A3

A _ i T

‘ _Z)n! R TRACTIRE IR
n—

Remark: It can be shown that the infinite sum above converges for all square matrices.



5.6. THE MATRIX EXPONENTIAL

5.6.2. The Exponential of a Matrix: Diagonal Matrices.

Example 1: Compute e?, where A = {(2) g}
Solution:
We start with the definition of the exponential

eA:ZF:ZE 0o 7

n=0 ’ n=0

But,
2
2 0 2 02 0 220
0 7 o 7110 7 0 72

It is simple to see that, since the matrix A is diagonal,

n

2 0 2" 0
0o 7 o 7™
Therefore,
SN A N L B Do
A Z - _ Z n! o n=0 n!
e = = =
n=0 n! 0 Ik n=0| 0 %7: 0

2

fe'e) 7’".
n=0 nl
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Theorem 1. If D = diag [dl, e ,dn], then

ediag[dh o ’d”] = dlag [edla e

,671

]
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5.6.3. The Exponential of a Matrix: Diagonalizable Matrices.

Remarks:
e The exponential of a diagonalizable matrix is also simple to com-
pute.
e We start computing powers of a diagonalizable matrix.

Theorem 2. If A is diagonalizable, with
A=PDP™ " = Pdiaglai1, - ,ann] P7",
then
A? = PD*P~! = Pdiag [(a11)?, - , (ann)?] P77,
A" = PD"P~! = Pdiag [(a11)", -, (ann)"] P71

Proof of Theorem 2:
First the case A2,
A2=AA
= (PDP~ ') (PDP™)
= PD?*P!
Then induction. Assume that A"~ = PD" 1P~1 then
A" = A"l A

= (PD"'P Yy (PDP™)

=pD"p~!
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Theorem 3. The exponential of a diagonalizable matrix A, with

A= PDP~! and D diagonal ) is

e = pePpt,

Proof of Theorem 3: Recall that

A" =PD"PL.

We then compute the exponential of A as follows,

[e%¢] 1 . e3¢} 1 i '] L
eA:ZEA =>_ 7 (PDPT) :ZE(PD'P b,
k=0 k=0 """ k=0 """

On the far right we can take common factor P on the left and P~! on the right,

A = P(i % D") Pl
k=0

The sum in between parenthesis is e?,

e = peP Pt

This establishes the Theorem.
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3 1] and t € R.

Example 2: Compute e?, where A = [1 3

Solution: To compute e? we need the decomposition A = PDP~!, which in turns im-
plies that At = P(Dt)P~!. Matrices P and D are constructed with the eigenvectors and

eigenvalues of matrix A. We computed them in the previous examples.

—1
)\1 = 4, v = and )\2 = —2, Vo =
1 1
Introduce P and D as follows,
1 -1 111 1 4 0
P= = P l=c , D=
11 21211 0 -2
Then, the exponential function is given by
—1] |e* 0 11
eAt _ PeDtP—l _ %
11 0 e 2 -1 1

Usually one leaves the function in this form. If we multiply the three matrices out we get

(¥ +e72t) (et — e~2)

(¥ —e=2t) (e + e~ 2)

1
A _ 1
c T3
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5.6.4. Properties of the Matrix Exponential.

Remark: We now summarize the main properties of the matrix exponential

Theorem 4. If A is an n X n matrix and s, ¢ are real numbers, then

e Group property

eAs eAt _ eA(s+t)'

e Inverse exponential

(eA) oA

e Derivative of the exponential,

4

eM = At =M A
dt

e If A, B are n x n matrices such that AB = BA

, then




6.1. TWO-DIMENSIONAL LINEAR SYSTEMS 1

6.1. Two-Dimensional Linear Systems

Section Objective(s):
e 2 x 2 Linear Differential Systems.
e Diagonalizable Systems.
— Real Distinct Eigenvalues.
— Complex Eigenvalues.
— Repeated Eigenvalues.
e Non-Diagonalizable Systems.
— Repeated Eigenvalues.

Remarks:
e We introduce 2 x 2 systems of linear differential
equations.
e We focus on homogeneous systems with constant
coefficients.

e If the homogeneous linear differential system is diagonalizable

then we have a formula for all the solutions.

e If the homogeneous linear differential system is not diagonalizable

then the formula above give only half the solutions.
e The other half of the solutions can be found generalizing ideas
from second order scalar equations with repeated

roots of their characteristic polynomial
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6.1.1. 2 x 2 Linear Differential Systems.

Definition 1. A 2 x 2 first order linear differential system is the equation
/(t) = A(t) =(t) + b(t),
where the coefficient matrix A, the source vector b, and the unknown vector x are

a11(t) aioft by (¢ x(t
PR TG e S (0] RN O

a1 (t) a922 (t) b2 (t) To (t)

The system above is called:

e homogeneous iff b=0,
e of constant coefficients iff A is constant,
e diagonalizable iff A is diagonalizable.
Remarks:
e In this class we focus on homogeneous systems with

constant coefficients.

e Diagonal systems are very simple to solve.

Example 1: Find functions z,, x, solutions of the first order, 2 x 2, constant coefficients,
homogeneous differential system

/
T, = 314,

/
Ty = 2T,.

Solution: In this case, the system is decoupled, so we are just solving 2 (independent)
scalar equations. Recall that z,(t) = c;e3 and z,(t) = c,e?'. In vector notation we get
x4 (t) ¢y et 1 0

x(t) = = =c St e, e
25 (t) ¢y €%t 0 1
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6.1.2. Diagonalizable Systems: Real Eigenvalues.

Example 2: Now, we consider a system where the equations are coupled. Find functions
x4, T, solutions of the follwoing system of ODEs

!
Ty = Ty + 325,

/
T, = 3Ty + Ty.

Solution: We saw that solving a decoupled system (diagonal matrix) is easy. If we have a
diagonalizable matrix, A = PDP~! ie., D = P~'AP. Multiply the differential equation
¥ = Az by P71,

(P lz) = (P*AP)(P 'x),

so introduce y = P~ 'z, and the equation of ¥ is then

y = Dy.

To find P and D for the given matrix, find the eigenpairs of A. The solution is

1 -1
AN=4, v = , and A =-2, wv,=
1 1
Therefore, matrix A is diagonalizable with
1 -1 4 0 111 1
P= , D= , P—1=5
1 1 0 —2 -1 1
That is,
1
Y1 111 1| [z 1| o1+ 2 Y1 = 5(331 + 15)
2 2 1
Yo —1 1 Lo —Ty + Ty Yo = 5(-,{51 + 3?2)
The differential equation for y is ¢ = D y, hence
! / 4t
im 4 0 Y1 Yy = 4y, h==¢c¢e

Yo 0 2] v Yy = —21, Yo = cpe 2t
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We now transform back to x = Py,

T, 1 -1 ¢y et cett —c e 2t
€Ir = = =
2y 1 1 c e 2 crett f e
that is,
x4 (t) 1 -1
x(t) = =c et 4+ ¢, e 2t



6.1. TWO-DIMENSIONAL LINEAR SYSTEMS

Theorem 1. (Homogeneous Diagonalizable Systems) If an n x n constant matrix A is

diagonalizable , with eigenpairs

(>\17 vl)v ) ()‘nv ’Un),

then the general solution of @ = A x is

At t

z(t) = c, e’ vy 4t ep et o,

A

Remark: Each function zx(t) = e*? vy, is solution of the system 2 = A x, because

.’13;€ = /\k eAkt Vg,

Az, = (A vk.) Mt = ()\k vk) Mt = A\ et oy,

Example 3: Use the theorem above to find the general solution of the IVP

d = Aa, A:[f’o _2] w(o)z{;}.

Solution: Find the eigenpairs of A. The solution is

. |1 L N
A= —1, U—|:2:|, and A= -2, v—[J.

So the general solution is

z(t) = c.e B] +ce m .

Now we find the coefficients ¢, and c. that satisfy the initial condition

bl ===l ] = [ 3] )= 13

The inverse of the coefficient matrix is

12170 1[5 —2]7! Lo felo s 2] [t
2 5| 5-4[|-2 1 el =2 13 |1
We conclude that ¢, = —1 and c¢. = 1, hence

() = —et B] b m o o)

_e—t + 26—2t
—2e t 4572
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6.1.3. Diagonalizable Systems: Complex Eigenvalues.

Remarks:

e A real matrix can have complex eigenvalues.
e But in this case, the eigenpairs come in conjugate pairs, A_ = Ay, and v_ =

<l

Theorem 2. (Complex and Real Solutions) If a 2 x 2 matrix A has eigenpairs
A = axif, vy = a*ib,

where «, 3, a, and b real, then the equation ¥ = A x has fundamental solutions

but it also has real-valued fundamental solutions

x(t) = (a cos(Bt) — b sin(ﬁt)) e,

x,(t) = (asin(Bt) + b cos(Bt)) e

Proof of Theorem 2: We know that the solutions x are linearly independent. Now,

zi = (a+ib) TP
= e (a4 ib) e*P!
= e*(a=+ib) (cos(Bt) + isin(pt))
= ¢ (a cos(Bt) — b sin(Bt)) +ie* (a sin(Bt) + b cos(St)).

Therefore, we get

x;, = e (a cos(Bt) — bsin(Bt)) + ie* (a sin(Bt) + b cos(Bt))

z_ = e (a cos(Bt) — b sin(Bt)) — ie™" (a sin(Bt) + b cos(Bt)).
Since the differential equation = Az is linear, the functions below are also solutions,

(" + @) = (a cos(Bt) — b sin(Bt)) e,

€T =

‘,_. [NCRIY

x, = — (' — @) = (asin(Bt) + b cos(8t)) e*.

[\~
<
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Example 4: Find real-valued fundamental solutions to the differential equation

;o 12 3
T = Ax, A{_3 2}

Solution: Fist find the eigenvalues of matrix A above,

2-X 3 ,
0= =(A=2%+49 = A =2+3i
3 (2-))

Then find the respective eigenvectors. The one corresponding to A is the solution of the

homogeneous linear system with coefficients given by

2—(2+ 3i) 3 -3¢ 3 —i 1 1 i 1 1
= — — -
-3 2—(2+3i) -3 =3 -1 —i -1 —i 0 0
. 4 I
Therefore the eigenvector v(*) = is given by
vy
—i
o = i) = W =1, W =i, = W) = . A =243
1

The second eigenvector is the complex conjugate of the eigenvector found above, that is,

i
o) = . A =2-3i.
1
Notice that _
0 -1
o) = + 1.
1 0

Then, the real and imaginary parts of the eigenvalues and of the eigenvectors are given by
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So a real-valued expression for a fundamental set of solutions is given by

20 — (
22 — (

0

1

0

cos(3t) —

sin(3t) +

0

-1

0

sin(St)) et = 2=

cos(3t)) = 2=

sin(3t

60| o
cos(3t)
— cos(3t

(3t) 2t

sin(3t)
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6.1.4. Diagonalizable Systems: Repeated Eigenvalues.

Remark: 2 x 2 linear differential systems with a diagonalizable coef-

ficient matrix with a repeated eigenvalue are very simple to solve.

Theorem 3. (Diagonalizable with Repeated Eigenvalues) Every 2 x 2 diagonalizable
matrix with a repeated eigenvalue )\, must have the form

A:>\0I.

Proof of Theorem 3: Since matrix A diagonalizable, there exists a matrix P invertible

such that A = PDP~!. Since A is 2 x 2 with a repeated eigenvalue \,, then

0
D = = )\0]2.
0 )\0

Put these two fatcs together,

A=PXNIP P =)\PP ' =)\]I.

Remark: : The differential equation @ = A\, I x is already decoupled

/
"I"i = )\Oxl

, = too simple.
.'172 = )\0 Ty
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6.1.5. Non-Diagonalizable Systems: Repeated Eigenvalues.

Example 5: Find fundamental solutions to the system
; |6 4
r=Ax, A= [_1 9

Solution: We start computing the eigenvalues of A.

66—\ 4
p(A) = =A+6)A+2)+4=2+8\+16 = (A +4)°
-1 —2-2A

We have a repeated eigenvalue A\, = —4. The eigenvector v is the solution of (A+4I)v = 0,

—6+4 4 o 0 -2 4 Uy 0

—1 —24+4| |v, 0 -1 2 Uy 0

So we have only one equation

Uy 2
vy =20, = wv= = Uy
Vs 1
and choosing v, = 1 we get the eigenpair A\, = —4, v = . So one fundamental solution is
1
2
Ty = e,
1

However, we do not know what is a second fundamental solution in this case.
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Theorem 4. (Non-Diagonalizable with a Repeated Eigenvalue) If a 2 x 2 matrix A has

a repeated eigenvalue A, with only one eigen direction

determined by v,, then &/ (t) = A 2(t) has the linearly independent solutions
x(t) = eM o, x,(t) = e (vt +w),
where the vector w is one solution of the algebraic linear system

(A= MN)w=wv.

Example 5-continued: Find the fundamental solutions of the differential equation

;L _|-6 4
T = Az, A_[l 2]

Solution: We already know that an eigenpair of A is

2
A=—1, v=
1
Any other eigenvector associated to A = —1 is proportional to the eigenvector above. The

matrix A is not diagonalizable, so we solve for a vector w the linear system (A + 41)w = v,

-2 4| |w, 2
= = —w+2w,=1 = w;, =2w,—1.
-1 2| |w, 1
Therefore,
Wy 2wy, — 1 2 -1
w = = = w = Wqy +
W, W,y 1 0
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Therefore, a fundamental set of solutions to the differential equation above is formed by
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6.2. Two-Dimensional Phase Portraits

Section Objective(s):
e Real Distinct Eigenvalues.
— A_ < Ay <0, Sink (Stable).
— 0 < A_ < Ay, Source (Unstable).
— A_ <0< A40, Saddle (Unstable).
e Complex Eigenvalues.

6.2.1. Review.

Theorem 1. The solutions of @ = Az, with A a 2 x 2 matrix, depend on the
eigenpairs of A, say A,, v., as follows.

(a) If A\, # A\_ and real, then A is diagonalizable and

z.(t) = v, eM, (1) = v_e™t,

(b) If A, = a £ Bi and v, = a =+ bi, then A is diagonalizable and

x,(t) = (acos(Bt) — bsin(Bt)) e,

x,(t) = (asin(Bt) + beos(Bt)) et

(c) If Ay = A- = X, and A is diagonalizable, then A = A\,I and
— 1 Aot — O Aot
x(t) = [O} e’ z(t) = L} e’

(d) If A, = A_ = X\, and A is not diagonalizable, then

Aot

z.(t) = ve o, z(t) = (tv+ w) e,

where

(A= XI)v=0, (A= Xl)w=w.
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Example 1: Sketch a phase portrait and component plots of the of fundamental solutions
of @ = Ax, where the matrix A is given by

A:{_OQ (2)}

Solution: The eigenpairs of the matrix are Ay = +2¢ and v4 = { iz} , thus the real-valued

fundamental solutions are

i (t) = H cos(2t) — m sin(2t) = [_C‘S’fr%i)]
() = H sin(2¢) + m cos(2t) = Eg;g?)}
So, both solutions satisty
lo ()] = yJeos2(26) +sin?(26) = 1, [|ma(®)]] = y/sin’(2t) + cos2(26) = 1,

so their curve in the x;xs-plane is a (part of a) circle radius 1, centered at the origin. The

initial points are
1 0
20 =[], 0=

x4(t)

e Graph each component of @ (t) = [w (t)} as function of ¢.
2

1 2

e Sketch a phase portrait.

Check the following Interactive Graph.


http://mathstud.io/?input[0]=%3D

6.2. TWO-DIMENSIONAL PHASE PORTRAITS

6.2.2. Real Distinct Eigenvalues.
Case \. < A, < 0: Sink (Stable)
Example 2: Sketch a phase portrait of the solutions of the system,

;L -2 -2
r=Ax, A—[l 3],

Hint: The eigenpairs of this matrix are A\; = —4, v; = (1, 1), and Ay = —1, vo = (=2, 1).

Solution:

zt)=cre v +ege g =cre™™

—4

e First plot the fundamental solutions: x;(t) = e~ * vy and z(t) = e~ vs.

e Then choose one more solution to plot: ¢; = ¢o = 1, that is.
z(t) =e Mo +e v

— Find z(0) = v; + vs.
— For t > 1 we get 1(t) — 0 and z2(t) — 0, but such that z(t) — e~ v,.

— For t < —1 we get x1(t) — oo and x5(t) — oo, but such that z(t) — e*l*l v.

Check the following Interactive Graph.


http://mathstud.io/?input[0]=
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Remark: Use the Interactive Graph to find the phase portraits of the solutions to the
following cases:

Case 0 < A\. < A\, Source (Unstable)

Example 3: Find the phase portrait of the solutions of the system

;L 12 2
T =Ax, A_[l 3],

Hint: The eigenpairs of this matrix are A\; =4, v; = (1,1), and Ao =1, vo = (=2, 1).

Case A\. < 0 < A\, Saddle (Unstable)

Example 4: Find the phase portrait of the solutions of the system

;L -2 -3
r=Ax, A[_g _2],

Hint: The eigenpairs of this matrix are A\; = =5, v; = (1,1), and Ao = 1, vo = (-1, 1).

)


http://mathstud.io/?input[0]=
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6.2.3. Complex Eigenvalues.
Case Ay = a+ fi: Spiral (Ellipse if a« =0).

e a > 0, Source (Unstable).
e a =0, Center.
e a <0, Sink (Stable).

Remark: Use the Interactive Graph to help understand the phase portraits of the solu-
tions to the following example.

Example 5: Find the phase portrait of the solutions of the system

;L -2 -3
r=Ax, A[g _2].

Hint: The eigenpairs of this matrix are Ay = —2 + 3i, vy = (i, 1).

a(t) = cre? [‘;ﬁ%ﬂ Tee™ E?r?((gf))]


http://mathstud.io/?input[0]=%3D

Remark: Summary:

CONTENTS

2

A0 <A <Ay

=0, c =1 /C+:1,c_=1
v
------- ke B ct=1,¢c-=0
C+ -1, c- 1
T
\)
1 0 - .
v =—1,¢c- = .- 1
* A4 ] N Ct+ 1
y N
I g .
’ ‘S
ct=—1,¢cc=—-1 ”’ (‘ C+ 0, c-=-1

2

A}\f <Ay <0

cr=—1,cc=—1
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Remark: Summary:

2, a >0

22“04:0
ot
b a
0 T4
°
T2, <0
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6.3. Nonlinear Systems of Equations

Section Objective(s):
Part One:
e Two-Dimensional Nonlinear Systems.
e Critical Points and Linearization.
e The Hartman-Grobman Theorem.
Part Two:
e Competing Species: Extinction.
e Competing Species: Coexistence.

Remarks:

e We know how to solve systems of linear differential equations.

e But systems of nonlinear differential equations are harder to solve.

e In this section we find qualitative properties of the solutions to
nonlinear systems.

e We first find the critical points of the nonlinear system.

e We then find the behavior of solutions to nonlinear systems near
the critical points. (Linearizations.)

e Finally, we glue together the information from all the criti-
cal points to get a qualitative phase portrait of solutions to the
nonlinear system.

e We focus on two versions of the competing species system:

— The case when one species goes extinct.

— The case when both species coexist.
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6.3.1. Two-Dimensional Nonlinear Systems.

Example 1: (The Nonlinear Pendulum)

m(£0)" = —mgsin(0),

UIIIIIIIII I I I IS LIS LI SIS I SIS

that is ' | !
\ | 1
0+ sin(f) = 0. | } £ )
E \ | 9 /
/ \\ : 7/ m
Introduce z; = 6 and x, = ¢’, N | ,/
\\\\ | //,
T, =m, Teeei-eT
T, = —%sin(zl).

Example 2: (Predator-Prey)
Let x be the predator and y be the prey. Then, the equation is

T, = —axy +bxrix,,

Ty = —CT1Ty + dTy.

<

Example 3: (Competing Species)
Let z; be the rabbit population and z, be the sheep population, both competing for the
same food resources. The equation is
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6.3.2. Critical Points and Linearization.

Definition 1. A critical point of a system @ = f(x) is the end point of a

vector x. solution of

f(z.)=0.
Remarks:
(a) Recall that x = (21, z2) is a point on the xjxs-plane while & = (x1,x2) is a
vector with origin at (0,0) and end point at x = (x1, z2).

(b) «. is solution of &/ (t) = f(x), since

(2.) =0 = f(a.).

fi
f2

fl(xcla 'I(JQ) = 07

(c¢) In components, the field is f = [ }, and the vector x, = Bm] is solution of

c2

f2(1'c1a l‘cz) =0.
When there are more than one critical point we write x.,, with i =0,1,2,---.

Example 4: Find all the critical points of the two-dimensional (decoupled) system

oy =~y + (1)
T, = —21,.
. xl .
Solution: We need to find all constant vectors x = solutions of
Lo
—xy + (2,)% =0, -2z, =0.

From the second equation we get xz, = 0. From the first equation we get

$1(<m1)2 — 1) =0 = x,=0, or z; ==+l

Therefore, we got three critical points, % = , T = , T? =
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Definition 2. The linearization of a2 x 2 system @ = f(x) at a
critical point given by x,. is the 2 x 2 linear system
u = (Df.) u,

where the Jacobian matrix at x. is,

of1 of1

Df — Oz Tc g Te | — a1.]81 82.}[1
¢ 9fa 9f2 Oifa Oufa]”
oz e Oxg .

Remark: : In components, the nonlinear system its linearization are

7 = fulw, 22), {ui]’_[alfl anl} H
x£:f2($17x2),7 up|  |0ifs 0afs '

Us

Example 5: Find the linearization at every critical point of the nonlinear system

z, =~z + ()3

!
Ty, = —2x,.

Solution: We found earlier that this system has three critial points,

This means we need to compute three linearizations, one for each critical point. We start

computing the derivative matrix at an arbitrary point x,

0 0 o
i@ = |7 o | _ [pm el g e bed)
ofs  Of ) P ’
o oo oa (7202) gy (—202)
so we get that
—1+322 0
Df(z) =

0 —2
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We only need to evaluate this matrix D f at the critical points. We start with a,,

/

0 -1 0 Uy -1 0 Uy
Ty = = Dfy= = =
0 0o -2 Usy 0 -2 Uy

/

’LL1 2 O U1
T = = Df1 = = =
0 0 -2 Usg 0 -2 Usg
!/
— Uq 2 O Uq
€T, = = Df,= = =
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6.3.3. The Hartman-Grobman Theorem.

Remark: The linearization of a nonlinear system allow us to classify the critical points of
nonlinear systems. linearization.

Definition 3. A critical point ¢ of a 2 X 2 system « = f(x) is:

(a) an sink iff both eigenvalues of D f. have negative real part;

(b) a source iff both eigenvalues of D f. have positive real part;

(c) a saddle iff one eigenvalue of D f. is positive and the other is negative;
(d) a center iff both eigenvalues of D f, are pure imaginarys;

A critical point z° is called hyperbolic iff it belongs to cases (a-c), that is,

the real part of all eigenvalues of D f. are nonzero.

Theorem 1. (Hartman-Grobman) Consider a 2 x 2 nonlinear autonomous system,

' = f(=),
with f continuously differentiable, and consider its linearization at a
hyperbolic critical point given by x.,
u = (Df.) u.

Then, there is a neighborhood of x. where all the solutions of the linear system

can be transformed into solutions of the nonlinear system by a

continuous, invertible, transformation.

Remark: The theorem above says that the phase portrait of the linearization

at a hyperbolic critical point is enough to determine the qualitative

picture of the phase portrait of the nonlinear system near that critical

point.
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Example 6: Use the Hartman-Grobman theorem to sketch the phase portrait of
oy = —ay + (2:)°

/
Ty = —2T,.

Solution: We already know that this system has three critical points,

We have already computed the linearizations at these critical points too.

0
DfO = s Df1 == Df2 —
0 -2 0 -2

We now need to compute the eigenvalues of the Jacobian matrices above.

e For the critical point @, we have A, = —1, A. = —2, so x, is an attractor.
e For the critical points x; and x, we have A\, = 2, A\. = —2, so x; and @, are saddle
points.
x2 A
0 3«"1
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6.3.4. Competing Species: Extinction.

Example 7: Find the linearization at every critical point of the competing species system
r=r3-r—2s),

s=s5(2-s—r),

Remark: We call this model a rabbits-sheep model, where r(t) is the rabbit population and
s(t) is the sheep population at the time ¢.

Solution: We start finding all the critical points of the rabbit-sheep system.
r(3—r—2s)=0,
s(2—s—r)=0.
There are four solutions to the equations above:
(1) r=0and s =0;
(2) r=0and 2—s—7r=0;
(3) 3—r—2s=0and s =0;
(4)3—-r—2s=0and2—-s—r=0.
From these equations we get
1) (r=0,s=0);
2) (r=0,s=2);
3) (r=3,s=0);
4) the intersection of the lines s = (3 —r)/2 and s = (2 — r) which is given by
3—r
2
Summarizing, we got the four critical points
€Ty = (0a0)7 Ty = (072)7 T2 = (370)3 Z3 = (15 1)

we can always think the points as the end points of the vectors

B A A )

(
(
(
(

=27 = 3-r=4-2r = r=1, = (r=1s=1).
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r
Now we find the linearization of the rabbit-sheep system. If z = , the system is @ =

F(z),
Fla) — F _ r(3—r—2s)
F, s(2—s—71)

The derivative of F at an arbitrary point @ is

DF(EE) 8T1 681 ( S)
7617‘2 6182 —5 (‘3 — 25— T)

We now evaluate the matrix DF(z) at each of the critical points we found.
(0)

3 0
At = we get  (DFp) = =
0 0 2 Xo- = 2.

The critical point z, is a source node. To sketch the phase portrait we will need the

0
corresponding eigenvectors, v; = and v, =
0 1
(1)
0 -1 0 Ao = —1
At x = we get (Df,) = =
9 2 2 Do = —2.

The critical point z; is an sink node. One can check that the corresponding eigenvec-

1 0
tors are v; = and v; =
-2 1
(2)
3 -3 -6 Aow = —1
At x, = we get (D f,) = =
0 0 -1 Moo = 3.

The critical point x, is an source node. One can check that the corresponding eigen-

-3 1
vectors are vy, = and v, =
1 0
(3)
1 1 -2 Aow = —1+V2
At @ = we get  (Dfs) = N

1 -1 -1 oo = —2 — V2.
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The critical point x; is a saddle node. One can check that the corresponding eigen-

V2 Vi

vectors are v = and v; =

1 1

T

N

, basin for sheep

basin boundary

basin for rabbits
0 En
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6.3.5. Competing Species: Coexistence.

Example 7: Find the linearization at every critical point of the competing species system

r=r(l-r—s),

s%:§@—4s—2m,

Remark: This is also a rabbits-sheep model, where r(¢) is the rabbit population and s(t)

is the sheep population at the time t.

Solution: Th equation for the critical points are

r(l—r—s)=0,
Z$*48*2ﬂ:0~
Check that the critical points for this system are
3
Ty = (070)7 = <07 Z)v €T = (170)7

The fector field of this system is

The derivative of F is

OF: OF:

DF(a:): (977”1 351 _ (1_2T_8)
OFy OFy 1
D os 35 (

Then, one can check that the critical points above satisfy the following:

(0)

[

1
vy = ,
0
0
vy =
1
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(1)
€Ty =
3
4
(2)
:DZ =
1
2
I3 = )
1
2
Z2

) (DFl) =
) (DF2) =
(DE) = | 2

NI= N

CONTENTS

|
N

1 N
A1+ = 17 v, =
3.
)\1_ = _Z, 'Ul =
1 R
)\2+—Z, '1)2:
Ao =—1, vy =

x1
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7.1. Simple Eigenfunction Problems

Section Objective(s):
e Two-Point Boundary Value Problems.
e Comparing IVP vs BVP.
e Eigenfunction Problems.

Remark:

e The main idea of this chapter is to solve the heat equation.

e This is a partial differential equation.

e We need two main ideas to solve that equation.

(1) Boundary value problems and

eigenfunction problems.

(2) Fourier series expansions.

e In this section we study the first idea: boundary value

problems and eigenfunctions
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7.1.1. Two-Point Boundary Value Problems.

Definition 1. A two-point boundary value problem (BVP) is the following: Find
solutions to the differential equation

Y+ ay(@)y + aolz)y = blx)
satisfying the boundary conditions (BC)
biy(w1) + by (1) =y,
biy(w2) +bay'(22) = 12,

where by, by, by, by, Yy, Yo, X1, T, are given and x; # x,.

Remarks:

(a) The two boundary conditions are held at different points, x; # ,
(b) Both y and ¥/ may appear in the boundary condition.

Example 1: We now show four examples of boundary value problems that differ only on
the boundary conditions: Solve the different equation

y' +ay +ay = b(w)

with the boundary conditions at z; = 0 and x, = 1 given below.

(1a)

0
Boundary Condition: {y( )

H
|
S
N
|

S O
s
I
=
S

N

I
==

1’} which is the case

(1b)

iy

Boundary Condition: which is the case

(1c)

/ 0 — ,
Boundary Condition: { ¥ (0) =y } which is the case
Y

H
I
P
=
N
I

S O
=ali

N

I
=~

[y

(1d)

=P

=
Ny
I

S
\l’ i
Sl
= \l .
—— —— N ——

S O

Boundary Condition: which is the case

— —— —— ——
Il

S
I

=

iy
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7.1.2. Comparing IVP vs BVP.

Definition 2. (IVP) Find a solution of y” 4+ a, ¥’ + a,y = 0 satisfying the initial
condition (IC)

Zl(to) = Yo, y/(to) = Y1

Remarks:

e The variable t represents time

e The variable y represents position

e The IC are position and velocity at the initial time.

Definition 3. (BVP) Find a solution y of ¥ 4+ a, ¢’ + a, y = 0 satisfying the boundary
condition (BC)

y(xo) = Yo, y(Jq) =Y.

Remarks:

e The variable x represents position

e The variable y may represent temperature

e The BC are temperature at two different positions

Theorem 1. The equation ¥’ + a, 4y’ + aoy = 0 with IC y(t,) = yo and y'(t0) = ys

has a unique solution y for each choice of the IC.

Theorem 2. (BVP) The equation y"+a, y'+a,y = 0 with BC y(0) = y, and y(L) = y,,
with L # 0 and with r4 roots of p(r) = r? + a;7 + a, satisfy the following:

(A) If r, # r_, reals, then the BVP above has a unique solution

(B) If 4 are complex, then the solution of the BVP above belongs to only one of the
following three possibilities:

(i) There exists a unique solution

(ii) There exists infinitely many solutions

(iii) There exists no solution
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Proof of Theorem 2: The general solution is
y(z) =c. e 4 coe ",

The BC are

Yo =y(0) =c. +c 1 1 c. Yo

L eT‘+L e’I”_L

yy = y(L) = c. e 4 e c- Y

This system for c¢,, ¢. has a unique solution iff

1 1
0 # = el el 2y,
67‘+L er-L

Part (A): If r, # r_, reals, then e™-¥ # €™~ hence there is a unique solution c,, c_, which
fixes a unique solution y of the BVP.
Part (B): If rp = o £40, then

el = elethL — pal(cog(BL) +isin(BL)),
therefore

et — el = e (cos(BL) — isin(BL) — cos(BL) — isin(BL))
=-2ie*r sin(BL) =0 <« PBL=nn.
So for BL # nm the BVP has a unique solution, case (Bi).

For SL = nm the BVP has either no solution or infinitely many solutions, cases (Bii)

and (Biii).
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Example 2: Find all solutions to the BVPs 3" + 3y = 0 with the BCs:

—1, 0)=1, 0) =1,
o) {y(O) Lo { y(0) © {y()

y(r) = 0. y(r/2) = 1. y(r) = —L.
Solution: We first find the roots of the characteristic polynomial 72 + 1 = 0, that is,
r4+ = +i. So the general solution of the differential equation is
y(z) = ¢, cos(x) + ¢y sin(x).
BC (a):
1=y0)=¢, = ¢=1.
O=y(r)=—c, = ¢ =0

Therefore, there is no solution.
BC (b):

1=y0)=¢, = ¢=1
l=y(r/2)=¢c, = c=1.

So there is a unique solution y(x) = cos(z) + sin(z).
BC (c¢):
1=y0)=¢ = ¢ =1

“l=ymn)=—-¢ = =1L

Therefore, ¢, is arbitrary, so we have infinitely many solutions

y(x) = cos(z) + ¢y sin(z), ¢ €R.
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7.1.3. Eigenfunction Problems.

Remark: Let us recall the eigenvector problem of a square matrix: Given a square matrix
A, find a number \ and a nonzero vector v solution of

Av=A\w.

Definition 4. An eigenfunction problem is the following: Given a linear operator
L(y) = a,y"” + a1y + aoy, find a number A\ and a nonzero function y solution of

L(y) = Ay,

and homogeneous boundary conditions at x; # x, ,

b, y(‘Ll) + b, y/(x1) =0,

b y(x2) + b, Yy (z2) =0,

Remarks:
e Notice that y =0 is always a solution of the BVP above.
e Bigenfunctions are the nonzero solutions of the BVP above.
e The eigenfunction problem is a BVP with infinitely many solu-
tions.
e So, we look for A such that the operator L(y) — Ay has characteristic

polynomial with complex roots

e So, A is such that L(y) — \y has oscillatory solu-
tions.
e We focus on the linear operator L(y) = —y”

Example 3: Find all numbers A and nonzero functions y solutions of the BVP
-y =My, with y(0) =0, y(L)=0, L>0.

Solution:
The equation is ¢ + Ay = 0. We have three cases: (a) A <0, (b) A =0, and (c) A > 0.

Case (a): A\ = —u? < 0, so the equation is 3/ — u?y = 0. The characteristic equation is

P —p?=0 = r,=%u
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The general solution is y = ¢, e"* + c.e™#*. The BC imply

0=y(0)=ci +c, 0=y(L)=c. et fc e,
So from the first equation we get ¢, = —c-, so
0=——celqcert = —c(e—er)y=0 = =0, c¢=0.

So we get only the solution y = 0.

Case (b): A =0, so the differential equation is
y' =0 = y=c,+cim.

The BC imply

0=y(0) = ¢, 0=y(L)=c,L = ¢ =0.

So we get the only solution is y = 0.

Case (c): A = p? > 0, so the equation is y” + u?y = 0. The characteristic equation is
Pyt =0 = r,=+ui.
The general solution is y = ¢, cos(ux) + c-sin(uz). The BC imply
0=y(0) =c., 0 =y(L) = ¢, cos(uL) + c.sin(puL) = c-sin(pul),
therefore, we get
c.sin(puL) =0, c.#0 = sin(ul)=0 = pu,L=nm.

So we get u, = nm/L, hence the eigenvalue eigenfunction pairs are

A, = (%)2, yn(z) = cp sin(?).
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Example 4: Find the numbers A and the nonzero functions y solutions of the BVP

-y =Xy, y(0)=0, y(L)=0, L>0.

Solution:

The equation is y” + Ay = 0. We have three cases: (a) A <0, (b) A =0, and (c) A > 0.
Case (a): Let A = —p?, with u > 0, so the equation is y” — u?y = 0. The characteristic
equation is

=0 = r=4yu,
The general solution is y(x) = ¢;e™#* + c,et*. The BC imply
0=y(0)=cite, 1 1 ¢ 0
0=y (L) = —pcie ™™ + pcyet” —pe b pert | g 0

The matrix above is invertible, because

= u(e“L + ef“L) # 0.

Therefore, the linear system above for ¢;, ¢, has a unique solution given by ¢; = ¢, = 0.
Hence, we get the only solution y = 0. This means there are no eigenfunctions with negative
eigenvalues.

Case (b): Let A = 0, so the differential equation is
y' =0 = yx)=c +cm, ci,c € R
The boundary conditions imply the following conditions on ¢; and c,,
0=1y(0) = ¢, 0=y (L) =c,.

So the only solution is y = 0. This means there are no eigenfunctions with eigenvalue A = 0.
Case (c): Let A = p?, with u > 0, so the equation is y” + u?y = 0. The characteristic
equation is

P4t =0 = ry = tpi.
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The general solution is y(z) = ¢; cos(pz) + ¢ sin(px). The BC imply

0 = y(o) = Cy,
= c¢ycos(pul) =0.
0 =1y/(L) = —pey sin(uL) + pe, cos(pul)

Since we are interested in non-zero solutions y, we look for solutions with ¢, # 0. This

implies that p cannot be arbitrary but must satisfy the equation
cos(uL) =0 < p,L=(2n— l)g, n =1

We therefore conclude that the eigenvalues and eigenfunctions are given by

2.2
An:—M, yn(x):cnsin(

E M), n>1.

2L
Since we only need one eigenfunction for each eigenvalue, we choose ¢, = 1, and we get

(2n —1)272 , ((2n - l)mc)
— I = _—_— > .
An T , yn(z) = sin 5T , n>1
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7.2. Overview of Fourier series

Section Objective(s):

Vectors and the Dot Product in R™.
e Fourier Expansion of Functions.

e Odd or Even Functions.

e Sine and Cosine Series.

Remarks:

e We start with the Fourier expansion of a vector in R3

e We review a few concepts:

— The dot product of two vectors.
— Orthogonal and orthonormal vectors.
— The decomposition of a vector in an orthonormal basis.

e We then introduce the Fourier expansion of a continuous function

e We need the following concepts:

— The dot product of two functions.
— Orthogonal and orthonormal functions.
— The decomposition of a function in an orthonormal basis.

e We finish with two particular cases, the Fourier expansion of even

functions and of odd functions.
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7.2.1. Vectors and the Dot Product in R".

Remark: We review basic concepts about vectors in R3.

Definition 1. The dot product of u= (uy,us,uz), v=(v1,v2,v3) is

U- V= UV + UsV2 + U3V3.

Remark: The dot product above satisfies the following properties.

Theorem 1. For every u, v, w € R? and every a, b € R the following holds true:

(a) Positivity: u-u=0Iiff u=0; and u-u > 0 for u#0.

(b) Symmetry: U-V=V-U.

(¢) Linearity: (au+bv) - w=a(u-w)+b(v-w).

Theorem 2. The dot product of two vectors u, v € R? is

u-v=[ullllv] cos(6),

with ||u]|, [[v]] the magnitude of the vectors, and 6 € [0, 7] the angle in between them.

Z, Remarks:

e The magnitude of a vector uw can be written
as
Jul = Vu-u.

v e A vector u is a unit vector iff

Jul = 1.

Theorem 3. The vectors u, v are orthogonal iffu-v=20
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Example 1: The set {,7, k} is an orthonormal set of R3.
Orthonormal means:
“4 e Orthogonality:
v .
: 1 k= O,
| j-k=0.
2\ | .
j | e Normality:
i g K "y i-i=1,
77777777 B J .7 = 17
k-k=1.

Theorem 4. (Fourier Expansion) The orthonormal set {4,j, k} is an orthonormal

basis , that is, every v € R? can be decomposed as

V=014 v, ] + vk
The orthonormality of the vector set implies a formula for the vector components

Vp = V- 4, vy =v-7, v, =v-k

Remark: The decomposition above allows us to introduce vector approximations.

z A
Vector Approximations:
o = o
!
l
|
| oM = v, 4,
| v = v, it vy, g,
! >
! >
L Y v(?’):vwi—kvyj—kvzk.
D) f-m T o)
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7.2.2. Fourier Expansion of Functions.

Remark: The ideas described above for vectors in R® can be extended to functions.

Definition 2. The inner product of functions f, g on [—L, L] is

f-g:/_Lﬂx)g(x)dx.

Theorem 5. For every functions f, g, h and every a, b € R holds,

(a) Positivity: f-f=0iff f=0;and f-f >0 for f#0.
(b) Symmetry: fr9=9g-f.
(c) Linearity: (af+bg)-h=a(f-h)+b(g-h).
Remarks:
e The magnitude of a function f is

i=vrT=(/ ve)rau)”

e A function f is a unit function iff ||f|| =1
Definition 3. Two functions f, g are orthogonal iff f-g=0
Theorem 6. An example of an orthogonal set in the space of

continuous functions on [—L, L] is

{ 1 (mrx) . (nmc)}oc
Uy = =, Up =2coS{— ), v, =sin|— .
0 2’ L L n=1

Remark: Often in the literature is used the following orthnormal set:

{110 = \/%, Uy, = %cos(%), Vp = %sin(%) }:;1.
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Remark: The orthogonality of the set above is a consequence of the following:

Theorem 7. (Orthogonality) The following relations hold for all n, m € N,

L 0 n #m,
/ cos(@) cos(mmc> dr=1{ L n=m#0,
_I L L
2L n=m =0,
/L sin(—mrx) sin(mmc> dx = 9 n#m
L L L L n=m,

/L COS(?) sin(mZ/TI) dr =0 .
L

Proof: Just recall the following trigonometric identities:

cos(6) cos(¢) = %[cos(@ + ¢) + cos(0 — )],
sin(0) sin(¢) = %[cos(@ —¢) —cos(0 + ¢)],
sin(f) cos(¢) = %[Siﬂ(@ + ¢) + sin(6 — ¢)].

So, From the trigonometric identities above we obtain

L L

/_LL cos(?) cos(?) dxr = %/_L COS[W} dx + %/_L COS{T} dx.

First, assume n > 0 or m > 0, then the first term vanishes, since

L n+m)m n+m)mx
o [ e[ e = gy [ =0

Still for n > 0 or m > 0, assume that n # m, then the second term above is

L n—m)nx n—m)rx
[ e [ <o

Again, still for n > 0 or m > 0, assume that n = m # 0, then

1 [f (n —m)rx 1 [t
i/LCOb{ 7 }dm—ilde—L.

Finally, in the case that both n = m = 0 is simple to see that

/LL cos(?) COS(?) dr = /LL dx = 2L.

The remaining equations in the theorem are proven in a similar way.
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Theorem 8. (Fourier Expansion) The orthogonal set

1 nmwx . /nmr\ )X
{Uo = 9’ Up = COS(T)’ Un = Sln(T) }7121

is an orthogonal basis of the space of continuous functions on [—L, L],

that is, any continuous function on [—L, L] can be decomposed as

i_": (an cos( ) + by, bln(nzx>) .

Moreover, the coefficients above are given by the formulas

= i/_LL f(z)dx
2/1 f(z) cos(?) dz,
= i/LL flx) sin(?) dx.

Furthermore, if f is piecewise continuous , then the function

—|—Z(anc05( ) +bnsln(m£x>),

satisfies fr(x) = f(z) for all  where f is continuous , while

for all x, where f is discontinuous it holds

fr(ze) = % ( hm f(z)+ lim f(x))

I*}IO ZL’*)ZL’O
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for xz€]0,3]

x
Example 2: Find the Fourier expansion of f(z) = 3’
0, for ze€([-3,0).

Solution: The Fourier expansion of f is

o0
fr(z) = % + nzz:la,n cos(?) + by, sin(?)
In our case L = 3. We start computing b,, for n > 1,
1 3
b, = g/_?) f(x) sin(?) dz
1 /3 T . /nrx
= - fsm<—) dx
3 Jo 3 3
- 1(_37xcos(n7rx) + 9 Sin(mrx>)‘3
9\ nrm 3 n2m2 3 0
1

9
:§(—Ecos(mr)+0+0—0) = b, =

(_1)(n+1)

nmw
A similar calculation gives us a,, = 0 for n > 1,
1 3
an =3 /_3 flx) cos(?) dz
1 /3 T nmwx
= - — cos(—) dx
3 Jo 3 3
- 1(3795 Sin(mmc> n 9 Cos(mrx))‘?’
T 9\nrw 3 n2m? 3 0
1

:§<O+%cos(nﬂ)707

Finally, we compute ay,

Therefore, we get
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7.2.3. Odd or Even Functions.

Definition 4. A function f on [—L, [] is:

e cven iff f(—z) = f(x) for all z € [-L, L];
e odd ift f(—z)=—f(x) for all x € [-L, L].
Example 3: The function y = 22 is even , while the function y = 2% isodd .
Y Yy
y = xz y = (L‘B
"z "

Theorem 9. If f., g. are even and h,, ¢, are odd functions, then:
1) afo+bge is even for all a, b € R.

2) ah,+bl, is odd for all a, b € R.

4) hyt, is even

(

(2)

(3) foge is even .
(4)

(5)

5) feho is odd .

(6) /_LLfedw=2/0Lfed

(7) /_LLhoda:zo

Remark:
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7.2.4. Sine and Cosine Series.

Theorem 10. Let f be a function on [—L, L] with a Fourier expansion
o= 55 s (15) ().
(a) If the function f is even , the Fourier series above is called a

cosine series , since b, =0 and

f(z) = % + ;an cos(?)

(b) If the function f is odd , then the Fourier series above is called a

sine series , since a,, =0 and

fz) = i b, sin(?)

n=1

Proof:

Part (a): Suppose that f is even, then for n > 1 we get

1 [ . /nmx
b, = I [L f(x) sm(T> dz,

but f is even and the Sine is odd, so the integrand is odd. Therefore b,, = 0.

Part (b): Suppose that f is odd, then for n > 1 we get

1 [t nmwe
an =7 [L fx) cos(T) dz,

but f is odd and the Cosine is even, so the integrand is odd. Therefore a,, = 0. Finally

L
ao = %[Lf(x)dx,

but f is odd, hence a, = 0.
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1, for =z €]0,3]
Example 4: Find the Fourier expansion of f(x) = 1t € [-3,0)
-1, for z€[-3,0).

Solution: The Fourier expansion of f is

—|—Zanc05( ) + b, bln(nzx)

In our case L = 3. We start computing b,, for n > 1,

flx Sln dx
=3/, (")

nmw 3 nwx
:é(/%( 1)s1n< 3 )der/O sin(T) dx)
3 nmTx
- %/ sin(75) d
)
:% —( 1)"+1) = bn:%(( 1)(n+1)+1)

A similar calculation shows a, = 0 for n > 1. Finally

1
§ / dx—i—/ dz) = -(-3+3) =0.

2 nmwx
2 ((—1)(n+D) in 25
nw (=1) 1) sm( L )

Therefore, we get

fr(z) =

M8

n=1

Remark: The Fourier approximation of order N > 1 is

i\f: i "*1) +1) sin(w)
n L

n=1

>q
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Example 5 (Extra Example): Find the Fourier series expansion of the function

{ x x€10,1],

J(@) = —z z € [-1,0).

Solution: Since f is even, then b, = 0. And since L = 1, we get

(oo}
flx)= % + nz_:l ap, cos(nmw),

We start with a,. Since f is even, a, is given by
1 1 2211
a0:2/ f(x)dac:2/ xdm=2—‘ = a =1
0 0 2 1o

Now we compute the a, for n > 1. Since f and the cosines are even, so is their product,

1
ap = 2/ x cos(nmz) dx
0

1
= 2(% sin(nmz) + o cos(mrx)) ’0
2
= —— (cos(nm) —1) = an,= 3 (=)™ —=1)

So,

11
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Example 6 (Extra Example): Find the Fourier series expansion of the function

l—z z€][0,]1]
T@ =140 sel10.

Solution: Since f is even, then b, = 0. And since L = 1, we get

flz)= % + Zl an cos(nmz),
n=

We start computing ag,

/01(1+x)d:v+/01(1x)dac

22\ |0 22\ |1
et )L+ -3,

1
1—7)+(1—§) = =1

Similarly,

ap = /11 f(x) cos(nmx) dx

_ / " (14 2) cos(nma) dx + /0 (1= 2) cos(nme) d.

—1
Recalling the integrals

1
d — — gi
/cos(mrx) z=— sin(nmx),
/m cos(nmzx) dx = % sin(nmz) + o cos(nmx),

it is not difficult to see that

) 0 r 0
n = — sm(mmc)‘i1 + [E sin(nmz) + > COS(TL?T.’IJ):| ’71
+— sinnre)| — [ sin(nmr) + 5 cos(nra)]|
— sin(nmz)| — | — sin(nmz cos(nmx
nmw 0 nmw n?n? 0
1 1 1
- [n27r2  n2r2 COS(_nﬂ-)} B {n27r2 cos(—n) — n27r2]’
we then conclude that
2 2 .
a, = 30 [1 cos(—mr)] = n27r2( (-1) )

So,
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7.3. The Heat Equation

Section Objective(s):
e The Heat Equation (One-Space Dim).
e The IBVP: Dirichlet Conditions.
e The IBVP: Neumann Conditions.

Remarks:
e We solve a partial differential equation: the heat equation.
e This is both a BVP and an IVP.

e We solve the heat equation using the separation of variables

method.

e One first solves the BVP , which is an eigenfunction prob-
lem.

e The general solution of the BVP is a linear combination

of all these eigenfunctions.

e One then uses the Fourier expansion formulas to find the unique

combination of all eigenfunctions that satisfy the prescribed

initial condition.

e We solve the heat equation for two types of boundary conditions: Dirichlet

conditions and Neumann conditions.
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7.3.1. The Heat Equation in (One-Space Dim).

Definition 1. The heat equation in one-space dimension, for

the function u depending on ¢ and = is

owu(t, x) = k0ul(t, x), for  te0,00), xz € [0, L],

where k > 0 is a constant.

Remarks:

e 1 is the temperature of a solid material.

e tis time , T 1s space

e k > 0 is the heat conductivity

e The partial differential equation above has infinitely many solu-

tions.

e We look for solutions satisfying both:

— Boundary conditions.
— Initial conditions.
)
t
Insulation

u(t,L) =0
T &
z Insulation
u(t,0) =0, u(0,z) = f(x),
Boundary Conditions: Initial Conditions:

u(t, L) = 0. f(0)=f(L) =0.
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7.3.2. The IBVP: Dirichlet Conditions.

Theorem 1 (Dirichlet). The BVP for the one-space dimensional heat equation,
Opu = k 02u, BC: u(t,0) =0, u(t,L) =0,

where k£ > 0, L > 0 are constants, has infinitely many solutions

oo
L(mmN2 . nmr
u(t»x):;cne k(L)tsm(T), cn € R.

Furthermore, for every continuous function f on [0, L] satisfying

f(0O)=f(L)=0 , there is a unique solution u of the boundary
value problem above that also satisfies the initial condition
u(0,2) = f(x).

This solution w is given by the expression above, where the coefficients ¢,,  are

Cn = i/OL f(x) Sin(%) dx.

Remarks:
(a) This is an Initial-Boundary Value Problem (IBVP)
(b) The boundary conditions are called Dirichlet boundary conditions.

Remark: The physical meaning of the initial-boundary conditions is simple.

(1) The boundary conditions is to keep the temperature at the sides of

the bar constant

(2) The initial condition is the initial temperature on the whole bar.
Remark: The proof is based on the separation of variables method.
(1) Look for simple solutions of the BVP

(2) Linear combination of simple solutions are solutions. (Superposition.)

(3) Determine the free constants using the initial condition
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Proof of the Theorem: First look for simple solutions of the heat equation. These simple

solutions have the variables separated in two functions,

u(t,x) = v(t) w(z).

This separation of variables in the function also separates the heat equation,

o(t)  w(x)’

o(t) _ w'(x)
(

| =

where we used the notation © = dv/dt and w’ = dw/dxz. The only solution to the equation

above is that both sides are equal the same constant, call it — A,

This separation of variables also translates to the boundary condition,
u(t,0) =v(t)w(0) =0 forallt>0
= w(0)=w(L)=0.
u(t,L) =v({t)w(L)=0 forallt>0

Therefore, we have two solve to differential equations:
0(t) = —kAov(t), and  w'(z)+ Aw(x) =0, w(0) = w(L) = 0.

The first equation is first order and simple to solve. The solution depends on A,

ua(t) = ¢y e~ kAL, ex = vA(0).

The second equation is an eigenfunction problem, which we solved in the previous section,

Ap = (%)2, wp () = sin(?), n=12--.

Since we now know the values of \,, we introduce them in vy, now called v,,,

v (t) = ep e RCE)E
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Therefore, we got a simple solution of the heat equation BVP,

nr nma
un(t,x) = cp eRCE) Sin(%),

where n = 1,2, ---. Since the boundary conditions for u,, are homogeneous, then any linear
combination of the w, is also a solution of the heat equation with homogenous boundary

conditions. So the most general solution of the BVP for the heat equation is

Here the ¢, are arbitrary constants. Now we look for the solution of the heat equation that
in addition satisfies the initial condition u(0,x) = f(z), where f(0) = f(L) = 0. This initial

condition is a condition on the constants ¢, because f(z) = u(0,z) is

f(x) = nij:l Cn sin(?).

The problem now is, given f, find the coefficients ¢, such that the equation above holds.
One way to find the ¢, is to use the Fourier formulas from the previous section. These
formulas apply to functions on [—L, L]. So, given f on [0, L], we extend it to the domain

[-L, L] as an odd function,

foaa(z) = f(x) and foad(—z) = —f(x), x €0, L]

Since f(0) = 0, we get that foqq is continuous on [—L,L]. So foqq has a Fourier series

expansion. Since f,qq is odd, the Fourier series is a sine series

foaa(z) = i by, sin(?)
n=1

and the coefficients are given by the formula

b, = 2/_11; foaa(x) sin(%) dx = E/OL f(z) Sin(%) dx.

Since foaa(x) = f(z) for x € [0, L], then ¢, = b,. This establishes the Theorem.
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Example 1: (Dirichlet): Find the solution to the initial-boundary value problem
40u = 0%u, t>0, z€0,2],

with initial and boundary conditions given by

2

0 ze€lo, g),

2 4 u(t,O) =0,
IC: = - BC:

C: w(0,z) 5 x6[3,3], C {u(t,?)—O.

0 ze€ (4 2]

re (=
37 I
Solution: We look for simple solutions of the form w(t, z) = v(t) w(zx),
dv d*w 40(t)  w'’(x)

4 e = _— = = — A.
0@ GO =v0 T > T = =

So, the equations for v and w are

o(t) = —2 u(t), w”(z) + Aw(z) = 0.

The solution for v depends on A, and is given by
ua(t) = e e_%t, cx = vx(0).
Next, we turn to the equation for w, and we solve the BVP
w”’(z) + Aw(z) =0, with BC w(0) =w(2) = 0.

This is an eigenfunction problem for w and A. This problem has solution only for A > 0,
since only in that case the characteristic polynomial has complex roots. Let A = p2, then

p(r)=r+u*>=0 = ry=+ui
The general solution of the differential equation is
wp () = ¢ cos(ux) + ¢, sin(px).

The first boundary conditions on w implies

0=w(0)=c, = w(x)=c,sin(ux).
The second boundary condition on w implies

0=w(2) =c,sin(u2), ¢ #0, = sin(u2)=0.

Then, p,2 = nm, that is, u, = % Choosing ¢, = 1, we conclude,

2
Ap = (%) , wdx)zsin(?), n=12,---

Using the values of A\, found above in the formula for vy we get
Un(t) =Cn @_i(%)2t7 Cn = 'Un(o)

Therefore, we get

u(t,z) = Z Cn e () sin(?).
n=1
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The initial condition is

0 ze [0,%),
f@)=u(0,z)=¢5 z€ [%,g],
0 ze(%ﬂ].

We extend this function to [—2, 2] as an odd function, so we obtain the same sine function,
foaa(z) = f(z) and foaa(—z) = —f(x), where z € [0,2].

The Fourier expansion of foqq on [—2,2] is a sine series

Joaalw) = > tnsin("35).
n=1

The coefficients b,, are given by

2 [? . /nTx 4/3 . /nTx 10 nmwx\ |4/3
bn = 5/0 f(z) SIH(T) dx = /2/3 5sm(7) dx = — COb<T> ‘2/3.
So we get

b, = —E(cos(%—ﬂ-) — cos(m))
" onw 3 3/
Since foada(x) = f(z) for z € [0,2] we get that ¢, = b,. So, the solution of the initial-
boundary value problem for the heat equation contains is
10 &= 1 nm 2nm nmy2 nmwr
5 o) () ()
u(t, x) - Zn(cos( 3 ) cos( 3 ))e 77 sin( —— ).

n=1
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7.3.3. The IBVP: Neumann Conditions.

Theorem 2 (Neumann). The BVP for the one-space dimensional heat equation,
Opu = k 02u, BC: Oz u(t,0) =0, Oyu(t,L) =0,

where k£ > 0, L > 0 are constants, has infinitely many solutions

u(t,z) = % + Z Cp e RCE) cos(?), cn €R.

n=1

Furthermore, for every continuous function f on [0, L] satisfying

f1(0)y=f(L)=0 , there is a unique solution u of the boundary
value problem above that also satisfies the initial condition
u(0,2) = f(x).

This solution w is given by the expression above, where the coefficients ¢,,  are

2 (L nwe
cn—z/o f(x)cos(T>da:, n=20,1,2---.

Remarks:
(a) This is an Initial-Boundary Value Problem (IBVP)
(b) The boundary conditions are called Neumann boundary conditions.

Remark: The physical meaning of the initial-boundary conditions is simple.

(1) The boundary conditions is to keep the heat flux at the sides of the bar
constant

(2) The initial condition is the initial temperature on the whole bar.

Remark: One can use Dirichlet conditions on one side and Neumann

on the other side. This is called a mixed boundary condition.

Remark: The proof is based on the separation of variables method.
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Proof of the Theorem: First look for simple solutions of the heat equation. These simple
solutions have the variables separated in two functions,

u(t,x) = v(t) w(z).
This separation of variables in the function also separates the heat equation,

: Lo(t)  w’(x)
t = ko(t)w” -~ —= =
i) i) = ko u'(@) = o=
where we used the notation © = dv/dt and w’ = dw/dxz. The only solution to the equation
above is that both sides are equal the same constant, call it —A,
g 11
100) 0 . U@
k v(t)

w(x)
This separation of variables also translates to the boundary condition,
Opu(t,0) =v(t)w'(0)=0 forallt >0
Opu(t,L) =v(t)w' (L) =0 forallt>0

} = w'(0)=w'(L)=0.

Therefore, we have two solve to differential equations:
0(t) = —kAov(t), and  w”(z)+ Aw(z) =0, w'(0) = w'(L) = 0.

The first equation is first order and simple to solve. The solution depends on A,

ua(t) = ey e kAL, ex = vA(0).

The second equation is an eigenfunction problem, which has solutions only for A > 0, since

for A < 0 the associated characteristic polynomial has real and different roots. In the case
A =0 we get,

w”(z) =0, w'(0)=w'(L)=0 = w(@)=ceR.

Since any constant is solution for A = 0, we choose the eigenfunction w, = 1/2. In the case
A > 0, we write A = p2, for u > 0, we get the general solution

w(zx) = ¢; cos(ux) + ¢y sin(ux).
The boundary conditions apply on the derivative,
w'(z) = —pey sin(px) + pe, cos(px).
The boundary conditions are
0=w'(0)=puc, = c,=0.
So the function is w(x) = pe; cos(px). The second boundary condition is
0=w'(L) = —peysin(ul) = sin(pl)=0 = u,L=nm, n=12---

So we get the eigenvalues and eigenfunctions

2
A =0, w,= 2 and M\, = (%) . wp(x) :cos(ﬂLx), n=12- ..
Since we now know the values of \,, we introduce them in vy, now called v,

vp(t) = cp e RCE)E,

Therefore, we got a simple solution of the heat equation BVP,

Uy = and  u,(t,x) = c, e_k(%)%cos(?), n=12.---.

57
Since the boundary conditions for u,, are homogeneous, then any linear combination of the
Uy is also a solution of the heat equation with homogenous boundary conditions. So the
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most general solution of the BVP for the heat equation is
u(t,z) = % + nz::l Cn e RUE )t cos(—nz$).

Here the ¢, are arbitrary constants. Now we look for the solution of the heat equation that
in addition satisfies the initial condition w(0,z) = f(z), where f’(0) = f'(L) = 0. This
initial condition is a condition on the constants ¢, because f(x) = u(0,x) is

flz)= % —l—gcncos(??zx).

The problem now is, given f, find the coefficients ¢, such that the equation above holds.
One way to find the ¢, is to use the Fourier formulas from the previous section. These
formulas apply to functions on [—L, L]. So, given f on [0, L], we extend it to the domain
[-L, L] as an even function,

feven(x) = f(l‘) and feven(_x) = f(x)v T e [07 L]
We get that feyen is continuous on [—L, L]. S0 foven has a Fourier series expansion. Since
feven 1s even, the Fourier series is a cosine series

)=+ St (')
and the coefficients are given by the formula

1 [ nmT 2 [ nmw
= 7 even ——F = 7 —F ’ = a1a25""
an =7 /_Lf (x) cos( T )daz L/o f(x) cos( T )dm n=0

Since foven(x) = f(x) for x € [0, L], then ¢, = a, for n = 0,1,2,---. This establishes the
Theorem.
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Example 2: (Neumann): Find the solution to the initial-boundary value problem
ou=0%u, t>0, z€l0,3],

with initial and boundary conditions given by

3
T wels,3], W/ (£,0) = 0,

IC: u(0,z) = BC:
3 u'(t,3) =0
0 xe[0,§), A

Solution: We look for simple solutions of the form u(¢, z) = v(t) w(z),
dv d*w o(t) w’(x)
—(t) = v(t) — = L= =-
w(z) 56 = vlt) T3 (@) ohETe
This separation of variables also translates to the boundary condition,
Opu(t,0) = v(t)w'(0) =0 for all t > 0}

Opu(t,3) =v(t)w'(3) =0 forallt>0

So, the equations for v and w are
() = =Av(t), and  w'(z)+Aw(@)=0  w'(0)=w'(3)=0.

The solution for v depends on A, and is given by

oA(t) = cre ™, cx = vx(0).

The equation for w is an eigenfunction problem that has solution for A > 0, since for A < 0
the associated characteristic polynomial has real and different roots. In the case A = 0,

w"(z) =0, w'(0)=w'(3)=0 = w()=ceR.

Since any constant is solution for A = 0, we choose the eigenfunction w, = 1/2. In the case
A > 0, we write A = p2, for > 0,

p(ry=r*+u*=0 = ry==4pi
The general solution of the differential equation is
wy,(x) = ¢4 cos(ux) + ¢, sin(ux).
Its derivative is
w'(z) = —p ey sin(ux) + ey cos(uw).
The first boundary conditions on w implies
0=w'(0)=pc,, = =0 = w®)=c cos(ur).
The second boundary condition on w implies
0=w'(3) = —pc; sin(ud), ¢ #0, = sin(u3)=0.
Then, p,3 = nm, for n = 1,2,---. That is, pu, = nr Choosing ¢, = 1, and recaling the

3
case A = 0,

nm nmx

3)2, wn(m):cos(T), n=12--.

Using the values of A\, found above in the formula for vy we get

vn (t) :cnei(%{)%v cn = v (0), n=01,2---.

1
)\0207 w0:§7 and )\n: (
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Therefore, we get

o0
c nx nwT
T) = 50 + E Cn 67(7)% COS(%).
n=1
The initial condition is

7 we[23),

£(a) = u(0.2) = ;
0 z¢€ [O, 5)7

We extend f to [—3,3] as an even function
3
33
feven(x)— 0 T e [_§a§)7
3

7T ze [—3,—5].

Since feven 1S even, its Fourier expansion is a cosine series

feven —|—Zancos( 71-3;).

The coefficient a, is given by

2_3
= Tde =72 =T.
/f /3/2 z=3T75 =

Now the coefficients a,, for n > 1 are given by

p = = /f cos )d i/j 7cos(%)dx
2

gin (T 323 . [nm
7575 ( 3 )’3/273771 (0 5111(2))
4
n == sin(nm).

But for n = 2k we have that sin(2kn/2) = sin(kw) = 0, while for n = 2k — 1 we have that
sin((2k — 1)7/2) = (—1)*~1. Therefore

14(—1)"
(2k — 1)’

We then obtain the Fourier series expansion of feven,

agk:(), agr—1 = k:1,2,

o0

7 14(—1)* (2k — D
feven(x) = 9 + ’; (2k — )m COS( 3 )

But the function f has exactly the same Fourier expansion on [0, 3], which means that
14(—1)*
(2k — )7

So the solution of the initial—boundary value problem for the heat equation is

> (k=Dx 2k — 1)mx
! Z )%t ((7)
+ 2k: — 1 cos 3 .

Co =1, co, =0, Cl2k—1) =
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