

Sine and Cosine Series (Sect. 7.2)

- ▶ Even and Odd Functions
- ▶ Main Properties of Even and Odd Functions
- ▶ Cosine and Sine Series
- ▶ Even Periodic and Odd Periodic Extensions of Functions

Even and Odd Functions

Definition

A function $f : [-L, L] \rightarrow \mathbb{R}$ is *even* iff for all $x \in [-L, L]$ holds

$$f(-x) = f(x).$$

A function $f : [-L, L] \rightarrow \mathbb{R}$ is *odd* iff for all $x \in [-L, L]$ holds

$$f(-x) = -f(x).$$

Remarks:

- ▶ The only function that is both odd and even is $f = 0$.
- ▶ Most functions are neither odd nor even.

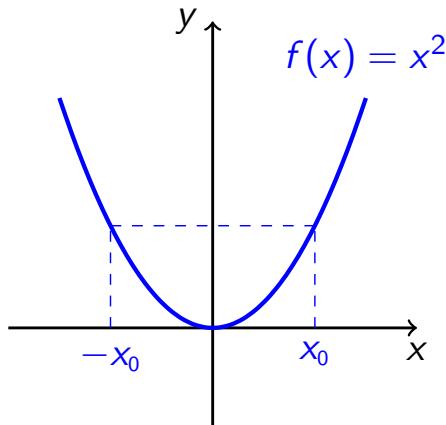
Even and Odd Functions

Example

Show that the function $f(x) = x^2$ is even on $[-L, L]$.

Solution: The function is even, since

$$f(-x) = (-x)^2 = x^2 = f(x).$$



◇

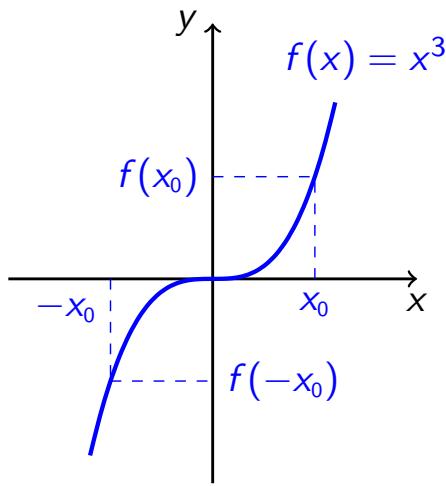
Even, odd functions.

Example

Show that the function $f(x) = x^3$ is odd on $[-L, L]$.

Solution: The function is odd, since

$$f(-x) = (-x)^3 = -x^3 = -f(x).$$

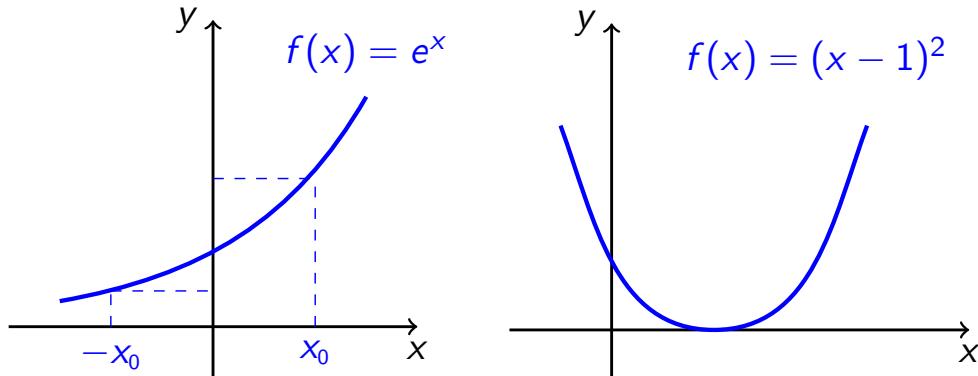


◇

Even and Odd Functions

Example

- (1) The function $f(x) = \cos(ax)$ is even on $[-L, L]$;
- (2) The function $f(x) = \sin(ax)$ is odd on $[-L, L]$;
- (3) The functions $f(x) = e^x$ and $f(x) = (x - 2)^2$ are neither even nor odd.



◁

Sine and Cosine Series (Sect. 7.2)

- ▶ Even and Odd Functions
- ▶ **Main Properties of Even and Odd Functions**
- ▶ Cosine and Sine Series
- ▶ Even Periodic and Odd Periodic Extensions of Functions

Main Properties of Even and Odd Functions

Theorem

- (1) *A linear combination of even (odd) functions is even (odd).*
- (2) *The product of two odd functions is even.*
- (3) *The product of two even functions is even.*
- (4) *The product of an even function by an odd function is odd.*

Proof:

- (1) Let f and g be even, that is, $f(-x) = f(x)$, $g(-x) = g(x)$. Then, for all $a, b \in \mathbb{R}$ holds,

$$(af + bg)(-x) = af(-x) + bg(-x) = af(x) + bg(x) = (af + bg)(x).$$

Case "odd" is similar.

Main Properties of Even and Odd Functions

Theorem

- (1) *A linear combination of even (odd) functions is even (odd).*
- (2) *The product of two odd functions is even.*
- (3) *The product of two even functions is even.*
- (4) *The product of an even function by an odd function is odd.*

Proof:

- (2) Let f and g be odd, that is, $f(-x) = -f(x)$, $g(-x) = -g(x)$. Then, for all $a, b \in \mathbb{R}$ holds,

$$(fg)(-x) = f(-x)g(-x) = (-f(x))(-g(x)) = f(x)g(x) = (fg)(x).$$

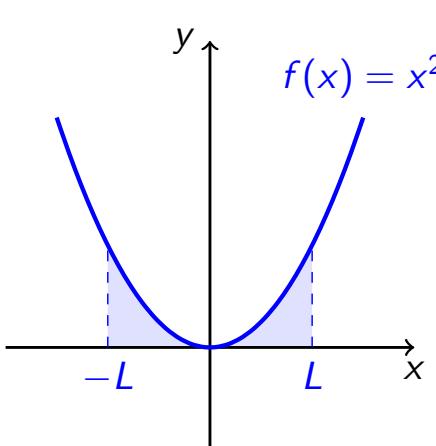
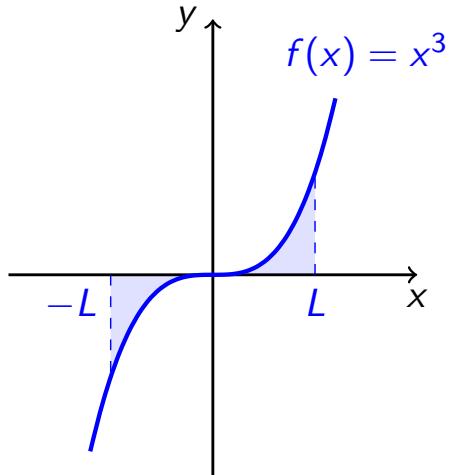
Cases (3), (4) are similar. □

Main Properties of Even and Odd Functions

Theorem

If $f : [-L, L] \rightarrow \mathbb{R}$ is even, then $\int_{-L}^L f(x) dx = 2 \int_0^L f(x) dx$.

If $f : [-L, L] \rightarrow \mathbb{R}$ is odd, then $\int_{-L}^L f(x) dx = 0$.



Main Properties of Even and Odd Functions

Proof:

$$I = \int_{-L}^L f(x) dx = \int_{-L}^0 f(x) dx + \int_0^L f(x) dx \quad y = -x, \quad dy = -dx.$$

$$I = \int_L^0 f(-y) (-dy) + \int_0^L f(x) dx = \int_0^L f(-y) dy + \int_0^L f(x) dx.$$

Even case: $f(-y) = f(y)$, therefore,

$$I = \int_0^L f(y) dy + \int_0^L f(x) dx \Rightarrow \int_{-L}^L f(x) dx = 2 \int_0^L f(x) dx.$$

Odd case: $f(-y) = -f(y)$, therefore,

$$I = - \int_0^L f(y) dy + \int_0^L f(x) dx \Rightarrow \int_{-L}^L f(x) dx = 0. \quad \square$$

Sine and Cosine Series (Sect. 7.2)

- ▶ Even and Odd Functions
- ▶ Main Properties of Even and Odd Functions
- ▶ **Cosine and Sine Series**
- ▶ Even Periodic and Odd Periodic Extensions of Functions

Cosine and Sine Series

Theorem (Cosine and Sine Series)

Consider the function $f : [-L, L] \rightarrow \mathbb{R}$ with Fourier expansion

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right].$$

(1) If f is even, then $b_n = 0$ for $n = 1, 2, \dots$, and the Fourier series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right)$$

is called a **Cosine Series**.

(2) If f is odd, then $a_n = 0$ for $n = 0, 1, \dots$, and the Fourier series

$$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right)$$

is called a **Sine Series**.

Cosine and Sine Series

Proof:

If f is even, and since the Sine function is odd, then

$$b_n = \frac{1}{L} \int_{-L}^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx = 0,$$

since we are integrating an odd function on $[-L, L]$.

If f is odd, and since the Cosine function is even, then

$$a_n = \frac{1}{L} \int_{-L}^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx = 0,$$

since we are integrating an odd function on $[-L, L]$. □

Sine and Cosine Series (Sect. 7.2)

- ▶ Even and Odd Functions
- ▶ Main Properties of Even and Odd Functions
- ▶ Cosine and Sine Series
- ▶ **Even Periodic and Odd Periodic Extensions of Functions**

Even Periodic and Odd Periodic Extensions of Functions

(1) Even-periodic case:

A function $f : [0, L] \rightarrow \mathbb{R}$ can be extended as an even function $f : [-L, L] \rightarrow \mathbb{R}$ requiring for $x \in [0, L]$ that

$$f(-x) = f(x).$$

This function $f : [-L, L] \rightarrow \mathbb{R}$ can be further extended as a periodic function $f : \mathbb{R} \rightarrow \mathbb{R}$ requiring for $x \in [-L, L]$ that

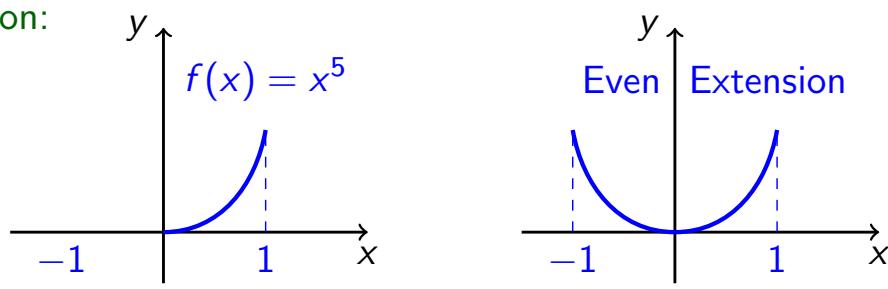
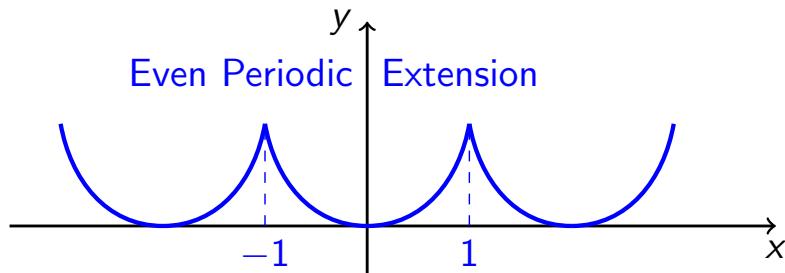
$$f(x + 2nL) = f(x).$$

Even Periodic and Odd Periodic Extensions of Functions

Example

Sketch the graph of the even-periodic extension of $f(x) = x^5$, with $x \in [0, 1]$.

Solution:



◇

Even Periodic and Odd Periodic Extensions of Functions

(2) Odd-periodic case:

A function $f : (0, L) \rightarrow \mathbb{R}$ can be extended as an odd function $f : (-L, L) \rightarrow \mathbb{R}$ requiring for $x \in (0, L)$ that

$$f(-x) = -f(x), \quad f(0) = 0.$$

This function $f : (-L, L) \rightarrow \mathbb{R}$ can be further extended as a periodic function $f : \mathbb{R} \rightarrow \mathbb{R}$ requiring for $x \in (-L, L)$ and n integer that

$$f(x + 2nL) = f(x), \quad \text{and} \quad f(nL) = 0.$$

Remark: At $x = \pm L$, the extension f must satisfy:

- (a) f is odd, hence $f(-L) = -f(L)$;
- (b) f is periodic, hence $f(-L) = f(-L + 2L) = f(L)$.

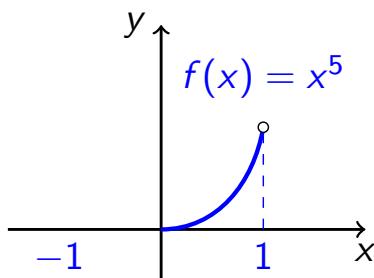
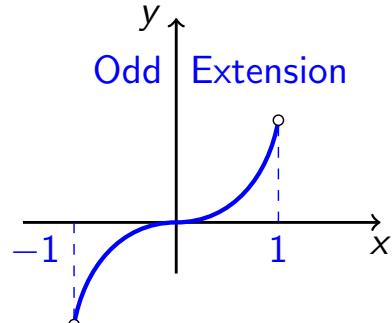
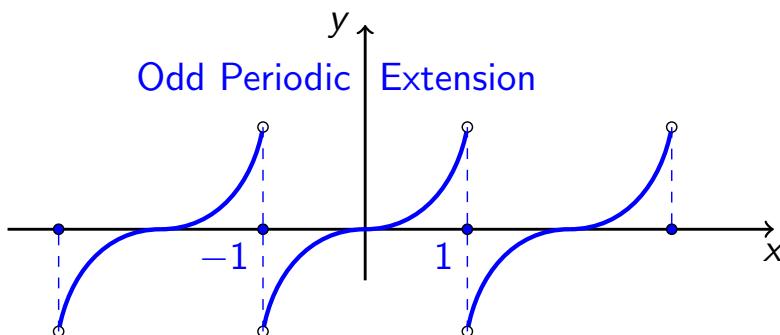
We then conclude that $-f(L) = f(L)$, hence $f(L) = 0$.

Even Periodic and Odd Periodic Extensions of Functions

Example

Graph of the odd-periodic extension of $f(x) = x^5$, with $x \in (0, 1)$.

Solution:



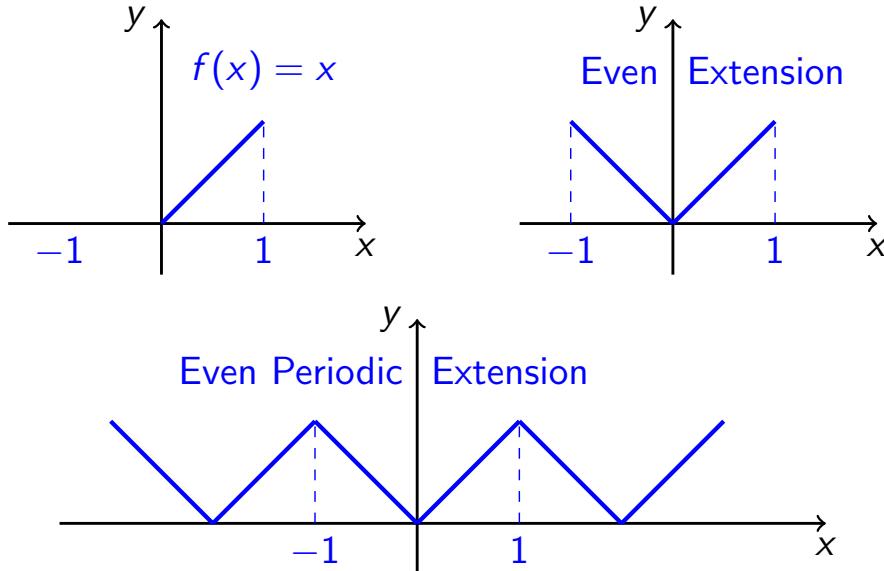
◇

Even Periodic and Odd Periodic Extensions of Functions

Example

Sketch the graph of the even-periodic extension of $f(x) = x$, with $x \in [0, 1]$, and then find its Fourier Series.

Solution:



Even Periodic and Odd Periodic Extensions of Functions

Example

Sketch the graph of the even-periodic extension of $f(x) = x$, with $x \in [0, 1]$, and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a Cosine Series, that is, $b_n = 0$. From the graph: $a_0 = 1$.

$$a_n = \frac{1}{L} \int_{-L}^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx.$$

$$a_n = 2 \int_0^1 x \cos(n\pi x) dx = 2 \left[\frac{x \sin(n\pi x)}{n\pi} + \frac{\cos(n\pi x)}{(n\pi)^2} \right] \Big|_0^1,$$

$$a_n = \frac{2}{(n\pi)^2} [\cos(n\pi) - 1] \Rightarrow a_n = \frac{2}{(n\pi)^2} [(-1)^n - 1].$$

Even Periodic and Odd Periodic Extensions of Functions

Example

Sketch the graph of the even-periodic extension of $f(x) = x$, with $x \in [0, 1]$, and then find its Fourier Series.

Solution: Recall: $b_n = 0$, and $a_n = \frac{2}{(n\pi)^2} [(-1)^n - 1]$.

$$n = 2k \Rightarrow a_{2k} = \frac{2}{[(2k)\pi]^2} [(-1)^{2k} - 1] \Rightarrow a_{2k} = 0.$$

$$n = 2k - 1 \Rightarrow a_{2k-1} = \frac{2[-1 - 1]}{[(2k-1)\pi]^2} \Rightarrow a_{2k-1} = \frac{-4}{[(2k-1)\pi]^2}.$$

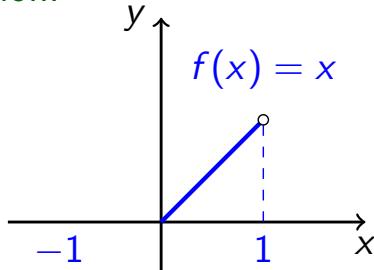
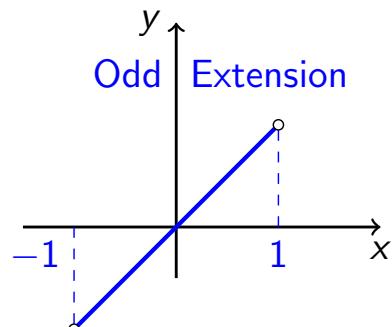
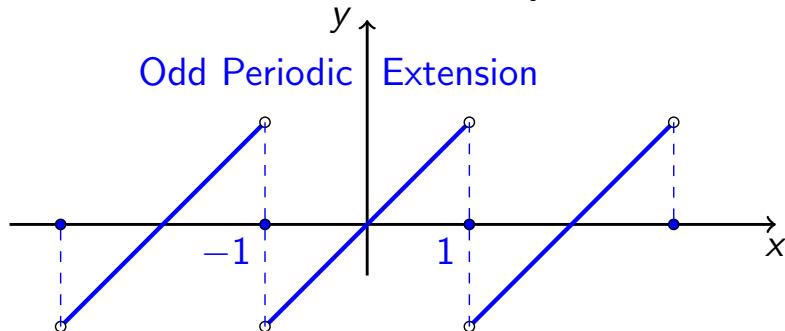
$$f(x) = \frac{1}{2} - \frac{4}{\pi^2} \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \cos((2k-1)\pi x). \quad \triangleleft$$

Even Periodic and Odd Periodic Extensions of Functions

Example

Sketch the graph of the odd-periodic extension of $f(x) = x$, with $x \in (0, 1)$, and then find its Fourier Series.

Solution:



Even Periodic and Odd Periodic Extensions of Functions

Example

Sketch the graph of the odd-periodic extension of $f(x) = x$, with $x \in (0, 1)$, and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a Sine Series, that is, $a_n = 0$.

$$b_n = \frac{1}{L} \int_{-L}^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$

$$b_n = 2 \int_0^1 x \sin(n\pi x) dx = 2 \left[-\frac{x \cos(n\pi x)}{n\pi} + \frac{\sin(n\pi x)}{(n\pi)^2} \right]_0^1,$$

$$b_n = \frac{-2}{n\pi} [\cos(n\pi) - 0] \quad \Rightarrow \quad b_n = \frac{-2(-1)^n}{n\pi}.$$

Even Periodic and Odd Periodic Extensions of Functions

Example

Sketch the graph of the odd-periodic extension of $f(x) = x$, with $x \in (0, 1)$, and then find its Fourier Series.

Solution: Recall: $a_n = 0$, and $b_n = \frac{2(-1)^{n+1}}{n\pi}$. Therefore,

$$f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(n\pi x). \quad \triangleleft$$