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Periodic functions.

Definition
A function f : R → R is called periodic iff there exists τ > 0 such
that for all x ∈ R holds

f (x + τ) = f (x).

Remark: f is invariant under translations by τ .

Definition
A period T of a periodic function f is the smallest value of τ such
that f (x + τ) = f (x) holds.

Notation:
A periodic function with period T is also called T -periodic.



Periodic functions.

Example

The following functions are periodic, with period T ,

f (x) = sin(x), T = 2π.

f (x) = cos(x), T = 2π.

f (x) = tan(x), T = π.

f (x) = sin(ax), T =
2π

a
.

The proof of the latter statement is the following:

f
(
x +

2π

a

)
= sin

(
ax + a

2π

a

)
= sin(ax + 2π) = sin(ax) = f (x).

C

Periodic functions.

Example

Show that the function below is periodic, and find its period,

f (x) = ex , x ∈ [0, 2), f (x − 2) = f (x).

Solution: We just graph the function,

y = f(x)y

0 1 x

So the function is periodic with period T = 2. C
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Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: [−L, L].

L x

y

T = 2 L

cos ( pi x / L )

sin ( pi x / L )

−L



Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all n, m ∈ N,∫ L

−L
cos

(nπx

L

)
cos

(mπx

L

)
dx =


0 n 6= m,

L n = m 6= 0,

2L n = m = 0,∫ L

−L
sin

(nπx

L

)
sin

(mπx

L

)
dx =

{
0 n 6= m,

L n = m,∫ L

−L
cos

(nπx

L

)
sin

(mπx

L

)
dx = 0.

Remark:

I The operation f · g =

∫ L

−L
f (x) g(x) dx is an inner product in

the vector space of functions. Like the dot product is in R2.

I Two functions f , g , are orthogonal iff f · g = 0.

Orthogonality of Sines and Cosines.

Recall: cos(θ) cos(φ) =
1

2

[
cos(θ + φ) + cos(θ − φ)

]
;

sin(θ) sin(φ) =
1

2

[
cos(θ − φ)− cos(θ + φ)

]
;

sin(θ) cos(φ) =
1

2

[
sin(θ + φ) + sin(θ − φ)

]
.

Proof: First formula: If n = m = 0, it is simple to see that∫ L

−L
cos

(nπx

L

)
cos

(mπx

L

)
dx =

∫ L

−L
dx = 2L.

In the case where one of n or m is non-zero, use the relation∫ L

−L
cos

(nπx

L

)
cos

(mπx

L

)
dx =

1

2

∫ L

−L
cos

[(n + m)πx

L

]
dx

+
1

2

∫ L

−L
cos

[(n −m)πx

L

]
dx .



Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

1

2

∫ L

−L
cos

[(n + m)πx

L

]
dx =

L

2(n + m)π
sin

[(n + m)πx

L

]∣∣∣L
−L

= 0.

We obtain that∫ L

−L
cos

(nπx

L

)
cos

(mπx

L

)
dx =

1

2

∫ L

−L
cos

[(n −m)πx

L

]
dx .

If we further restrict n 6= m, then

1

2

∫ L

−L
cos

[(n −m)πx

L

]
dx =

L

2(n −m)π
sin

[(n −m)πx

L

]∣∣∣L
−L

= 0.

If n = m 6= 0, we have that

1

2

∫ L

−L
cos

[(n −m)πx

L

]
dx =

1

2

∫ L

−L
dx = L.

This establishes the first equation in the Theorem. The remaining
equations are proven in a similar way.
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The Fourier Theorem: Continuous case.

Theorem (Fourier Series)

If the function f : [−L, L] ⊂ R → R is continuous, then f can be
expressed as an infinite series

f (x) =
a0

2
+
∞∑

n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]
(1)

with the constants an and bn given by

an =
1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx , n > 0,

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx , n > 1.

Furthermore, the Fourier series in Eq. (1) provides a 2L-periodic
extension of function f from the domain [−L, L] ⊂ R to R.

The Fourier Theorem: Continuous case.

Sketch of the Proof:

I Define the partial sum functions

fN(x) =
a0

2
+

N∑
n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]
with an and bn given by

an =
1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx , n > 0,

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx , n > 1.

I Express fN as a convolution of Sine, Cosine, functions and the
original function f .

I Use the convolution properties to show that

lim
N→∞

fN(x) = f (x), x ∈ [−L, L].
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Example: Using the Fourier Theorem.
Example

Find the Fourier series expansion of the function

f (x) =

{
1 + x x ∈ [−1, 0),

1− x x ∈ [0, 1].

Solution: In this case L = 1. The Fourier series expansion is

f (x) =
a0

2
+
∞∑

n=1

[
an cos(nπx) + bn sin(nπx)

]
,

where the an, bn are given in the Theorem. We start with a0,

a0 =

∫ 1

−1
f (x) dx =

∫ 0

−1
(1 + x) dx +

∫ 1

0
(1− x) dx .

a0 =
(
x +

x2

2

)∣∣∣0
−1

+
(
x − x2

2

)∣∣∣1
0

=
(
1− 1

2

)
+

(
1− 1

2

)
We obtain: a0 = 1.



Example: Using the Fourier Theorem.
Example

Find the Fourier series expansion of the function

f (x) =

{
1 + x x ∈ [−1, 0),

1− x x ∈ [0, 1].

Solution: Recall: a0 = 1. Similarly, the rest of the an are given by,

an =

∫ 1

−1
f (x) cos(nπx) dx

an =

∫ 0

−1
(1 + x) cos(nπx) dx +

∫ 1

0
(1− x) cos(nπx) dx .

Recall the integrals

∫
cos(nπx) dx =

1

nπ
sin(nπx), and∫

x cos(nπx) dx =
x

nπ
sin(nπx) +

1

n2π2
cos(nπx).

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

f (x) =

{
1 + x x ∈ [−1, 0),

1− x x ∈ [0, 1].

Solution: It is not difficult to see that

an =
1

nπ
sin(nπx)

∣∣∣0
−1

+
[ x

nπ
sin(nπx) +

1

n2π2
cos(nπx)

]∣∣∣0
−1

+
1

nπ
sin(nπx)

∣∣∣1
0
−

[ x

nπ
sin(nπx) +

1

n2π2
cos(nπx)

]∣∣∣1
0

an =
[ 1

n2π2
− 1

n2π2
cos(−nπ)

]
−

[ 1

n2π2
cos(nπ)− 1

n2π2

]
.

We then conclude that an =
2

n2π2

[
1− cos(nπ)

]
.



Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

f (x) =

{
1 + x x ∈ [−1, 0),

1− x x ∈ [0, 1].

Solution: Recall: a0 = 1, and an =
2

n2π2

[
1− cos(nπ)

]
.

Finally, we must find the coefficients bn.

A similar calculation shows that bn = 0.

Then, the Fourier series of f is given by

f (x) =
1

2
+
∞∑

n=1

2

n2π2

[
1− cos(nπ)

]
cos(nπx). C

Example: Using the Fourier Theorem.
Example

Find the Fourier series expansion of the function

f (x) =

{
1 + x x ∈ [−1, 0),

1− x x ∈ [0, 1].

Solution: Recall: f (x) =
1

2
+
∞∑

n=1

2

n2π2

[
1− cos(nπ)

]
cos(nπx).

We can obtain a simpler expression for the Fourier coefficients an.

Recall the relations cos(nπ) = (−1)n, then

f (x) =
1

2
+
∞∑

n=1

2

n2π2

[
1− (−1)n

]
cos(nπx).

f (x) =
1

2
+
∞∑

n=1

2

n2π2

[
1 + (−1)n+1

]
cos(nπx).



Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

f (x) =

{
1 + x x ∈ [−1, 0),

1− x x ∈ [0, 1].

Solution: Recall: f (x) =
1

2
+
∞∑

n=1

2

n2π2

[
1 + (−1)n+1

]
cos(nπx).

If n = 2k, so n is even, so n + 1 = 2k + 1 is odd, then

a2k =
2

(2k)2π2
(1− 1) ⇒ a2k = 0.

If n = 2k − 1, so n is odd, so n + 1 = 2k is even, then

a2k−1 =
2

(2k − 1)2π2
(1 + 1) ⇒ a2k−1 =

4

(2k − 1)2π2
.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

f (x) =

{
1 + x x ∈ [−1, 0),

1− x x ∈ [0, 1].

Solution:

Recall: f (x) =
1

2
+
∞∑

n=1

2

n2π2

[
1 + (−1)n+1

]
cos(nπx), and

a2k = 0, a2k−1 =
4

(2k − 1)2π2
.

We conclude: f (x) =
1

2
+
∞∑

k=1

4

(2k − 1)2π2
cos((2k − 1)πx). C
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The Fourier Theorem: Piecewise continuous case.

Recall:

Definition
A function f : [a, b] → R is called piecewise continuous iff holds,

(a) [a, b] can be partitioned in a finite number of sub-intervals
such that f is continuous on the interior of these sub-intervals.

(b) f has finite limits at the endpoints of all sub-intervals.



The Fourier Theorem: Piecewise continuous case.

Theorem (Fourier Series)

If f : [−L, L] ⊂ R → R is piecewise continuous, then the function

fF (x) =
a0

2
+
∞∑

n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]
where an and bn given by

an =
1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx , n > 0,

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx , n > 1.

satisfies that:

(a) fF (x) = f (x) for all x where f is continuous;

(b) fF (x0) =
1

2

[
lim

x→x+
0

f (x) + lim
x→x−0

f (x)
]

for all x0 where f is

discontinuous.
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Example: Using the Fourier Theorem.

Example

Find the Fourier series of f (x) =

{
− 1 x ∈ [−1, 0),

1 x ∈ [0, 1).

and periodic with period T = 2.

Solution: We start computing the Fourier coefficients bn;

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx , L = 1,

bn =

∫ 0

−1
(−1) sin

(
nπx

)
dx +

∫ 1

0
(1) sin

(
nπx

)
dx ,

bn =
(−1)

nπ

[
− cos(nπx)

∣∣∣0
−1

]
+

1

nπ

[
− cos(nπx)

∣∣∣1
0

]
,

bn =
(−1)

nπ

[
−1 + cos(−nπ)

]
+

1

nπ

[
− cos(nπ) + 1

]
.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of f (x) =

{
− 1 x ∈ [−1, 0),

1 x ∈ [0, 1).

and periodic with period T = 2.

Solution: bn =
(−1)

nπ

[
−1 + cos(−nπ)

]
+

1

nπ

[
− cos(nπ) + 1

]
.

bn =
1

nπ

[
1− cos(−nπ)− cos(nπ) + 1

]
=

2

nπ

[
1− cos(nπ)

]
,

We obtain: bn =
2

nπ

[
1− (−1)n

]
.

If n = 2k, then b2k =
2

2kπ

[
1− (−1)2k

]
, hence b2k = 0.

If n = 2k − 1, then b2k−1 =
2

(2k − 1)π

[
1− (−1)2k−1

]
,

hence b2k =
4

(2k − 1)π
.



Example: Using the Fourier Theorem.

Example

Find the Fourier series of f (x) =

{
− 1 x ∈ [−1, 0),

1 x ∈ [0, 1).

and periodic with period T = 2.

Solution: Recall: b2k = 0, and b2k =
4

(2k − 1)π
.

an =
1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx , L = 1,

an =

∫ 0

−1
(−1) cos

(
nπx

)
dx +

∫ 1

0
(1) cos

(
nπx

)
dx ,

an =
(−1)

nπ

[
sin(nπx)

∣∣∣0
−1

]
+

1

nπ

[
sin(nπx)

∣∣∣1
0

]
,

an =
(−1)

nπ

[
0− sin(−nπ)

]
+

1

nπ

[
sin(nπ)− 0

]
⇒ an = 0.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of f (x) =

{
− 1 x ∈ [−1, 0),

1 x ∈ [0, 1).

and periodic with period T = 2.

Solution: Recall: b2k = 0, b2k =
4

(2k − 1)π
, and an = 0.

Therefore, we conclude that

fF (x) =
4

π

∞∑
k=1

1

(2k − 1)
sin

(
(2k − 1)π x

)
.

C


