
Review for Exam 3.

I 5 or 6 problems, 60 minutes.

I No notes, no books, no calculators.

I Problems similar to homeworks.

I Integration table an LT table provided.
I Exam covers:

I Power Series with Regular-Singular points (3.3).
I Chapter 4: Laplace Transform methods.

I Definition of Laplace Transform (4.1).
I Solving IVP using LT (4.2).
I Solving IVP with discontinuous sources using LT, (4.3).
I Solving IVP with generalized sources using LT (4.4).
I Convolutions and LT (4.5).

I Systems of linear Differential Equations (5.1).
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Regular-singular points (3.3).

Summary:

I Look for solutions y(x) =
∞∑

n=0

an(x − x0)
(n+r).

I Recall: Since r 6= 0, holds

y ′ =
∞∑

n=0

(n+r)an(x−x0)
(n+r−1) 6=

∞∑
n=1

(n+r)an(x−x0)
(n+r−1),

I Find the indicial equation for r , the recurrence relation for an.

I Introduce the larger root r+ of the indicial polynomial into the
recurrence relation and solve for an.

(a) If (r+ − r−) is not an integer, then each r+ and r− define
linearly independent solutions.

(b) If (r+ − r−) is an integer, then both r+ and r− define
proportional solutions.

Regular-singular points (3.3).

Example

Consider the equation x2 y ′′ +
(
x2 + 1

4

)
y = 0. Use a power series

centered at the regular-singular point x0 = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution: y =
∞∑

n=0

anx
(n+r), y ′′ =

∞∑
n=0

(n + r)(n + r − 1)anx
(n+r−2),

x2y ′′ =
∞∑

n=0

(n + r)(n + r − 1)anx
(n+r)

We also need to compute(
x2 +

1

4

)
y =

∞∑
n=0

anx
(n+r+2) +

∞∑
n=0

1

4
anx

(n+r),



Regular-singular points (3.3).

Example

Consider the equation x2 y ′′ +
(
x2 + 1

4

)
y = 0. Use a power series

centered at the regular-singular point x0 = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution:
(
x2 +

1

4

)
y =

∞∑
n=0

anx
(n+r+2) +

∞∑
n=0

1

4
anx

(n+r).

Re-label m = n + 2 in the first term and then switch back to n,(
x2 +

1

4

)
y =

∞∑
n=2

a(n−2)x
(n+r) +

∞∑
n=0

1

4
anx

(n+r),

The equation is
∞∑

n=0

(n+r)(n+r−1)anx
(n+r)+

∞∑
n=2

a(n−2)x
(n+r)+

∞∑
n=0

1

4
anx

(n+r) = 0.

Regular-singular points (3.3).

Example

Consider the equation x2 y ′′ +
(
x2 + 1

4

)
y = 0. Use a power series

centered at the regular-singular point x0 = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution:
∞∑

n=0

(n+r)(n+r−1)anx
(n+r)+

∞∑
n=2

a(n−2)x
(n+r)+

∞∑
n=0

1

4
anx

(n+r) = 0.

[
r(r − 1) +

1

4

]
a0 x r +

[
(r + 1)r +

1

4

]
a1 x (r+1)+

∞∑
n=2

[
(n + r)(n + r − 1)an + a(n−2) +

1

4
an

]
x (n+r) = 0.



Regular-singular points (3.3).

Example

Consider the equation x2 y ′′ +
(
x2 + 1

4

)
y = 0. Use a power series

centered at the regular-singular point x0 = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution:
[
r(r − 1) +

1

4

]
a0 = 0,

[
(r + 1)r +

1

4

]
a1 = 0,[

(n + r)(n + r − 1) +
1

4

]
an + a(n−2) = 0.

The indicial equation r2 − r +
1

4
= 0 implies r± =

1

2
.

The indicial equation r2 + r +
1

4
= 0 implies r± = −1

2
.

Choose r =
1

2
. That implies a0 arbitrary and a1 = 0.

Regular-singular points (3.3).

Example

Consider the equation x2 y ′′ +
(
x2 + 1

4

)
y = 0. Use a power series

centered at the regular-singular point x0 = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution: r =
1

2
, a1 = 0,

[
(n + r)(n + r − 1) +

1

4

]
an = −a(n−2).[(

n+
1

2

)(
n− 1

2

)
+

1

4

]
an = −a(n−2) ⇒

[
n2− 1

4
+

1

4

]
an = −a(n−2)

n2an = −a(n−2) ⇒ an = −
a(n−2)

n2
⇒

 a2 = −a0

4
,

a4 = − a2

16
=

a0

64
.



Regular-singular points (3.3).

Example

Consider the equation x2 y ′′ +
(
x2 + 1

4

)
y = 0. Use a power series

centered at the regular-singular point x0 = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution: r =
1

2
, a1 = 0, a2 = −a0

4
, and a4 =

a0

64
. Then,

y(x) = x r
(
a0 + a1x + a2x

2 + a3x
3 + a4x

4 + · · ·
)
.

Recall: a1 = 0 and the recurrence relation imply an = 0 for n odd.
Therefore,

y(x) = a0x
1/2

(
1− 1

4
x2 +

1

64
x4 + · · ·

)
. C
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Laplace transforms (Chptr. 4).

Summary:

I Main Properties:

L
[
f (n)(t)

]
= sn L[f (t)]− s(n−1) f (0)− · · · − f (n−1)(0); (18)

e−cs L[f (t)] = L[uc(t) f (t − c)]; (13)

L[f (t)]
∣∣∣
(s−c)

= L[ect f (t)]. (14)

I Convolutions:

L[(f ∗ g)(t)] = L[f (t)]L[g(t)].

I Partial fraction decompositions, completing the squares.

Chapter 4: Laplace Transform methods.

Example

Use Laplace Transform to find y solution of

y ′′ − 2y ′ + 2y = δ(t − 2), y(0) = 1, y ′(0) = 3.

Solution: Compute the LT of the equation,

L[y ′′]− 2L[y ′] + 2L[y ] = L[δ(t − 2)] = e−2s

L[y ′′] = s2 L[y ]− s y(0)− y ′(0), L[y ′] = s L[y ]− y(0).

(s2 − 2s + 2)L[y ]− s y(0)− y ′(0) + 2 y(0) = e−2s

(s2 − 2s + 2)L[y ]− s − 1 = e−2s

L[y ] =
(s + 1)

(s2 − 2s + 2)
+

1

(s2 − 2s + 2)
e−2s .



Chapter 4: Laplace Transform methods.

Example

Use Laplace Transform to find y solution of

y ′′ − 2y ′ + 2y = δ(t − 2), y(0) = 1, y ′(0) = 3.

Solution: Recall: L[y ] =
(s + 1)

(s2 − 2s + 2)
+

1

(s2 − 2s + 2)
e−2s .

s2 − 2s + 2 = 0 ⇒ s± =
1

2

[
2±

√
4− 8

]
, complex roots.

s2 − 2s + 2 = (s2 − 2s + 1)− 1 + 2 = (s − 1)2 + 1.

L[y ] =
s + 1

(s − 1)2 + 1
+

1

(s − 1)2 + 1
e−2s

L[y ] =
(s − 1 + 1) + 1

(s − 1)2 + 1
+

1

(s − 1)2 + 1
e−2s

Chapter 4: Laplace Transform methods.

Example

Use Laplace Transform to find y solution of

y ′′ − 2y ′ + 2y = δ(t − 2), y(0) = 1, y ′(0) = 3.

Solution: Recall: L[y ] =
(s − 1) + 2

(s − 1)2 + 1
+

1

(s − 1)2 + 1
e−2s ,

L[y ] =
(s − 1)

(s − 1)2 + 1
+ 2

1

(s − 1)2 + 1
+ e−2s 1

(s − 1)2 + 1
,

L[cos(at)] =
s

s2 + a2
, L[sin(at)] =

a

s2 + a2
,

L[y ] = L[cos(t)]
∣∣
(s−1)

+ 2L[sin(t)]
∣∣
(s−1)

+ e−2s L[sin(t)]
∣∣
(s−1)

.



Chapter 4: Laplace Transform methods.

Example

Use Laplace Transform to find y solution of

y ′′ − 2y ′ + 2y = δ(t − 2), y(0) = 1, y ′(0) = 3.

Solution: Recall:

L[y ] = L[cos(t)]
∣∣
(s−1)

+ 2L[sin(t)]
∣∣
(s−1)

+ e−2s L[sin(t)]
∣∣
(s−1)

and L[f (t)]
∣∣
(s−c)

= L[ect f (t)]. Therefore,

L[y ] = L[et cos(t)] + 2L[et sin(t)] + e−2s L[et sin(t)].

Also recall: e−cs L[f (t)] = L[uc(t) f (t − c)]. Therefore,

L[y ] = L[et cos(t)] + 2L[et sin(t)] + L[u2(t) e(t−2) sin(t − 2)].

y(t) =
[
cos(t) + 2 sin(t)

]
et + u2(t) sin(t − 2) e(t−2). C

Chapter 4: Laplace Transform methods.

Example

Sketch the graph of g and use LT to find y solution of

y ′′ + 3y = g(t), y(0) = y ′(0) = 0, g(t) =

{
0, t < 2,

e(t−2), t > 2.

Solution:

t

u ( t − 2 )1

t2

g ( t )

e

Express g using step functions,

g(t) = u2(t) e(t−2).

L[uc(t) f (t − c)] = e−cs L[f (t)].

Therefore,

L[g(t)] = e−2sL[et ].

We obtain: L[g(t)] =
e−2s

(s − 1)
.



Chapter 4: Laplace Transform methods.

Example

Sketch the graph of g and use LT to find y solution of

y ′′ + 3y = g(t), y(0) = y ′(0) = 0, g(t) =

{
0, t < 2,

e(t−2), t > 2.

Solution: Recall: L[g(t)] =
e−2s

(s − 1)
.

L[y ′′] + 3L[y ] = L[g(t)] =
e−2s

(s − 1)
.

(s2 + 3)L[y ] =
e−2s

(s − 1)
⇒ L[y ] = e−2s 1

(s − 1)(s2 + 3)
.

H(s) =
1

(s − 1)(s2 + 3)
=

a

(s − 1)
+

(bs + c)

(s2 + 3)

1 = a(s2 + 3) + (bs + c)(s − 1)

Chapter 4: Laplace Transform methods.

Example

Sketch the graph of g and use LT to find y solution of

y ′′ + 3y = g(t), y(0) = y ′(0) = 0, g(t) =

{
0, t < 2,

e(t−2), t > 2.

Solution: Recall: 1 = a(s2 + 3) + (bs + c)(s − 1).

1 = as2 + 3a + bs2 + cs − bs − c

1 = (a + b) s2 + (c − b) s + (3a− c)

a + b = 0, c − b = 0, 3a− c = 1.

a = −b, c = b, −3b−b = 1 ⇒ b = −1

4
, a =

1

4
, c = −1

4
.

H(s) =
1

4

[ 1

s − 1
− s + 1

s2 + 3

]
.



Chapter 4: Laplace Transform methods.

Example

Sketch the graph of g and use LT to find y solution of

y ′′ + 3y = g(t), y(0) = y ′(0) = 0, g(t) =

{
0, t < 2,

e(t−2), t > 2.

Solution: Recall: H(s) =
1

4

[ 1

s − 1
− s + 1

s2 + 3

]
, L[y ] = e−2s H(s).

H(s) =
1

4

[ 1

s − 1
− s

s2 + 3
− 1√

3

√
3

s2 + 3

]
,

H(s) =
1

4

[
L[et ]− L

[
cos

(√
3 t

)]
− 1√

3
L

[
sin

(√
3 t

)]]
.

H(s) = L
[1

4

(
et − cos

(√
3 t

)
− 1√

3
sin

(√
3 t

))]
.

Chapter 4: Laplace Transform methods.

Example

Sketch the graph of g and use LT to find y solution of

y ′′ + 3y = g(t), y(0) = y ′(0) = 0, g(t) =

{
0, t < 2,

e(t−2), t > 2.

Solution: Recall: H(s) = L
[1

4

(
et − cos

(√
3 t

)
− 1√

3
sin

(√
3 t

))]
.

h(t) =
1

4

(
et − cos

(√
3 t

)
− 1√

3
sin

(√
3 t

))
, H(s) = L[h(t)].

L[y ] = e−2s H(s) = e−2s L[h(t)] = L[u2(t) h(t − 2)].

We conclude: y(t) = u2(t) h(t − 2). Equivalently,

y(t) =
u2(t)

4

[
e(t−2) − cos

(√
3 (t − 2)

)
− 1√

3
sin

(√
3 (t − 2)

)]
.
C



Chapter 4: Laplace Transform methods.

Example

Use convolutions to find f satisfying L[f (t)] =
e−2s

(s − 1)(s2 + 3)
.

Solution: One way to solve this is with the splitting

L[f (t)] = e−2s 1

(s2 + 3)

1

(s − 1)
= e−2s 1√

3

√
3

(s2 + 3)

1

(s − 1)
,

L[f (t)] = e−2s 1√
3
L[sin

(√
3 t

)
]L[et ]

L[f (t)] =
1√
3
L[u2(t) sin

(√
3 (t − 2)

)
]L[et ].

f (t) =
1√
3

∫ t

0
u2(τ) sin

(√
3 (τ − 2)

)
e(t−τ) dτ. C

Chapter 4: Laplace Transform methods.

Example
Sketch the graph of g and use LT to find y solution of

y ′′ − 6y = g(t), y(0) = y ′(0) = 0, g(t) =

{
0, t < π,

sin(t − π), t > π.

Solution:

1

g ( t )

u ( t − pi )sin ( t )

pi
t

Express g using step functions,

g(t) = uπ(t) sin(t − π).

L[uc(t) f (t − c)] = e−cs L[f (t)].

Therefore,

L[g(t)] = e−πsL[sin(t)].

We obtain: L[g(t)] =
e−πs

s2 + 1
.



Chapter 4: Laplace Transform methods.
Example
Sketch the graph of g and use LT to find y solution of

y ′′ − 6y = g(t), y(0) = y ′(0) = 0, g(t) =

{
0, t < π,

sin(t − π), t > π.

Solution: L[g(t)] =
e−πs

s2 + 1
.

L[y ′′]− 6L[y ] = L[g(t)] =
e−πs

s2 + 1
.

(s2 − 6)L[y ] =
e−πs

s2 + 1
⇒ L[y ] = e−πs 1

(s2 + 1)(s2 − 6)
.

H(s) =
1

(s2 + 1)(s2 − 6)
=

1

(s2 + 1)(s +
√

6)(s −
√

6)

H(s) =
a

(s +
√

6)
+

b

(s −
√

6)
+

(cs + d)

(s2 + 1)
.

Chapter 4: Laplace Transform methods.

Example
Sketch the graph of g and use LT to find y solution of

y ′′ − 6y = g(t), y(0) = y ′(0) = 0, g(t) =

{
0, t < π,

sin(t − π), t > π.

Solution: H(s) =
a

(s +
√

6)
+

b

(s −
√

6)
+

(cs + d)

(s2 + 1)
.

1

(s2 + 1)(s +
√

6)(s −
√

6)
=

a

(s +
√

6)
+

b

(s −
√

6)
+

(cs + d)

(s2 + 1)

1 = a(s −
√

6)(s2 + 1) + b(s +
√

6)(s2 + 1) + (cs + d)(s2 − 6).

The solution is: a = − 1

14
√

6
, b =

1

14
√

6
, c = 0, d = −1

7
.



Chapter 4: Laplace Transform methods.

Example
Sketch the graph of g and use LT to find y solution of

y ′′ − 6y = g(t), y(0) = y ′(0) = 0, g(t) =

{
0, t < π,

sin(t − π), t > π.

Solution: H(s) =
1

14
√

6

[
− 1

(s +
√

6)
+

1

(s −
√

6)
− 2

√
6

(s2 + 1)

]
.

H(s) =
1

14
√

6

[
−L

[
e−
√

6 t
]
+ L

[
e
√

6 t
]
− 2

√
6L[sin(t)]

]
H(s) = L

[ 1

14
√

6

(
−e−

√
6 t + e

√
6 t − 2

√
6 sin(t)

)]
.

h(t) =
1

14
√

6

[
−e−

√
6 t + e

√
6 t − 2

√
6 sin(t)

]
⇒ H(s) = L[h(t)].

Chapter 4: Laplace Transform methods.

Example
Sketch the graph of g and use LT to find y solution of

y ′′ − 6y = g(t), y(0) = y ′(0) = 0, g(t) =

{
0, t < π,

sin(t − π), t > π.

Solution: Recall: L[y ] = e−πs H(s), where H(s) = L[h(t)], and

h(t) =
1

14
√

6

[
−e−

√
6 t + e

√
6 t − 2

√
6 sin(t)

]
.

L[y ] = e−πs L[h(t)] = L[uπ(t) h(t−π)] ⇒ y(t) = uπ(t) h(t−π).

Equivalently:

y(t) =
uπ(t)

14
√

6

[
−e−

√
6 (t−π) + e

√
6 (t−π) − 2

√
6 sin(t − π)

]
. C
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Second order equations and first order systems.

Theorem (Reduction to first order)

Every solution y to the second order linear equation

y ′′ + p(t) y ′ + q(t) y = g(t), (1)

defines a solution x1 = y and x2 = y ′ of the 2× 2 first order linear
differential system

x ′1 = x2, (2)

x ′2 = −q(t) x1 − p(t) x2 + g(t). (3)

Conversely, every solution x1, x2 of the 2× 2 first order linear
system in Eqs. (2)-(3) defines a solution y = x1 of the second order
differential equation in (1).



Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be
transformed into a second order single equation.

Example

Express as a single second order equation
the 2× 2 system and solve it,

x ′1 = −x1 + 3x2,

x ′2 = x1 − x2.

Solution: Compute x1 from the second equation: x1 = x ′2 + x2.
Introduce this expression into the first equation,

(x ′2 + x2)
′ = −(x ′2 + x2) + 3x2,

x ′′2 + x ′2 = −x ′2 − x2 + 3x2,

x ′′2 + 2x ′2 − 2x2 = 0.

Second order equations and first order systems.

Example

Express as a single second order equation
the 2× 2 system and solve it,

x ′1 = −x1 + 3x2,

x ′2 = x1 − x2.

Solution: Recall: x ′′2 + 2x ′2 − 2x2 = 0.

r2+2r−2 = 0 ⇒ r± =
1

2

[
−2±

√
4 + 8

]
⇒ r± = −1±

√
3.

Therefore, x2 = c1 er+ t + c2 er− t . Since x1 = x ′2 + x2,

x1 =
(
c1r+ er+ t + c2r− er− t

)
+

(
c1 er+ t + c2 er− t

)
,

We conclude: x1 = c1(1 + r+) er+ t + c2(1 + r−) er− t . C


