Review for Exam 3.

- 5 or 6 problems, 60 minutes.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Integration table an LT table provided.
- Exam covers:
- Power Series with Regular-Singular points (3.3).
- Chapter 4: Laplace Transform methods.
- Definition of Laplace Transform (4.1).
- Solving IVP using LT (4.2).
- Solving IVP with discontinuous sources using LT, (4.3).
- Solving IVP with generalized sources using LT (4.4).
- Convolutions and LT (4.5).
- Systems of linear Differential Equations (5.1).

Review for Exam 3.

- 5 or 6 problems, 60 minutes.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Integration table an LT table provided.
- Exam covers:
- Power Series with Regular-Singular points (3.3).
- Chapter 4: Laplace Transform methods.
- Definition of Laplace Transform (4.1).
- Solving IVP using LT (4.2).
- Solving IVP with discontinuous sources using LT, (4.3).
- Solving IVP with generalized sources using LT (4.4).
- Convolutions and LT (4.5).
- Systems of linear Differential Equations (5.1).

Regular-singular points (3.3).

Summary:

- Look for solutions $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{(n+r)}$.
- Recall: Since $r \neq 0$, holds

$$
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n}\left(x-x_{0}\right)^{(n+r-1)} \neq \sum_{n=1}^{\infty}(n+r) a_{n}\left(x-x_{0}\right)^{(n+r-1)},
$$

- Find the indicial equation for r, the recurrence relation for a_{n}.
- Introduce the larger root r_{+}of the indicial polynomial into the recurrence relation and solve for a_{n}.
(a) If $\left(r_{+}-r_{-}\right)$is not an integer, then each r_{+}and r_{-}define linearly independent solutions.
(b) If $\left(r_{+}-r_{-}\right)$is an integer, then both r_{+}and r_{-}define proportional solutions.

Regular-singular points (3.3).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $y=\sum_{n=0}^{\infty} a_{n} x^{(n+r)}, y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{(n+r-2)}$,

$$
x^{2} y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{(n+r)}
$$

We also need to compute

$$
\left(x^{2}+\frac{1}{4}\right) y=\sum_{n=0}^{\infty} a_{n} x^{(n+r+2)}+\sum_{n=0}^{\infty} \frac{1}{4} a_{n} x^{(n+r)}
$$

Regular-singular points (3.3).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $\left(x^{2}+\frac{1}{4}\right) y=\sum_{n=0}^{\infty} a_{n} x^{(n+r+2)}+\sum_{n=0}^{\infty} \frac{1}{4} a_{n} x^{(n+r)}$.
Re-label $m=n+2$ in the first term and then switch back to n,

$$
\left(x^{2}+\frac{1}{4}\right) y=\sum_{n=2}^{\infty} a_{(n-2)} x^{(n+r)}+\sum_{n=0}^{\infty} \frac{1}{4} a_{n} x^{(n+r)},
$$

The equation is
$\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{(n+r)}+\sum_{n=2}^{\infty} a_{(n-2)} x^{(n+r)}+\sum_{n=0}^{\infty} \frac{1}{4} a_{n} x^{(n+r)}=0$.

Regular-singular points (3.3).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:

$$
\begin{gathered}
\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{(n+r)}+\sum_{n=2}^{\infty} a_{(n-2)} x^{(n+r)}+\sum_{n=0}^{\infty} \frac{1}{4} a_{n} x^{(n+r)}=0 . \\
{\left[r(r-1)+\frac{1}{4}\right] a_{0} x^{r}+\left[(r+1) r+\frac{1}{4}\right] a_{1} x^{(r+1)}+} \\
\sum_{n=2}^{\infty}\left[(n+r)(n+r-1) a_{n}+a_{(n-2)}+\frac{1}{4} a_{n}\right] x^{(n+r)}=0 .
\end{gathered}
$$

Regular-singular points (3.3).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $\left[r(r-1)+\frac{1}{4}\right] a_{0}=0,\left[(r+1) r+\frac{1}{4}\right] a_{1}=0$,

$$
\left[(n+r)(n+r-1)+\frac{1}{4}\right] a_{n}+a_{(n-2)}=0 .
$$

The indicial equation $r^{2}-r+\frac{1}{4}=0$ implies $r_{ \pm}=\frac{1}{2}$.
The indicial equation $r^{2}+r+\frac{1}{4}=0$ implies $r_{ \pm}=-\frac{1}{2}$.
Choose $r=\frac{1}{2}$. That implies a_{0} arbitrary and $a_{1}=0$.

Regular-singular points (3.3).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $r=\frac{1}{2}, \quad a_{1}=0, \quad\left[(n+r)(n+r-1)+\frac{1}{4}\right] a_{n}=-a_{(n-2)}$.

$$
\left[\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)+\frac{1}{4}\right] a_{n}=-a_{(n-2)} \Rightarrow\left[n^{2}-\frac{1}{4}+\frac{1}{4}\right] a_{n}=-a_{(n-2)}
$$

$$
n^{2} a_{n}=-a_{(n-2)} \Rightarrow a_{n}=-\frac{a_{(n-2)}}{n^{2}} \Rightarrow\left\{\begin{array}{l}
a_{2}=-\frac{a_{0}}{4} \\
a_{4}=-\frac{a_{2}}{16}=\frac{a_{0}}{64}
\end{array}\right.
$$

Regular-singular points (3.3).

Example

Consider the equation $x^{2} y^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) y=0$. Use a power series centered at the regular-singular point $x_{0}=0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.
Solution: $r=\frac{1}{2}, \quad a_{1}=0, \quad a_{2}=-\frac{a_{0}}{4}$, and $a_{4}=\frac{a_{0}}{64}$. Then,

$$
y(x)=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots\right)
$$

Recall: $a_{1}=0$ and the recurrence relation imply $a_{n}=0$ for n odd. Therefore,

$$
y(x)=a_{0} x^{1 / 2}\left(1-\frac{1}{4} x^{2}+\frac{1}{64} x^{4}+\cdots\right)
$$

Review for Exam 3.

- 5 or 6 problems, 60 minutes.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Integration table an LT table provided.
- Exam covers:
- Power Series with Regular-Singular points (3.3).
- Chapter 4: Laplace Transform methods.
- Definition of Laplace Transform (4.1).
- Solving IVP using LT (4.2).
- Solving IVP with discontinuous sources using LT, (4.3).
- Solving IVP with generalized sources using LT (4.4).
- Convolutions and LT (4.5).
- Systems of linear Differential Equations (5.1).

Summary:

- Main Properties:

$$
\begin{align*}
& \mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \mathcal{L}[f(t)]-s^{(n-1)} f(0)-\cdots-f^{(n-1)}(0) \tag{18}\\
& e^{-c s} \mathcal{L}[f(t)]=\mathcal{L}\left[u_{c}(t) f(t-c)\right] \tag{13}\\
& \left.\mathcal{L}[f(t)]\right|_{(s-c)}=\mathcal{L}\left[e^{c t} f(t)\right] \tag{14}
\end{align*}
$$

- Convolutions:

$$
\mathcal{L}[(f * g)(t)]=\mathcal{L}[f(t)] \mathcal{L}[g(t)]
$$

- Partial fraction decompositions, completing the squares.

Chapter 4: Laplace Transform methods.

Example

Use Laplace Transform to find y solution of

$$
y^{\prime \prime}-2 y^{\prime}+2 y=\delta(t-2), \quad y(0)=1, \quad y^{\prime}(0)=3
$$

Solution: Compute the LT of the equation,

$$
\begin{gathered}
\mathcal{L}\left[y^{\prime \prime}\right]-2 \mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[\delta(t-2)]=e^{-2 s} \\
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0), \quad \mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]-y(0) \\
\left(s^{2}-2 s+2\right) \mathcal{L}[y]-s y(0)-y^{\prime}(0)+2 y(0)=e^{-2 s} \\
\left(s^{2}-2 s+2\right) \mathcal{L}[y]-s-1=e^{-2 s} \\
\mathcal{L}[y]=\frac{(s+1)}{\left(s^{2}-2 s+2\right)}+\frac{1}{\left(s^{2}-2 s+2\right)} e^{-2 s}
\end{gathered}
$$

Chapter 4: Laplace Transform methods.

Example

Use Laplace Transform to find y solution of

$$
y^{\prime \prime}-2 y^{\prime}+2 y=\delta(t-2), \quad y(0)=1, \quad y^{\prime}(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=\frac{(s+1)}{\left(s^{2}-2 s+2\right)}+\frac{1}{\left(s^{2}-2 s+2\right)} e^{-2 s}$.

$$
\begin{gathered}
s^{2}-2 s+2=0 \Rightarrow s_{ \pm}=\frac{1}{2}[2 \pm \sqrt{4-8}], \quad \text { complex roots. } \\
s^{2}-2 s+2=\left(s^{2}-2 s+1\right)-1+2=(s-1)^{2}+1 . \\
\mathcal{L}[y]=\frac{s+1}{(s-1)^{2}+1}+\frac{1}{(s-1)^{2}+1} e^{-2 s} \\
\mathcal{L}[y]=\frac{(s-1+1)+1}{(s-1)^{2}+1}+\frac{1}{(s-1)^{2}+1} e^{-2 s}
\end{gathered}
$$

Chapter 4: Laplace Transform methods.

Example

Use Laplace Transform to find y solution of

$$
y^{\prime \prime}-2 y^{\prime}+2 y=\delta(t-2), \quad y(0)=1, \quad y^{\prime}(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=\frac{(s-1)+2}{(s-1)^{2}+1}+\frac{1}{(s-1)^{2}+1} e^{-2 s}$,

$$
\begin{gathered}
\mathcal{L}[y]=\frac{(s-1)}{(s-1)^{2}+1}+2 \frac{1}{(s-1)^{2}+1}+e^{-2 s} \frac{1}{(s-1)^{2}+1}, \\
\mathcal{L}[\cos (a t)]=\frac{s}{s^{2}+a^{2}}, \quad \mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \\
\mathcal{L}[y]=\left.\mathcal{L}[\cos (t)]\right|_{(s-1)}+\left.2 \mathcal{L}[\sin (t)]\right|_{(s-1)}+\left.e^{-2 s} \mathcal{L}[\sin (t)]\right|_{(s-1)} .
\end{gathered}
$$

Chapter 4: Laplace Transform methods.

Example

Use Laplace Transform to find y solution of

$$
y^{\prime \prime}-2 y^{\prime}+2 y=\delta(t-2), \quad y(0)=1, \quad y^{\prime}(0)=3 .
$$

Solution: Recall:

$$
\mathcal{L}[y]=\left.\mathcal{L}[\cos (t)]\right|_{(s-1)}+\left.2 \mathcal{L}[\sin (t)]\right|_{(s-1)}+\left.e^{-2 s} \mathcal{L}[\sin (t)]\right|_{(s-1)}
$$

and $\left.\mathcal{L}[f(t)]\right|_{(s-c)}=\mathcal{L}\left[e^{c t} f(t)\right]$. Therefore,

$$
\mathcal{L}[y]=\mathcal{L}\left[e^{t} \cos (t)\right]+2 \mathcal{L}\left[e^{t} \sin (t)\right]+e^{-2 s} \mathcal{L}\left[e^{t} \sin (t)\right] .
$$

Also recall: $\quad e^{-c s} \mathcal{L}[f(t)]=\mathcal{L}\left[u_{c}(t) f(t-c)\right]$. Therefore,

$$
\begin{gathered}
\mathcal{L}[y]=\mathcal{L}\left[e^{t} \cos (t)\right]+2 \mathcal{L}\left[e^{t} \sin (t)\right]+\mathcal{L}\left[u_{2}(t) e^{(t-2)} \sin (t-2)\right] . \\
y(t)=[\cos (t)+2 \sin (t)] e^{t}+u_{2}(t) \sin (t-2) e^{(t-2)} .
\end{gathered}
$$

Chapter 4: Laplace Transform methods.

Example

Sketch the graph of g and use LT to find y solution of

$$
y^{\prime \prime}+3 y=g(t), \quad y(0)=y^{\prime}(0)=0, \quad g(t)= \begin{cases}0, & t<2, \\ e^{(t-2)}, & t \geqslant 2 .\end{cases}
$$

Solution:
Express g using step functions,

$$
\begin{gathered}
g(t)=u_{2}(t) e^{(t-2)} . \\
\mathcal{L}\left[u_{c}(t) f(t-c)\right]=e^{-c s} \mathcal{L}[f(t)] .
\end{gathered}
$$

Therefore,

$$
\mathcal{L}[g(t)]=e^{-2 s} \mathcal{L}\left[e^{t}\right] .
$$

We obtain: $\mathcal{L}[g(t)]=\frac{e^{-2 s}}{(s-1)}$.

Chapter 4: Laplace Transform methods.

Example

Sketch the graph of g and use LT to find y solution of

$$
y^{\prime \prime}+3 y=g(t), \quad y(0)=y^{\prime}(0)=0, \quad g(t)= \begin{cases}0, & t<2 \\ e^{(t-2)}, & t \geqslant 2\end{cases}
$$

Solution: Recall: $\quad \mathcal{L}[g(t)]=\frac{e^{-2 s}}{(s-1)}$.

$$
\begin{gathered}
\mathcal{L}\left[y^{\prime \prime}\right]+3 \mathcal{L}[y]=\mathcal{L}[g(t)]=\frac{e^{-2 s}}{(s-1)} . \\
\left(s^{2}+3\right) \mathcal{L}[y]=\frac{e^{-2 s}}{(s-1)} \Rightarrow \quad \mathcal{L}[y]=e^{-2 s} \frac{1}{(s-1)\left(s^{2}+3\right)} . \\
H(s)=\frac{1}{(s-1)\left(s^{2}+3\right)}=\frac{a}{(s-1)}+\frac{(b s+c)}{\left(s^{2}+3\right)} \\
1=a\left(s^{2}+3\right)+(b s+c)(s-1)
\end{gathered}
$$

Chapter 4: Laplace Transform methods.

Example

Sketch the graph of g and use LT to find y solution of

$$
y^{\prime \prime}+3 y=g(t), \quad y(0)=y^{\prime}(0)=0, \quad g(t)= \begin{cases}0, & t<2 \\ e^{(t-2)}, & t \geqslant 2\end{cases}
$$

Solution: Recall: $1=a\left(s^{2}+3\right)+(b s+c)(s-1)$.

$$
\begin{gathered}
1=a s^{2}+3 a+b s^{2}+c s-b s-c \\
1=(a+b) s^{2}+(c-b) s+(3 a-c) \\
a+b=0, \quad c-b=0, \quad 3 a-c=1 . \\
a=-b, \quad c=b, \quad-3 b-b=1 \quad \Rightarrow \quad b=-\frac{1}{4}, \quad a=\frac{1}{4}, c=-\frac{1}{4} . \\
H(s)=\frac{1}{4}\left[\frac{1}{s-1}-\frac{s+1}{s^{2}+3}\right] .
\end{gathered}
$$

Chapter 4: Laplace Transform methods.

Example

Sketch the graph of g and use LT to find y solution of

$$
y^{\prime \prime}+3 y=g(t), \quad y(0)=y^{\prime}(0)=0, \quad g(t)= \begin{cases}0, & t<2 \\ e^{(t-2)}, & t \geqslant 2\end{cases}
$$

Solution: Recall: $H(s)=\frac{1}{4}\left[\frac{1}{s-1}-\frac{s+1}{s^{2}+3}\right], \quad \mathcal{L}[y]=e^{-2 s} H(s)$.

$$
\begin{gathered}
H(s)=\frac{1}{4}\left[\frac{1}{s-1}-\frac{s}{s^{2}+3}-\frac{1}{\sqrt{3}} \frac{\sqrt{3}}{s^{2}+3}\right] \\
H(s)=\frac{1}{4}\left[\mathcal{L}\left[e^{t}\right]-\mathcal{L}[\cos (\sqrt{3} t)]-\frac{1}{\sqrt{3}} \mathcal{L}[\sin (\sqrt{3} t)]\right] . \\
H(s)=\mathcal{L}\left[\frac{1}{4}\left(e^{t}-\cos (\sqrt{3} t)-\frac{1}{\sqrt{3}} \sin (\sqrt{3} t)\right)\right] .
\end{gathered}
$$

Chapter 4: Laplace Transform methods.

Example

Sketch the graph of g and use LT to find y solution of

$$
y^{\prime \prime}+3 y=g(t), \quad y(0)=y^{\prime}(0)=0, \quad g(t)= \begin{cases}0, & t<2 \\ e^{(t-2)}, & t \geqslant 2\end{cases}
$$

Solution: Recall: $H(s)=\mathcal{L}\left[\frac{1}{4}\left(e^{t}-\cos (\sqrt{3} t)-\frac{1}{\sqrt{3}} \sin (\sqrt{3} t)\right)\right]$.

$$
\begin{gathered}
h(t)=\frac{1}{4}\left(e^{t}-\cos (\sqrt{3} t)-\frac{1}{\sqrt{3}} \sin (\sqrt{3} t)\right), \quad H(s)=\mathcal{L}[h(t)] . \\
\mathcal{L}[y]=e^{-2 s} H(s)=e^{-2 s} \mathcal{L}[h(t)]=\mathcal{L}\left[u_{2}(t) h(t-2)\right]
\end{gathered}
$$

We conclude: $y(t)=u_{2}(t) h(t-2)$. Equivalently,

$$
y(t)=\frac{u_{2}(t)}{4}\left[e^{(t-2)}-\cos (\sqrt{3}(t-2))-\frac{1}{\sqrt{3}} \sin (\sqrt{3}(t-2))\right]
$$

Chapter 4: Laplace Transform methods.

Example

Use convolutions to find f satisfying $\mathcal{L}[f(t)]=\frac{e^{-2 s}}{(s-1)\left(s^{2}+3\right)}$.
Solution: One way to solve this is with the splitting

$$
\begin{gather*}
\mathcal{L}[f(t)]=e^{-2 s} \frac{1}{\left(s^{2}+3\right)} \frac{1}{(s-1)}=e^{-2 s} \frac{1}{\sqrt{3}} \frac{\sqrt{3}}{\left(s^{2}+3\right)} \frac{1}{(s-1)} \\
\mathcal{L}[f(t)]=e^{-2 s} \frac{1}{\sqrt{3}} \mathcal{L}[\sin (\sqrt{3} t)] \mathcal{L}\left[e^{t}\right] \\
\mathcal{L}[f(t)]=\frac{1}{\sqrt{3}} \mathcal{L}\left[u_{2}(t) \sin (\sqrt{3}(t-2))\right] \mathcal{L}\left[e^{t}\right] \\
f(t)=\frac{1}{\sqrt{3}} \int_{0}^{t} u_{2}(\tau) \sin (\sqrt{3}(\tau-2)) e^{(t-\tau)} d \tau
\end{gather*}
$$

Chapter 4: Laplace Transform methods.

Example

Sketch the graph of g and use LT to find y solution of

$$
y^{\prime \prime}-6 y=g(t), \quad y(0)=y^{\prime}(0)=0, \quad g(t)= \begin{cases}0, & t<\pi \\ \sin (t-\pi), & t \geqslant \pi\end{cases}
$$

Solution:

Express g using step functions,

$$
\begin{gathered}
g(t)=u_{\pi}(t) \sin (t-\pi) . \\
\mathcal{L}\left[u_{c}(t) f(t-c)\right]=e^{-c s} \mathcal{L}[f(t)] .
\end{gathered}
$$

Therefore,

$$
\mathcal{L}[g(t)]=e^{-\pi s} \mathcal{L}[\sin (t)] .
$$

We obtain: $\quad \mathcal{L}[g(t)]=\frac{e^{-\pi s}}{s^{2}+1}$.

Chapter 4: Laplace Transform methods.

Example

Sketch the graph of g and use LT to find y solution of

$$
y^{\prime \prime}-6 y=g(t), \quad y(0)=y^{\prime}(0)=0, \quad g(t)= \begin{cases}0, & t<\pi, \\ \sin (t-\pi), & t \geqslant \pi .\end{cases}
$$

Solution: $\mathcal{L}[g(t)]=\frac{e^{-\pi s}}{s^{2}+1}$.

$$
\begin{gathered}
\mathcal{L}\left[y^{\prime \prime}\right]-6 \mathcal{L}[y]=\mathcal{L}[g(t)]=\frac{e^{-\pi s}}{s^{2}+1} . \\
\left(s^{2}-6\right) \mathcal{L}[y]=\frac{e^{-\pi s}}{s^{2}+1} \Rightarrow \quad \mathcal{L}[y]=e^{-\pi s} \frac{1}{\left(s^{2}+1\right)\left(s^{2}-6\right)} . \\
H(s)=\frac{1}{\left(s^{2}+1\right)\left(s^{2}-6\right)}=\frac{1}{\left(s^{2}+1\right)(s+\sqrt{6})(s-\sqrt{6})} \\
H(s)=\frac{a}{(s+\sqrt{6})}+\frac{b}{(s-\sqrt{6})}+\frac{(c s+d)}{\left(s^{2}+1\right)} .
\end{gathered}
$$

Chapter 4: Laplace Transform methods.

Example

Sketch the graph of g and use LT to find y solution of

$$
y^{\prime \prime}-6 y=g(t), \quad y(0)=y^{\prime}(0)=0, \quad g(t)= \begin{cases}0, & t<\pi \\ \sin (t-\pi), & t \geqslant \pi\end{cases}
$$

Solution: $H(s)=\frac{a}{(s+\sqrt{6})}+\frac{b}{(s-\sqrt{6})}+\frac{(c s+d)}{\left(s^{2}+1\right)}$.

$$
\begin{aligned}
& \frac{1}{\left(s^{2}+1\right)(s+\sqrt{6})(s-\sqrt{6})}=\frac{a}{(s+\sqrt{6})}+\frac{b}{(s-\sqrt{6})}+\frac{(c s+d)}{\left(s^{2}+1\right)} \\
& 1=a(s-\sqrt{6})\left(s^{2}+1\right)+b(s+\sqrt{6})\left(s^{2}+1\right)+(c s+d)\left(s^{2}-6\right) .
\end{aligned}
$$

The solution is: $a=-\frac{1}{14 \sqrt{6}}, \quad b=\frac{1}{14 \sqrt{6}}, c=0, \quad d=-\frac{1}{7}$.

Chapter 4: Laplace Transform methods.

Example

Sketch the graph of g and use LT to find y solution of

$$
y^{\prime \prime}-6 y=g(t), \quad y(0)=y^{\prime}(0)=0, \quad g(t)= \begin{cases}0, & t<\pi, \\ \sin (t-\pi), & t \geqslant \pi .\end{cases}
$$

Solution: $H(s)=\frac{1}{14 \sqrt{6}}\left[-\frac{1}{(s+\sqrt{6})}+\frac{1}{(s-\sqrt{6})}-\frac{2 \sqrt{6}}{\left(s^{2}+1\right)}\right]$.

$$
H(s)=\frac{1}{14 \sqrt{6}}\left[-\mathcal{L}\left[e^{-\sqrt{6} t}\right]+\mathcal{L}\left[e^{\sqrt{6} t}\right]-2 \sqrt{6} \mathcal{L}[\sin (t)]\right]
$$

$$
H(s)=\mathcal{L}\left[\frac{1}{14 \sqrt{6}}\left(-e^{-\sqrt{6} t}+e^{\sqrt{6} t}-2 \sqrt{6} \sin (t)\right)\right] .
$$

$$
h(t)=\frac{1}{14 \sqrt{6}}\left[-e^{-\sqrt{6} t}+e^{\sqrt{6} t}-2 \sqrt{6} \sin (t)\right] \Rightarrow H(s)=\mathcal{L}[h(t)] .
$$

Chapter 4: Laplace Transform methods.

Example

Sketch the graph of g and use LT to find y solution of

$$
y^{\prime \prime}-6 y=g(t), \quad y(0)=y^{\prime}(0)=0, \quad g(t)= \begin{cases}0, & t<\pi, \\ \sin (t-\pi), & t \geqslant \pi .\end{cases}
$$

Solution: Recall: $\mathcal{L}[y]=e^{-\pi s} H(s)$, where $H(s)=\mathcal{L}[h(t)]$, and

$$
\begin{gathered}
h(t)=\frac{1}{14 \sqrt{6}}\left[-e^{-\sqrt{6} t}+e^{\sqrt{6} t}-2 \sqrt{6} \sin (t)\right] . \\
\mathcal{L}[y]=e^{-\pi s} \mathcal{L}[h(t)]=\mathcal{L}\left[u_{\pi}(t) h(t-\pi)\right] \Rightarrow y(t)=u_{\pi}(t) h(t-\pi) .
\end{gathered}
$$

Equivalently:

$$
y(t)=\frac{u_{\pi}(t)}{14 \sqrt{6}}\left[-e^{-\sqrt{6}(t-\pi)}+e^{\sqrt{6}(t-\pi)}-2 \sqrt{6} \sin (t-\pi)\right]
$$

Review for Exam 3.

- 5 or 6 problems, 60 minutes.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Integration table an LT table provided.
- Exam covers:
- Power Series with Regular-Singular points (3.3).
- Chapter 4: Laplace Transform methods.
- Definition of Laplace Transform (4.1).
- Solving IVP using LT (4.2).
- Solving IVP with discontinuous sources using LT, (4.3).
- Solving IVP with generalized sources using LT (4.4).
- Convolutions and LT (4.5).
- Systems of linear Differential Equations (5.1).

Second order equations and first order systems.

Theorem (Reduction to first order)
Every solution y to the second order linear equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{1}
\end{equation*}
$$

defines a solution $x_{1}=y$ and $x_{2}=y^{\prime}$ of the 2×2 first order linear differential system

$$
\begin{align*}
& x_{1}^{\prime}=x_{2}, \tag{2}\\
& x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2}+g(t) . \tag{3}
\end{align*}
$$

Conversely, every solution x_{1}, x_{2} of the 2×2 first order linear system in Eqs. (2)-(3) defines a solution $y=x_{1}$ of the second order differential equation in (1).

Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example

Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{1}+3 x_{2}, \\
& x_{2}^{\prime}=x_{1}-x_{2} .
\end{aligned}
$$

Solution: Compute x_{1} from the second equation: $x_{1}=x_{2}^{\prime}+x_{2}$. Introduce this expression into the first equation,

$$
\begin{gathered}
\left(x_{2}^{\prime}+x_{2}\right)^{\prime}=-\left(x_{2}^{\prime}+x_{2}\right)+3 x_{2} \\
x_{2}^{\prime \prime}+x_{2}^{\prime}=-x_{2}^{\prime}-x_{2}+3 x_{2}, \\
x_{2}^{\prime \prime}+2 x_{2}^{\prime}-2 x_{2}=0 .
\end{gathered}
$$

Second order equations and first order systems.

Example

Express as a single second order equation the 2×2 system and solve it,

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{1}+3 x_{2}, \\
& x_{2}^{\prime}=x_{1}-x_{2} .
\end{aligned}
$$

Solution: Recall: $x_{2}^{\prime \prime}+2 x_{2}^{\prime}-2 x_{2}=0$.
$r^{2}+2 r-2=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4+8}] \quad \Rightarrow \quad r_{ \pm}=-1 \pm \sqrt{3}$.

Therefore, $x_{2}=c_{1} e^{r+t}+c_{2} e^{r-t}$. Since $x_{1}=x_{2}^{\prime}+x_{2}$,

$$
x_{1}=\left(c_{1} r_{+} e^{r_{+} t}+c_{2} r_{-} e^{r_{-} t}\right)+\left(c_{1} e^{r_{+} t}+c_{2} e^{r_{-} t}\right),
$$

We conclude: $x_{1}=c_{1}\left(1+r_{+}\right) e^{r_{+} t}+c_{2}\left(1+r_{-}\right) e^{r_{-} t}$.

