Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.

Two-point Boundary Value Problem.

Definition

A two-point $B V P$ is the following: Given functions p, q, g, and constants

$$
x_{1}<x_{2}, \quad y_{1}, y_{2}, \quad b_{1}, b_{2}, \quad \tilde{b}_{1}, \tilde{b}_{2},
$$

find a function y solution of the differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)
$$

together with the extra, boundary conditions,

$$
\begin{aligned}
& b_{1} y\left(x_{1}\right)+b_{2} y^{\prime}\left(x_{1}\right)=y_{1}, \\
& \tilde{b}_{1} y\left(x_{2}\right)+\tilde{b}_{2} y^{\prime}\left(x_{2}\right)=y_{2} .
\end{aligned}
$$

Remarks:

- Both y and y^{\prime} might appear in the boundary condition, evaluated at the same point.
- In this notes we only study the case of constant coefficients,

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x)
$$

Two-point Boundary Value Problem.

Example

Examples of BVP. Assume $x_{1} \neq x_{2}$.
(1) Find y solution of

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x), \quad y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2} .
$$

(2) Find y solution of

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x), \quad y^{\prime}\left(x_{1}\right)=y_{1}, \quad y^{\prime}\left(x_{2}\right)=y_{2} .
$$

(3) Find y solution of

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x), \quad y\left(x_{1}\right)=y_{1}, \quad y^{\prime}\left(x_{2}\right)=y_{2} .
$$

Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.

Example from physics.

Problem: The equilibrium (time independent) temperature of a bar of length L with insulated horizontal sides and the bar vertical extremes kept at fixed temperatures T_{0}, T_{L} is the solution of the BVP:

$$
T^{\prime \prime}(x)=0, \quad x \in(0, L), \quad T(0)=T_{0}, \quad T(L)=T_{L},
$$

Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.

Comparison: IVP vs BVP.

Review: IVP:
Find the function values $y(t)$ solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

together with the initial conditions

$$
y\left(t_{0}\right)=y_{1}, \quad y^{\prime}\left(t_{0}\right)=y_{2} .
$$

Remark: In physics:

- $y(t)$: Position at time t.
- Initial conditions: Position and velocity at the initial time t_{0}.

Comparison: IVP vs BVP.

Review: BVP:
Find the function values $y(x)$ solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x)
$$

together with the initial conditions

$$
y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2} .
$$

Remark: In physics:

- $y(x)$: A physical quantity (temperature) at a position x.
- Boundary conditions: Conditions at the boundary of the object under study, where $x_{1} \neq x_{2}$.

Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.

Existence, uniqueness of solutions to BVP.

Review: The initial value problem.
Theorem (IVP)
Consider the homogeneous initial value problem:

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1}
$$

and let $r_{ \pm}$be the roots of the characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}
$$

If $r_{+} \neq r_{-}$, real or complex, then for every choice of y_{0}, y_{1}, there exists a unique solution y to the initial value problem above.

Summary: The IVP above always has a unique solution, no matter what y_{0} and y_{1} we choose.

Existence, uniqueness of solutions to BVP.

Theorem (BVP)

Consider the homogeneous boundary value problem:

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad y(0)=y_{0}, \quad y(L)=y_{1}
$$

and let $r_{ \pm}$be the roots of the characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}
$$

(A) If $r_{+} \neq r_{-}$, real, then for every choice of $L \neq 0$ and y_{0}, y_{1}, there exists a unique solution y to the BVP above.
(B) If $r_{ \pm}=\alpha \pm i \beta$, with $\beta \neq 0$, and $\alpha, \beta \in \mathbb{R}$, then the solutions to the BVP above belong to one of these possibilities:
(1) There exists a unique solution.
(2) There exists no solution.
(3) There exist infinitely many solutions.

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y\left(t_{0}\right)=c_{1} e^{r_{-} t_{0}}+c_{2} e^{r_{+} t_{0}} \\
y_{1}=y^{\prime}\left(t_{0}\right)=c_{1} r_{-} e^{r_{-} t_{0}}+c_{2} r_{+} e^{r_{+} t_{0}}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\
r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff the $\operatorname{det}(Z) \neq 0$, where

$$
Z=\left[\begin{array}{cc}
e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\
r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}
\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP:

Recall: $Z=\left[\begin{array}{cc}e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\ r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=\left(r_{+}-r_{-}\right) e^{\left(r_{+}+r_{-}\right) t_{0}} \neq 0 \quad \Leftrightarrow \quad r_{+} \neq r_{-}
$$

Since $r_{+} \neq r_{-}$, the matrix Z is invertible and so

$$
\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=Z^{-1}\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

We conclude that for every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the IVP above has a unique solution.

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r-x}+c_{2} e^{r+x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y(0)=c_{1}+c_{2} . \\
y_{1}=y(L)=c_{1} e^{r-L}+c_{2} e^{r+L}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{r_{-} L} & e^{r_{+} L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff the $\operatorname{det}(Z) \neq 0$, where

$$
Z=\left[\begin{array}{cc}
1 & 1 \\
e^{r_{-} L} & e^{r_{+} L}
\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r_{-} L} & e^{r_{+} L}\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L} \neq 0 \quad \Leftrightarrow \quad e^{r_{+} L} \neq e^{r_{-} L}
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

We conclude: For every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the BVP in (A) above has a unique solution.
(B) If $r_{ \pm}=\alpha \pm i \beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$, then

$$
\operatorname{det}(Z)=e^{\alpha L}\left(e^{i \beta L}-e^{-i \beta L}\right) \Rightarrow \operatorname{det}(Z)=2 i e^{\alpha L} \sin (\beta L)
$$

Since $\operatorname{det}(Z)=0$ iff $\beta L=n \pi$, with n integer,
(1) If $\beta L \neq n \pi$, then BVP has a unique solution.
(2) If $\beta L=n \pi$ then BVP either has no solutions or it has infinitely many solutions.

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad-1=y(\pi)=-c_{1} \quad \Rightarrow \quad c_{1}=1, \quad c_{2} \text { free. }
$$

We conclude: $y(x)=\cos (x)+c_{2} \sin (x)$, with $c_{2} \in \mathbb{R}$.
The BVP has infinitely many solutions.

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=0
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad 0=y(\pi)=-c_{1}
$$

The BVP has no solution.

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad 1=y(\pi / 2)=c_{2} \quad \Rightarrow \quad c_{1}=c_{2}=1
$$

We conclude: $\quad y(x)=\cos (x)+\sin (x)$.
The BVP has a unique solution.

Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra: Given an $n \times n$ matrix A, find λ and a non-zero n-vector \mathbf{v} solutions of

$$
A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} .
$$

Differences:

$-A \longrightarrow\left\{\begin{array}{l}\text { computing a second derivative and } \\ \text { applying the boundary conditions. }\end{array}\right\}$
$\bullet \mathbf{v} \longrightarrow \quad\{$ a function $y\}$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0 .
$$

Remarks: We will show that:
(1) If $\lambda \leqslant 0$, then the BVP has no solution.
(2) If $\lambda>0$, then there exist infinitely many eigenvalues λ_{n} and eigenfunctions y_{n}, with n any positive integer, given by

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad y_{n}(x)=\sin \left(\frac{n \pi x}{L}\right),
$$

(3) Analogous results can be proven for the same equation but with different types of boundary conditions. For example, for $y(0)=0, y^{\prime}(L)=0$; or for $y^{\prime}(0)=0, y^{\prime}(L)=0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$. The equation is

$$
y^{\prime \prime}=0 \Rightarrow y(x)=c_{1}+c_{2} x .
$$

The boundary conditions imply

$$
0=y(0)=c_{1}, \quad 0=c_{1}+c_{2} L \quad \Rightarrow \quad c_{1}=c_{2}=0
$$

Since $y=0$, there are NO non-zero solutions for $\lambda=0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$. Introduce the notation $\lambda=-\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}-\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu
$$

The general solution is

$$
y(x)=c_{1} e^{\mu x}+c_{2} e^{-\mu x}
$$

The boundary condition are

$$
\begin{gathered}
0=y(0)=c_{1}+c_{2} \\
0=y(L)=c_{1} e^{\mu L}+c_{2} e^{-\mu L}
\end{gathered}
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $y(x)=c_{1} e^{\mu x}+c_{2} e^{\mu x}$ and

$$
c_{1}+c_{2}=0, \quad c_{1} e^{\mu L}+c_{2} e^{-\mu L}=0 .
$$

We need to solve the linear system

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Leftrightarrow Z\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad Z=\left[\begin{array}{cc}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{array}\right]
$$

Since $\operatorname{det}(Z)=e^{-\mu L}-e^{\mu L} \neq 0$ for $L \neq 0$, matrix Z is invertible, so the linear system above has a unique solution $c_{1}=0$ and $c_{2}=0$.

Since $y=0$, there are NO non-zero solutions for $\lambda<0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

The general solution is

$$
y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

The boundary condition are

$$
\begin{gathered}
0=y(0)=c_{1}, \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) \\
0=y(L)=c_{2} \sin (\mu L), \quad c_{2} \neq 0 \Rightarrow \sin (\mu L)=0 .
\end{gathered}
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $c_{1}=0, \quad c_{2} \neq 0$, and $\sin (\mu L)=0$.
The non-zero solution condition is the reason for $c_{2} \neq 0$. Hence

$$
\sin (\mu L)=0 \quad \Rightarrow \quad \mu_{n} L=n \pi \quad \Rightarrow \quad \mu_{n}=\frac{n \pi}{L}
$$

Recalling that $\lambda_{n}=\mu_{n}^{2}$, and choosing $c_{2}=1$, we conclude

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad y_{n}(x)=\sin \left(\frac{n \pi x}{L}\right) .
$$

