

Review: Classification of 2×2 diagonalizable systems.

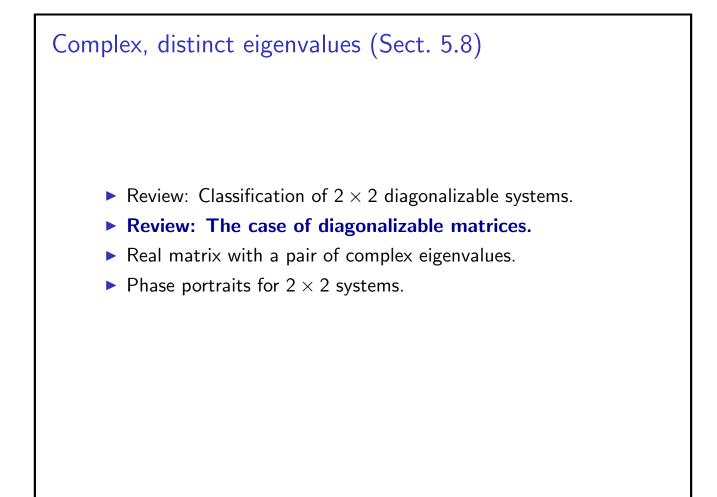
Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

- (a) $\lambda_1 \neq \lambda_2$, real-valued. Hence, A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions), (Section 5.7).
- (b) $\lambda_1 = \overline{\lambda}_2$, complex-valued. Hence, *A* has two non-proportional eigenvectors $\mathbf{v}_1 = \overline{\mathbf{v}}_2$, (Section 5.8).
- (c-1) $\lambda_1 = \lambda_2$ real-valued with two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 , (Section 5.9).

Remark:

(c-2) $\lambda_1 = \lambda_2$ real-valued with only one eigen-direction. Hence, A is not diagonalizable, (Section 5.9).



Review: The case of diagonalizable matrices.

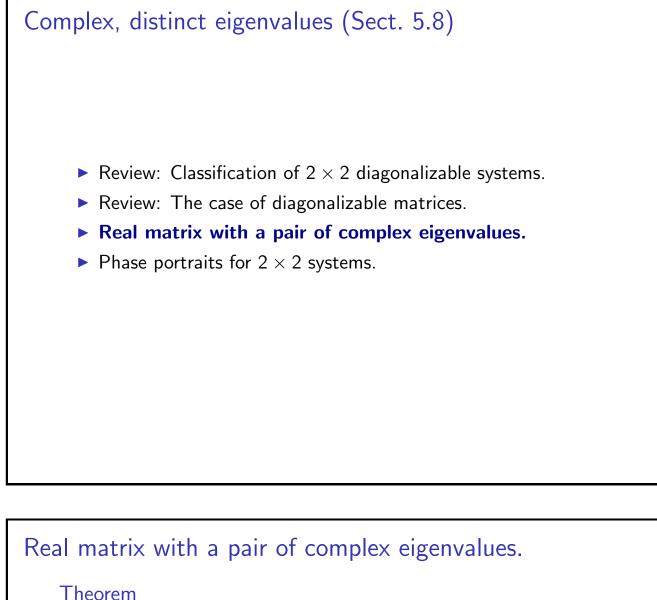
Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

 $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$



If $\{\lambda, \mathbf{v}\}\$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\overline{\lambda}, \overline{\mathbf{v}}\}\$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v} = \lambda \mathbf{v}$ and $\overline{A} = A$. Then

$$\overline{A}\,\overline{\mathbf{v}} = \overline{\lambda}\,\overline{\mathbf{v}} \quad \Leftrightarrow \quad \overline{A}\,\overline{\mathbf{v}} = \overline{\lambda}\,\overline{\mathbf{v}} \quad \Leftrightarrow \quad A\,\overline{\mathbf{v}} = \overline{\lambda}\,\overline{\mathbf{v}}.$$

Therefore $\{\overline{\lambda}, \overline{\mathbf{v}}\}$ is an eigen-pair of matrix A.

Remark: The Theorem above is equivalent to the following: If an $n \times n$ real-valued matrix A has eigen pairs

$$\lambda_1 = \alpha + i\beta, \quad \mathbf{v}_1 = \mathbf{a} + i\mathbf{b},$$

with $\alpha,\beta\in\mathbb{R}$ and $\mathbf{a},\mathbf{b}\in\mathbb{R}^n$, then so is

 $\lambda_2 = \alpha - i\beta, \quad \mathbf{v}_2 = \mathbf{a} - i\mathbf{b}.$

Real matrix with a pair of complex eigenvalues. Theorem (Complex pairs) If an $n \times n$ real-valued matrix A has eigen pairs $\lambda_{\pm} = \alpha \pm i\beta$, $\mathbf{v}^{(\pm)} = \mathbf{a} \pm i\mathbf{b}$, with $\alpha, \beta \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$, then the differential equation $\mathbf{x}'(t) = A\mathbf{x}(t)$ has a linearly independent set of two complex-valued solutions $\mathbf{x}^{(+)} = \mathbf{v}^{(+)} e^{\lambda_+ t}$, $\mathbf{x}^{(-)} = \mathbf{v}^{(-)} e^{\lambda_- t}$, and it also has a linearly independent set of two real-valued solutions $\mathbf{x}^{(1)} = [\mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t)] e^{\alpha t}$, $\mathbf{x}^{(2)} = [\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t)] e^{\alpha t}$.

Real matrix with a pair of complex eigenvalues. Proof: We know that one solution to the differential equation is $\mathbf{x}^{(+)} = \mathbf{v}^{(+)} e^{\lambda_{+}t} = (\mathbf{a} + i\mathbf{b}) e^{(\alpha + i\beta)t} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} e^{i\beta t}.$ Euler equation implies $\mathbf{x}^{(+)} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} [\cos(\beta t) + i\sin(\beta t)],$ $\mathbf{x}^{(+)} = [\mathbf{a}\cos(\beta t) - \mathbf{b}\sin(\beta t)] e^{\alpha t} + i [\mathbf{a}\sin(\beta t) + \mathbf{b}\cos(\beta t)] e^{\alpha t}$ A similar calculation done on $\mathbf{x}^{(-)}$ implies $\mathbf{x}^{(-)} = [\mathbf{a}\cos(\beta t) - \mathbf{b}\sin(\beta t)] e^{\alpha t} - i [\mathbf{a}\sin(\beta t) + \mathbf{b}\cos(\beta t)] e^{\alpha t}.$ Introduce $\mathbf{x}^{(1)} = (\mathbf{x}^{(+)} + \mathbf{x}^{(-)})/2, \ \mathbf{x}^{(2)} = (\mathbf{x}^{(+)} - \mathbf{x}^{(-)})/(2i),$ then $\mathbf{x}^{(1)} = [\mathbf{a}\cos(\beta t) - \mathbf{b}\sin(\beta t)] e^{\alpha t},$ $\mathbf{x}^{(2)} = [\mathbf{a}\sin(\beta t) + \mathbf{b}\cos(\beta t)] e^{\alpha t}.$

Real matrix with a pair of complex eigenvalues.
Example
Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: (1) Find the eigenvalues of matrix A above,
 $p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (2 - \lambda) & 3 \\ -3 & (2 - \lambda) \end{vmatrix} = (\lambda - 2)^2 + 9.$
The roots of the characteristic polynomial are
 $(\lambda - 2)^2 + 9 = 0 \implies \lambda_{\pm} - 2 = \pm 3i \implies \lambda_{\pm} = 2 \pm 3i.$
(2) Find the eigenvectors of matrix A above. For λ_+ ,
 $A - \lambda_+ I = A - (2 + 3i)I = \begin{bmatrix} 2 - (2 + 3i) & 3 \\ -3 & 2 - (2 + 3i) \end{bmatrix}.$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: $\lambda_{\pm} = 2 \pm 3i$, $(A - \lambda_{+}I) = \begin{bmatrix} 2 - (2 + 3i) & 3 \\ -3 & 2 - (2 + 3i) \end{bmatrix}$. We need to solve $(A - \lambda_{+}I)\mathbf{v}^{(+)} = \mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$\begin{bmatrix} -3i & 3\\ -3 & -3i \end{bmatrix} \rightarrow \begin{bmatrix} -i & 1\\ -1 & -i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i\\ -1 & -i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i\\ 0 & 0 \end{bmatrix}$$

So, the eigenvector $\mathbf{v}^{(+)} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ is given by $v_1 = -iv_2$. Choose $v_2 = 1, \quad v_1 = -i, \quad \Rightarrow \quad \mathbf{v}^{(+)} = \begin{bmatrix} -i \\ 1 \end{bmatrix}, \quad \lambda_+ = 2 + 3i.$ Real matrix with a pair of complex eigenvalues. Example Find a real-valued set of fundamental solutions to the equation $\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$ Solution: Recall: eigenvalues $\lambda_{\pm} = 2 \pm 3i$, and $\mathbf{v}^{(+)} = \begin{bmatrix} -i \\ 1 \end{bmatrix}.$ The second eigenvector is $\mathbf{v}^{(-)} = \overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)} = \begin{bmatrix} i \\ 1 \end{bmatrix}.$ Notice that $\mathbf{v}^{(\pm)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \pm \begin{bmatrix} -1 \\ 0 \end{bmatrix} i.$ The notation $\lambda_{\pm} = \alpha \pm \beta i$ and $\mathbf{v}^{(\pm)} = \mathbf{a} \pm \mathbf{b} i$ implies $\alpha = 2, \qquad \beta = 3, \qquad \mathbf{a} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: $\alpha = 2, \ \beta = 3, \ \mathbf{a} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \text{and} \ \mathbf{b} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$
Real-valued solutions are $\mathbf{x}^{(1)} = [\mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t)] e^{\alpha t}$, and $\mathbf{x}^{(2)} = [\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t)] e^{\alpha t}.$ That is
 $\mathbf{x}^{(1)} = \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \cos(3t) - \begin{bmatrix} -1 \\ 0 \end{bmatrix} \sin(3t) \right) e^{2t} \Rightarrow \mathbf{x}^{(1)} = \begin{bmatrix} \sin(3t) \\ \cos(3t) \end{bmatrix} e^{2t}.$
 $\mathbf{x}^{(2)} = \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \sin(3t) + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \cos(3t) \right) e^{2t} \Rightarrow \mathbf{x}^{(2)} = \begin{bmatrix} -\cos(3t) \\ \sin(3t) \end{bmatrix} e^{2t}.$

