Review of Linear Algebra (Sect. 5.5)

- Eigenvalues, eigenvectors of a matrix.
- Computing eigenvalues and eigenvectors.
- Diagonalizable matrices.
- The case of Hermitian matrices.

Eigenvalues, eigenvectors of a matrix

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

Example

Verify that the pair $\lambda_{1}=4, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\lambda_{2}=-2, \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are eigenvalue and eigenvector pairs of matrix $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Solution: $A \mathbf{v}_{1}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 4\end{array}\right]=4\left[\begin{array}{l}1 \\ 1\end{array}\right]=\lambda_{1} \mathbf{v}_{1}$.
$A \mathbf{v}_{2}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}2 \\ -2\end{array}\right]=-2\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\lambda_{2} \mathbf{v}_{2}$.

Eigenvalues, eigenvectors of a matrix

Remarks:

- If we interpret an $n \times n$ matrix A as a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the eigenvector \mathbf{v} determines a particular direction on \mathbb{R}^{n} where the action of A is simple: $A \mathbf{v}$ is proportional to \mathbf{v}.
- Matrices usually change the direction of the vector, like

$$
\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
7 \\
5
\end{array}\right] .
$$

- This is not the case for eigenvectors, like

$$
\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right] .
$$

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution:

The function $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a reflection along $x_{1}=x_{2}$ axis.

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right]
$$

The line $x_{1}=x_{2}$ is invariant under A. Hence,

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \Rightarrow \quad \lambda_{1}=1
$$

An eigenvalue eigenvector pair is: $\lambda_{1}=1, \quad \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution: Eigenvalue eigenvector pair:

$$
\lambda_{1}=1, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

A second eigenvector eigenvalue pair is:

$$
\mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=(-1)\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \Rightarrow \lambda_{2}=-1
$$

A second eigenvalue eigenvector pair: $\lambda_{2}=-1, \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] . \quad \triangleleft$

Eigenvalues, eigenvectors of a matrix

Remark: Not every $n \times n$ matrix has real eigenvalues.

Example

Fix $\theta \in(0, \pi)$ and define $A=\left[\begin{array}{rr}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$.
Show that A has no real eigenvalues.

Solution: Matrix $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a rotation by θ counterclockwise.
There is no direction left invariant by the function A.

We conclude: Matrix A has no eigenvalues eigenvector pairs. \triangleleft
Remark:
Matrix A has complex-values eigenvalues and eigenvectors.

Review of Linear Algebra (Sect. 5.5)

- Eigenvalues, eigenvectors of a matrix.
- Computing eigenvalues and eigenvectors.
- Diagonalizable matrices.
- The case of Hermitian matrices.

Computing eigenvalues and eigenvectors.

Problem:
Given an $n \times n$ matrix A, find, if possible, λ and $\mathbf{v} \neq \mathbf{0}$ solution of

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

Remark:
This is more complicated than solving a linear system $A \mathbf{v}=\mathbf{b}$, since in our case we do not know the source vector $\mathbf{b}=\lambda \mathbf{v}$.

Solution:
(a) First solve for λ.
(b) Having λ, then solve for \mathbf{v}.

Computing eigenvalues and eigenvectors.

Theorem (Eigenvalues-eigenvectors)
(a) The number λ is an eigenvalue of an $n \times n$ matrix A iff

$$
\operatorname{det}(A-\lambda I)=0
$$

(b) Given an eigenvalue λ of matrix A, the corresponding eigenvectors \mathbf{v} are the non-zero solutions to the homogeneous linear system

$$
(A-\lambda I) \mathbf{v}=\mathbf{0}
$$

Notation:
$p(\lambda)=\operatorname{det}(A-\lambda I)$ is called the characteristic polynomial.
If A is $n \times n$, then p is degree n.
Remark: An eigenvalue is a root of the characteristic polynomial.

Computing eigenvalues and eigenvectors.

Proof:
Find λ such that for a non-zero vector \mathbf{v} holds,

$$
A \mathbf{v}=\lambda \mathbf{v} \quad \Leftrightarrow \quad(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

Recall, $\mathbf{v} \neq \mathbf{0}$.
This last condition implies that matrix $(A-\lambda I)$ is not invertible.
(Proof: If $(A-\lambda I)$ invertible, then $(A-\lambda I)^{-1}(A-\lambda I) \mathbf{v}=\mathbf{0}$, that is, $\mathbf{v}=\mathbf{0}$.)

Since $(A-\lambda I)$ is not invertible, then $\operatorname{det}(A-\lambda I)=0$.
Once λ is known, the original eigenvalue-eigenvector equation $A \mathbf{v}=\lambda \mathbf{v}$ is equivalent to $(A-\lambda /) \mathbf{v}=\mathbf{0}$.

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$
Solution:
The eigenvalues are the roots of the characteristic polynomial.

$$
A-\lambda I=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]=\left[\begin{array}{cc}
(1-\lambda) & 3 \\
3 & (1-\lambda)
\end{array}\right]
$$

The characteristic polynomial is

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(1-\lambda) & 3 \\
3 & (1-\lambda)
\end{array}\right|=(\lambda-1)^{2}-9
$$

The roots are $\lambda_{+}=4$ and $\lambda_{-}=-2$.
Compute the eigenvector for $\lambda_{+}=4$. Solve $(A-4 I) \mathbf{v}_{+}=\mathbf{0}$.

$$
A-4 I=\left[\begin{array}{cc}
1-4 & 3 \\
3 & 1-4
\end{array}\right]=\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right] .
$$

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, \quad \lambda_{-}=-2, \quad A-4 I=\left[\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right]$.
We solve $(A-4 I) \mathbf{v}_{+}=\mathbf{0}$, using Gauss elimination,

$$
\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 \\
3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
v_{1}^{+}=v_{2}^{+} \\
v_{2}^{+} \\
\text {free }
\end{array}\right.
$$

Al solutions to the equation above are then given by

$$
\mathbf{v}_{+}=\left[\begin{array}{l}
v_{2}^{+} \\
v_{2}^{+}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] v_{2}^{+} \quad \Rightarrow \quad \mathbf{v}_{+}=\left[\begin{array}{l}
1 \\
1
\end{array}\right],
$$

The first eigenvalue eigenvector pair is $\lambda_{+}=4, \mathbf{v}_{+}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Recall: $\lambda_{+}=4, \quad \mathbf{v}_{+}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \lambda_{-}=-2$.
Solve $(A+2 I) \mathbf{v}_{-}=\mathbf{0}$, using Gauss operations on $A+2 I=\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right]$.

$$
\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
v_{1}^{-}=-v_{2}^{-} \\
v_{2}^{-} \\
\text {free }
\end{array}\right.
$$

Al solutions to the equation above are then given by

$$
\mathbf{v}_{-}=\left[\begin{array}{c}
-v_{2}^{-} \\
v_{2}^{-}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] v_{2}^{-} \quad \Rightarrow \quad \mathbf{v}_{-}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The second eigenvalue eigenvector pair: $\lambda_{-}=-2, \mathbf{v}_{-}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] \cdot \triangleleft$

Review of Linear Algebra (Sect. 5.5)

- Eigenvalues, eigenvectors of a matrix.
- Computing eigenvalues and eigenvectors.
- Diagonalizable matrices.
- The case of Hermitian matrices.

Diagonalizable matrices.

Definition

An $n \times n$ matrix D is called diagonal iff $D=\left[\begin{array}{ccc}d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{n n}\end{array}\right]$.

Definition

An $n \times n$ matrix A is called diagonalizable iff there exists an invertible matrix P and a diagonal matrix D such that

$$
A=P D P^{-1}
$$

Remark:

- Systems of linear differential equations are simple to solve in the case that the coefficient matrix A is diagonalizable.
- In such case, it is simple to decouple the differential equations.
- One solves the decoupled equations, and then transforms back to the original unknowns.

Diagonalizable matrices.

Theorem (Diagonalizability and eigenvectors)
An $n \times n$ matrix A is diagonalizable iff matrix A has a linearly independent set of n eigenvectors. Furthermore,

$$
A=P D P^{-1}, \quad P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right]
$$

where $\lambda_{i}, \mathbf{v}_{i}$, for $i=1, \cdots, n$, are eigenvalue-eigenvector pairs of A.
Remark: It is not simple to know whether an $n \times n$ matrix A has a linearly independent set of n eigenvectors. One simple case is given in the following result.

Theorem (n different eigenvalues)
If an $n \times n$ matrix A has n different eigenvalues, then A is diagonalizable.

Diagonalizable matrices.

Example

Show that $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ is diagonalizable.
Solution: We known that the eigenvalue eigenvector pairs are

$$
\lambda_{1}=4, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

Introduce P and D as follows,

$$
P=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \quad \Rightarrow \quad P^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right], \quad D=\left[\begin{array}{cc}
4 & 0 \\
0 & -2
\end{array}\right] .
$$

Then

$$
P D P^{-1}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & 0 \\
0 & -2
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] .
$$

Diagonalizable matrices.

Example

Show that $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ is diagonalizable.
Solution: Recall:

$$
\begin{gathered}
P D P^{-1}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & 0 \\
0 & -2
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] . \\
P D P^{-1}=\left[\begin{array}{cc}
4 & 2 \\
4 & -2
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
\end{gathered}
$$

We conclude,

$$
P D P^{-1}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]=A
$$

that is, A is diagonalizable.

Review of Linear Algebra (Sect. 5.5)

- Eigenvalues, eigenvectors of a matrix.
- Computing eigenvalues and eigenvectors.
- Diagonalizable matrices.
- The case of Hermitian matrices.

The case of Hermitian matrices.

Definition

An $n \times n$ matrix A is called Hermitian iff $A=A^{*}$.
An $n \times n$ matrix A is called symmetric iff $A=A^{T}$.
Theorem
Every Hermitian matrix is diagonalizable.

Remark: A real-valued Hermitian matrix A is symmetric, since

$$
A=A^{*}=\bar{A}^{T}=A^{T} \Rightarrow A=A^{T}
$$

Example
$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 8 & 7 \\ 3 & 7 & 11\end{array}\right]$ is symmetric, $B=\left[\begin{array}{ccc}1 & -i & 1 \\ i & 0 & -1 \\ 1 & -1 & 1\end{array}\right]$ is Hermitian.

