Review for Exam 2.

- 5 or 6 problems, 60 minutes.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Variation of parameters (2.6).
- Undetermined coefficients (2.5).
- Constant coefficients, homogeneous, (2.2)-(2.4).
- Reduction order method, (2.4.2).
- Second order variable coefficients, (2.1).
- Special second order non-linear equations, (2.1.5).
- Non-linear equations (1.6).

Review for Exam 2.

Notation for webwork: Consider the equation:

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{2} y=0
$$

Let r_{+}, r_{-}be the roots of the characteristic polynomial.

- If $r_{+}>r_{-}$real, then
- First fundamental solution: $y_{1}(t)=e^{r+t}$.
- Second fundamental solution: $y_{2}(t)=e^{r-t}$.
- If $r_{ \pm}=\alpha \pm i \beta$ complex, then
- First fundamental solution: $y_{1}(t)=e^{\alpha t} \cos (\beta t)$.
- Second fundamental solution: $y_{2}(t)=e^{\alpha t} \sin (\beta t)$.
- If $r_{+}=r_{-}=r$ real, then
- First fundamental solution: $y_{1}(t)=e^{r t}$.
- Second fundamental solution: $y_{2}(t)=t e^{r t}$.

Review for Exam 2.

- 5 or 6 problems, 60 minutes.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Variation of parameters (2.6).
- Undetermined coefficients (2.5).
- Constant coefficients, homogeneous, (2.2)-(2.4).
- Reduction order method, (2.4.2).
- Second order variable coefficients, (2.1).
- Special second order non-linear equations, (2.1.5).
- Non-linear equations (1.6).

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: We first need to divide the equation by x^{2},

$$
y^{\prime \prime}-\frac{6}{x} y^{\prime}+\frac{10}{x^{2}} y=2 x^{8}
$$

Then the source function is $f(x)=2 x^{8}$. We now compute the Wronskian of y_{1}, y_{2},

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x^{5} & x^{2} \\
5 x^{4} & 2 x
\end{array}\right|=2 x^{6}-5 x^{6} .
$$

Hence $W=-3 x^{6}$.

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: $y_{1}=x^{5}, y_{2}=x^{2}, f=2 x^{8}, W=-3 x^{6}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gather*}
u_{1}^{\prime}=-\frac{y_{2} f}{W}=-\frac{x^{2} 2 x^{8}}{(-3) x^{6}}=\frac{2}{3} x^{4} \quad \Rightarrow \quad u_{1}=\frac{2}{15} x^{5} . \\
u_{2}^{\prime}=\frac{y_{1} f}{W}=\frac{x^{5} 2 x^{8}}{(-3) x^{6}}=-\frac{2}{3} x^{7} \Rightarrow u_{2}=-\frac{2}{24} x^{8} . \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=\frac{2}{15} x^{5} x^{5}-\frac{2}{24} x^{8} x^{2}=\frac{2}{3} x^{10}\left(\frac{1}{5}-\frac{1}{8}\right)
\end{gather*}
$$

that is, $y_{p}=\frac{2}{3} x^{10}\left(\frac{8-5}{40}\right)$, hence, $y_{p}=\frac{1}{20} x^{10}$.

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2
$$

Fundamental solutions of the homogeneous equations are

$$
y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}
$$

We now compute their Wronskian,

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-2 x} & x e^{-2 x} \\
-2 e^{-2 x} & (1-2 x) e^{-2 x}
\end{array}\right|=(1-2 x) e^{-4 x}+2 x e^{-4 x} .
$$

Hence $W=e^{-4 x}$.

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, y_{2}=x e^{-2 x}, g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \Rightarrow u_{1}=-\ln |x| \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \Rightarrow u_{2}=-\frac{1}{x} \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\ln |x| e^{-2 x}-\frac{1}{x} x e^{-2 x}=-(1+\ln |x|) e^{-2 x}
\end{gathered}
$$

Since $\tilde{y}_{p}=-\ln |x| e^{-2 x}$ is solution, $y=\left(c_{1}+c_{2} x-\ln |x|\right) e^{-2 x} . \triangleleft$

Review for Exam 2.

- 5 or 6 problems, 60 minutes.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Variation of parameters (2.6).
- Undetermined coefficients (2.5).
- Constant coefficients, homogeneous, (2.2)-(2.4).
- Reduction order method, (2.4.2).
- Second order variable coefficients, (2.1).
- Special second order non-linear equations, (2.1.5).
- Non-linear equations (1.6).

Undetermined coefficients (2.5).

Guessing Solution Table.

$f_{i}(t) \quad(K, m, a, b$, given.)	$y_{p_{i}}(t) \quad$ (Guess) (k not given.)
$K e^{a t}$	$k e^{a t}$
$K t^{m}$	$k_{m} t^{m}+k_{m-1} t^{m-1}+\cdots+k_{0}$
$K \cos (b t)$	$k_{1} \cos (b t)+k_{2} \sin (b t)$
$K \sin (b t)$	$k_{1} \cos (b t)+k_{2} \sin (b t)$
$K t^{m} e^{a t}$	$e^{a t}\left(k_{m} t^{m}+\cdots+k_{0}\right)$
$K e^{a t} \cos (b t)$	$e^{a t}\left[k_{1} \cos (b t)+k_{2} \sin (b t)\right]$
$K K e^{a t} \sin (b t)$	$e^{a t}\left[k_{1} \cos (b t)+k_{2} \sin (b t)\right]$
$K t^{m} \cos (b t)$	$\left(k_{m} t^{m}+\cdots+k_{0}\right)\left[a_{1} \cos (b t)+a_{2} \sin (b t)\right]$
$K t^{m} \sin (b t)$	$\left(k_{m} t^{m}+\cdots+k_{0}\right)\left[a_{1} \cos (b t)+a_{2} \sin (b t)\right]$

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Since the source is and exponential $f(t)=e^{-4 i t}$, we guess as particular solution the exponential $y_{p}(t)=k e^{-4 i t}$.
We now check whether y_{p} is solution ot the homogeneous eq.:

$$
r^{2}+2 r-2=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4+8}] \quad \Rightarrow \quad \text { Real roots }
$$

Hence y_{p} is not solution of the homogeneous equation.

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Recall: $y_{p}(t)=k e^{-4 i t}$.

$$
\begin{gathered}
{\left[(-4 i)^{2}+2(-4 i)-2\right] k e^{-4 i t}=e^{-4 i t} \quad \Rightarrow \quad(-16-8 i-2) k=1} \\
k=-\frac{1}{18+8 i}=-\frac{1}{2} \frac{1}{(9+4 i)} \frac{(9-4 i)}{(9-4 i)}=-\frac{1}{2} \frac{(9-4 i)}{\left(9^{2}+4^{2}\right)} .
\end{gathered}
$$

Hence, $y_{p}(t)=-\frac{1}{2\left(9^{2}+4^{2}\right)}(9-4 i) e^{-4 i t}$.

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Recall: $y_{p}(t)=-\frac{1}{2\left(9^{2}+4^{2}\right)}(9-4 i) e^{-4 i t}$.
For the second part of the problem, we need to compute the real and imaginary parts of or solution:

$$
\begin{aligned}
y_{p}(t) & =-\frac{1}{2\left(9^{2}+4^{2}\right)}(9-4 i)[\cos (4 t)-i \sin (4 t)] \\
y_{p_{r}} & =-\frac{1}{2\left(9^{2}+4^{2}\right)}[9 \cos (4 t)-4 \sin (4 t)] \\
y_{p_{i}} & =-\frac{1}{2\left(9^{2}+4^{2}\right)}[-4 \cos (4 t)-9 \sin (4 t)]
\end{aligned}
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.

Following the table: Since $f=2 \sin (t)$, then we guess

$$
y_{p}=k_{1} \sin (t)+k_{2} \cos (t)
$$

This guess satisfies $L\left(y_{p}\right) \neq 0$.
Compute: $y_{p}^{\prime}=k_{1} \cos (t)-k_{2} \sin (t), y_{p}^{\prime \prime}=-k_{1} \sin (t)-k_{2} \cos (t)$.

$$
\begin{gathered}
L\left(y_{p}\right)=\left[-k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
-4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t),
\end{gathered}
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall:

$$
\begin{aligned}
& L\left(y_{p}\right)=[-\left.k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
&-4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t) \\
&\left(-5 k_{1}+3 k_{2}\right) \sin (t)+\left(-3 k_{1}-5 k_{2}\right) \cos (t)=2 \sin (t) .
\end{aligned}
$$

This equation holds for all $t \in \mathbb{R}$. In particular, at $t=\frac{\pi}{2}, t=0$.

$$
\left.\begin{array}{l}
-5 k_{1}+3 k_{2}=2, \\
-3 k_{1}-5 k_{2}=0,
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
k_{1}=-\frac{5}{17} \\
k_{2}=\frac{3}{17}
\end{array}\right.
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall: $k_{1}=-\frac{5}{17}$ and $k_{2}=\frac{3}{17}$.
So the particular solution to the inhomogeneous equation is

$$
y_{p}(t)=\frac{1}{17}[-5 \sin (t)+3 \cos (t)]
$$

The general solution is

$$
y(t)=c_{1} e^{4 t}+c_{2} e^{-t}+\frac{1}{17}[-5 \sin (t)+3 \cos (t)] .
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Start with the first source, $f_{1}(x)=3 \sin (2 x)$.
The function $\tilde{y}_{p_{1}}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the wrong guess, since it is solution of the homogeneous equation. We guess:

$$
\begin{gathered}
y_{p}=x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right] \\
y_{p}^{\prime}=\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]+2 x\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right] . \\
y_{p}^{\prime \prime}=4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right] .
\end{gathered}
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x)
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.
Evaluating at $x=0$ and $x=\pi / 4$ we get

$$
4 k_{1}=0, \quad-4 k_{2}=3 \quad \Rightarrow \quad k_{1}=0, \quad k_{2}=-\frac{3}{4} .
$$

Therefore, $y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $\quad y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.
We now compute $y_{p_{2}}$ for $f_{2}(x)=e^{3 x}$.
We guess: $y_{p_{2}}=k e^{3 x}$. Then, $y_{p_{2}}^{\prime \prime}=9 e^{3 x}$,

$$
(9+4) k e^{3 x}=e^{3 x} \quad \Rightarrow \quad k=\frac{1}{13} \quad \Rightarrow \quad y_{p_{2}}=\frac{1}{13} e^{3 x}
$$

Therefore, the general solution is

$$
y(x)=c_{1} \sin (2 x)+\left(c_{2}-\frac{3}{4} x\right) \cos (2 x)+\frac{1}{13} e^{3 x}
$$

Undetermined coefficients (2.5).

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=2 t^{2} e^{3 t}$, guess

$$
y_{p}(t)=\left(k_{0}+k_{1} t+k_{2} t^{2}\right) e^{3 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 t \sin (t)$, guess

$$
y_{p}(t)=\left(1+k_{1} t\right)\left[k_{2} \sin (t)+k_{3} \cos (t)\right] .
$$

Review for Exam 2.

- 5 or 6 problems, 60 minutes.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Variation of parameters (2.6).
- Undetermined coefficients (2.5).
- Constant coefficients, homogeneous, (2.2)-(2.4).
- Reduction order method, (2.4.2).
- Second order variable coefficients, (2.1).
- Special second order non-linear equations, (2.1.5).
- Non-linear equations (1.6).

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$. We need to compute

$$
y_{2}=v t, \quad y_{2}^{\prime}=t v^{\prime}+v, \quad y_{2}^{\prime \prime}=t v^{\prime \prime}+2 v^{\prime}
$$

So, the equation for v is given by

$$
\begin{aligned}
& t^{2}\left(t v^{\prime \prime}+2 v^{\prime}\right)+2 t\left(t v^{\prime}+v\right)-2 t v=0 \\
& t^{3} v^{\prime \prime}+\left(2 t^{2}+2 t^{2}\right) v^{\prime}+(2 t-2 t) v=0 \\
& t^{3} v^{\prime \prime}+\left(4 t^{2}\right) v^{\prime}=0 \quad \Rightarrow \quad v^{\prime \prime}+\frac{4}{t} v^{\prime}=0
\end{aligned}
$$

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t} \Rightarrow \ln (w)=-4 \ln (t)+c_{0} \Rightarrow w(t)=c_{1} t^{-4}, c_{1} \in \mathbb{R}
$$

Integrating w we obtain v, that is, $v=c_{2} t^{-3}+c_{3}$, with $c_{2}, c_{3} \in \mathbb{R}$.
Recalling that $y_{2}=t v$ we then conclude that $y_{2}=c_{2} t^{-2}+c_{3} t$.
Choosing $c_{2}=1$ and $c_{3}=0$ we obtain the fundamental solutions
$y_{1}(t)=t$ and $y_{2}(t)=\frac{1}{t^{2}}$.

Review for Exam 2.

- 5 or 6 problems, 60 minutes.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Variation of parameters (2.6).
- Undetermined coefficients (2.5).
- Constant coefficients, homogeneous, (2.2)-(2.4).
- Reduction order method, (2.4.2).
- Second order variable coefficients, (2.1).
- Special second order non-linear equations, (2.1.5).
- Non-linear equations (1.6).

Special second order non-linear equations, (2.1.5).

Example

Find the solution y of the IVP

$$
y y^{\prime \prime}+4\left(y^{\prime}\right)^{2}=0, \quad y(0)=1, \quad y^{\prime}(0)=7
$$

Solution: This is an equation of the form $y^{\prime \prime}=f\left(y, y^{\prime}\right),(t$ missing $)$. Introduce the function $v(t)=y^{\prime}(t)$, that implies $v^{\prime}(t)=y^{\prime \prime}(t)$, so

$$
y v^{\prime}+4 v^{2}=0 \quad \Rightarrow \quad v^{\prime}=-4 \frac{v^{2}}{y}, \quad v(0)=7
$$

The difficulty is that y still appears in the equation.
We now look only for invertible solutions functions $t \mapsto y(t)$, that is, we have the inverse function $y \mapsto t(y)$.
For this type of solutions, introduce the function

$$
w(y)=v(t(y))
$$

Special second order non-linear equations, (2.1.5).

Example
Find the solution y of the IVP

$$
y y^{\prime \prime}+4\left(y^{\prime}\right)^{2}=0, \quad y(0)=1, \quad y^{\prime}(0)=7
$$

Solution: Recall: $v^{\prime}=-4 \frac{v^{2}}{y}$, with $v(0)=7$, and $w(y)=v(t(y))$.
The initial conditions for w are obtained as follows:

$$
\begin{gathered}
y(t=0)=1 \quad \Leftrightarrow \quad t(y=1)=0, \\
w(y=1)=v(t(y=1))=v(0)=7 \quad \Rightarrow \quad w(1)=7 .
\end{gathered}
$$

Chain rule on w always implies the equation:

$$
w^{\prime}(y)=\frac{v^{\prime}(t(y))}{w(y)} \Rightarrow w^{\prime}=-4 \frac{w^{2}}{y} \frac{1}{w}=-4 \frac{w}{y}
$$

Special second order non-linear equations, (2.1.5).

Example

Find the solution y of the IVP

$$
y y^{\prime \prime}+4\left(y^{\prime}\right)^{2}=0, \quad y(0)=1, \quad y^{\prime}(0)=7
$$

Solution: Recall: $w^{\prime}=-4 \frac{w}{y}$, with $w(1)=7$, and $w(y)=v(t(y))$.

$$
\frac{w^{\prime}}{w}=-\frac{4}{y} \Rightarrow \ln (w)=-4 \ln (y)+c=\ln \left(y^{-4}\right)+c
$$

We obtain the solution $w(y)=\tilde{c} y^{-4}$.
The initial condition implies $7=w(1)=\tilde{c}$, hence $w(y)=7 y^{-4}$. We now consider y as function of t, and we recall that

$$
\begin{gathered}
w(y)=v(t(y)) \quad \Leftrightarrow \quad w(y(t))=v(t)=y^{\prime}(t) \\
\frac{7}{y^{4}(t)}=w(y(t))=v(t)=y^{\prime}(t) \quad \Rightarrow \quad y^{\prime}(t)=\frac{7}{y^{4}(t)} .
\end{gathered}
$$

Special second order non-linear equations, (2.1.5).

Example

Find the solution y of the IVP

$$
y y^{\prime \prime}+4\left(y^{\prime}\right)^{2}=0, \quad y(0)=1, \quad y^{\prime}(0)=7
$$

Solution: Recall: $y^{\prime}(t)=\frac{7}{y^{4}(t)}$, with $y(0)=1$.

$$
y^{4} y^{\prime}=7 \quad \Rightarrow \quad \frac{y^{5}}{5}=7 t+c
$$

The initial condition fixes the integration constant,

$$
\frac{1}{5}=c, \quad \Rightarrow \quad \frac{y^{5}(t)}{5}=7 t+\frac{1}{5}
$$

We then obtain the solution of the IVP as

$$
y(t)=\sqrt[5]{35 t+1}
$$

