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Second order linear differential equations.

Definition
Given functions a1, a0, b : R→ R, the differential equation in the
unknown function y : R→ R given by

y ′′ + a1(t) y ′ + a0(t) y = b(t) (1)

is called a second order linear differential equation with variable
coefficients. The equation in (1) is called homogeneous iff for all
t ∈ R holds

b(t) = 0.

The equation in (1) is called of constant coefficients iff a1, a0, and
b are constants.

Remark: The notion of an homogeneous equation presented here
is not the same as the notion presented in the previous chapter.



Second order linear differential equations.

Example

(a) A second order, linear, homogeneous, constant coefficients
equation is

y ′′ + 5y ′ + 6 = 0.

(b) A second order order, linear, constant coefficients,
non-homogeneous equation is

y ′′ − 3y ′ + y = 1.

(c) A second order, linear, non-homogeneous, variable coefficients
equation is

y ′′ + 2t y ′ − ln(t) y = e3t .

(d) Newton’s second law of motion (ma = f ) for point particles of
mass m moving in one space dimension under a force
f : R→ R is given by

m y ′′(t) = f (t). C
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Superposition property.

Theorem
If the functions y1 and y2 are solutions to the homogeneous linear
equation

y ′′ + a1(t) y ′ + a0(t) y = 0, (2)

then the linear combination c1y1(t) + c2y2(t) is also a solution for
any constants c1, c2 ∈ R.

Proof: Verify that the function y = c1y1 + c2y2 satisfies Eq. (2) for
every constants c1, c2, that is,

(c1y1 + c2y2)
′′ + a1(t)(c1y1 + c2y2)

′ + a0(t)(c1y1 + c2y2)

= (c1y
′′
1 + c2y

′′
2 ) + a1(t)(c1y

′
1 + c2y

′
2) + a0(t)(c1y1 + c2y2)

= c1

[
y ′′1 + a1(t)y

′
1 + a0(t)y1

]
+ c2

[
y ′′2 + a1(t)y

′
2 + a0(t)y2

]
= 0.
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Existence and uniqueness of solutions.

Theorem (Variable coefficients)

If the functions a, b : (t1, t2)→ R are continuous, the constants
t0 ∈ (t1, t2) and y0, y1 ∈ R, then there exists a unique solution
y : (t1, t2)→ R to the initial value problem

y ′′ + a1(t) y ′ + a0(t) y = b(t), y(t0) = y0, y ′(t0) = y1.

Remarks:

I Unlike the first order linear ODE where we have an explicit
expression for the solution, there is no explicit expression for
the solution of second order linear ODE.

I Two integrations must be done to find solutions to second
order linear. Therefore, initial value problems with two initial
conditions can have a unique solution.

Existence and uniqueness of solutions.

Example

Find the longest interval I ∈ R such that there exists a unique
solution to the initial value problem

(t − 1)y ′′ − 3ty ′ + 4y = t(t − 1), y(−2) = 2, y ′(−2) = 1.

Solution: We first write the equation above in the form given in
the Theorem above,

y ′′ − 3t

t − 1
y ′ +

4

t − 1
y = t.

The intervals where the hypotheses in the Theorem above are
satisfied, that is, where the equation coefficients are continuous,
are I1 = (−∞, 1) and I2 = (1,∞). Since the initial condition
belongs to I1, the solution domain is

I1 = (−∞, 1). C



Existence and uniqueness of solutions.

Remarks:

I Every solution of the first order linear equation

y ′ + a(t) y = 0

is given by y(t) = c e−A(t), with A(t) =

∫
a(t) dt.

I All solutions above are proportional to each other:

y1(t) = c1 e−A(t), y2(t) = c2 e−A(t) ⇒ y1(t) =
c1

c2

y2(t)

Remark: The above statement is not true for solutions of second
order, linear, homogeneous equations, y ′′ + a1(t) y ′ + a0(t)y = 0.
Before we prove this statement we need few definitions:

I Proportional functions (linearly dependent).

I Wronskian of two functions.
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Linearly dependent and independent functions.

Definition
Two continuous functions y1, y2 : (t1, t2) ⊂ R→ R are called
linearly dependent, (ld), on the interval (t1, t2) iff there exists a
constant c such that for all t ∈ I holds

y1(t) = c y2(t).

The two functions are called linearly independent, (li), on the
interval (t1, t2) iff they are not linearly dependent.

Remarks:

I y1, y2 : (t1, t2)→ R are ld ⇔ there exist constants c1, c2, not
both zero, such that c1 y1(t) + c2 y2(t) = 0 for all t ∈ (t1, t2).

I y1, y2 : (t1, t2)→ R are li ⇔ the only constants c1, c2, solutions
of c1 y1(t) + c2 y2(t) = 0 for all t ∈ (t1, t2) are c1 = c2 = 0.

Linearly dependent and independent functions.

Example

(a) Show that y1(t) = sin(t), y2(t) = 2 sin(t) are ld.

(b) Show that y1(t) = sin(t), y2(t) = t sin(t) are li.

Solution:
Case (a): Trivial. y2 = 2y1.

Case (b): Find constants c1, c2 such that for all t ∈ R holds

c1 sin(t) + c2t sin(t) = 0 ⇔ (c1 + c2t) sin(t) = 0.

Evaluating at t = π/2 and t = 3π/2 we obtain

c1 +
π

2
c2 = 0, c1 +

3π

2
c2 = 0 ⇒ c1 = 0, c2 = 0.

We conclude: The functions y1 and y2 are li. C
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The Wronskian of two functions.

Remark: The Wronskian is a function that determines whether
two functions are ld or li.

Definition
The Wronskian of functions y1, y2 : (t1, t2)→ R is the function

Wy1y2(t) = y1(t)y
′
2(t)− y ′1(t)y2(t).

Remark:

I If A(t) =

[
y1 y2

y ′1 y ′2

]
, then Wy1y2(t) = det

(
A(t)

)
.

I An alternative notation is: Wy1y2 =

∣∣∣∣y1 y2

y ′1 y ′2

∣∣∣∣.



The Wronskian of two functions.

Example

Find the Wronskian of the functions:

(a) y1(t) = sin(t) and y2(t) = 2 sin(t). (ld)

(b) y1(t) = sin(t) and y2(t) = t sin(t). (li)

Solution:

Case (a): Wy1y2 =

∣∣∣∣y1 y2

y ′1 y ′2

∣∣∣∣ =

∣∣∣∣sin(t) 2 sin(t)
cos(t) 2 cos(t)

∣∣∣∣. Therefore,

Wy1y2(t) = sin(t)2 cos(t)− cos(t)2 sin(t) ⇒ Wy1y2(t) = 0.

Case (b): Wy1y2 =

∣∣∣∣sin(t) t sin(t)
cos(t) sin(t) + t cos(t)

∣∣∣∣. Therefore,

Wy1y2(t) = sin(t)
[
sin(t) + t cos(t)

]
− cos(t)t sin(t).

We obtain Wy1y2(t) = sin2(t). C

The Wronskian of two functions.

Remark: The Wronskian determines whether two functions are
linearly dependent or independent.

Theorem (Wronskian and linearly dependence)

The continuously differentiable functions y1, y2 : (t1, t2)→ R are
linearly dependent iff Wy1y2(t) = 0 for all t ∈ (t1, t2).

Remark: Importance of the Wronskian:

I Sometimes it is not simple to decide whether two functions
are proportional to each other.

I The Wronskian is useful to study properties of solutions to
ODE without having the explicit expressions of these
solutions. (See Abel’s Theorem later on.)



The Wronskian of two functions.

Example

Show whether the following two functions form a l.d. or l.i. set:

y1(t) = cos(2t)− 2 cos2(t), y2(t) = cos(2t) + 2 sin2(t).

Solution: Compute their Wronskian:

Wy1y2(t) = y1 y ′2 − y ′1 y2.

Wy1y2(t) =
[
cos(2t)− 2 cos2(t)

] [
−2 sin(2t) + 4 sin(t) cos(t)

]
−

[
− 2 sin(2t) + 4 sin(t) cos(t)

] [
cos(2t) + 2 sin2(t)

]
.

sin(2t) = 2 sin(t) cos(t)⇒
[
−2 sin(2t) + 4 sin(t) cos(t)

]
= 0.

We conclude Wy1y2(t) = 0, so the functions y1 and y2 are ld. C
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General and fundamental solutions.

Theorem
If a1, a0 : (t1, t2)→ R are continuous, then the functions
y1, y2 : (t1, t2)→ R solutions of the initial value problems

y ′′1 + a1(t) y ′1 + a0(t) y1 = 0, y1(0) = 1, y ′1(0) = 0,
y ′′2 + a1(t) y ′2 + a0(t) y2 = 0, y2(0) = 0, y ′2(0) = 1,

are linearly independent.

Remarks:

I Every linear combination y(t) = c1 y1(t) + c2 y2(t), is also a
solution of the differential equation

y ′′ + a1(t) y ′ + a0(t) y = 0,

I Conversely, every solution y of the equation above can be
written as a linear combination of the solutions y1, y2.

General and fundamental solutions.

Remark: The results above justify the following definitions.

Definition
Two solutions y1, y2 of the homogeneous equation

y ′′ + a1(t)y
′ + a0(t)y = 0, (3)

are called fundamental solutions iff the functions y1, y2 are linearly
independent, that is, iff Wy1y2 6= 0.

Definition
Given any two fundamental solutions y1, y2, and arbitrary constants
c1, c2, the function

y(t) = c1 y1(t) + c2 y2(t)

is called the general solution of Eq. (3).



General and fundamental solutions.

Example

Show that y1 =
√

t and y2 = 1/t are fundamental solutions of

2t2 y ′′ + 3t y ′ − y = 0.

Solution: First show that y1 is a solution:

y1 = t1/2, y ′1 =
1

2
t−1/2, y ′′1 = −1

4
t−3/2,

2t2
(
−1

4
t−

3
2

)
+ 3t

(1

2
t−

1
2

)
− t

1
2 = −1

2
t

1
2 +

3

2
t

1
2 − t

1
2 = 0.

Now show that y2 is a solution:

y2 = t−1, y ′2 = −t−2, y ′′2 = 2t−3,

2t2
(
2t−3

)
+ 3t

(
−t−2

)
− t−1 = 4t−1 − 3t−1 − t−1 = 0.

General and fundamental solutions.

Example

Show that y1 =
√

t and y2 = 1/t are fundamental solutions of

2t2 y ′′ + 3t y ′ − y = 0.

Solution: We show that y1, y2 are linearly independent.

Wy1y2(t) =

∣∣∣∣y1 y2

y ′1 y ′2

∣∣∣∣ =

∣∣∣∣ t1/2 t−1

1
2 t−1/2 −t−2

∣∣∣∣ .

Wy1y2(t) = −t1/2 t−2 − 1

2
t−1/2 t−1 = −t−3/2 − 1

2
t−3/2

Wy1y2(t) = −3

3
t−3/2 ⇒ y1, y2 li. C
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Abel’s theorem on the Wronskian.

Theorem (Abel)

If a1, a0 : (t1, t2)→ R are continuous functions and y1, y2 are
continuously differentiable solutions of the equation

y ′′ + a1(t) y ′ + a0(t) y = 0,

then the Wronskian Wy1y2 is a solution of the equation

W ′
y1y2

(t) + a1(t) Wy1y2(t) = 0.

Therefore, for any t0 ∈ (t1, t2), the Wronskian Wy1y2 is given by

Wy1y2(t) = Wy1y2(t0) eA(t) A(t) =

∫ t

t0

a1(s) ds.

Remarks: If the the Wronskian of two solutions vanishes at the
initial time, then it vanishes at all times.



Abel’s theorem on the Wronskian.

Example

Find the Wronskian of two solutions of the equation

t2 y ′′ − t(t + 2) y ′ + (t + 2) y = 0, t > 0.

Solution: Write the equation as in Abel’s Theorem,

y ′′ −
(2

t
+ 1

)
y ′ +

( 2

t2
+

1

t

)
y = 0.

Abel’s Theorem says that the Wronskian satisfies the equation

W ′
y1y2

(t)−
(2

t
+ 1

)
Wy1y2(t) = 0.

This is a first order, linear equation for Wy1y2 . The integrating
factor method implies

A(t) = −
∫ t

t0

(2

s
+ 1

)
ds = −2 ln

( t

t0

)
− (t − t0)

Abel’s theorem on the Wronskian.

Example

Find the Wronskian of two solutions of the equation

t2 y ′′ − t(t + 2) y ′ + (t + 2) y = 0, t > 0.

Solution: A(t) = −2 ln
( t

t0

)
− (t − t0) = ln

( t2
0

t2

)
− (t − t0).

The integrating factor is µ =
t2
0

t2
e−(t−t0). Therefore,

[
µ(t)Wy1y2(t)

]′
= 0 ⇒ µ(t)Wy1y2(t)− µ(t0)Wy1y2(t0) = 0

so, the solution is Wy1y2(t) = Wy1y2(t0)
t2

t2
0

e(t−t0).

Denoting c =
(
Wy1y2(t0)/t2

0

)
e−t0 , then Wy1y2(t) = c t2et . C
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Special Second order nonlinear equations

Definition
Given a functions f : R3 → R, a second order differential equation
in the unknown function y : R→ R is given by

y ′′ = f (t, y , y ′).

The equation is linear iff f is linear in the arguments y and y ′.

Remarks:

I Nonlinear second order differential equation are usually
difficult to solve.

I However, there are two particular cases where second order
equations can be transformed into first order equations.

(a) y ′′ = f (t, y ′). The function y is missing.
(b) y ′′ = f (y , y ′). The independent variable t is missing.



Special Second order nonlinear equations

Remark: If second order differential equation has the form
y ′′ = f (t, y ′), then the equation for v = y ′ is the first order
equation v ′ = f (t, v).

Example

Find y solution of the second order nonlinear equation
y ′′ = −2t (y ′)2 with initial conditions y(0) = 2, y ′(0) = −1.

Solution: Introduce v = y ′. Then v ′ = y ′′, and

v ′ = −2t v2 ⇒ v ′

v2
= −2t ⇒ −1

v
= −t2 + c .

So,
1

y ′
= t2 − c , that is, y ′ =

1

t2 − c
. The initial condition implies

−1 = y ′(0) = −1

c
⇒ c = 1 ⇒ y ′ =

1

t2 − 1
.

Special Second order nonlinear equations

Example

Find the y solution of the second order nonlinear equation
y ′′ = −2t (y ′)2 with initial conditions y(0) = 2, y ′(0) = −1.

Solution: Then, y =

∫
dt

t2 − 1
+ c . Partial Fractions!

1

t2 − 1
=

1

(t − 1)(t + 1)
=

a

(t − 1)
+

b

(t + 1)
.

Hence, 1 = a(t + 1) + b(t − 1). Evaluating at t = 1 and t = −1

we get a =
1

2
, b = −1

2
. So

1

t2 − 1
=

1

2

[ 1

(t − 1)
− 1

(t + 1)

]
.

y =
1

2

(
ln |t − 1| − ln |t + 1|

)
+ c . 2 = y(0) =

1

2
(0− 0) + c .

We conclude y =
1

2

(
ln |t − 1| − ln |t + 1|

)
+ 2. C



Special Second order nonlinear equations

Remark: We now consider the case (b) y ′′ = f (y , y ′). The
independent variable t is missing.

Theorem
Consider a second order differential equation y ′′ = f (y , y ′), and
introduce the function v(t) = y ′(t). If the function y is invertible,
then the new function v̂(y) = v(t(y)) satisfies the first order
differential equation

dv̂

dy
=

1

v̂
f (y , v̂(y)).

Proof: Notice that v ′(t) = f (y , v(t)). Now, by chain rule

dv̂

dy

∣∣∣
y

=
dv

dt

∣∣∣
t(y)

dt

dy

∣∣∣
t(y)

=
v ′

y ′

∣∣∣
t(y)

=
v ′

v

∣∣∣
t(y)

=
f
(
y , v)

v

∣∣∣
t(y)

.

Therefore,
dv̂

dy
=

1

v̂
f (y , v̂(y)).

Special Second order nonlinear equations

Example

Find a solution y to the second order equation y ′′ = 2y y ′.

Solution: The variable t does not appear in the equation.
Hence, v(t) = y ′(t). The equation is v ′(t) = 2y(t) v(t).
Now introduce v̂(y) = v(t(y)). Then

dv̂

dy
=

(dv

dt

dt

dy

)∣∣∣
t(y)

=
v ′

y ′

∣∣∣
t(y)

=
v ′

v

∣∣∣
t(y)

.

Using the differential equation,

dv̂

dy
=

2yv

v

∣∣∣
t(y)

⇒ dv̂

dy
= 2y ⇒ v̂(y) = y2 + c .

Since v(t) = v̂(y(t)), we get v(t) = y2(t) + c .



Special Second order nonlinear equations

Example

Find a solution y to the second order equation y ′′ = 2y y ′.

Solution: Recall: v(t) = y2(t) + c . This is a separable equation,

y ′(t)

y2(t) + c
= 1.

Since we only need to find a solution of the equation, and the
integral depends on whether c > 0, c = 0, c < 0, we choose (for
no special reason) only one case, c = 1.∫

dy

1 + y2
=

∫
dt +c0 ⇒ arctan(y) = t +c0y(t) = tan(t +c0).

Again, for no reason, we choose c0 = 0, and we conclude that one
possible solution to our problem is y(t) = tan(t). C


