- ▶ Review: Second order linear differential equations. - ▶ Idea: Soving constant coefficients equations. - ▶ The characteristic equation. - ▶ Solution formulas for constant coefficients equations. ### Review: Second order linear ODE. #### **Definition** Given functions a_1 , a_0 , $b: \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ given by $$y'' + a_1(t) y' + a_0(t) y = b(t)$$ is called a *second order linear* differential equation. If b=0, the equation is called *homogeneous*. If the coefficients a_1 , $a_2 \in \mathbb{R}$ are constants, the equation is called of *constant coefficients*. ### Theorem (Superposition property) If the functions y_1 and y_2 are solutions to the homogeneous linear equation $$y'' + a_1(t) y' + a_0(t) y = 0,$$ then the linear combination $c_1y_1(t) + c_2y_2(t)$ is also a solution for any constants c_1 , $c_2 \in \mathbb{R}$. - ▶ Review: Second order linear differential equations. - ► Idea: Soving constant coefficients equations. - ▶ The characteristic equation. - ▶ Solution formulas for constant coefficients equations. ## Idea: Soving constant coefficients equations. Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example. #### Example Find solutions to the equation y'' + 5y' + 6y = 0. Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation. If $$y(t) = e^{rt}$$, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$. Hence $$(r^2 + 5r + 6)e^{rt} = 0 \Leftrightarrow r^2 + 5r + 6 = 0.$$ That is, r must be a root of the polynomial $p(r) = r^2 + 5r + 6$. This polynomial is called the characteristic polynomial of the differential equation. ## Idea: Soving constant coefficients equations. Example Find solutions to the equation y'' + 5y' + 6y = 0. Solution: Recall: $p(r) = r^2 + 5r + 6$. The roots of the characteristic polynomial are $$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} \left(-5 \pm 1 \right) \quad \Rightarrow \quad \begin{cases} r_1 = -2, \\ r_2 = -3. \end{cases}$$ Therefore, we have found two solutions to the ODE, $$y_1(t) = e^{-2t}, \qquad y_2(t) = e^{-3t}.$$ Their superposition provides infinitely many solutions, $$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \qquad c_1, c_2 \in \mathbb{R}.$$ ## Idea: Soving constant coefficients equations. Summary: The differential equation y'' + 5y' + 6y = 0 has infinitely many solutions, $$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \qquad c_1, c_2 \in \mathbb{R}.$$ #### Remarks: - ▶ There are two free constants in the solution found above. - ▶ The ODE above is second order, so two integrations must be done to find the solution. This explain the origin of the two free constant in the solution. - ▶ An IVP for a second order differential equation will have a unique solution if the IVP contains two initial conditions. - ▶ Review: Second order linear differential equations. - ▶ Idea: Soving constant coefficients equations. - ► The characteristic equation. - ▶ Solution formulas for constant coefficients equations. ### The characteristic equation. #### **Definition** Given a second order linear homogeneous differential equation with constant coefficients $$y'' + a_1 y' + a_0 = 0, (1)$$ the *characteristic polynomial* and the *characteristic equation* associated with the differential equation in (1) are, respectively, $$p(r) = r^2 + a_1 r + a_0, \qquad p(r) = 0.$$ Remark: If r_1 , r_2 are the solutions of the characteristic equation and c_1 , c_2 are constants, then we will show that the general solution of Eq. (1) is given by $$y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$ ## The characteristic equation. ### Example Find the solution y of the initial value problem $$y'' + 5y' + 6 = 0,$$ $y(0) = 1,$ $y'(0) = -1.$ Solution: A solution of the differential equation above is $$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$ We now find the constants c_1 and c_2 that satisfy the initial conditions above: $$1 = y(0) = c_1 + c_2, \qquad -1 = y'(0) = -2c_1 - 3c_2.$$ $$c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2 \Rightarrow c_2 = -1 \Rightarrow c_1 = 2.$$ Therefore, the unique solution to the initial value problem is $$y(t) = 2e^{-2t} - e^{-3t}.$$ \triangleleft \triangleleft ## The characteristic equation. #### Example Find the general solution y of the differential equation $$2y'' - 3y' + y = 0.$$ Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation $$2r^2 - 3r + 1 = 0 \implies r = \frac{1}{4}(3 \pm \sqrt{9 - 8}) \implies \begin{cases} r_1 = 1, \\ r_2 = \frac{1}{2}. \end{cases}$$ Therefore, the general solution of the equation above is $$y(t) = c_1 e^t + c_2 e^{t/2},$$ where c_1 , c_2 are arbitrary constants. - ▶ Review: Second order linear differential equations. - ▶ Idea: Soving constant coefficients equations. - ▶ The characteristic equation. - ► Solution formulas for constant coefficients equations. ## Solution formulas for constant coefficients equations. ### Theorem (Constant coefficients) Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by $$y'' + a_1 y' + a_0 y = 0.$$ Let r_+ , r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$, and let c_0 , c_1 be arbitrary constants. Then, the general solution of the differential equation is given by: (a) If $$r_+ \neq r_-$$, real or complex, then $y(t) = c_0 e^{r_+ t} + c_1 e^{r_- t}$. (b) If $$r_+=r_-=\hat{r}\in\mathbb{R}$$, then is $y(t)=c_0\,e^{\hat{r}t}+c_1\,te^{\hat{r}t}$. Furthermore, given real constants t_0 , y_0 and y_1 , there is a unique solution to the initial value problem $$y'' + a_1 y' + a_0 y = 0,$$ $y(t_0) = y_0,$ $y'(t_0) = y_1.$