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Separable ODE.

Definition
Given functions h, g : R→ R, a first order ODE on the unknown
function y : R→ R is called separable iff the ODE has the form

h(y) y ′(t) = g(t).

Remark:
A differential equation y ′(t) = f (t, y(t)) is separable iff

y ′ =
g(t)

h(y)
⇔ f (t, y) =

g(t)

h(y)
.

Example

y ′(t) =
t2

1− y2(t)
, y ′(t) + y2(t) cos(2t) = 0.



Separable ODE.

Example

Determine whether the differential equation below is separable,

y ′(t) =
t2

1− y2(t)
.

Solution: The differential equation is separable, since it is
equivalent to(

1− y2
)
y ′ = t2 ⇒

{
g(t) = t2,

h(y) = 1− y2.

C

Remark: The functions g and h are not uniquely defined.
Another choice here is:

g(t) = c t2, h(y) = c (1− y2), c ∈ R.

Separable ODE.

Example

Determine whether The differential equation below is separable,

y ′(t) + y2(t) cos(2t) = 0

Solution: The differential equation is separable, since it is
equivalent to

1

y2
y ′ = − cos(2t) ⇒


g(t) = − cos(2t),

h(y) =
1

y2
.

C

Remark: The functions g and h are not uniquely defined.
Another choice here is:

g(t) = cos(2t), h(y) = − 1

y2
.



Separable ODE.

Remark: Not every first order ODE is separable.

Example

I The differential equation y ′(t) = ey(t) + cos(t) is not
separable.

I The linear differential equation y ′(t) = −2

t
y(t) + 4t is not

separable.

I The linear differential equation y ′(t) = −a(t) y(t) + b(t),
with b(t) non-constant, is not separable.
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Solutions to separable ODE.

Theorem (Separable equations)

If the functions g , h : R→ R are continuous, with h 6= 0 and with
primitives G and H, respectively; that is,

G ′(t) = g(t), H ′(u) = h(u),

then, the separable ODE

h(y) y ′ = g(t)

has infinitely many solutions y : R→ R satisfying the algebraic
equation

H(y(t)) = G (t) + c ,

where c ∈ R is arbitrary.

Remark: Given functions g , h, find their primitives G ,H.

Solutions to separable ODE.

Example

Find all solutions y to the equation y ′(t) =
t2

1− y2(t)
.

Solution: The equation is equivalent to(
1− y2

)
y ′(t) = t2 ⇒ g(t) = t2, h(y) = 1− y2.

Integrate on both sides of the equation,∫ [
1− y2(t)

]
y ′(t) dt =

∫
t2 dt + c .

The substitution u = y(t), du = y ′(t) dt, implies that∫
(1− u2) du =

∫
t2 dt + c ⇔

(
u − u3

3

)
=

t3

3
+ c .



Solutions to separable ODE.

Example

Find all solutions y to the equation y ′(t) =
t2

1− y2(t)
.

Solution: Recall:
(
u − u3

3

)
=

t3

3
+ c .

Substitute the unknown function y back in the equation above,(
y − y3

3

)
=

t3

3
+ c , c ∈ R.

Remark: Recall the notation in the Theorem:

g(t) = t2 ⇒ G (t) =
t3

3
,

h(y) = 1− y2 ⇒ H(y) = y − y3

3
.

Hence we recover the Theorem expression: H(y(t)) = G (t) + c .

Solutions to separable ODE.

Remarks:

I The equation y(t)− y3(t)

3
=

t3

3
+ c is algebraic in y , since

there is no y ′ in the equation.

I Every function y satisfying the algebraic equation

y(t)− y3(t)

3
=

t3

3
+ c ,

is a solution of the differential equation above.

I We now verify the previous statement: Differentiate on both
sides with respect to t, that is,

y ′(t)− 3
(y2(t)

3

)
y ′(t) = 3

t2

3
⇒ (1− y2) y ′ = t2.



Solutions to separable ODE.

Example

Find all solutions y to the equation y ′(t) + y2(t) cos(2t) = 0.

Solution: The differential equation is separable,

y ′(t)

y2(t)
= − cos(2t) ⇒ g(t) = − cos(2t), h(y) =

1

y2
.

Integrate on both sides of the equation,∫
y ′(t)

y2(t)
dt = −

∫
cos(2t) dt + c .

The substitution u = y(t), du = y ′(t) dt, implies that∫
du

u2
= −

∫
cos(2t) dt + c ⇔ −1

u
= −1

2
sin(2t) + c .

Solutions to separable ODE.

Example

Find all solutions y to the equation y ′(t) + y2(t) cos(2t) = 0.

Solution: Recall: −1

u
= −1

2
sin(2t) + c .

Substitute the unknown function y back in the equation above,

− 1

y(t)
= −1

2
sin(2t) + c , c ∈ R.

Remark: Recall the notation in the Theorem:

g(t) = − cos(2t) ⇒ G (t) = −1

2
sin(2t).

h(y) =
1

y2
⇒ H(y) = −1

y
.

Hence we recover the Theorem expression: H(y(t)) = G (t) + c .
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Explicit and implicit solutions.

Definition
Assume the notation in the Theorem above. The solution y of a
separable ODE is given in implicit form iff function y is given by

H
(
y(t)

)
= G (t) + c ,

The solution is given in explicit form iff function H is invertible and

y(t) = H−1
(
G (t) + c

)
.

Example

(a) y(t)− y3(t)

3
=

t3

3
+ c is in implicit form.

(b) − 1

y(t)
= −1

2
sin(2t) + c is in implicit form.

(c) y(t) =
2

sin(2t)− 2c
is in explicit form.
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Euler homogeneous equations.

Definition
The first order ODE y ′(t) = f

(
t, y(t)

)
is called Euler homogeneous

iff for every numbers c , t, u ∈ R the function f satisfies

f (ct, cu) = f (t, u).

Remark:

I The function f is invariant under the change of scale of its
arguments.

I If f (t, u) has the property above, it must depend only on u/t.

I Therefore, there exists F : R→ R such that f (t, u) = F
(u

t

)
.

I So, a first order ODE is Euler homogeneous iff it has the form

y ′(t) = F
(y(t)

t

)
.



Euler homogeneous equations.

Example

Show that the equation below is Euler homogeneous,

(t − y) y ′ − 2y + 3t +
y2

t
= 0.

Solution: Rewrite the equation in the standard form

(t − y) y ′ = 2y − 3t − y2

t
⇒ y ′ =

(
2y − 3t − y2

t

)
(t − y)

.

Divide numerator and denominator by t. We get,

y ′ =

(
2y − 3t − y2

t

)
(t − y)

(1

t

)
(1

t

) ⇒ y ′ =
2
(y

t

)
− 3−

(y

t

)2

[
1−

(y

t

)] .

Euler homogeneous equations.

Example

Show that the equation below is Euler homogeneous,

(t − y) y ′ − 2y + 3t +
y2

t
= 0.

Solution: Recall: y ′ =
2
(y

t

)
− 3−

(y

t

)2

[
1−

(y

t

)] .

We conclude that the ODE is Euler homogeneous, because the
right-hand side of the equation above depends only on y/t.

Indeed, in our case:

f (t, y) =
2y − 3t − (y2/t)

t − y
, F (x) =

2x − 3− x2

1− x
,

and f (t, y) = F (y/t). C



Euler homogeneous equations.

Example

Determine whether the equation below is Euler homogeneous,

y ′ =
t2

1− y3
.

Solution:
Divide numerator and denominator by t3, we obtain

y ′ =
t2

(1− y3)

( 1

t3

)
( 1

t3

) ⇒ y ′ =

(1

t

)
( 1

t3

)
−

(y

t

)3
.

Then, the differential equation is not Euler homogeneous. C

Euler homogeneous equations.

Theorem
If the equation y ′(t) = f

(
t, y(t)

)
is Euler homogeneous, then the

differential equation for the unknown v(t) =
y(t)

t
is separable.

Remark: Euler homogeneous equations can be transformed into
separable equations.

Proof: If y ′ = f (t, y) is Euler homogeneous, then it can be written
as y ′ = F (y/t) for some function F . Introducing v = y/t,

y(t) = t v(t) ⇒ y ′(t) = v(t) + t v ′(t).

Introduce all these changes into the ODE, then

v + t v ′ = F (v) ⇒ v ′ =

(
F (v)− v

)
t

.

This last equation is separable.



Euler homogeneous equations.

Example

Find all solutions y of the equation y ′ =
t2 + 3y2

2ty
.

Solution: The equation is Euler homogeneous, since

y ′ =
t2 + 3y2

2ty

( 1

t2

)
( 1

t2

) ⇒ y ′ =
1 + 3

(y

t

)2

2
(y

t

) .

Therefore, we introduce the change of unknown v = y/t, so
y = t v and y ′ = v + t v ′. Hence

v + t v ′ =
1 + 3v2

2v
⇒ t v ′ =

1 + 3v2

2v
− v =

1 + 3v2 − 2v2

2v

We obtain the separable equation v ′ =
1

t

(1 + v2

2v

)
.

Euler homogeneous equations.

Example

Find all solutions y of the equation y ′ =
t2 + 3y2

2ty
.

Solution: Recall: v ′ =
1

t

(1 + v2

2v

)
. We rewrite and integrate it,

2v

1 + v2
v ′ =

1

t
⇒

∫
2v

1 + v2
v ′ dt =

∫
1

t
dt + c0.

The substitution u = 1 + v2(t) implies du = 2v(t) v ′(t) dt, so∫
du

u
=

∫
dt

t
+ c0 ⇒ ln(u) = ln(t)+ c0 ⇒ u = e ln(t)+c0 .

But u = e ln(t)ec0 , so denoting c1 = ec0 , then u = c1t. Hence

1 + v2 = c1t ⇒ 1 +
(y

t

)2
= c1t ⇒ y(t) = ±t

√
c1t − 1.


