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Overview of differential equations.

Definition
A differential equation is an equation, where the unknown is a
function, and both the function and its derivative appear in the
equation.

Remark: There are two main types of differential equations:

I Ordinary Differential Equations (ODE): Derivatives with
respect to only one variable appear in the equation.

Example:
Newton’s second law of motion: m a = F.

I Partial differential Equations (PDE): Partial derivatives of two
or more variables appear in the equation.

Example:
The wave equation for sound propagation in air.



Overview of differential equations.

Example

Newton’s second law of motion is an ODE: The unknown is x(t),
the particle position as function of time t and the equation is

d2

dt2
x(t) =

1

m
F(t, x(t)),

with m the particle mass and F the force acting on the particle.

Example

The wave equation is a PDE: The unknown is u(t, x), a function
that depends on two variables, and the equation is

∂2

∂t2
u(t, x) = v2 ∂2

∂x2
u(t, x),

with v the wave speed. Sound propagation in air is described by a
wave equation, where u represents the air pressure.

Overview of differential equations.

Remark: Differential equations are a central part in a physical
description of nature:

I Classical Mechanics:
I Newton’s second law of motion. (ODE)
I Lagrange’s equations. (ODE)

I Electromagnetism:
I Maxwell’s equations. (PDE)

I Quantum Mechanics:
I Schrödinger’s equation. (PDE)

I General Relativity:
I Einstein equation. (PDE)

I Quantum Electrodynamics:
I The equations of QED. (PDE).
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Linear Ordinary Differential Equations

Remark: Given a function y : R→ R, we use the notation

y ′(t) =
dy

dt
(t).

Definition
Given a function f : R2 → R, a first order ODE in the unknown
function y : R→ R is the equation

y ′(t) = f (t, y(t)).

The first order ODE above is called linear iff there exist functions
a, b : R→ R such that f (t, y) = a(t) y + b(t). That is, f is linear
on its argument y , hence a first order linear ODE is given by

y ′(t) = a(t) y(t) + b(t).



Linear Ordinary Differential Equations

Example

A first order linear ODE is given by

y ′(t) = −2 y(t) + 3.

In this case function a(t) = −2 and b(t) = 3. Since these function
do not depend on t, the equation above is called of constant
coefficients.

Example

A first order linear ODE is given by

y ′(t) = −2

t
y(t) + 4t.

In this case function a(t) = −2/t and b(t) = 4t. Since these
functions depend on t, the equation above is called of variable
coefficients.
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The integrating factor method.

Remark: Solutions to first order linear ODE can be obtained using
the integrating factor method.

Theorem (Constant coefficients)

Given constants a, b ∈ R with a 6= 0, the linear differential
equation

y ′(t) = a y(t) + b

has infinitely many solutions, one for each value of c ∈ R, given by

y(t) = c eat − b

a
.

Remark: A proof is given in the Lecture Notes. Here we present
the main idea of the proof, showing and exponential integrating
factor. In the Lecture Notes it is shown that this is essentially the
only integrating factor.

The integrating factor method.

Main ideas of the Proof: Write down the differential equation as

y ′(t)− a y(t) = b.

Key idea: The left-hand side above is a total derivative if we
multiply it by the exponential e−at . Indeed,

e−aty ′ − a e−at y = b e−at ⇔ e−aty ′ +
(
e−at

)′
y = b e−at .

This is the key idea, because the derivative of a product implies[
e−at y(t)

]′
= b e−at .

The exponential e−at is called an integrating factor. Indeed, we
can now integrate the equation!

e−at y = −b

a
e−at + c ⇔ y(t) = c eat − b

a
.



The integrating factor method.

Example

Find all functions y solution of the ODE y ′ = 2y + 3.

Solution: Write down the differential equation as y ′ − 2 y = 3.
Key idea: The left-hand side above is a total derivative if we
multiply it by the exponential e−2t . Indeed,

e−2ty ′ − 2 e−2t y = 3 e−2t ⇔ e−2ty ′ +
(
e−2t

)′
y = 3 e−2t .

This is the key idea, because the derivative of a product implies[
e−2t y

]′
= 3 e−2t .

The exponential e−2t is called an integrating factor. Integrating,

e−2t y = −3

2
e−2t + c ⇔ y(t) = c e2t − 3

2
.

The integrating factor method.

Example

Find all functions y solution of the ODE y ′ = 2y + 3.

Solution:

We concluded that the ODE has
infinitely many solutions, given by

y(t) = c e2t − 3

2
, c ∈ R.

Since we did one integration, it is
reasonable that the solution
contains a constant of
integration, c ∈ R.

−3/2

c < 0

c > 0

0

y

t

c = 0

Verification: y ′ = 2c e2t , but we know that 2c e2t = 2y + 3,
therefore we conclude that y satisfies the ODE y ′ = 2y + 3. C
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The Initial Value Problem.

Definition
The Initial Value Problem (IVP) for a linear ODE is the following:
Given functions a, b : R→ R and constants t0, y0 ∈ R, find a
solution y : R→ R of the problem

y ′ = a(t) y + b(t), y(t0) = y0.

Remark: The initial condition selects one solution of the ODE.

Theorem (Constant coefficients)

Given constants a, b, t0, y0 ∈ R, with a 6= 0, the initial value
problem

y ′ = a y + b, y(t0) = y0

has the unique solution

y(t) =
(
y0 +

b

a

)
ea(t−t0) − b

a
.



The Initial Value Problem.

Example

Find the solution to the initial value problem

y ′ = 2y + 3, y(0) = 1.

Solution: Every solution of the ODE above is given by

y(t) = c e2t − 3

2
, c ∈ R.

The initial condition y(0) = 1 selects only one solution:

1 = y(0) = c − 3

2
⇒ c =

5

2
.

We conclude that y(t) =
5

2
e2t − 3

2
. C

The integrating factor method.

Example

Find the solution y to the IVP y ′ = −3y + 1, y(0) = 1.

Solution: Write down the differential equation as y ′ + 3 y = 1.
Key idea: The left-hand side above is a total derivative if we
multiply it by the exponential e3t . Indeed,

e3ty ′ + 3 e3t y = e3t ⇔ e3ty ′ +
(
e3t

)′
y = e3t .

This is the key idea, because the derivative of a product implies[
e3t y

]′
= e3t .

The exponential e3t is called an integrating factor. Integrating,

e3t y =
1

3
e3t + c ⇔ y(t) = c e−3t +

1

3
.



The integrating factor method.

Example

Find the solution y to the IVP y ′ = −3y + 1, y(0) = 1.

Solution: Every solution of the ODE above is given by

y(t) = c e−3t +
1

3
, c ∈ R.

The initial condition y(0) = 2 selects only one solution:

1 = y(0) = c +
1

3
⇒ c =

2

3
.

We conclude that y(t) =
2

3
e−3t +

1

3
. C


