Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.

Two-point Boundary Value Problem.

Definition

A two-point $B V P$ is the following: Given functions p, q, g, and constants

$$
x_{1}<x_{2}, \quad y_{1}, y_{2}, \quad b_{1}, b_{2}, \quad \tilde{b}_{1}, \tilde{b}_{2}
$$

find a function y solution of the differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)
$$

together with the extra, boundary conditions,

$$
\begin{aligned}
& b_{1} y\left(x_{1}\right)+b_{2} y^{\prime}\left(x_{1}\right)=y_{1}, \\
& \tilde{b}_{1} y\left(x_{2}\right)+\tilde{b}_{2} y^{\prime}\left(x_{2}\right)=y_{2} .
\end{aligned}
$$

Two-point Boundary Value Problem.

Definition

A two-point BVP is the following: Given functions p, q, g, and constants

$$
x_{1}<x_{2}, \quad y_{1}, y_{2}, \quad b_{1}, b_{2}, \quad \tilde{b}_{1}, \tilde{b}_{2}
$$

find a function y solution of the differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)
$$

together with the extra, boundary conditions,

$$
\begin{aligned}
& b_{1} y\left(x_{1}\right)+b_{2} y^{\prime}\left(x_{1}\right)=y_{1}, \\
& \tilde{b}_{1} y\left(x_{2}\right)+\tilde{b}_{2} y^{\prime}\left(x_{2}\right)=y_{2} .
\end{aligned}
$$

Remarks:

- Both y and y^{\prime} might appear in the boundary condition, evaluated at the same point.

Two-point Boundary Value Problem.

Definition

A two-point BVP is the following: Given functions p, q, g, and constants

$$
x_{1}<x_{2}, \quad y_{1}, y_{2}, \quad b_{1}, b_{2}, \quad \tilde{b}_{1}, \tilde{b}_{2}
$$

find a function y solution of the differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)
$$

together with the extra, boundary conditions,

$$
\begin{aligned}
& b_{1} y\left(x_{1}\right)+b_{2} y^{\prime}\left(x_{1}\right)=y_{1}, \\
& \tilde{b}_{1} y\left(x_{2}\right)+\tilde{b}_{2} y^{\prime}\left(x_{2}\right)=y_{2} .
\end{aligned}
$$

Remarks:

- Both y and y^{\prime} might appear in the boundary condition, evaluated at the same point.
- In this notes we only study the case of constant coefficients,

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x)
$$

Two-point Boundary Value Problem.

Example

Examples of BVP.

Two-point Boundary Value Problem.

Example

Examples of BVP. Assume $x_{1} \neq x_{2}$.
(1) Find y solution of

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x), \quad y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2} .
$$

Two-point Boundary Value Problem.

Example

Examples of BVP. Assume $x_{1} \neq x_{2}$.
(1) Find y solution of

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x), \quad y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2} .
$$

(2) Find y solution of

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x), \quad y^{\prime}\left(x_{1}\right)=y_{1}, \quad y^{\prime}\left(x_{2}\right)=y_{2} .
$$

Two-point Boundary Value Problem.

Example

Examples of BVP. Assume $x_{1} \neq x_{2}$.
(1) Find y solution of

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x), \quad y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2} .
$$

(2) Find y solution of

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x), \quad y^{\prime}\left(x_{1}\right)=y_{1}, \quad y^{\prime}\left(x_{2}\right)=y_{2} .
$$

(3) Find y solution of

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x), \quad y\left(x_{1}\right)=y_{1}, \quad y^{\prime}\left(x_{2}\right)=y_{2} .
$$

Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.

Example from physics.

Problem: The equilibrium (time independent) temperature of a bar of length L with insulated horizontal sides and the bar vertical extremes kept at fixed temperatures T_{0}, T_{L} is the solution of the BVP:

$$
T^{\prime \prime}(x)=0, \quad x \in(0, L), \quad T(0)=T_{0}, \quad T(L)=T_{L},
$$

Example from physics.

Problem: The equilibrium (time independent) temperature of a bar of length L with insulated horizontal sides and the bar vertical extremes kept at fixed temperatures T_{0}, T_{L} is the solution of the BVP:

$$
T^{\prime \prime}(x)=0, \quad x \in(0, L), \quad T(0)=T_{0}, \quad T(L)=T_{L},
$$

Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.

Comparison: IVP vs BVP.

Review: IVP:
Find the function values $y(t)$ solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

together with the initial conditions

$$
y\left(t_{0}\right)=y_{1}, \quad y^{\prime}\left(t_{0}\right)=y_{2} .
$$

Comparison: IVP vs BVP.

Review: IVP:
Find the function values $y(t)$ solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

together with the initial conditions

$$
y\left(t_{0}\right)=y_{1}, \quad y^{\prime}\left(t_{0}\right)=y_{2} .
$$

Remark: In physics:

- $y(t)$: Position at time t.

Comparison: IVP vs BVP.

Review: IVP:
Find the function values $y(t)$ solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

together with the initial conditions

$$
y\left(t_{0}\right)=y_{1}, \quad y^{\prime}\left(t_{0}\right)=y_{2} .
$$

Remark: In physics:

- $y(t)$: Position at time t.
- Initial conditions: Position and velocity at the initial time t_{0}.

Comparison: IVP vs BVP.

Review: BVP:
Find the function values $y(x)$ solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x)
$$

together with the initial conditions

$$
y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2} .
$$

Comparison: IVP vs BVP.

Review: BVP:
Find the function values $y(x)$ solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x)
$$

together with the initial conditions

$$
y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2} .
$$

Remark: In physics:

- $y(x)$: A physical quantity (temperature) at a position x.

Comparison: IVP vs BVP.

Review: BVP:
Find the function values $y(x)$ solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x)
$$

together with the initial conditions

$$
y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2} .
$$

Remark: In physics:

- $y(x)$: A physical quantity (temperature) at a position x.
- Boundary conditions: Conditions at the boundary of the object under study, where $x_{1} \neq x_{2}$.

Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.

Existence, uniqueness of solutions to BVP.

Review: The initial value problem.
Theorem (IVP)
Consider the homogeneous initial value problem:

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1}
$$

and let $r_{ \pm}$be the roots of the characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}
$$

If $r_{+} \neq r_{-}$, real or complex, then for every choice of y_{0}, y_{1}, there exists a unique solution y to the initial value problem above.

Existence, uniqueness of solutions to BVP.

Review: The initial value problem.

Theorem (IVP)

Consider the homogeneous initial value problem:

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1}
$$

and let $r_{ \pm}$be the roots of the characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}
$$

If $r_{+} \neq r_{-}$, real or complex, then for every choice of y_{0}, y_{1}, there exists a unique solution y to the initial value problem above.

Summary: The IVP above always has a unique solution, no matter what y_{0} and y_{1} we choose.

Existence, uniqueness of solutions to BVP.

Theorem (BVP)

Consider the homogeneous boundary value problem:

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad y(0)=y_{0}, \quad y(L)=y_{1}
$$

and let $r_{ \pm}$be the roots of the characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}
$$

(A) If $r_{+} \neq r_{-}$, real, then for every choice of $L \neq 0$ and y_{0}, y_{1}, there exists a unique solution y to the BVP above.
(B) If $r_{ \pm}=\alpha \pm i \beta$, with $\beta \neq 0$, and $\alpha, \beta \in \mathbb{R}$, then the solutions to the BVP above belong to one of these possibilities:
(1) There exists a unique solution.
(2) There exists no solution.
(3) There exist infinitely many solutions.

Existence, uniqueness of solutions to BVP.
Proof of IVP: We study the case $r_{+} \neq r_{-}$.

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2}

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
y_{0}=y\left(t_{0}\right)
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
y_{0}=y\left(t_{0}\right)=c_{1} e^{r_{-} t_{0}}+c_{2} e^{r_{+} t_{0}}
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
\begin{aligned}
& y_{0}=y\left(t_{0}\right)=c_{1} e^{r-t_{0}}+c_{2} e^{r_{+} t_{0}} \\
& y_{1}=y^{\prime}\left(t_{0}\right)
\end{aligned}
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y\left(t_{0}\right)=c_{1} e^{r_{-} t_{0}}+c_{2} e^{r_{+} t_{0}} \\
y_{1}=y^{\prime}\left(t_{0}\right)=c_{1} r_{-} e^{r_{-} t_{0}}+c_{2} r_{+} e^{r_{+} t_{0}}
\end{gathered}
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y\left(t_{0}\right)=c_{1} e^{r_{-} t_{0}}+c_{2} e^{r_{+} t_{0}} \\
y_{1}=y^{\prime}\left(t_{0}\right)=c_{1} r_{-} e^{r_{-} t_{0}}+c_{2} r_{+} e^{r_{+} t_{0}}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\
r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y\left(t_{0}\right)=c_{1} e^{r_{-} t_{0}}+c_{2} e^{r_{+} t_{0}} \\
y_{1}=y^{\prime}\left(t_{0}\right)=c_{1} r_{-} e^{r_{-} t_{0}}+c_{2} r_{+} e^{r_{+} t_{0}}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\
r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y\left(t_{0}\right)=c_{1} e^{r_{-} t_{0}}+c_{2} e^{r_{+} t_{0}} \\
y_{1}=y^{\prime}\left(t_{0}\right)=c_{1} r_{-} e^{r_{-} t_{0}}+c_{2} r_{+} e^{r_{+} t_{0}}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\
r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff the $\operatorname{det}(Z) \neq 0$,

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y\left(t_{0}\right)=c_{1} e^{r_{-} t_{0}}+c_{2} e^{r_{+} t_{0}} \\
y_{1}=y^{\prime}\left(t_{0}\right)=c_{1} r_{-} e^{r_{-} t_{0}}+c_{2} r_{+} e^{r_{+} t_{0}}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\
r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff the $\operatorname{det}(Z) \neq 0$, where

$$
Z=\left[\begin{array}{cc}
e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\
r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}
\end{array}\right]
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case $r_{+} \neq r_{-}$. The general solution is

$$
y(t)=c_{1} e^{r_{-} t}+c_{2} e^{r_{+} t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

The initial conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y\left(t_{0}\right)=c_{1} e^{r_{-} t_{0}}+c_{2} e^{r_{+} t_{0}} \\
y_{1}=y^{\prime}\left(t_{0}\right)=c_{1} r_{-} e^{r_{-} t_{0}}+c_{2} r_{+} e^{r_{+} t_{0}}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\
r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff the $\operatorname{det}(Z) \neq 0$, where

$$
Z=\left[\begin{array}{cc}
e^{r_{-} t_{0}} & e^{r_{+} t_{0}} \\
r_{-} e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}
\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: $Z=\left[\begin{array}{cc}e^{r_{-}-t_{0}} & e^{r_{+} t_{0}} \\ r_{-} & e^{r_{-} t_{0}} \\ r_{+} & e^{r_{+}+t_{0}}\end{array}\right] \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.

Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: $Z=\left[\begin{array}{cc}e^{r_{-}-t_{0}} & e^{r_{+} t_{0}} \\ r_{-}-e^{r_{-} t_{0}} & r_{+} e^{r_{+} t_{0}}\end{array}\right] \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=\left(r_{+}-r_{-}\right) e^{\left(r_{+}+r_{-}\right) t_{0}}
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: $Z=\left[\begin{array}{cc}e^{r_{-}-t_{0}} & e^{r_{+} t_{0}} \\ r_{-}-e^{r_{-} t_{0}} & r_{+}+e^{r_{+} t_{0}}\end{array}\right] \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=\left(r_{+}-r_{-}\right) e^{\left(r_{+}+r_{-}\right) t_{0}} \neq 0 \quad \Leftrightarrow \quad r_{+} \neq r_{-} .
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: $Z=\left[\begin{array}{cc}e^{r_{-}-t_{0}} & e^{r_{+} t_{0}} \\ r_{-}-e^{r_{-} t_{0}} & r_{+}+r^{r_{+} t_{0}}\end{array}\right] \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=\left(r_{+}-r_{-}\right) e^{\left(r_{+}+r_{-}\right) t_{0}} \neq 0 \quad \Leftrightarrow \quad r_{+} \neq r_{-}
$$

Since $r_{+} \neq r_{-}$, the matrix Z is invertible

Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: $Z=\left[\begin{array}{cc}e^{r_{-}-t_{0}} & e^{r_{+} t_{0}} \\ r_{-}-e^{r_{-} t_{0}} & r_{+}+r^{r_{+} t_{0}}\end{array}\right] \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=\left(r_{+}-r_{-}\right) e^{\left(r_{+}+r_{-}\right) t_{0}} \neq 0 \quad \Leftrightarrow \quad r_{+} \neq r_{-}
$$

Since $r_{+} \neq r_{-}$, the matrix Z is invertible and so

$$
\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=Z^{-1}\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP:
Recall: $Z=\left[\begin{array}{cc}e^{r_{-}-t_{0}} & e^{r+t_{0}} \\ r_{-}-e^{r_{-} t_{0}} & r_{+}+e^{r_{r}+t_{0}}\end{array}\right] \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=\left(r_{+}-r_{-}\right) e^{\left(r_{+}+r_{-}\right) t_{0}} \neq 0 \quad \Leftrightarrow \quad r_{+} \neq r_{-} .
$$

Since $r_{+} \neq r_{-}$, the matrix Z is invertible and so

$$
\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=Z^{-1}\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

We conclude that for every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the IVP above has a unique solution.

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r_{-} x}+c_{2} e^{r_{+} x}
$$

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r_{-} x}+c_{2} e^{r_{+} x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r_{-} x}+c_{2} e^{r+x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2}

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r_{-} x}+c_{2} e^{r_{+} x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
y_{0}=y(0)
$$

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r_{-} x}+c_{2} e^{r_{+} x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
y_{0}=y(0)=c_{1}+c_{2} .
$$

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r-x}+c_{2} e^{r_{+} x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
\begin{aligned}
& \quad y_{0}=y(0)=c_{1}+c_{2} . \\
& y_{1}=y(L)
\end{aligned}
$$

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r_{-} x}+c_{2} e^{r_{+} x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y(0)=c_{1}+c_{2} . \\
y_{1}=y(L)=c_{1} e^{r_{-} L}+c_{2} e^{r_{+} L}
\end{gathered}
$$

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r_{-} x}+c_{2} e^{r_{+} x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y(0)=c_{1}+c_{2} . \\
y_{1}=y(L)=c_{1} e^{r_{-} L}+c_{2} e^{r_{+} L}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{r_{-} L} & e^{r_{+} L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r-x}+c_{2} e^{r+x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y(0)=c_{1}+c_{2} . \\
y_{1}=y(L)=c_{1} e^{r_{-} L}+c_{2} e^{r_{+} L}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{r_{-} L} & e^{r_{+} L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r-x}+c_{2} e^{r+x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y(0)=c_{1}+c_{2} \\
y_{1}=y(L)=c_{1} e^{r_{-} L}+c_{2} e^{r_{+} L}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{r_{-} L} & e^{r_{+} L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff the $\operatorname{det}(Z) \neq 0$,

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r-x}+c_{2} e^{r+x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y(0)=c_{1}+c_{2} \\
y_{1}=y(L)=c_{1} e^{r_{-} L}+c_{2} e^{r_{+} L}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{r_{-} L} & e^{r_{+} L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff the $\operatorname{det}(Z) \neq 0$, where

$$
Z=\left[\begin{array}{cc}
1 & 1 \\
e^{r_{-} L} & e^{r_{+} L}
\end{array}\right]
$$

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

$$
y(x)=c_{1} e^{r_{-} x}+c_{2} e^{r_{+} x}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

The boundary conditions determine c_{1} and c_{2} as follows:

$$
\begin{gathered}
y_{0}=y(0)=c_{1}+c_{2} . \\
y_{1}=y(L)=c_{1} e^{r_{-} L}+c_{2} e^{r_{+} L}
\end{gathered}
$$

Using matrix notation,

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{r_{-} L} & e^{r_{+} L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

The linear system above has a unique solution c_{1} and c_{2} for every constants y_{0} and y_{1} iff the $\operatorname{det}(Z) \neq 0$, where

$$
Z=\left[\begin{array}{cc}
1 & 1 \\
e^{r_{-} L} & e^{r_{+} L}
\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] .
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r-L} & e^{r_{+}} L\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r-L} & e^{r_{+}}\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L}
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r_{-} L} & e^{r_{+}}\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r+L}-e^{r-L} \neq 0 \quad \Leftrightarrow \quad e^{r+L} \neq e^{r-L} .
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r-L} & e^{r_{+}}\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L} \neq 0 \quad \Leftrightarrow \quad e^{r_{+} L} \neq e^{r_{-} L}
$$

(A) If $r_{+} \neq r_{-}$and real-valued,

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r-L} & e^{r+L}\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L} \neq 0 \quad \Leftrightarrow \quad e^{r_{+} L} \neq e^{r_{-} L}
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r-L} & e^{r_{+}}\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L} \neq 0 \quad \Leftrightarrow \quad e^{r_{+} L} \neq e^{r_{-} L}
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

We conclude: For every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the BVP in (A) above has a unique solution.

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r-L} & e^{r_{+}} L\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r+L}-e^{r-L} \neq 0 \quad \Leftrightarrow \quad e^{r+L} \neq e^{r-L} .
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

We conclude: For every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the BVP in (A) above has a unique solution.
(B) If $r_{ \pm}=\alpha \pm i \beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$,

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r-L} & e^{r_{+}} L\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L} \neq 0 \quad \Leftrightarrow \quad e^{r_{+} L} \neq e^{r_{-} L}
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

We conclude: For every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the BVP in (A) above has a unique solution.
(B) If $r_{ \pm}=\alpha \pm i \beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$, then

$$
\operatorname{det}(Z)=e^{\alpha L}\left(e^{i \beta L}-e^{-i \beta L}\right)
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r_{-} L} & e^{r_{+}} L\end{array}\right] \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L} \neq 0 \quad \Leftrightarrow \quad e^{r_{+} L} \neq e^{r_{-} L}
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

We conclude: For every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the BVP in (A) above has a unique solution.
(B) If $r_{ \pm}=\alpha \pm i \beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$, then

$$
\operatorname{det}(Z)=e^{\alpha L}\left(e^{i \beta L}-e^{-i \beta L}\right) \Rightarrow \operatorname{det}(Z)=2 i e^{\alpha L} \sin (\beta L)
$$

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r_{-} L} & e^{r_{+}}\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L} \neq 0 \quad \Leftrightarrow \quad e^{r_{+} L} \neq e^{r_{-} L}
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

We conclude: For every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the BVP in (A) above has a unique solution.
(B) If $r_{ \pm}=\alpha \pm i \beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$, then

$$
\operatorname{det}(Z)=e^{\alpha L}\left(e^{i \beta L}-e^{-i \beta L}\right) \Rightarrow \operatorname{det}(Z)=2 i e^{\alpha L} \sin (\beta L) .
$$

Since $\operatorname{det}(Z)=0$ iff $\beta L=n \pi$, with n integer,

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r_{-} L} & e^{r_{+}} L\end{array}\right] \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r_{+} L}-e^{r_{-} L} \neq 0 \quad \Leftrightarrow \quad e^{r_{+} L} \neq e^{r_{-} L}
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

We conclude: For every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the BVP in (A) above has a unique solution.
(B) If $r_{ \pm}=\alpha \pm i \beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$, then

$$
\operatorname{det}(Z)=e^{\alpha L}\left(e^{i \beta L}-e^{-i \beta L}\right) \Rightarrow \operatorname{det}(Z)=2 i e^{\alpha L} \sin (\beta L)
$$

Since $\operatorname{det}(Z)=0$ iff $\beta L=n \pi$, with n integer,
(1) If $\beta L \neq n \pi$, then BVP has a unique solution.

Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: $Z=\left[\begin{array}{cc}1 & 1 \\ e^{r_{-} L} & e^{r_{+}}\end{array}\right] \quad \Rightarrow \quad Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.
A simple calculation shows

$$
\operatorname{det}(Z)=e^{r+L}-e^{r-L} \neq 0 \quad \Leftrightarrow \quad e^{r+L} \neq e^{r-L} .
$$

(A) If $r_{+} \neq r_{-}$and real-valued, then $\operatorname{det}(Z) \neq 0$.

We conclude: For every choice of y_{0} and y_{1}, there exist a unique value of c_{1} and c_{2}, so the BVP in (A) above has a unique solution.
(B) If $r_{ \pm}=\alpha \pm i \beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$, then

$$
\operatorname{det}(Z)=e^{\alpha L}\left(e^{i \beta L}-e^{-i \beta L}\right) \Rightarrow \operatorname{det}(Z)=2 i e^{\alpha L} \sin (\beta L) .
$$

Since $\operatorname{det}(Z)=0$ iff $\beta L=n \pi$, with n integer,
(1) If $\beta L \neq n \pi$, then BVP has a unique solution.
(2) If $\beta L=n \pi$ then BVP either has no solutions or it has infinitely many solutions.

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x) .
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1},
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad-1=y(\pi)=-c_{1}
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad-1=y(\pi)=-c_{1} \quad \Rightarrow \quad c_{1}=1, \quad c_{2} \text { free. }
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad-1=y(\pi)=-c_{1} \quad \Rightarrow \quad c_{1}=1, \quad c_{2} \text { free. }
$$

We conclude: $y(x)=\cos (x)+c_{2} \sin (x)$, with $c_{2} \in \mathbb{R}$.

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=-1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x) .
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad-1=y(\pi)=-c_{1} \quad \Rightarrow \quad c_{1}=1, \quad c_{2} \text { free. }
$$

We conclude: $y(x)=\cos (x)+c_{2} \sin (x)$, with $c_{2} \in \mathbb{R}$.
The BVP has infinitely many solutions.

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=0
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=0
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=0
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=0
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=0
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1},
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=0
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad 0=y(\pi)=-c_{1}
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi)=0 .
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i .
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x) .
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad 0=y(\pi)=-c_{1}
$$

The BVP has no solution.

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1 .
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x) .
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1},
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad 1=y(\pi / 2)=c_{2}
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad 1=y(\pi / 2)=c_{2} \quad \Rightarrow \quad c_{1}=c_{2}=1
$$

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad 1=y(\pi / 2)=c_{2} \quad \Rightarrow \quad c_{1}=c_{2}=1
$$

We conclude: $\quad y(x)=\cos (x)+\sin (x)$.

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

$$
y^{\prime \prime}+y=0, \quad y(0)=1, \quad y(\pi / 2)=1 .
$$

Solution: The characteristic polynomial is

$$
p(r)=r^{2}+1 \quad \Rightarrow \quad r_{ \pm}= \pm i
$$

The general solution is

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

The boundary conditions are

$$
1=y(0)=c_{1}, \quad 1=y(\pi / 2)=c_{2} \quad \Rightarrow \quad c_{1}=c_{2}=1
$$

We conclude: $\quad y(x)=\cos (x)+\sin (x)$.
The BVP has a unique solution.

Boundary Value Problems (Sect. 6.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- Particular case of BVP: Eigenvalue-eigenfunction problem.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra:

Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra: Given an $n \times n$ matrix A, find λ and a non-zero n-vector \mathbf{v} solutions of

$$
A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} .
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra: Given an $n \times n$ matrix A, find λ and a non-zero n-vector \mathbf{v} solutions of

$$
A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0}
$$

Differences:
$-A \longrightarrow\left\{\begin{array}{l}\text { computing a second derivative and } \\ \text { applying the boundary conditions. }\end{array}\right\}$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the boundary value problem

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra: Given an $n \times n$ matrix A, find λ and a non-zero n-vector \mathbf{v} solutions of

$$
A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0}
$$

Differences:
$\triangleright \rightarrow \longrightarrow\left\{\begin{array}{l}\text { computing a second derivative and } \\ \text { applying the boundary conditions. }\end{array}\right\}$

- v $\longrightarrow \quad\{$ a function $y\}$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remarks: We will show that:

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remarks: We will show that:
(1) If $\lambda \leqslant 0$, then the BVP has no solution.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remarks: We will show that:
(1) If $\lambda \leqslant 0$, then the BVP has no solution.
(2) If $\lambda>0$, then there exist infinitely many eigenvalues λ_{n} and eigenfunctions y_{n}, with n any positive integer,

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remarks: We will show that:
(1) If $\lambda \leqslant 0$, then the BVP has no solution.
(2) If $\lambda>0$, then there exist infinitely many eigenvalues λ_{n} and eigenfunctions y_{n}, with n any positive integer, given by

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad y_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remarks: We will show that:
(1) If $\lambda \leqslant 0$, then the BVP has no solution.
(2) If $\lambda>0$, then there exist infinitely many eigenvalues λ_{n} and eigenfunctions y_{n}, with n any positive integer, given by

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad y_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)
$$

(3) Analogous results can be proven for the same equation but with different types of boundary conditions.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remarks: We will show that:
(1) If $\lambda \leqslant 0$, then the BVP has no solution.
(2) If $\lambda>0$, then there exist infinitely many eigenvalues λ_{n} and eigenfunctions y_{n}, with n any positive integer, given by

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad y_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)
$$

(3) Analogous results can be proven for the same equation but with different types of boundary conditions. For example, for $y(0)=0, y^{\prime}(L)=0$;

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Remarks: We will show that:
(1) If $\lambda \leqslant 0$, then the BVP has no solution.
(2) If $\lambda>0$, then there exist infinitely many eigenvalues λ_{n} and eigenfunctions y_{n}, with n any positive integer, given by

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad y_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)
$$

(3) Analogous results can be proven for the same equation but with different types of boundary conditions. For example, for $y(0)=0, y^{\prime}(L)=0$; or for $y^{\prime}(0)=0, y^{\prime}(L)=0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$. The equation is

$$
y^{\prime \prime}=0
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$. The equation is

$$
y^{\prime \prime}=0 \Rightarrow y(x)=c_{1}+c_{2} x
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$. The equation is

$$
y^{\prime \prime}=0 \Rightarrow y(x)=c_{1}+c_{2} x
$$

The boundary conditions imply

$$
0=y(0)
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$. The equation is

$$
y^{\prime \prime}=0 \Rightarrow y(x)=c_{1}+c_{2} x
$$

The boundary conditions imply

$$
0=y(0)=c_{1},
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$. The equation is

$$
y^{\prime \prime}=0 \Rightarrow y(x)=c_{1}+c_{2} x
$$

The boundary conditions imply

$$
0=y(0)=c_{1}, \quad 0=c_{1}+c_{2} L
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$. The equation is

$$
y^{\prime \prime}=0 \Rightarrow y(x)=c_{1}+c_{2} x
$$

The boundary conditions imply

$$
0=y(0)=c_{1}, \quad 0=c_{1}+c_{2} L \quad \Rightarrow \quad c_{1}=c_{2}=0
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda=0$. The equation is

$$
y^{\prime \prime}=0 \Rightarrow y(x)=c_{1}+c_{2} x
$$

The boundary conditions imply

$$
0=y(0)=c_{1}, \quad 0=c_{1}+c_{2} L \quad \Rightarrow \quad c_{1}=c_{2}=0 .
$$

Since $y=0$, there are NO non-zero solutions for $\lambda=0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$. Introduce the notation $\lambda=-\mu^{2}$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$. Introduce the notation $\lambda=-\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}-\mu^{2}=0
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$. Introduce the notation $\lambda=-\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}-\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu .
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$. Introduce the notation $\lambda=-\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}-\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu .
$$

The general solution is

$$
y(x)=c_{1} e^{\mu x}+c_{2} e^{-\mu x} .
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$. Introduce the notation $\lambda=-\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}-\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu .
$$

The general solution is

$$
y(x)=c_{1} e^{\mu x}+c_{2} e^{-\mu x} .
$$

The boundary condition are

$$
0=y(0)
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$. Introduce the notation $\lambda=-\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}-\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu .
$$

The general solution is

$$
y(x)=c_{1} e^{\mu x}+c_{2} e^{-\mu x} .
$$

The boundary condition are

$$
0=y(0)=c_{1}+c_{2},
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda<0$. Introduce the notation $\lambda=-\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}-\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu .
$$

The general solution is

$$
y(x)=c_{1} e^{\mu x}+c_{2} e^{-\mu x} .
$$

The boundary condition are

$$
\begin{gathered}
0=y(0)=c_{1}+c_{2} \\
0=y(L)=c_{1} e^{\mu L}+c_{2} e^{-\mu L}
\end{gathered}
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $y(x)=c_{1} e^{\mu x}+c_{2} e^{\mu x}$ and

$$
c_{1}+c_{2}=0, \quad c_{1} e^{\mu L}+c_{2} e^{-\mu L}=0 .
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $y(x)=c_{1} e^{\mu x}+c_{2} e^{\mu x}$ and

$$
c_{1}+c_{2}=0, \quad c_{1} e^{\mu L}+c_{2} e^{-\mu L}=0 .
$$

We need to solve the linear system
$\left[\begin{array}{cc}1 & 1 \\ e^{\mu L} & e^{-\mu L}\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $y(x)=c_{1} e^{\mu x}+c_{2} e^{\mu x}$ and

$$
c_{1}+c_{2}=0, \quad c_{1} e^{\mu L}+c_{2} e^{-\mu L}=0 .
$$

We need to solve the linear system
$\left[\begin{array}{cc}1 & 1 \\ e^{\mu L} & e^{-\mu L}\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Leftrightarrow Z\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$,

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $y(x)=c_{1} e^{\mu x}+c_{2} e^{\mu x}$ and

$$
c_{1}+c_{2}=0, \quad c_{1} e^{\mu L}+c_{2} e^{-\mu L}=0 .
$$

We need to solve the linear system

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Leftrightarrow Z\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad Z=\left[\begin{array}{cc}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{array}\right]
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $y(x)=c_{1} e^{\mu x}+c_{2} e^{\mu x}$ and

$$
c_{1}+c_{2}=0, \quad c_{1} e^{\mu L}+c_{2} e^{-\mu L}=0
$$

We need to solve the linear system

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Leftrightarrow Z\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad Z=\left[\begin{array}{cc}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{array}\right]
$$

Since $\operatorname{det}(Z)=e^{-\mu L}-e^{\mu L} \neq 0$ for $L \neq 0$, matrix Z is invertible, so the linear system above has a unique solution $c_{1}=0$ and $c_{2}=0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $y(x)=c_{1} e^{\mu x}+c_{2} e^{\mu x}$ and

$$
c_{1}+c_{2}=0, \quad c_{1} e^{\mu L}+c_{2} e^{-\mu L}=0
$$

We need to solve the linear system

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Leftrightarrow Z\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad Z=\left[\begin{array}{cc}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{array}\right]
$$

Since $\operatorname{det}(Z)=e^{-\mu L}-e^{\mu L} \neq 0$ for $L \neq 0$, matrix Z is invertible, so the linear system above has a unique solution $c_{1}=0$ and $c_{2}=0$.

Since $y=0$, there are NO non-zero solutions for $\lambda<0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

The general solution is

$$
y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

The general solution is

$$
y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

The boundary condition are

$$
0=y(0)
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

The general solution is

$$
y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

The boundary condition are

$$
0=y(0)=c_{1},
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

The general solution is

$$
y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

The boundary condition are

$$
0=y(0)=c_{1}, \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x)
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

The general solution is

$$
y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

The boundary condition are

$$
\begin{aligned}
& 0=y(0)=c_{1}, \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
& 0=y(L)=c_{2} \sin (\mu L)
\end{aligned}
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

The general solution is

$$
y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

The boundary condition are

$$
\begin{gathered}
0=y(0)=c_{1}, \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) . \\
0=y(L)=c_{2} \sin (\mu L), \quad c_{2} \neq 0
\end{gathered}
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^{2}$. The characteristic equation is

$$
p(r)=r^{2}+\mu^{2}=0 \quad \Rightarrow \quad r_{ \pm}= \pm \mu i
$$

The general solution is

$$
y(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

The boundary condition are

$$
\begin{gathered}
0=y(0)=c_{1}, \quad \Rightarrow \quad y(x)=c_{2} \sin (\mu x) \\
0=y(L)=c_{2} \sin (\mu L), \quad c_{2} \neq 0 \quad \Rightarrow \quad \sin (\mu L)=0 .
\end{gathered}
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $\quad c_{1}=0, \quad c_{2} \neq 0$, and $\sin (\mu L)=0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $\quad c_{1}=0, \quad c_{2} \neq 0$, and $\sin (\mu L)=0$.
The non-zero solution condition is the reason for $c_{2} \neq 0$.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $\quad c_{1}=0, \quad c_{2} \neq 0$, and $\sin (\mu L)=0$.
The non-zero solution condition is the reason for $c_{2} \neq 0$. Hence

$$
\sin (\mu L)=0
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $\quad c_{1}=0, \quad c_{2} \neq 0$, and $\sin (\mu L)=0$.
The non-zero solution condition is the reason for $c_{2} \neq 0$. Hence

$$
\sin (\mu L)=0 \quad \Rightarrow \quad \mu_{n} L=n \pi
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $\quad c_{1}=0, \quad c_{2} \neq 0$, and $\sin (\mu L)=0$.
The non-zero solution condition is the reason for $c_{2} \neq 0$. Hence

$$
\sin (\mu L)=0 \quad \Rightarrow \quad \mu_{n} L=n \pi \quad \Rightarrow \quad \mu_{n}=\frac{n \pi}{L} .
$$

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $c_{1}=0, \quad c_{2} \neq 0$, and $\sin (\mu L)=0$.
The non-zero solution condition is the reason for $c_{2} \neq 0$. Hence

$$
\sin (\mu L)=0 \quad \Rightarrow \quad \mu_{n} L=n \pi \quad \Rightarrow \quad \mu_{n}=\frac{n \pi}{L}
$$

Recalling that $\lambda_{n}=\mu_{n}^{2}$, and choosing $c_{2}=1$,

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$
y^{\prime \prime}(x)+\lambda y(x)=0, \quad y(0)=0, \quad y(L)=0, \quad L>0
$$

Solution: Recall: $\quad c_{1}=0, \quad c_{2} \neq 0$, and $\sin (\mu L)=0$.
The non-zero solution condition is the reason for $c_{2} \neq 0$. Hence

$$
\sin (\mu L)=0 \quad \Rightarrow \quad \mu_{n} L=n \pi \quad \Rightarrow \quad \mu_{n}=\frac{n \pi}{L}
$$

Recalling that $\lambda_{n}=\mu_{n}^{2}$, and choosing $c_{2}=1$, we conclude

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad y_{n}(x)=\sin \left(\frac{n \pi x}{L}\right) .
$$

Overview of Fourier Series (Sect. 6.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.

Origins of the Fourier Series.

Summary:
Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

Origins of the Fourier Series.

Summary:

Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

Origins of the Fourier Series.

Summary:
Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string,

Origins of the Fourier Series.

Summary:
Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

Origins of the Fourier Series.

Summary:

Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

$$
\partial_{t}^{2} u(t, x)=v^{2} \partial_{x}^{2} u(t, x), \quad v \in \mathbb{R}, \quad x \in[0, L], \quad t \in[0, \infty)
$$

Origins of the Fourier Series.

Summary:

Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

$$
\partial_{t}^{2} u(t, x)=v^{2} \partial_{x}^{2} u(t, x), \quad v \in \mathbb{R}, \quad x \in[0, L], \quad t \in[0, \infty)
$$

with initial conditions,

$$
u(0, x)=f(x), \quad \partial_{t} u(0, x)=0
$$

Origins of the Fourier Series.

Summary:

Daniel Bernoulli (~ 1750) found solutions to the equation that describes waves propagating on a vibrating string.

The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

$$
\partial_{t}^{2} u(t, x)=v^{2} \partial_{x}^{2} u(t, x), \quad v \in \mathbb{R}, \quad x \in[0, L], \quad t \in[0, \infty)
$$

with initial conditions,

$$
u(0, x)=f(x), \quad \partial_{t} u(0, x)=0
$$

and boundary conditions,

$$
u(t, 0)=0, \quad u(t, L)=0
$$

Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation.

Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,

Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation. If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right)$.

Origins of the Fourier Series.

Summary:

Bernoulli found particular solutions to the wave equation. If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right)$.
Bernoulli also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right), \quad a_{n} \in \mathbb{R}
$$

Origins of the Fourier Series.

Summary:

Bernoulli found particular solutions to the wave equation. If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right)$.
Bernoulli also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right), \quad a_{n} \in \mathbb{R}
$$

is also solution of the wave equation with initial condition

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Origins of the Fourier Series.

Summary:

Bernoulli found particular solutions to the wave equation. If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right)$.
Bernoulli also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{v n \pi t}{L}\right), \quad a_{n} \in \mathbb{R}
$$

is also solution of the wave equation with initial condition

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Remark: The wave equation and its solutions provide a mathematical description of music.

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x)
$$

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad k>0,
$$

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad k>0, \quad x \in[0, L],
$$

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad k>0, \quad x \in[0, L], \quad t \in[0, \infty)
$$

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\begin{gathered}
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad k>0, \quad x \in[0, L], \quad t \in[0, \infty), \\
\text { I.C. } u(0, x)=f(x),
\end{gathered}
$$

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with $F(0)=F(L)=0$, but otherwise arbitrary, find N and the coefficients a_{n} such that F is approximated by an expansion F_{N} given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_{n}, while studying a different problem:
The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$
\begin{gathered}
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad k>0, \quad x \in[0, L], \quad t \in[0, \infty), \\
\text { I.C. } u(0, x)=f(x) \\
\text { B.C. } u(t, 0)=0, \quad u(t, L)=0 .
\end{gathered}
$$

Origins of the Fourier Series.

Remarks:

Fourier found particular solutions to the heat equation.

Origins of the Fourier Series.

Remarks:

Fourier found particular solutions to the heat equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,

Origins of the Fourier Series.

Remarks:
Fourier found particular solutions to the heat equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}$.

Origins of the Fourier Series.

Remarks:

Fourier found particular solutions to the heat equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}$.
Fourier also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}, \quad a_{n} \in \mathbb{R}
$$

Origins of the Fourier Series.

Remarks:

Fourier found particular solutions to the heat equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}$.
Fourier also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}, \quad a_{n} \in \mathbb{R}
$$

is also solution of the heat equation with initial condition

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Origins of the Fourier Series.

Remarks:
Fourier found particular solutions to the heat equation.
If the initial condition is $f_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$,
then the solution is $u_{n}(t, x)=\sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}$.
Fourier also realized that

$$
U_{N}(t, x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}, \quad a_{n} \in \mathbb{R}
$$

is also solution of the heat equation with initial condition

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Remark: The heat equation and its solutions provide a mathematical description of heat transport in a solid material.

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli.

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary,

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N}

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer,

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer, where the a_{n} are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer, where the a_{n} are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

- To find all solutions to the heat equation problem above one must prove one more thing:

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer, where the a_{n} are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

- To find all solutions to the heat equation problem above one must prove one more thing: That F_{N} approximates F for large enough N.

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer, where the a_{n} are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

- To find all solutions to the heat equation problem above one must prove one more thing: That F_{N} approximates F for large enough N. That is, $\lim _{N \rightarrow \infty} F_{N}=F$.

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_{n} in terms of the function F.
- Given an initial data function F, satisfying $F(0)=F(L)=0$, but otherwise arbitrary, Fourier proved that one can construct an expansion F_{N} as follows,

$$
F_{N}(x)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

for N any positive integer, where the a_{n} are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

- To find all solutions to the heat equation problem above one must prove one more thing: That F_{N} approximates F for large enough N. That is, $\lim _{N \rightarrow \infty} F_{N}=F$. Fourier didn't show this.

Origins of the Fourier Series.

Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that.

Origins of the Fourier Series.

Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, τ-periodic function can be expressed as an infinite linear combination of sine and cosine functions.

Origins of the Fourier Series.

Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, τ-periodic function can be expressed as an infinite linear combination of sine and cosine functions.
- More precisely: Every continuous, τ-periodic function F, there exist constants a_{0}, a_{n}, b_{n}, for $n=1,2, \cdots$ such that

$$
F_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

satisfies $\lim _{N \rightarrow \infty} F_{N}(x)=F(x)$ for every $x \in \mathbb{R}$.

Origins of the Fourier Series.

Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, τ-periodic function can be expressed as an infinite linear combination of sine and cosine functions.
- More precisely: Every continuous, τ-periodic function F, there exist constants a_{0}, a_{n}, b_{n}, for $n=1,2, \cdots$ such that

$$
F_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

satisfies $\lim _{N \rightarrow \infty} F_{N}(x)=F(x)$ for every $x \in \mathbb{R}$.
Notation: $\quad F(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]$.

Origins of the Fourier Series.

The main problem in our class:
Given a continuous, τ-periodic function f, find the formulas for a_{n} and b_{n} such that

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right] .
$$

Origins of the Fourier Series.

The main problem in our class:
Given a continuous, τ-periodic function f, find the formulas for a_{n} and b_{n} such that

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right] .
$$

Remarks: We need to review two main concepts:

Origins of the Fourier Series.

The main problem in our class:
Given a continuous, τ-periodic function f, find the formulas for a_{n} and b_{n} such that

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right] .
$$

Remarks: We need to review two main concepts:

- The notion of periodic functions.

Origins of the Fourier Series.

The main problem in our class:
Given a continuous, τ-periodic function f, find the formulas for a_{n} and b_{n} such that

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right] .
$$

Remarks: We need to review two main concepts:

- The notion of periodic functions.
- The notion of orthogonal functions, in particular the orthogonality of Sines and Cosines.

Fourier Series (Sect. 6.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.

Periodic functions.

Definition
A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Periodic functions.

Definition
A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Remark: f is invariant under translations by τ.

Periodic functions.

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Remark: f is invariant under translations by τ.

Definition

A period T of a periodic function f is the smallest value of τ such that $f(x+\tau)=f(x)$ holds.

Periodic functions.

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic iff there exists $\tau>0$ such that for all $x \in \mathbb{R}$ holds

$$
f(x+\tau)=f(x)
$$

Remark: f is invariant under translations by τ.

Definition

A period T of a periodic function f is the smallest value of τ such that $f(x+\tau)=f(x)$ holds.

Notation:
A periodic function with period T is also called T-periodic.

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)=\sin (a x+2 \pi)
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)=\sin (a x+2 \pi)=\sin (a x)
$$

Periodic functions.

Example

The following functions are periodic, with period T,

$$
\begin{aligned}
f(x)=\sin (x), & T=2 \pi \\
f(x)=\cos (x), & T=2 \pi \\
f(x)=\tan (x), & T=\pi \\
f(x)=\sin (a x), & T=\frac{2 \pi}{a}
\end{aligned}
$$

The proof of the latter statement is the following:

$$
f\left(x+\frac{2 \pi}{a}\right)=\sin \left(a x+a \frac{2 \pi}{a}\right)=\sin (a x+2 \pi)=\sin (a x)=f(x)
$$

Periodic functions.

Example

Show that the function below is periodic, and find its period,

$$
f(x)=e^{x}, \quad x \in[0,2), \quad f(x-2)=f(x) .
$$

Periodic functions.

Example

Show that the function below is periodic, and find its period,

$$
f(x)=e^{x}, \quad x \in[0,2), \quad f(x-2)=f(x) .
$$

Solution: We just graph the function,

Periodic functions.

Example

Show that the function below is periodic, and find its period,

$$
f(x)=e^{x}, \quad x \in[0,2), \quad f(x-2)=f(x)
$$

Solution: We just graph the function,

So the function is periodic with period $T=2$.

Periodic functions.

Theorem
A linear combination of T-periodic functions is also T-periodic.

Periodic functions.

Theorem
A linear combination of T-periodic functions is also T-periodic.
Proof: If $f(x+T)=f(x)$ and $g(x+T)=g(x)$, then

$$
a f(x+T)+b g(x+T)=a f(x)+b g(x)
$$

so $(a f+b g)$ is also T-periodic.

Periodic functions.

Theorem
A linear combination of T-periodic functions is also T-periodic.
Proof: If $f(x+T)=f(x)$ and $g(x+T)=g(x)$, then

$$
a f(x+T)+b g(x+T)=a f(x)+b g(x)
$$

so $(a f+b g)$ is also T-periodic.
Example
$f(x)=2 \sin (3 x)+7 \cos (3 x)$ is periodic with period $T=2 \pi / 3 . \triangleleft$

Periodic functions.

Theorem
A linear combination of T-periodic functions is also T-periodic.
Proof: If $f(x+T)=f(x)$ and $g(x+T)=g(x)$, then

$$
a f(x+T)+b g(x+T)=a f(x)+b g(x)
$$

so $(a f+b g)$ is also T-periodic.
Example
$f(x)=2 \sin (3 x)+7 \cos (3 x)$ is periodic with period $T=2 \pi / 3 . \triangleleft$
Remark: The functions below are periodic with period $T=\frac{\tau}{n}$,

$$
f(x)=\cos \left(\frac{2 \pi n x}{\tau}\right), \quad g(x)=\sin \left(\frac{2 \pi n x}{\tau}\right)
$$

Periodic functions.

Theorem
A linear combination of T-periodic functions is also T-periodic.
Proof: If $f(x+T)=f(x)$ and $g(x+T)=g(x)$, then

$$
a f(x+T)+b g(x+T)=a f(x)+b g(x)
$$

so $(a f+b g)$ is also T-periodic.
Example
$f(x)=2 \sin (3 x)+7 \cos (3 x)$ is periodic with period $T=2 \pi / 3 . \triangleleft$
Remark: The functions below are periodic with period $T=\frac{\tau}{n}$,

$$
f(x)=\cos \left(\frac{2 \pi n x}{\tau}\right), \quad g(x)=\sin \left(\frac{2 \pi n x}{\tau}\right)
$$

Since f and g are invariant under translations by τ / n, they are also invariant under translations by τ.

Periodic functions.

Corollary

Any function f given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

is periodic with period τ.

Periodic functions.

Corollary
Any function f given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

is periodic with period τ.

Remark: We will show that the converse statement is true.

Periodic functions.

Corollary
Any function f given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right]
$$

is periodic with period τ.
Remark: We will show that the converse statement is true.
Theorem
A function f is τ-periodic iff holds

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 n \pi x}{\tau}\right)+b_{n} \sin \left(\frac{2 n \pi x}{\tau}\right)\right] .
$$

Fourier Series (Sect. 6.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.

Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: $[-L, L]$.

Orthogonality of Sines and Cosines.

Remark:
From now on we work on the following domain: $[-L, L]$.

Orthogonality of Sines and Cosines.

Theorem (Orthogonality)
The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Remark:

- The operation $f \cdot g=\int_{-L}^{L} f(x) g(x) d x$ is an inner product in the vector space of functions.

Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Remark:

- The operation $f \cdot g=\int_{-L}^{L} f(x) g(x) d x$ is an inner product in the vector space of functions. Like the dot product is in \mathbb{R}^{2}.

Orthogonality of Sines and Cosines.

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m \neq 0 \\
2 L & n=m=0\end{cases} \\
& \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & n \neq m \\
L & n=m\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=0
\end{aligned}
$$

Remark:

- The operation $f \cdot g=\int_{-L}^{L} f(x) g(x) d x$ is an inner product in the vector space of functions. Like the dot product is in \mathbb{R}^{2}.
- Two functions f, g, are orthogonal iff $f \cdot g=0$.

Orthogonality of Sines and Cosines.
Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] ; \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] .
\end{aligned}
$$

Orthogonality of Sines and Cosines.

Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] ; \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] .
\end{aligned}
$$

Proof: First formula:

Orthogonality of Sines and Cosines.

Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] ; \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] .
\end{aligned}
$$

Proof: First formula: If $n=m=0$, it is simple to see that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\int_{-L}^{L} d x=2 L .
$$

Orthogonality of Sines and Cosines.

Recall: $\quad \cos (\theta) \cos (\phi)=\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)] ;$

$$
\begin{aligned}
& \sin (\theta) \sin (\phi)=\frac{1}{2}[\cos (\theta-\phi)-\cos (\theta+\phi)] ; \\
& \sin (\theta) \cos (\phi)=\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] .
\end{aligned}
$$

Proof: First formula: If $n=m=0$, it is simple to see that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\int_{-L}^{L} d x=2 L .
$$

In the case where one of n or m is non-zero, use the relation

$$
\begin{aligned}
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) & \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x \\
& +\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
\end{aligned}
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero,

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
$$

If we further restrict $n \neq m$, then

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\left.\frac{L}{2(n-m) \pi} \sin \left[\frac{(n-m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
$$

If we further restrict $n \neq m$, then

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\left.\frac{L}{2(n-m) \pi} \sin \left[\frac{(n-m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

If $n=m \neq 0$, we have that

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\frac{1}{2} \int_{-L}^{L} d x=L
$$

Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m) \pi x}{L}\right] d x=\left.\frac{L}{2(n+m) \pi} \sin \left[\frac{(n+m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

We obtain that

$$
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x .
$$

If we further restrict $n \neq m$, then

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\left.\frac{L}{2(n-m) \pi} \sin \left[\frac{(n-m) \pi x}{L}\right]\right|_{-L} ^{L}=0
$$

If $n=m \neq 0$, we have that

$$
\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m) \pi x}{L}\right] d x=\frac{1}{2} \int_{-L}^{L} d x=L
$$

This establishes the first equation in the Theorem. The remaining equations are proven in a similar way.

Overview of Fourier Series (Sect. 6.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.

Main result on Fourier Series.

Theorem (Fourier Series)
If the function $f:[-L, L] \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then f can be expressed as an infinite series

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] \tag{1}
\end{equation*}
$$

with the constants a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

Furthermore, the Fourier series in Eq. (1) provides a $2 L$-periodic extension of f from the domain $[-L, L] \subset \mathbb{R}$ to \mathbb{R}.

Examples of the Fourier Theorem (Sect. 6.2).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

The Fourier Theorem: Continuous case.

Theorem (Fourier Series)
If the function $f:[-L, L] \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then f can be expressed as an infinite series

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] \tag{2}
\end{equation*}
$$

with the constants a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

Furthermore, the Fourier series in Eq. (2) provides a $2 L$-periodic extension of function f from the domain $[-L, L] \subset \mathbb{R}$ to \mathbb{R}.

The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

The Fourier Theorem: Continuous case.
Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

with a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

with a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

- Express f_{N} as a convolution of Sine, Cosine, functions and the original function f.

The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

with a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

- Express f_{N} as a convolution of Sine, Cosine, functions and the original function f.
- Use the convolution properties to show that

$$
\lim _{N \rightarrow \infty} f_{N}(x)=f(x), \quad x \in[-L, L]
$$

Examples of the Fourier Theorem (Sect. 6.2).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right],
$$

where the a_{n}, b_{n} are given in the Theorem.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right],
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
a_{0}=\int_{-1}^{1} f(x) d x
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
\begin{aligned}
& a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x \\
& a_{0}=\left.\left(x+\frac{x^{2}}{2}\right)\right|_{-1} ^{0}+\left.\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0), \\ 1-x & x \in[0,1] .\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right],
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
\begin{gathered}
a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x . \\
a_{0}=\left.\left(x+\frac{x^{2}}{2}\right)\right|_{-1} ^{0}+\left.\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2}\right)
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
\begin{gathered}
a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x \\
a_{0}=\left.\left(x+\frac{x^{2}}{2}\right)\right|_{-1} ^{0}+\left.\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2}\right)
\end{gathered}
$$

We obtain: $a_{0}=1$.

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
\begin{gathered}
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x \\
a_{n}=\int_{-1}^{0}(1+x) \cos (n \pi x) d x+\int_{0}^{1}(1-x) \cos (n \pi x) d x
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
\begin{gathered}
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x \\
a_{n}=\int_{-1}^{0}(1+x) \cos (n \pi x) d x+\int_{0}^{1}(1-x) \cos (n \pi x) d x
\end{gathered}
$$

Recall the integrals $\int \cos (n \pi x) d x=\frac{1}{n \pi} \sin (n \pi x)$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
\begin{gathered}
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x \\
a_{n}=\int_{-1}^{0}(1+x) \cos (n \pi x) d x+\int_{0}^{1}(1-x) \cos (n \pi x) d x
\end{gathered}
$$

Recall the integrals $\int \cos (n \pi x) d x=\frac{1}{n \pi} \sin (n \pi x)$, and

$$
\int x \cos (n \pi x) d x=\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: It is not difficult to see that

$$
\begin{aligned}
a_{n} & =\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}+\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{-1} ^{0} \\
& +\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{0} ^{1}-\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{0} ^{1}
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: It is not difficult to see that

$$
\begin{aligned}
a_{n} & =\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}+\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{-1} ^{0} \\
& +\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{0} ^{1}-\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{0} ^{1} \\
a_{n} & =\left[\frac{1}{n^{2} \pi^{2}}-\frac{1}{n^{2} \pi^{2}} \cos (-n \pi)\right]-\left[\frac{1}{n^{2} \pi^{2}} \cos (n \pi)-\frac{1}{n^{2} \pi^{2}}\right] .
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: It is not difficult to see that

$$
\begin{aligned}
a_{n} & =\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}+\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{-1} ^{0} \\
& +\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{0} ^{1}-\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{0} ^{1} \\
a_{n} & =\left[\frac{1}{n^{2} \pi^{2}}-\frac{1}{n^{2} \pi^{2}} \cos (-n \pi)\right]-\left[\frac{1}{n^{2} \pi^{2}} \cos (n \pi)-\frac{1}{n^{2} \pi^{2}}\right] .
\end{aligned}
$$

We then conclude that $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0), \\ 1-x & x \in[0,1] .\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.
Finally, we must find the coefficients b_{n}.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.
Finally, we must find the coefficients b_{n}.
A similar calculation shows that $b_{n}=0$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.
Finally, we must find the coefficients b_{n}.
A similar calculation shows that $b_{n}=0$.
Then, the Fourier series of f is given by

$$
f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}.
Recall the relations $\cos (n \pi)=(-1)^{n}$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}.
Recall the relations $\cos (n \pi)=(-1)^{n}$, then

$$
f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right] \cos (n \pi x) .
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0), \\ 1-x & x \in[0,1] .\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}. Recall the relations $\cos (n \pi)=(-1)^{n}$, then

$$
\begin{aligned}
& f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right] \cos (n \pi x) \\
& f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1)
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd, so $n+1=2 k$ is even,

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd, so $n+1=2 k$ is even, then

$$
a_{2 k-1}=\frac{2}{(2 k-1)^{2} \pi^{2}}(1+1)
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd, so $n+1=2 k$ is even, then

$$
a_{2 k-1}=\frac{2}{(2 k-1)^{2} \pi^{2}}(1+1) \quad \Rightarrow \quad a_{2 k-1}=\frac{4}{(2 k-1)^{2} \pi^{2}} .
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution:
Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$, and

$$
a_{2 k}=0, \quad a_{2 k-1}=\frac{4}{(2 k-1)^{2} \pi^{2}}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution:
Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$, and

$$
a_{2 k}=0, \quad a_{2 k-1}=\frac{4}{(2 k-1)^{2} \pi^{2}} .
$$

We conclude: $\quad f(x)=\frac{1}{2}+\sum_{k=1}^{\infty} \frac{4}{(2 k-1)^{2} \pi^{2}} \cos ((2 k-1) \pi x) . \quad \triangleleft$

Examples of the Fourier Theorem (Sect. 6.2).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

The Fourier Theorem: Piecewise continuous case.

Recall:

Definition
A function $f:[a, b] \rightarrow \mathbb{R}$ is called piecewise continuous iff holds,
(a) $[a, b]$ can be partitioned in a finite number of sub-intervals such that f is continuous on the interior of these sub-intervals.
(b) f has finite limits at the endpoints of all sub-intervals.

The Fourier Theorem: Piecewise continuous case.

Theorem (Fourier Series)
If $f:[-L, L] \subset \mathbb{R} \rightarrow \mathbb{R}$ is piecewise continuous, then the function

$$
f_{F}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

where a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

satisfies that:
(a) $f_{F}(x)=f(x)$ for all x where f is continuous;
(b) $f_{F}\left(x_{0}\right)=\frac{1}{2}\left[\lim _{x \rightarrow x_{0}^{+}} f(x)+\lim _{x \rightarrow x_{0}^{-}} f(x)\right]$ for all x_{0} where f is discontinuous.

Examples of the Fourier Theorem (Sect. 6.2).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
b_{n}=\int_{-1}^{0}(-1) \sin (n \pi x) d x+\int_{0}^{1}(1) \sin (n \pi x) d x
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
b_{n}=\int_{-1}^{0}(-1) \sin (n \pi x) d x+\int_{0}^{1}(1) \sin (n \pi x) d x, \\
b_{n}=\frac{(-1)}{n \pi}\left[-\left.\cos (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[-\left.\cos (n \pi x)\right|_{0} ^{1}\right],
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
b_{n}=\int_{-1}^{0}(-1) \sin (n \pi x) d x+\int_{0}^{1}(1) \sin (n \pi x) d x, \\
b_{n}=\frac{(-1)}{n \pi}\left[-\left.\cos (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[-\left.\cos (n \pi x)\right|_{0} ^{1}\right], \\
b_{n}= \\
\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1] .
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.
Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.
If $n=2 k-1$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.
If $n=2 k-1$, then $b_{2 k-1}=\frac{2}{(2 k-1) \pi}\left[1-(-1)^{2 k-1}\right]$,

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.
If $n=2 k-1$, then $b_{2 k-1}=\frac{2}{(2 k-1) \pi}\left[1-(-1)^{2 k-1}\right]$,
hence $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) \text {. }\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x, \\
a_{n}=\frac{(-1)}{n \pi}\left[\left.\sin (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[\left.\sin (n \pi x)\right|_{0} ^{1}\right],
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) \text {. }\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x, \\
a_{n}=\frac{(-1)}{n \pi}\left[\left.\sin (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[\left.\sin (n \pi x)\right|_{0} ^{1}\right], \\
a_{n}=\frac{(-1)}{n \pi}[0-\sin (-n \pi)]+\frac{1}{n \pi}[\sin (n \pi)-0]
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example
Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) \text {. }\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1, \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x, \\
a_{n}=\frac{(-1)}{n \pi}\left[\left.\sin (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[\left.\sin (n \pi x)\right|_{0} ^{1}\right], \\
a_{n}=\frac{(-1)}{n \pi}[0-\sin (-n \pi)]+\frac{1}{n \pi}[\sin (n \pi)-0] \Rightarrow a_{n}=0 .
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0, \quad b_{2 k}=\frac{4}{(2 k-1) \pi}, \quad$ and $\quad a_{n}=0$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0, \quad b_{2 k}=\frac{4}{(2 k-1) \pi}, \quad$ and $\quad a_{n}=0$.
Therefore, we conclude that

$$
f_{F}(x)=\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)} \sin ((2 k-1) \pi x) .
$$

