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Definition
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Definition
An n x n linear differential system is a the following: Given an
n x n matrix-valued function A, and an n-vector-valued function b,

find an n-vector-valued function x solution of
x'(t) = A(t) x(t) + b(t).
The system above is called homogeneous iff holds b = 0.

Recall:

an(t) - aml) b(t) xo()

X\ = ap(t) X1 + -+ + apn(t) xo + ba(t).
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n x n linear differential systems (5.4).

Example

Find the explicit expression for the linear system x’ = Ax + b in the
case that

R G |

Solution: The 2 x 2 linear system is given by
x| |1 3] [x n et
x| 13 1] | % 2e3t|”

/

X (t) = x(t) + 3x(t) + €,
X(t) = 3x(t) + x(t) + 2.

That is,
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Remark: Derivatives of vector-valued functions are computed
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X' (t) =

Example

Compute x’ for x(t) =

Solution:

x'(t)

x1(t)]’

x1(t)

2621”
{ cos(t) } .
—sin(t)
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Remarks:

» Given an n X n matrix A(t), n-vector b(t), find x(t) solution
X' (t) = A(t) x(t) + b(t).
» The system is homogeneous iff b = 0, that is,
X' (t) = A(t) x(t).
» The system has constant coefficients iff matrix A does not
depend on t, that is,
x'(t) = Ax(t) + b(t).
» We study homogeneous, constant coefficient systems, that is,

X'(t) = Ax(t).
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Theorem (Diagonalizable matrix)
If n X n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1,--- ,v,} and corresponding eigenvalues
{A1,--,An}, then the general solution x to the homogeneous,
constant coefficients, linear system

X'(t) = Ax(t)

is given by the expression below, where ¢, , ¢, € R,

x(t) = vy Mt 4 -+ cuv, eME
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Constant coefficients homogenoues systems (5.6).
Theorem (Diagonalizable matrix)
If n X n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1,--- ,v,} and corresponding eigenvalues
{A1,--,An}, then the general solution x to the homogeneous,
constant coefficients, linear system

X'(t) = Ax(t)

is given by the expression below, where ¢, , ¢, € R,

x(t) = vy Mt 4 -+ cuv, eME

Remark:
» The differential system for the variable x is coupled, that is, A
is not diagonal.

» We transform the system into a system for a variable y such
that the system for y is decoupled, that is, y'(t) = Dy(t),
where D is a diagonal matrix.

» We solve for y(t) and we transform back to x(t).
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Example

Find the general solution to x’ = Ax, with A = B ﬂ

Solution: Find eigenvalues and eigenvectors of A. We found that:
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Fundamental solutions are

1 -1
(1) 4t (2) —2t
X\ = L] e, x= [ 1} e .

The general solution is x(t) = ¢; x(l)(t) + o x(2)(t),
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Example

Find the general solution to x’ = Ax, with A = B ﬂ

Solution: Find eigenvalues and eigenvectors of A. We found that:

A =4, v = [ﬂ , and A\, = =2, vd = [_1] .

Fundamental solutions are

1 -1
(1) 4t (2) —2t
X\ = L] e, x= [ 1} e .

The general solution is x(t) = ¢; X (t) + 2 x(2(¢t), that is,

1 -1
x(t) = ¢ L] e+, { 1} e 2t a, 6 €R. 4
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Example

Verify that x(1) = [ﬂ e*t, and x(® = [_1

1} e~ are solutions to

) 1 3
/ J—
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Solution: We compute x(1)" and then we compare it with Ax(1),
4t/ 4t

1 e 4e
K00 = %] = [aced

Ax() = B ﬂ [ﬂ et = [ﬂ et =4 [ﬂ e*t = Ax() = ax(),
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We conclude that x(1)/ = Ax(1)
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Example

Verify that x() = [1

1 e* and x(@ = [_1

1} €2t are solutions to

. 1 3
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Solution: We compute x(? and then we compare it with Ax(®),

x@ = [_ezt}/ = [ 27 ] =2 [_1] e 2t = x( = _2x(),

e—2t _2e—2t 1

So, Ax®® = —2x(®)  Hence, x(2/ = Ax(2). N
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Solution: The general solution: x(t) = ¢ E] e* + ¢ [_11} e 2t

The initial condition is,
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Example

Solve the IVP x’ = Ax, where x(0) = [ﬂ and A= B ﬂ

Solution: The general solution: x(t) = ¢ E] e* + ¢ [_11} e 2t

The initial condition is,
2 1 -1

We need to solve the linear system
1 -1 |a| _ |2 al 11 1]]2
1 1| || |4 o 2|-1 1] |4]°

Therefore, || = 3 , hence x(t) =3 L e*t + e <
G 1 1
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P7X(1) = PAX(t) & (P7x) = (PTAP) (Px).
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Proof: Since A is diagonalizable, we know that A= PDP~!, with
P:[vl,---,vn], D:diag[A1,~-,)\n].
Equivalently, P"YAP = D. Multiply X’ = Ax by P~! on the left
PIX(t) =P lAx(t) & (P'x) = (PAP) (P 'x).
Introduce the new unknown y(t) = P~1x(t), then
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Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that A= PDP~!, with
P:[vl,---,vn], D:diag[A1,~-,)\n].
Equivalently, P"YAP = D. Multiply X’ = Ax by P~! on the left
PIX(t) =P lAx(t) & (P'x) = (PAP) (P 'x).
Introduce the new unknown y(t) = P~1x(t), then

yi(t) = A y(t), [ et
y(t)=Dy(t) & : = y(t) =
Ya(t) = Anya(t), Ccp et



Constant coefficients homogenoues systems (5.6).
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¢, et
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Proof: Recall: y(t) = P~ 1x(t), and y(t) =

¢, et

Transform back to x(t), that is,

x(t) = Py(t)



Constant coefficients homogenoues systems (5.6).

¢y eMt
Proof: Recall: y(t) = P~ 1x(t), and y(t) = :
¢, et
Transform back to x(t), that is,
¢y eMt

x(t) = Py(t) = [vl,--- ,v,,]

¢, eMnt



Constant coefficients homogenoues systems (5.6).

c e)\lt
Proof: Recall: y(t) = P~ 1x(t), and y(t) = :
¢, et
Transform back to x(t), that is,
¢ eMt
x(t) = Py(t) = [v1,- - ,vn) :
L
We conclude: x(t) = civy eMt + - + c,v, et



Constant coefficients homogenoues systems (5.6).

c e)\lt
Proof: Recall: y(t) = P~ 1x(t), and y(t) = :
¢, et
Transform back to x(t), that is,
¢ eMt
x(t) = Py(t) = [v1,- - ,vn) :
L
We conclude: x(t) = civy eMt + - + c,v, et

Remark:

> AV,’ = )\,'V,'.



Constant coefficients homogenoues systems (5.6).

c e)\lt
Proof: Recall: y(t) = P~ 1x(t), and y(t) = :
¢, et
Transform back to x(t), that is,
a1 eMt
x(t) = Py(t) = [v1,- - ,vn] :
L
We conclude: x(t) = civy eMt + - + c,v, et O
Remark:
4 AV,’ = )\,'V,'.

» The eigenvalues and eigenvectors of A are crucial to solve the
differential linear system x'(t) = Ax(t).



Differential linear systems (Sect. 5.4, 5.6, 5.7)

n x n linear differential systems (5.4).
Constant coefficients homogenoues systems (5.6).

Examples: 2 x 2 linear systems (5.6).

vV v vy

Phase portraits for 2 x 2 systems (5.7).
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» Case (i): Express the solution in vector components

x(t) = [28)] and graph x; and x, as functions of t.



Phase portraits for 2 x 2 systems (5.7).
Remark:

» There are two main types of graphs for solutions of 2 x 2
linear systems:
(i) The graphs of the vector components;
(ii) The phase portrait.
» Case (i): Express the solution in vector components
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x(t) = [Xl( )] and graph x; and x» as functions of t.
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(Recall the solution in the IVP of the previous Example:



Phase portraits for 2 x 2 systems (5.7).

Remark:

» There are two main types of graphs for solutions of 2 x 2
linear systems:
(i) The graphs of the vector components;
(ii) The phase portrait.

» Case (i): Express the solution in vector components

x(t) = [ilg?] and graph x; and x» as functions of t.
2
(Recall the solution in the IVP of the previous Example:

x1(t) = 3e* — et and xp(t) = 3e*t + e72t))



Phase portraits for 2 x 2 systems (5.7).
Remark:

» There are two main types of graphs for solutions of 2 x 2
linear systems:
(i) The graphs of the vector components;
(ii) The phase portrait.

» Case (i): Express the solution in vector components
Xz(t

(Recall the solution in the IVP of the previous Example:
x1(t) = 3e* — et and xp(t) = 3e*t + e72t))

x(t) = [Xl(t)], and graph x; and x, as functions of t.

» Case (ii): Express the solution as a vector-valued function,

x(t) = q vy eMt + vy e,

and plot the vector x(t) for different values of t.



Phase portraits for 2 x 2 systems (5.7).
Remark:

» There are two main types of graphs for solutions of 2 x 2
linear systems:
(i) The graphs of the vector components;
(ii) The phase portrait.

» Case (i): Express the solution in vector components
Xz(t

(Recall the solution in the IVP of the previous Example:
x1(t) = 3e* — et and xp(t) = 3e*t + e72t))

x(t) = [Xl(t)], and graph x; and x, as functions of t.

» Case (ii): Express the solution as a vector-valued function,
x(t) = q vy eMt + vy e,

and plot the vector x(t) for different values of t.

» Case (ii) is called a phase portrait.



Phase portraits for 2 x 2 systems (5.7).
Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

<D _ H . x@) = [—1} o2t
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Phase portraits for 2 x 2 systems (5.7).
Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

<D _ H . x@) = {—1} o2t

1
Solution:
We start plotting the 2
vectors
V1 B [1} ’ V :
1 1 1 Xy
1 o
2 __
=[],




Phase portraits for 2 x 2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

@ _ |1 a4 L@ |7 e
B I P

Solution:
We now plot the functions

x) = H e*,

x() = [_11} e ?t.



Phase portraits for 2 x 2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

@ _ |1 a4 L@ |7 e
B I P

Solution: x

We now plot the functions O o

x(1) — [ﬂ e4t7 V‘ Il \‘,1

N

x(?) = [_11} e 2t




Phase portraits for 2 x 2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

@ _ |1 a4 L@ |7 e
B I P

Solution:
We now plot the functions

—x(M) = — H ™,



Phase portraits for 2 x 2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

@ _ |1 a4 L@ |7 e
B I P

Solution: X,
We now plot the functions
IV CO I 13 R X A
X = e v
[1 ’ T T
- N X,
~1 e 1 e
@ _ _[ 1} o2t X x




Phase portraits for 2 x 2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

< _ m it x® [—1} o2t

1
Solution:
We now plot the four
functions
x1 - —x(1)
x() %)



Phase portraits for 2 x 2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the

fundamental solutions found above,

< _ m it x® [—1} o2t

(1)

1
Solution: §
2
We now plot the four
functions )
X 1
x (1), v’
NED -1
x() %)

X1

(2)



Phase portraits for 2 x 2 systems (5.7).
Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x(1) — [ﬂ et x@ = [—1} o2t

Solution:
We now plot the four
functions

D _x @ @)

Y

and x() + x(@),

oo



Phase portraits for 2 x 2 systems (5.7).
Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x(1) — [ﬂ et x@ = [—1} o2t

1
Solution:
We now plot the four N PR
functions \ C -
(2) (1)
X, —xM) x® @) N e
and X(]_) +x(2)v —‘1 1 Xy
_X(l) -1t (2)
1 4t -1 -2t N
e Fika




Phase portraits for 2 x 2 systems (5.7).

Example
Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

<) _ H it x@) = [—1} o2t

Solution:
We now plot the eight
functions

D _xD <@ @)

<D @) 1) @)



Phase portraits for 2 x 2 systems (5.7).

Example
Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

1
(1): At (2)_
S
Solution:

We now plot the eight
functions \//
x(l), _ x(l), X(2)’ _ ,((2)7




Phase portraits for 2 x 2 systems (5.7).

Problem:
Case (a): Consider a 2 x 2 matrix A having two different, real

eigenvalues A1 # A, so A has two non-proportional eigenvectors
vi, v (eigen-directions).
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Case (a): Consider a 2 x 2 matrix A having two different, real
eigenvalues A1 # A, so A has two non-proportional eigenvectors
vi, vo (eigen-directions).

Given a solution x(t) = ¢, v1 eMt 4 ¢, vp ™2F, to X/(t) = Ax(t),
plot different solution vectors x(t) on the plane as function of t for
different choices of the constants ¢; and c».
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The plots are different depending on the eigenvalues signs.
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Case (a): Consider a 2 x 2 matrix A having two different, real
eigenvalues A1 # A, so A has two non-proportional eigenvectors
vi, vo (eigen-directions).
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Phase portraits for 2 x 2 systems (5.7).

Problem:

Case (a): Consider a 2 x 2 matrix A having two different, real
eigenvalues A1 # A, so A has two non-proportional eigenvectors
vi, vo (eigen-directions).

Given a solution x(t) = ¢, v1 eMt 4 ¢, vp ™2F, to X/(t) = Ax(t),
plot different solution vectors x(t) on the plane as function of t for
different choices of the constants ¢; and c».

The plots are different depending on the eigenvalues signs.
We have the following three sub-cases:

(i) 0 < A2 < A1, both positive;
(i) A2 <0 < A1, one positive the other negative;

(iii) A2 < A1 <0, both negative.



Phase portraits for 2 x 2 systems (5.7).

Phase portrait: Case (a), two different, real eigenvalues A\; # Az,
sub-case 0 < A < A1, both eigenvalue positive.




Phase portraits for 2 x 2 systems.

Phase portrait: Case (a), two different, real eigenvalues \; # Az,
sub-case \» < 0 < A1, one eigenvalue positive the other negative.
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l 4
1
v?2 v
| |




Phase portraits for 2 x 2 systems (5.7).

Phase portrait: Case (a), two different, real eigenvalues A\; # Az,
sub-case \» < A1 < 0, both eigenvalues negative.
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Complex, distinct eigenvalues (Sect. 5.8)

Review: The case of diagonalizable matrices.
Classification of 2 x 2 diagonalizable systems.

Real matrix with a pair of complex eigenvalues.

vV v . v.Yy

Phase portraits for 2 x 2 systems.



Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If n x n matrix A is diagonalizable, with a linearly independent

eigenvectors set {v1,--- ,v,} and corresponding eigenvalues
{A1, -+, An}, then the general solution x to

X' (t) = Ax(t)
is given by the expression below, where c1,--- ,c, € R,

x(t) = avi eMt 4 v, et
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X' (t) = Ax(t)
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Example

Find the general solution to x’ = Ax, with A = B ﬂ



Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If n x n matrix A is diagonalizable, with a linearly independent

eigenvectors set {v1,--- ,v,} and corresponding eigenvalues
{A1, -+, An}, then the general solution x to

X' (t) = Ax(t)
is given by the expression below, where c1,--- ,c, € R,

x(t) = avi eMt 4 v, et
Example

Find the general solution to x’ = Ax, with A = B ﬂ

Solution: \; = 4, v = E] A = —2, v® — [_11].



Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If n x n matrix A is diagonalizable, with a linearly independent

eigenvectors set {v1,--- ,v,} and corresponding eigenvalues
{A1, -+, An}, then the general solution x to

X' (t) = Ax(t)
is given by the expression below, where c1,--- ,c, € R,

x(t) = avi Mt 44 v, e
Example

Find the general solution to x’ = Ax, with A = B ﬂ

Solution: A\, = 4, v} = E] N =2, v®@ = [ 11]

The general solution is: x(t) = ¢, {ﬂ RN { 11}



Complex, distinct eigenvalues (Sect. 5.8)

Review: The case of diagonalizable matrices.

»
» Classification of 2 x 2 diagonalizable systems.
» Real matrix with a pair of complex eigenvalues.

>

Phase portraits for 2 x 2 systems.



Review: Classification of 2 x 2 diagonalizable systems.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified
according to their eigenvalues.
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Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 5.7).
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Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 5.7).

(b) A1 = X2, complex-valued. Hence, A has two non-proportional
eigenvectors vi = Vp, (Section 5.8).



Review: Classification of 2 x 2 diagonalizable systems.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 5.7).

(b) A1 = X2, complex-valued. Hence, A has two non-proportional
eigenvectors vi = Vp, (Section 5.8).

(c-1) A1 = Az real-valued with two non-proportional eigenvectors vy,
v, (Section 5.9).



Review: Classification of 2 x 2 diagonalizable systems.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 5.7).

(b) A1 = X2, complex-valued. Hence, A has two non-proportional
eigenvectors vi = Vp, (Section 5.8).

(c-1) A1 = Az real-valued with two non-proportional eigenvectors vy,
v, (Section 5.9).

Remark:

(c-2) A1 = A2 real-valued with only one eigen-direction. Hence, A is
not diagonalizable, (Section 5.9).



Complex, distinct eigenvalues (Sect. 5.8)

Review: The case of diagonalizable matrices.
Classification of 2 x 2 diagonalizable systems.

Real matrix with a pair of complex eigenvalues.

vV v . v.Yy

Phase portraits for 2 x 2 systems.



Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.
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Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av = Avand A=A.



Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av=Avand A= A. Then

Av=)\v



Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av=Avand A= A. Then

Av=) v < Av=)\v



Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av=Avand A= A. Then

Av=) v < Av=)\v < Av=)\v.



Real matrix with a pair of complex eigenvalues.

Theorem

If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av=Avand A= A. Then

Av=)Av & AvV=)\v <& Av=)\w.

Therefore {\,v} is an eigen-pair of matrix A.



Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av=Avand A= A. Then
Av=2Av & AV=)V & AvV=)V
Therefore {\,v} is an eigen-pair of matrix A.

Remark: The Theorem above is equivalent to the following:



Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av=Avand A= A. Then

Av=Xv & AV=AV & AV=)V
Therefore {\,v} is an eigen-pair of matrix A.

Remark: The Theorem above is equivalent to the following:
If an n x n real-valued matrix A has eigen pairs

AM=a+i3, vi=a+ib,

with o, 3 € R and a,b € R”, then so is

M =a—i3, vy=a—ib.



Real matrix with a pair of complex eigenvalues.

Theorem (Complex pairs)

If an n X n real-valued matrix A has eigen pairs
A =a+if, v =atib,
with a, 3 € R and a,b € R”, then the differential equation
X'(t) = Ax(t)
has a linearly independent set of two complex-valued solutions
x(1) = vy (F) et x(7) = v () At
and it also has a linearly independent set of two real-valued

luti
solutions x(1) — [a cos(ft) — b Sin(ﬁt)] et

x(?) = [a sin(3t) + b cos(Bt)] e**.



Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is



Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is

x(+) — V(-‘r) e>\+t — (a + Ib) e(OH—iﬁ)t



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

x(.|-) _ V(+) eA+t _ (a + ib) e(a+iﬁ)t _ (a + ib) oot eiﬁt.



Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is

x(+) _ V(+) eA+t _ (a + ib) e(a+iﬁ)t _ (a + ib) oot eiﬁt.

Euler equation implies



Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is
x(+) _ V(+) eA+t _ (a + ib) e(a+iﬁ)t _ (a + ib) oot eiﬁt.
Euler equation implies

xH) = (a + ib) et [cos(St) + isin(Bt)],



Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is
x(H) = v(H) Mt = (a4 jb) el@HA)t — (a + jb) et &/t
Euler equation implies
x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],

x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is
x(+) _ V(+) eA+t _ (a + ib) e(a+iﬁ)t _ (a + ib) oot eiﬁt.

Euler equation implies
x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],

x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et
A similar calculation done on x(=) implies

x(7) = [a cos(Bt) — b sin(8t)] e** — i [a sin(8t) + b cos(3t)] e**.



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

x(+) — V(+) Apt (a + Ib) (a+iB)t — (a + Ib) eat el',Bt.
Euler equation implies

x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],
x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et
A similar calculation done on x(=) implies
x(7) = [a cos(ft) — b sin(Bt)] e — i [a sin(5t) + b cos((t)] et

Introduce x() = (x(+) + x(=))/2,



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

x(+) — V(+) Apt (a + Ib) (a+iB)t — (a + Ib) eat el',Bt.
Euler equation implies

x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],
x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et
A similar calculation done on x(=) implies
x(7) = [a cos(ft) — b sin(Bt)] e — i [a sin(5t) + b cos((t)] et
Introduce x(1) = (x(+) 4 x(=)) /2, x@ = (x(+) — x(=))/(2),



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

x(+) — V(+) Apt (a + Ib) (a+iB)t — (a + Ib) eat el',Bt.
Euler equation implies

x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],
x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et
A similar calculation done on x(=) implies
x(7) = [a cos(ft) — b sin(Bt)] e — i [a sin(5t) + b cos((t)] et
Introduce x() = (x(+) + x()) /2, x(@ = (x(+) —x(=))/(2/), then

x(1) = [a cos(t) — b sin(Bt)] et



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

x(+) — V(+) Apt (a + Ib) (a+iB)t — (a + Ib) eat el',Bt.
Euler equation implies

x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],
x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et
A similar calculation done on x(=) implies
x(7) = [a cos(ft) — b sin(Bt)] e — i [a sin(5t) + b cos((t)] et
Introduce x() = (x(+) + x()) /2, x(@ = (x(+) —x(=))/(2/), then
x(1) = [a cos(t) — b sin(Bt)] et
x) = [a sin(Bt) + b cos(3t)] . O



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;L 12 3
x = Ax, A—[_3 2].



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;L 12 3
x = Ax, A—[_3 2].

Solution: (1) Find the eigenvalues of matrix A above,

p(\) = det(A— A1)



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))

MM—daM—AU—'p% QEAJ—(

A—2)2+0.



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))

MM—daM—AU—'p% QEAJ—(

A—2)2+0.

The roots of the characteristic polynomial are

(A=2)24+9=0



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))

MM—daM—AU—'p% QEAJ—(

A—2)2+0.

The roots of the characteristic polynomial are

A=224+9=0 = A —2=43j



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))

p()\)—det(A—)\I)—'(_3 (2EA)’ —

A—2)2+0.

The roots of the characteristic polynomial are

A=22+9=0 = Ap—-2=43/ = A\.=2+3i



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;L 12 3
x = Ax, A—[_3 2].

Solution: (1) Find the eigenvalues of matrix A above,

2-))

p()\)—det(A—)\I)—'(_3 (2EA)’ —

A—2)2+0.

The roots of the characteristic polynomial are
A=2249=0 = AI-2=43i = A\p=2+3]

(2) Find the eigenvectors of matrix A above.



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;L 12 3
x = Ax, A—[_3 2].

Solution: (1) Find the eigenvalues of matrix A above,

2-))

MM—daM—AU—'p% QEAJ—(

A—2)2+0.

The roots of the characteristic polynomial are
A=2249=0 = AI-2=43i = A\p=2+3]

(2) Find the eigenvectors of matrix A above. For Ay,

y



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;L 12 3
x = Ax, A—[_3 2].

Solution: (1) Find the eigenvalues of matrix A above,

2-))

MM—daM—AU—'p% QEAJ—(

A—2)2+0.

The roots of the characteristic polynomial are
A=2249=0 = AI-2=43i = A\p=2+3]

(2) Find the eigenvectors of matrix A above. For Ay,

A=l =A—(2+3i)l



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))

p()\)—det(A—)\I)—‘(_3 (2EA)’ —

A—2)2+0.

The roots of the characteristic polynomial are
A=2249=0 = AI-2=43i = A\p=2+3]
(2) Find the eigenvectors of matrix A above. For Ay,

2—(2+3i) 3 ]

A—)\+I:A—(2+3/)l:[ S 2 (24 3)



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
2 3
r_ _
x = Ax, A—[_3 2].

2~ (2+3i) 3

Solution: Ay = 2 + 3/, (A—)\Jr I) = |: _3 2—(2+3i) :



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;o 12 3
x = Ax, A= [_3 NE
2—(2+3i) 3
-3 2—(2+30)|
We need to solve (A — Ay [)v(t) =0 for v(*),

Solution: Ay =2+£3i, (A=A /)= [



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 NE

2~ (2+3i) 3
-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

-3i 3
-3 =3i

Solution: Ay =2+£3i, (A=A /)= [



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 NE

2~ (2+3i) 3
-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

I

Solution: Ay =2+£3i, (A=A /)= [



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 NE

2~ (2+3i) 3
-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

R R R

Solution: Ay =2+£3i, (A=A /)= [



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 NE

Solution: )\i = 2:‘:3[, (/4_)\+ I) _ |:2 (2+3I) 3 :|

-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

[ e S P B



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: )\i = 2:‘:3[, (/4_)\+ I) _ |:2 (2+3I) 3 :|

-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

[ e S P B

So, the eigenvector v(t) = [Zl]
2



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: )\i = 2:‘:3[, (/4_)\+ I) _ |:2 (2+3I) 3 :|

-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

[ e S P B

So, the eigenvector v(t) = [Zl
2

] is given by v, = —iv,.



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: )\i = 2:‘:3[, (A_)\+ I) _ |:2 (2+3I) 3 :|

-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

[ e S P B

So, the eigenvector v() = [Vl

v] is given by v; = —iv,. Choose
2

V2:1, V1:_i7



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: )\i = 2:‘:3[, (/4_)\+ I) _ |:2 (2+3I) 3 :|

-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

[ e S P B

So, the eigenvector v(t) = [Zl] is given by v; = —iv,. Choose
2
—i

V2:17 V1:_i7 = V(+): |: 1

y Ay =24 3i.



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and v(t) = {_I].

The second eigenvector is v(=) = w(+),



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(7) = (), that is, v(-) = [J



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-
The second eigenvector is v(—) = ¥() that is, v(-) = [1 .

0 -1
Notice that v [1] + [ 0} i



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(—) = ¥() that is, v(-) = [1 .
0 -1

Notice that v [1] + [ 0} I.

The notation Ay =a +3i and v =a+bi



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(—) = ¥() that is, v(-) = [1 .
0 -1

Notice that v [1] + [ 0} I.

The notation Ay =a +3i and v(¥) =a+bi implies

a =2,



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(—) = ¥() that is, v(-) = [1 .
0 -1

Notice that v [1] + [ 0} I.

The notation Ay =a +3i and v(¥) =a+bi implies

=2 [B=3



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(—) = ¥() that is, v(-) = [1 .
0 -1

Notice that v [1] + [ 0} I.

The notation Ay =a +3i and v(¥) =a+bi implies

.



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(—) = ¥() that is, v(-) = [1 .
0 -1

Notice that v [1] + [ 0} I.

The notation Ay =a +3i and v(¥) =a+bi implies

a=2, 8=3, a:m, b:[_ol].



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

x' = Ax, A= [_23 3] )

Solution: Recall: =2, =3, a= [(1)] and b — [01].



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(3t) — b sin(3t)] e*f, and



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(3t) — b sin(3t)] e*f, and
x(2) = [a sin(3t) + b cos(Bt)] e



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(Bt) — b sin(3t)] e**, and
x(2) — [a sin(ft) +b cos(ﬁt)] et That is

X1 — (m cos(3t) — {‘01] sin(31) ) e



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(3t) — b sin(3t)] e*f, and
x(2) = [a sin(3t) + b cos(Bt)] ™. That is

(1) — (m cos(3t) — {‘01] sin(31)) € = x¥) = [z‘(')”s((?;t))} &2t



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(Bt) — b sin(3t)] e**, and
x(2) — [a sin(ft) +b cos(ﬁt)] et That is

(1) — (m cos(3t) — {‘01] sin(31)) € = x¥) = [z‘(')”s((?;t))} &2t

x(? = ([(1)] sin(3t)+ [_Cﬂ cos(3t)> e’



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(3t) — b sin(3t)] e*f, and
x(2) = [a sin(3t) + b cos(Bt)] ™. That is

(1) — (m cos(3t) — {‘01] sin(31)) € = x¥) = [z‘(')”s((?;t))} &2t

MO (m sin(3t)+ [—01} cos(31)) €% = x2) - [;:(sgfﬂ &2t
<



Complex, distinct eigenvalues (Sect. 5.8)

Review: The case of diagonalizable matrices.
Classification of 2 x 2 diagonalizable systems.

Real matrix with a pair of complex eigenvalues.

vV v . v.Yy

Phase portraits for 2 x 2 systems.



Phase portraits for 2 x 2 systems.

Example
2

Sketch a phase portrait for solutions of X' = Ax, A = [_3



Phase portraits for 2 x 2 systems.

Example

Sketch a phase portrait for solutions of X' = Ax, A = [_

Solution:
The phase portrait of the
vectors

-]



Phase portraits for 2 x 2 systems.

Example

Sketch a phase portrait for solutions of X' = Ax, A = [_

Solution:
The phase portrait of the
vectors
i(l) _ sm(3t) 7
cos(3t)

= i )



Phase portraits for 2 x 2 systems.

Example

Sketch a phase portrait for solutions of X' = Ax, A = [_

Solution:
The phase portrait of the
vectors
i(l) _ sm(3t) 7
cos(3t)

= i )

is a radius one circle.



Phase portraits for 2 x 2 systems.

Example

Sketch a phase portrait for solutions of X' = Ax, A = [_

Solution:
The phase portrait of the
vectors
),,((1) _ sm(3t) 7
cos(3t)

= i )

is a radius one circle.



Phase portraits for 2 x 2 systems.

Example

Sketch a phase portrait for solutions of x’ = Ax, A

Solution:
The phase portrait of the

solutions
)~((1) _ sin(3t) ot
cos(3t) ’

K= {_sf:(séf)t)] e,

are outgoing spirals.



Phase portraits for 2 x 2 systems.

Example

Sketch a phase portrait for solutions of X' = Ax, A = [_2 3].

Solution:
The phase portrait of the @
solutions

K = {_sf:(séf)t)] e,

are outgoing spirals.



Phase portraits for 2 x 2 systems.

Example
Given any vectors a and b, sketch qualitative phase portraits of

xM) = [a cos(t) — b sin(Bt)] e, x?) = [a sin(Bt) + b cos(Bt)] e**.

for the cases « = 0, a > 0, and o < 0, where 8 > 0.



Phase portraits for 2 x 2 systems.

Example
Given any vectors a and b, sketch qualitative phase portraits of

xM) = [a cos(t) — b sin(Bt)] e, x?) = [a sin(Bt) + b cos(Bt)] e**.
for the cases « = 0, a > 0, and o < 0, where 8 > 0.

Solution:




Phase portraits for 2 x 2 systems.

Example
Given any vectors a and b, sketch qualitative phase portraits of

xM) = [a cos(t) — b sin(Bt)] e, x?) = [a sin(Bt) + b cos(Bt)] e**.
for the cases « = 0, a > 0, and o < 0, where 8 > 0.

Solution:




Phase portraits for 2 x 2 systems.

Example
Given any vectors a and b, sketch qualitative phase portraits of

xM) = [a cos(t) — b sin(Bt)] e, x?) = [a sin(Bt) + b cos(Bt)] e**.
for the cases « = 0, a > 0, and o < 0, where 8 > 0.

Solution:




Complex, distinct eigenvalues (Sect. 5.9)

Review: Classification of 2 x 2 diagonalizable systems.
Review: The case of diagonalizable matrices.
The algebraic multiplicity of an eigenvalue.

Non-diagonalizable matrices with a repeated eigenvalue.

vV v v v .Y

Phase portraits for 2 x 2 systems.



Review: Classification of 2 x 2 diagonalizable systems.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified
according to their eigenvalues.



Review: Classification of 2 x 2 diagonalizable systems.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 5.7).



Review: Classification of 2 x 2 diagonalizable systems.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 5.7).

(b) A1 = X2, complex-valued. Hence, A has two non-proportional
eigenvectors vi = Vp, (Section 5.8).



Review: Classification of 2 x 2 diagonalizable systems.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 5.7).

(b) A1 = X2, complex-valued. Hence, A has two non-proportional
eigenvectors vi = Vp, (Section 5.8).

(c-1) A1 = Az real-valued with two non-proportional eigenvectors vy,
v, (Section 5.9).



Review: Classification of 2 x 2 diagonalizable systems.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 5.7).

(b) A1 = X2, complex-valued. Hence, A has two non-proportional
eigenvectors vi = Vp, (Section 5.8).

(c-1) A1 = Az real-valued with two non-proportional eigenvectors vy,
v, (Section 5.9).

Remark:

(c-2) A1 = A real-valued with only one eigen-direction. Hence, A is
not diagonalizable, (Section 5.9).



Complex, distinct eigenvalues (Sect. 5.9)

Review: Classification of 2 x 2 diagonalizable systems.
Review: The case of diagonalizable matrices.
The algebraic multiplicity of an eigenvalue.

Non-diagonalizable matrices with a repeated eigenvalue.

vV v v v Y

Phase portraits for 2 x 2 systems.



Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If n X n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1,--- ,v,} and corresponding eigenvalues
{A1,-,An}, then the general solution x to the homogeneous,
constant coefficients, linear system

X'(t) = Ax(t)
is given by the expression below, where ¢, ,c, € R,

x(t) = cvy eME 4 -+ cuv, eME



Complex, distinct eigenvalues (Sect. 5.9)

Review: Classification of 2 x 2 diagonalizable systems.
Review: The case of diagonalizable matrices.
The algebraic multiplicity of an eigenvalue.

Non-diagonalizable matrices with a repeated eigenvalue.

vV v v v Y

Phase portraits for 2 x 2 systems.



The algebraic multiplicity of an eigenvalue.

Definition
Let {\1,---, A} be the set of eigenvalues of an n x n matrix,
where 1 < k < n, hence the characteristic polynomial is

PN = (~1)" (A= A1) - (A — A"

The positive integer r;, for i =1,--- , k, is called the algebraic
multiplicity of the eigenvalue \;. The eigenvalue ); is called
repeated iff r; > 1.



The algebraic multiplicity of an eigenvalue.

Definition
Let {\1,---, A} be the set of eigenvalues of an n x n matrix,
where 1 < k < n, hence the characteristic polynomial is

PN = (~1)" (A= A1) - (A — A"

The positive integer r;, for i =1,--- , k, is called the algebraic
multiplicity of the eigenvalue \;. The eigenvalue ); is called
repeated iff r; > 1.

Remark:

» A matrix with repeated eigenvalues may or may not be
diagonalizable.



The algebraic multiplicity of an eigenvalue.

Definition
Let {\1,---, A} be the set of eigenvalues of an n x n matrix,
where 1 < k < n, hence the characteristic polynomial is

PN = (~1)" (A= A1) - (A — A"

The positive integer r;, for i =1,--- , k, is called the algebraic
multiplicity of the eigenvalue \;. The eigenvalue ); is called
repeated iff r; > 1.

Remark:

» A matrix with repeated eigenvalues may or may not be
diagonalizable.

» Equivalently: An n X n matrix with repeated eigenvalues may
or may not have a linearly independent set of n eigenvectors.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

301 311
A=10 3 2|, B=1|0 3 2|.
00 1 00 1



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

301 311
A=1(0 3 2|, B=1|0 3 2
0 01 0 01
Solution: The eigenvalues of A are the solutions of

B3-A) 0 1
0 (B3-A 2
0 0 (1-1)



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

301 311
A=10 3 2|, B=1|0 3 2|.
00 1 00 1

Solution: The eigenvalues of A are the solutions of

3-X) 0 1
0 (B3-)N 2 |=-(A-32(-1)
0 0 (1-2)



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

301 311
A=10 3 2|, B=1|0 3 2|.
00 1 00 1

Solution: The eigenvalues of A are the solutions of

3= 0 1
0 (3-2X) 2 | =—-(A=322(\-1)=0,
0 0 (1-2X)



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

301 311
A=10 3 2|, B=1|0 3 2|.
00 1 00 1

Solution: The eigenvalues of A are the solutions of

3= 0 1
0 (3-2X) 2 | =—-(A=322(\-1)=0,
0 0 (1-2X)

We conclude: \{ =3, n = 2,



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

301 311
A=10 3 2|, B=1|0 3 2|.
00 1 00 1

Solution: The eigenvalues of A are the solutions of

3= 0 1
0 (3-2X) 2 | =—-(A=322(\-1)=0,
0 0 (1-2X)

We conclude: A\ =3, 1n =2,and Ao =1, n = 1.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

301 311
A=10 3 2|, B=1|0 3 2|.
00 1 00 1

Solution: The eigenvalues of A are the solutions of

3= 0 1
0 (3-2X) 2 | =—-(A=322(\-1)=0,
0 0 (1-2X)

We conclude: A\ =3, 1n =2,and Ao =1, n = 1.

1 0 -1
Verify that the eigenvalues are: { {0] , {1} , {2] }

0 0 2



The algebraic multiplicity of an eigenvalue.

Example
Show that matrix A is diagonalizable but matrix B is not, where
3 01 311
A=10 3 2, B={(0 3 2
0 01 0 01

Solution: The eigenvalues of A are the solutions of

(3—2) 0 1
0 (3-2X) 2 | =—-(A=322(\-1)=0,
0 0 (1-2A)
We conclude: A\ =3, 1n =2,and Ao =1, n = 1.
1 0 -1
Verify that the eigenvalues are: { of, 11, |-2 }
0 0 2

We conclude: A is diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example
Show that matrix A is diagonalizable but matrix B is not, where
3 01 311
A=10 3 2, B={(0 3 2
0 01 0 01

Solution: The eigenvalues of B are the solutions of



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

301 311
A=10 3 2|, B=|0 3 2
0 01 0 01
Solution: The eigenvalues of B are the solutions of

B-A) 1 1
0 (B3-A) 2
0 0 (1-1)



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

301 311
A=10 3 2|, B=1|0 3 2|.
00 1 00 1

Solution: The eigenvalues of B are the solutions of

(3-2) 1 1
0 (3-2X) 2 | =—(A=32%2(\-1)
0 0 (1-2X)



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

301 311
A=10 3 2|, B=1|0 3 2|.
00 1 00 1

Solution: The eigenvalues of B are the solutions of

(3-2) 1 1
0 (3-2X) 2 | =—-(A=322(\-1)=0,
0 0 (1-2X)



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

301 311
A=10 3 2|, B=1|0 3 2|.
00 1 00 1

Solution: The eigenvalues of B are the solutions of

(3-2) 1 1
0 (3-2X) 2 | =—-(A=322(\-1)=0,
0 0 (1-2X)

We conclude: \{ =3, n = 2,



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

301 311
A=10 3 2|, B=1|0 3 2|.
00 1 00 1

Solution: The eigenvalues of B are the solutions of

(3-2) 1 1
0 (3-2X) 2 | =—-(A=322(\-1)=0,
0 0 (1-2X)

We conclude: A\ =3, 1n =2,and Ao =1, n = 1.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

301 311
A=10 3 2|, B=1|0 3 2|.
00 1 00 1

Solution: The eigenvalues of B are the solutions of

(3-2) 1 1
0 (3-2X) 2 | =—-(A=322(\-1)=0,
0 0 (1-2X)

We conclude: A\ =3, 1n =2,and Ao =1, n = 1.

1 0
Verify that the eigenvalues are: { {0] , {1] }

0 1



The algebraic multiplicity of an eigenvalue.

Example
Show that matrix A is diagonalizable but matrix B is not, where
3 01 311
A=10 3 2, B={(0 3 2
0 01 0 01

Solution: The eigenvalues of B are the solutions of

(3—2) 1 1
0 (3-2X) 2 | =—-(A=322(\-1)=0,
0 0 (1-=2A)
We conclude: A\ =3, 1n =2,and Ao =1, n = 1.
1 0
Verify that the eigenvalues are: { 0, |—-1 }
0 1

We conclude: B is not diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example
Find a fundamental set of solutions to

X'(t)=Ax(t), A=

O O W

01
3 2],
01

Solution: Since matrix A is diagonalizable, with eigen-pairs,

e



The algebraic multiplicity of an eigenvalue.

Example
Find a fundamental set of solutions to

X'(t)=Ax(t), A=

O O W

01
3 2],
01

Solution: Since matrix A is diagonalizable, with eigen-pairs,

B

We conclude that a set of fundamental solutions is

1
{xl(t): 0] €3, xo(t) = [1] €3, x3(t) = |2 ef}.
0



Complex, distinct eigenvalues (Sect. 5.9)

Review: Classification of 2 x 2 diagonalizable systems.
Review: The case of diagonalizable matrices.
The algebraic multiplicity of an eigenvalue.

Non-diagonalizable matrices with a repeated eigenvalue.

vV v v v .Y

Phase portraits for 2 x 2 systems.



Non-diagonalizable matrices with a repeated eigenvalue.

Theorem (Repeated eigenvalue)

If \ is an eigenvalue of an n X n matrix A having algebraic
multiplicity r = 2 and only one associated eigen-direction, then the
differential equation

X'(t) = Ax(t),

has a linearly independent set of solutions given by
(xB(t)y=veM, xI(t) = (vt+w)e)
where the vector w is solution of
(A= X)w=v

which always has a solution w.



Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation

y//+31y/+30y:0



Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation
y// +ay' +ay=0
with characteristic polynomial

p(r)y=r*>+ar+a



Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation
y// +ay' +ay=0
with characteristic polynomial

p(ry=r*>+ar+a=(r—n)



Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation
1 /
y'tay tay=0
with characteristic polynomial
p(r)=r*4+ar—+a =(r—n)
In this case a fundamental set of solutions is

{yi(t) = e, yo(t) = te"'}.



Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation
/! !
y' +ay +ay=0

with characteristic polynomial

p(r)=r*4+ar—+a =(r—n)
In this case a fundamental set of solutions is

{n(t) =€, yo(t) =te'}.
This is not the case with systems of first order linear equations,

(xB(t)y=v e, x(t)=(vt+w)e]



Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation
Y'+ay' +ay=0

with characteristic polynomial
p(ry=r’>+ar+a=(—n)

In this case a fundamental set of solutions is
{yi(t) = e, yo(t) = te"'}.

This is not the case with systems of first order linear equations,

(xB(t)y=v e, x(t)=(vt+w)e]

In general, w # 0.



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A.



Non-diagonalizable matrices with a repeated eigenvalue.

Example
. . ; . 11-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol
Solution: Find the eigenvalues of A. Its characteristic polynomial is
(3
p(N) =" 24



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3
p()) = <_2I)\> 11 z(A+g)(>\+%)+%
ERyE



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3
p()) = <_2I)\> 11 z(A+g)(>\+%)+%
ERyE

So p(\) = A2 +22+1



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3
p()) = <_2I)\> 11 z(A+g)(>\+%)+%
ERyE

So p(\) = N2 +22+1=(\+1)2



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3

p()) = <_2I)\> 11 z(A+g)(>\+%)+%
SRS

So p(A\) = A2+ 2\ + 1 = (X + 1)2. The roots and multiplicity are

A=-—1, r=2.



Non-diagonalizable matrices with a repeated eigenvalue.

Example
. . ; . 1 (-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol
Solution: Find the eigenvalues of A. Its characteristic polynomial is
3
(—* - A) 1 3 1\ 1
= 2 - > - -
p(A) 21 (_1_0 (r+35)(r+3)+ 5
4 2

So p(A\) = A2+ 2\ + 1 = (X + 1)2. The roots and multiplicity are
A=-—1, r=2.

The corresponding eigenvectors are the solutions of (A+ /)v =0,



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1

Find fundamental solutions of X’ = Ax, with A = n [:? _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3
(03 e
4 2
So p(A\) = A2+ 2\ + 1 = (X + 1)2. The roots and multiplicity are
A=-—1, r=2.
The corresponding eigenvectors are the solutions of (A+ /)v =0,

EEEERNE

1 (1_‘_1)__7
4 2 4

\
=N
N R -



Non-diagonalizable matrices with a repeated eigenvalue.
Example

1

Find fundamental solutions of X’ = Ax, with A = n [:? _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3
p()) = <_2IA> 11 z(A+g)(>\+%)+%
ERyE

So p(A\) = A2+ 2\ + 1 = (X + 1)2. The roots and multiplicity are
A=-—1, r=2.

The corresponding eigenvectors are the solutions of (A+ /)v =0,
3 1
(** + 1) 1 ——= 1 -2

1 1 1 -2
_2 _2 1) 2
4 ( >t 4

N R -



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is
3
(—f - A) 1 3 1, 1
= 2 = > - hd
4 2
So p(A\) = A2+ 2\ + 1 = (X + 1)2. The roots and multiplicity are
A=-—1, r=2.
The corresponding eigenvectors are the solutions of (A+ /)v =0,
3 1
(*5 + 1) 1 ~3 1 -2 1 -2
= % — —

1 -2 0 0

1 ( 1+1> 1
4 2 4

N R -



Non-diagonalizable matrices with a repeated eigenvalue.
Example

1 [—
Find fundamental solutions of x' = Ax, with A = 2 [_? _42]

Solution: Recall: A = —1, with r =2, and (A+ /) — [(1) —02]_



Non-diagonalizable matrices with a repeated eigenvalue.
Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

Solution: Recall: A = —1, with r =2, and (A+ /) — [(1) 02}

The eigenvector components satisfy: v, = 2v,.



Non-diagonalizable matrices with a repeated eigenvalue.
Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 0
The eigenvector components satisfy: v, = 2v,. We obtain,

2
A= -1, v = [1] Vs.

Solution: Recall: A = —1, with r =2, and (A+ /) — [1 2}



Non-diagonalizable matrices with a repeated eigenvalue.
Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 0
The eigenvector components satisfy: v, = 2v,. We obtain,

2
A= -1, v = [1] Vs.

We conclude that this eigenvalue has only one eigen-direction.

Solution: Recall: A = —1, with r =2, and (A+ /) — [1 2}



Non-diagonalizable matrices with a repeated eigenvalue.
Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

2
A= -1, v = [1] Vs.

We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.

Solution: Recall: A = —1, with r =2, and (A+ /) — [1 2}



Non-diagonalizable matrices with a repeated eigenvalue.
Example
. . , . 1[-6 4
Find fundamental solutions of x’ = Ax, with A = 71 _of
0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

2
A= -1, v = [1] Vs.

We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find w solution of (A+ /)w = v.

Solution: Recall: A = —1, with r =2, and (A+ /) — [1 2}



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

A= -1, v = [2] Vs.

Solution: Recall: A = —1, with r =2, and (A+ /) — [1 2}

1
We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find w solution of (A+ /)w = v.

1
=1 | 2
2
11
> - |1
4 2



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

A= -1, v = [2] Vs.

Solution: Recall: A = —1, with r =2, and (A+ /) — {1 2}

1
We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find w solution of (A+ /)w = v.

1
—— 1 2
2 2 —4
L 1 -2 | —4
4 2



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

A= -1, v = [2] Vs.

Solution: Recall: A = —1, with r =2, and (A+ /) — {1 2}

1
We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find w solution of (A+ /)w = v.

1

=1 | 2

2 2| -4 12| -4
LN 1 -2 | -4 0 0 0
4 2



Non-diagonalizable matrices with a repeated eigenvalue.

Example
. . , ) 1 /-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol
Solution: Recall that:
2 1 -2 —4
A= —1, V—|:1:| v, and (A+I)W—v:>[0 0 } 0].



Non-diagonalizable matrices with a repeated eigenvalue.

Example
. . , ) 1 (-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol

Solution: Recall that:

A=-1 v= [2] v,, and (A+I)w=v¢[

1

1 -2 —4
0 0 0]

We obtain wy = 2w, — 4.



Non-diagonalizable matrices with a repeated eigenvalue.

Example
. . , ) 1 (-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol

Solution: Recall that:
2 1 -2 —4
A= —1, v—[l] Vv,, and (A+/)W—V:>|:0 0 } 0].

We obtain w, = 2w, — 4. That is, w = m o [—:]'



Non-diagonalizable matrices with a repeated eigenvalue.

Example
. . , ) 1 /-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol
Solution: Recall that:
2 1 -2 —4
A= —1, v:[l] Vv,, and (A+/)w:v:>[0 0 } 0].

We obtain w, = 2w, — 4. That is, w = m o [—(ﬂ'

Given a solution w, then cv + w is also a solution, ¢ € R.



Non-diagonalizable matrices with a repeated eigenvalue.

Example
. . , ) 1 (-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol

Solution: Recall that:

2 1 -2 —4
A=-1 v= [1] v,, and (A+/)w=v= [0 0 } ]

We obtain w, = 2w, — 4. That is, w = m o [—(ﬂ'
Given a solution w, then cv + w is also a solution, ¢ € R.

. . —4
We choose the simplest solution, w = [ O} .



Non-diagonalizable matrices with a repeated eigenvalue.

Example
. . , ) 1 /-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol
Solution: Recall that:
2 1 -2 —4
A= —1, v:[l] Vv,, and (A+/)w:v:>[0 0 } 0].

We obtain w, = 2w, — 4. That is, w = m o [—(ﬂ'

Given a solution w, then cv + w is also a solution, ¢ € R.

O} . We conclude,

We choose the simplest solution, w = [



Non-diagonalizable matrices with a repeated eigenvalue.

Example
Find the solution x to the IVP

x' = Ax, x(O)ZH, A:i[_? 42]



Non-diagonalizable matrices with a repeated eigenvalue.
Example
Find the solution x to the IVP

x' = Ax, x(O)ZH, A:i[_? 42]



Non-diagonalizable matrices with a repeated eigenvalue.
Example
Find the solution x to the IVP

) |1 _1i-6 4
x =Ax, x(0)= [J , A= 2 [1 2] .
Solution: The general solution is
_ 2 —t 2 _4 —t
x(t) =¢ [Je +C2([1:| t—i—[obe .

The initial condition is x(0) = [ﬂ



Non-diagonalizable matrices with a repeated eigenvalue.
Example
Find the solution x to the IVP

x' = Ax, x(O)ZH, A:i[_? 42]

Solution: The general solution is

x(t) = ¢ m et o (m t+ [_ﬂ) e t.

The initial condition is x(0) = [ﬂ =c [ﬂ +a [_Oﬂ



Non-diagonalizable matrices with a repeated eigenvalue.
Example
Find the solution x to the IVP

x' = Ax, x(O)ZH, A:i[_? 42]

Solution: The general solution is

x(t) = ¢ m et o (m t+ [_ﬂ) e t.

The initial condition is x(0) = [ﬂ =q E] +o [_4]

nlE



Non-diagonalizable matrices with a repeated eigenvalue.
Example
Find the solution x to the IVP

x' = Ax, x(O)ZH, A:i[_? 42]

Solution: The general solution is

x(t) = ¢ m et o (m t+ [_ﬂ) e t.

The initial condition is x(0) = [ﬂ =c [ﬂ +a [_Oﬂ

R E R R R



Non-diagonalizable matrices with a repeated eigenvalue.
Example
Find the solution x to the IVP

x' = Ax, x(O)ZH, A:i[_? 42]

Solution: The general solution is

x(t) = ¢ m et o (m t+ [_ﬂ) e t.

The initial condition is x(0) = [ﬂ =c [ﬂ +a [_Oﬂ

1 R I E e R R



Non-diagonalizable matrices with a repeated eigenvalue.
Example
Find the solution x to the IVP

x' = Ax, x(O)ZH, A:i[_? 42]

Solution: The general solution is

x(t) = ¢ m et o (m t+ [_ﬂ) e t.

The initial condition is x(0) = [ﬂ =c [ﬂ +a [_Oﬂ

1 R I E e R R

We conclude: x(t) = m et 4 % (m £+ [_;]) et 4



Complex, distinct eigenvalues (Sect. 5.9)

Review: Classification of 2 x 2 diagonalizable systems.
Review: The case of diagonalizable matrices.
The algebraic multiplicity of an eigenvalue.

Non-diagonalizable matrices with a repeated eigenvalue.

vV v v v .Y

Phase portraits for 2 x 2 systems.



Phase portraits for 2 x 2 systems.

Example
Sketch a phase portrait for solutions of

11-6 4
e ———
x = Ax, A—4 [_1 _2].



Phase portraits for 2 x 2 systems.

Example
Sketch a phase portrait for solutions of

11-6 4
e ———
x = Ax, A—4 [_1 _2].

Solution:
We start plotting the vectors



Phase portraits for 2 x 2 systems.

Example
Sketch a phase portrait for solutions of

11-6 4
e ———
x = Ax, A—4 [_1 _2].

Solution:
We start plotting the vectors

=




Phase portraits for 2 x 2 systems.

Example
Sketch a phase portrait for solutions of

11-6 4
e ———
x = Ax, A—4 [_1 _2].

Solution:
Now plot the solutions

2
(1) _ —t
" M e



Phase portraits for 2 x 2 systems.

Example
Sketch a phase portrait for solutions of

x' = Ax, A:1 [_6 4].

4 |-1 =2
Solution: .
Now plot the solutions gl )
T @
1 _ |2 -t x
* [J © .4




Phase portraits for 2 x 2 systems.

Example
Sketch a phase portrait for solutions of

11-6 4
e ———
x = Ax, A—4 [_1 _2].

Solution:
Now plot the solutions

Dy



Phase portraits for 2 x 2 systems.

Example
Sketch a phase portrait for solutions of

11-6 4
e ———
x = Ax, A—4 [_1 _2].

Solution:
Now plot the solutions

Dy

This is the case A < 0.



Phase portraits for 2 x 2 systems.

Example
Sketch a phase portrait for solutions of

11-6 4
e ———
x = Ax, A—4 [_1 _2].

Solution: X,
Now plot the solutions

Dy

This is the case A < 0.




Phase portraits for 2 x 2 systems.

Example

Given any vectors v and w, and any constant A, plot the phase
portraits of the functions

xD(t) = vet, xA(t) = (vt +w) e,

Solution:
The case A < 0. We plot
the functions



Phase portraits for 2 x 2 systems.

Example

Given any vectors v and w, and any constant A, plot the phase

portraits of the functions

xD(t) = vet, xA(t) = (vt +w) e,

Solution:
The case A < 0. We plot @
the functions




Phase portraits for 2 x 2 systems.

Example

Given any vectors v and w, and any constant A, plot the phase
portraits of the functions

xW(t) =vet, xA(t) = (vt +w) e,

Solution:
The case A > 0. We plot
the functions



Phase portraits for 2 x 2 systems.

Example

Given any vectors v and w, and any constant A, plot the phase
portraits of the functions

xW(t) =vet, xA(t) = (vt +w) e,

Solution:
The case A > 0. We plot
the functions

1
X()

)




