Differential linear systems (Sect. 5.4, 5.6, 5.7)

- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).

- Examples: 2×2 linear systems (5.6).
- Phase portraits for 2×2 systems (5.7).

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

 $\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

 $\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

Recall:

$$A(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix},$$

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

 $\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

Recall:

$$A(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix}, \ \mathbf{b}(t) = \begin{bmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{bmatrix},$$

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

 $\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

Recall:

$$A(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix}, \ \mathbf{b}(t) = \begin{bmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{bmatrix}, \ \mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

 $\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

Recall:

$$A(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix}, \ \mathbf{b}(t) = \begin{bmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{bmatrix}, \ \mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}.$$

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t) + \mathbf{b}(t)$

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

 $\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

Recall:

$$A(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix}, \ \mathbf{b}(t) = \begin{bmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{bmatrix}, \ \mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}.$$

$$x'_1 = a_{11}(t) x_1 + \cdots + a_{1n}(t) x_n + b_1(t)$$

 $\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t) \Leftrightarrow$

$$x'_n = a_{n1}(t) x_1 + \cdots + a_{nn}(t) x_n + b_n(t).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the explicit expression for the linear system $\mathbf{x}' = A\mathbf{x} + \mathbf{b}$ in the case that

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, \qquad \mathbf{b}(t) = \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the explicit expression for the linear system $\mathbf{x}' = A\mathbf{x} + \mathbf{b}$ in the case that

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, \qquad \mathbf{b}(t) = \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Solution: The 2×2 linear system is given by

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the explicit expression for the linear system $\mathbf{x}' = A\mathbf{x} + \mathbf{b}$ in the case that

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, \qquad \mathbf{b}(t) = \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Solution: The 2×2 linear system is given by

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}.$$

That is,

$$egin{aligned} x_1'(t) &= x_1(t) + 3x_2(t) + e^t, \ x_2'(t) &= 3x_1(t) + x_2(t) + 2e^{3t}. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark: Derivatives of vector-valued functions are computed component-wise.

Remark: Derivatives of vector-valued functions are computed component-wise.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$\mathbf{x}'(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}'$$

Remark: Derivatives of vector-valued functions are computed component-wise.

$$\mathbf{x}'(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}' = \begin{bmatrix} x_1'(t) \\ \vdots \\ x_n'(t) \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remark: Derivatives of vector-valued functions are computed component-wise.

$$\mathbf{x}'(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}' = \begin{bmatrix} x_1'(t) \\ \vdots \\ x_n'(t) \end{bmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example

Compute
$$\mathbf{x}'$$
 for $\mathbf{x}(t) = \begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}$.

Remark: Derivatives of vector-valued functions are computed component-wise.

$$\mathbf{x}'(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}' = \begin{bmatrix} x_1'(t) \\ \vdots \\ x_n'(t) \end{bmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example

Compute **x**' for **x**(t) =
$$\begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}$$
.
Solution:
 $\mathbf{x}'(t) \begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}'$

Remark: Derivatives of vector-valued functions are computed component-wise.

$$\mathbf{x}'(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}' = \begin{bmatrix} x_1'(t) \\ \vdots \\ x_n'(t) \end{bmatrix}$$

▲□> ▲圖> ▲트> ▲圖> ▲目> ▲

Example

Compute **x**' for **x**(t) =
$$\begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}$$
.
Solution:
 $\mathbf{x}'(t) \begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}' = \begin{bmatrix} 2e^{2t} \\ \cos(t) \\ -\sin(t) \end{bmatrix}$.

Differential linear systems (Sect. 5.4, 5.6, 5.7)

- $n \times n$ linear differential systems (5.4).
- ► Constant coefficients homogenoues systems (5.6).

- Examples: 2×2 linear systems (5.6).
- Phase portraits for 2×2 systems (5.7).

Remarks:

• Given an $n \times n$ matrix A(t), *n*-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t) + \mathbf{b}(t).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remarks:

• Given an $n \times n$ matrix A(t), *n*-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t) + \mathbf{b}(t).$

▶ The system is *homogeneous* iff **b** = 0, that is,

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t).$

Remarks:

• Given an $n \times n$ matrix A(t), *n*-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t) + \mathbf{b}(t).$

▶ The system is *homogeneous* iff **b** = 0, that is,

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t).$

The system has constant coefficients iff matrix A does not depend on t, that is,

 $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{b}(t).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remarks:

• Given an $n \times n$ matrix A(t), *n*-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t) + \mathbf{b}(t).$

▶ The system is *homogeneous* iff **b** = 0, that is,

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t).$

The system has constant coefficients iff matrix A does not depend on t, that is,

$$\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{b}(t).$$

▶ We study homogeneous, constant coefficient systems, that is,

 $\mathbf{x}'(t) = A\mathbf{x}(t).$

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark:

▶ The differential system for the variable **x** is coupled,

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Remark:

The differential system for the variable x is coupled, that is, A is not diagonal.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \dots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Remark:

- The differential system for the variable x is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable y such that the system for y is decoupled,

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \dots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Remark:

- The differential system for the variable x is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable y such that the system for y is decoupled, that is, y'(t) = D y(t),

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \dots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Remark:

- The differential system for the variable x is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable **y** such that the system for **y** is decoupled, that is, $\mathbf{y}'(t) = D \mathbf{y}(t)$, where D is a diagonal matrix.

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \dots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Remark:

- The differential system for the variable x is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable **y** such that the system for **y** is decoupled, that is, $\mathbf{y}'(t) = D \mathbf{y}(t)$, where D is a diagonal matrix.

- ロ ト - 4 回 ト - 4 □ - 4

• We solve for $\mathbf{y}(t)$ and we transform back to $\mathbf{x}(t)$.

Differential linear systems (Sect. 5.4, 5.6, 5.7)

- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).

- **Examples:** 2×2 linear systems (5.6).
- Phase portraits for 2 × 2 systems (5.7).

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Solution: Find eigenvalues and eigenvectors of A.

Example

Find the general solution to
$$\mathbf{x}' = A\mathbf{x}$$
, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$\lambda_1 = 4, \quad \mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

Example

Find the general solution to
$$\mathbf{x}' = A\mathbf{x}$$
, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1 = 4, \quad \mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the general solution to
$$\mathbf{x}' = A\mathbf{x}$$
, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1 = 4, \quad \mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fundamental solutions are

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t},$$

Example

Find the general solution to
$$\mathbf{x}' = A\mathbf{x}$$
, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1 = 4, \quad \mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Fundamental solutions are

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the general solution to
$$\mathbf{x}' = A\mathbf{x}$$
, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1 = 4, \quad \mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Fundamental solutions are

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The general solution is $\mathbf{x}(t) = c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t)$,

Example

Find the general solution to
$$\mathbf{x}' = A\mathbf{x}$$
, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1 = 4, \quad \mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Fundamental solutions are

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

The general solution is $\mathbf{x}(t) = c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t)$, that is,

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Solution: We compute $\mathbf{x}^{(1)}$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathbf{x}^{(1)\prime}(t)=egin{bmatrix} e^{4t}\ e^{4t} \end{bmatrix}'$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathsf{x}^{(1)\prime}(t) = egin{bmatrix} e^{4t} \ e^{4t} \end{bmatrix}' = egin{bmatrix} 4e^{4t} \ 4e^{4t} \end{bmatrix}$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathsf{x}^{(1)\prime}(t) = egin{bmatrix} e^{4t} \ e^{4t} \end{bmatrix}' = egin{bmatrix} 4e^{4t} \ 4e^{4t} \end{bmatrix} = 4 egin{bmatrix} 1 \ 1 \end{bmatrix} e^{4t}$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} e^{4t} \\ e^{4t} \end{bmatrix}' = \begin{bmatrix} 4e^{4t} \\ 4e^{4t} \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \quad \Rightarrow \quad \mathbf{x}^{(1)\prime} = 4\mathbf{x}^{(1)\prime}$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} e^{4t} \\ e^{4t} \end{bmatrix}' = \begin{bmatrix} 4e^{4t} \\ 4e^{4t} \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \quad \Rightarrow \quad \mathbf{x}^{(1)\prime} = 4\mathbf{x}^{(1)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $A\mathbf{x}^{(1)}$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathbf{x}^{(1)'}(t) = \begin{bmatrix} e^{4t} \\ e^{4t} \end{bmatrix}' = \begin{bmatrix} 4e^{4t} \\ 4e^{4t} \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \quad \Rightarrow \quad \mathbf{x}^{(1)'} = 4\mathbf{x}^{(1)'}$$
$$A\mathbf{x}^{(1)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} e^{4t} \\ e^{4t} \end{bmatrix}' = \begin{bmatrix} 4e^{4t} \\ 4e^{4t} \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \quad \Rightarrow \quad \mathbf{x}^{(1)\prime} = 4\mathbf{x}^{(1)\prime} = 4\mathbf{x}^$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} e^{4t} \\ e^{4t} \end{bmatrix}' = \begin{bmatrix} 4e^{4t} \\ 4e^{4t} \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \quad \Rightarrow \quad \mathbf{x}^{(1)\prime} = 4\mathbf{x}^{(1)}.$$

$$A\mathbf{x}^{(1)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} e^{4t} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} e^{4t} \\ e^{4t} \end{bmatrix}' = \begin{bmatrix} 4e^{4t} \\ 4e^{4t} \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \implies \mathbf{x}^{(1)\prime} = 4\mathbf{x}^{(1)\prime}$$
$$A\mathbf{x}^{(1)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} e^{4t} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \implies A\mathbf{x}^{(1)} = 4\mathbf{x}^{(1)\prime}$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$,

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} e^{4t} \\ e^{4t} \end{bmatrix}' = \begin{bmatrix} 4e^{4t} \\ 4e^{4t} \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \quad \Rightarrow \quad \mathbf{x}^{(1)\prime} = 4\mathbf{x}^{(1)}.$$

$$A\mathbf{x}^{(1)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} e^{4t} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \Rightarrow A\mathbf{x}^{(1)} = 4\mathbf{x}^{(1)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We conclude that $\mathbf{x}^{(1)\prime} = A\mathbf{x}^{(1)}$.

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)\prime}$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)}$ and then we compare it with $A\mathbf{x}^{(2)}$,

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}'$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix}$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$$

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2\begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} \Rightarrow \mathbf{x}^{(2)\prime} = -2\mathbf{x}^{(2)}.$$

Example

Verify that
$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$$
, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2\begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} \Rightarrow \mathbf{x}^{(2)\prime} = -2\mathbf{x}^{(2)}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

 $Ax^{(2)}$

Example [1]

Verify that
$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$$
, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)'}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} \Rightarrow \mathbf{x}^{(2)\prime} = -2\mathbf{x}^{(2)}.$$
$$A\mathbf{x}^{(2)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} \Rightarrow \mathbf{x}^{(2)\prime} = -2\mathbf{x}^{(2)}.$$

$$A\mathbf{x}^{(2)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} e^{-2t}$$

Example

Verify that
$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$$
, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)'}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} \Rightarrow \mathbf{x}^{(2)\prime} = -2\mathbf{x}^{(2)}.$$

$$A\mathbf{x}^{(2)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} e^{-2t} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t},$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} \Rightarrow \mathbf{x}^{(2)\prime} = -2\mathbf{x}^{(2)}.$$

$$A\mathbf{x}^{(2)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} e^{-2t} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So, $A\mathbf{x}^{(2)} = -2\mathbf{x}^{(2)}$.

Example

Verify that
$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$$
, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: We compute $\mathbf{x}^{(2)'}$ and then we compare it with $A\mathbf{x}^{(2)}$,

$$\mathbf{x}^{(2)\prime} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2\begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} \Rightarrow \mathbf{x}^{(2)\prime} = -2\mathbf{x}^{(2)}.$$

$$A\mathbf{x}^{(2)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} e^{-2t} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t},$$

 \triangleleft

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

So, $A\mathbf{x}^{(2)} = -2\mathbf{x}^{(2)}$. Hence, $\mathbf{x}^{(2)'} = A\mathbf{x}^{(2)}$.

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$.

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$. Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

We need to solve the linear system

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

Therefore, $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$,

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \implies \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

Therefore, $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, hence $\mathbf{x}(t) = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}. \triangleleft$

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$.

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

 $P^{-1}\mathbf{x}'(t) = P^{-1}A\mathbf{x}(t)$

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\mathbf{x}(t) \quad \Leftrightarrow \quad (P^{-1}\mathbf{x})' = (P^{-1}AP)(P^{-1}\mathbf{x}).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\mathbf{x}(t) \quad \Leftrightarrow \quad \left(P^{-1}\mathbf{x}\right)' = \left(P^{-1}AP\right)\left(P^{-1}\mathbf{x}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduce the new unknown $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$,

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\mathbf{x}(t) \quad \Leftrightarrow \quad \left(P^{-1}\mathbf{x}\right)' = \left(P^{-1}AP\right)\left(P^{-1}\mathbf{x}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduce the new unknown $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$, then

$$\mathbf{y}'(t) = D\,\mathbf{y}(t)$$

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\mathbf{x}(t) \quad \Leftrightarrow \quad (P^{-1}\mathbf{x})' = (P^{-1}AP)(P^{-1}\mathbf{x}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduce the new unknown $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$, then

$$\mathbf{y}'(t) = D \, \mathbf{y}(t) \iff \begin{cases} y_1'(t) = \lambda_1 \, y_1(t), \\ \vdots \\ y_n'(t) = \lambda_n \, y_n(t), \end{cases}$$

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\mathbf{x}(t) \quad \Leftrightarrow \quad (P^{-1}\mathbf{x})' = (P^{-1}AP)(P^{-1}\mathbf{x}).$$

Introduce the new unknown $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$, then

$$\mathbf{y}'(t) = D \mathbf{y}(t) \iff \begin{cases} y_1'(t) = \lambda_1 y_1(t), \\ \vdots & \Rightarrow \mathbf{y}(t) = \begin{cases} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{cases}, \\ y_n'(t) = \lambda_n y_n(t), \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Transform back to $\mathbf{x}(t)$,

Transform back to $\mathbf{x}(t)$, that is,

 $\mathbf{x}(t) = P \, \mathbf{y}(t)$

Transform back to $\mathbf{x}(t)$, that is,

$$\mathbf{x}(t) = P \mathbf{y}(t) = \begin{bmatrix} \mathbf{v}_1, \cdots, \mathbf{v}_n \end{bmatrix} \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$$

Transform back to $\mathbf{x}(t)$, that is,

$$\mathbf{x}(t) = P \mathbf{y}(t) = \begin{bmatrix} \mathbf{v}_1, \cdots, \mathbf{v}_n \end{bmatrix} \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$$

We conclude: $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$.

Transform back to $\mathbf{x}(t)$, that is,

$$\mathbf{x}(t) = P \mathbf{y}(t) = \begin{bmatrix} \mathbf{v}_1, \cdots, \mathbf{v}_n \end{bmatrix} \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$$

We conclude: $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$. Remark:

$$\blacktriangleright A \mathbf{v}_i = \lambda_i \mathbf{v}_i.$$

Transform back to $\mathbf{x}(t)$, that is,

$$\mathbf{x}(t) = P \mathbf{y}(t) = \begin{bmatrix} \mathbf{v}_1, \cdots, \mathbf{v}_n \end{bmatrix} \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$$

We conclude: $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$.

Remark:

 $\blacktriangleright A \mathbf{v}_i = \lambda_i \mathbf{v}_i.$

The eigenvalues and eigenvectors of A are crucial to solve the differential linear system x'(t) = A x(t).

Differential linear systems (Sect. 5.4, 5.6, 5.7)

- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).

- Examples: 2×2 linear systems (5.6).
- Phase portraits for 2×2 systems (5.7).

There are two main types of graphs for solutions of 2 × 2 linear systems:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

There are two main types of graphs for solutions of 2 × 2 linear systems:

(i) The graphs of the vector components;

There are two main types of graphs for solutions of 2 × 2 linear systems:

- (i) The graphs of the vector components;
- (ii) The phase portrait.

- There are two main types of graphs for solutions of 2 × 2 linear systems:
 - (i) The graphs of the vector components;
 - (ii) The phase portrait.

• Case (i): Express the solution in vector components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, and graph x_1 and x_2 as functions of t.

- There are two main types of graphs for solutions of 2 × 2 linear systems:
 - (i) The graphs of the vector components;
 - (ii) The phase portrait.

Case (i): Express the solution in vector components
 x(t) = x₁(t) / x₂(t), and graph x₁ and x₂ as functions of t.
 (Recall the solution in the IVP of the previous Example:

- There are two main types of graphs for solutions of 2 × 2 linear systems:
 - (i) The graphs of the vector components;
 - (ii) The phase portrait.

• Case (i): Express the solution in vector components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, and graph x_1 and x_2 as functions of t. (Recall the solution in the IVP of the previous Example: $x_1(t) = 3 e^{4t} - e^{-2t}$ and $x_2(t) = 3 e^{4t} + e^{-2t}$.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- There are two main types of graphs for solutions of 2 × 2 linear systems:
 - (i) The graphs of the vector components;
 - (ii) The phase portrait.

• Case (i): Express the solution in vector components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, and graph x_1 and x_2 as functions of t. (Recall the solution in the IVP of the previous Example: $x_1(t) = 3 e^{4t} - e^{-2t}$ and $x_2(t) = 3 e^{4t} + e^{-2t}$.)

• Case (ii): Express the solution as a vector-valued function,

$$\mathbf{x}(t) = c_1 \, \mathbf{v}_1 \, e^{\lambda_1 t} + c_2 \, \mathbf{v}_2 \, e^{\lambda_2 t},$$

and plot the vector $\mathbf{x}(t)$ for different values of t.

- There are two main types of graphs for solutions of 2 × 2 linear systems:
 - (i) The graphs of the vector components;
 - (ii) The phase portrait.

• Case (i): Express the solution in vector components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, and graph x_1 and x_2 as functions of t. (Recall the solution in the IVP of the previous Example: $x_1(t) = 3 e^{4t} - e^{-2t}$ and $x_2(t) = 3 e^{4t} + e^{-2t}$.)

Case (ii): Express the solution as a vector-valued function,

$$\mathbf{x}(t) = c_1 \, \mathbf{v}_1 \, e^{\lambda_1 t} + c_2 \, \mathbf{v}_2 \, e^{\lambda_2 t},$$

and plot the vector $\mathbf{x}(t)$ for different values of t.

Case (ii) is called a phase portrait.

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Solution:

We start plotting the

vectors

$$\mathbf{v}^1 = \begin{bmatrix} 1\\ 1 \end{bmatrix},$$
$$\mathbf{v}^2 = \begin{bmatrix} -1\\ 1 \end{bmatrix}.$$

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Solution:

We start plotting the vectors

$$\mathbf{v}^1 = \begin{bmatrix} 1\\1 \end{bmatrix},$$
$$\mathbf{v}^2 = \begin{bmatrix} -1\\1 \end{bmatrix}.$$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Solution:

We now plot the functions

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t},$$
 $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Solution:

We now plot the functions

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t},$$
 $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Solution:

We now plot the functions

$$-\mathbf{x}^{(1)} = -\begin{bmatrix} 1\\1 \end{bmatrix} e^{4t},$$
$$-\mathbf{x}^{(2)} = -\begin{bmatrix} -1\\1 \end{bmatrix} e^{-2t}.$$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Solution:

We now plot the functions

$$-\mathbf{x}^{(1)} = - \begin{bmatrix} 1\\ 1 \end{bmatrix} e^{4t},$$

 $-\mathbf{x}^{(2)} = - \begin{bmatrix} -1\\ 1 \end{bmatrix} e^{-2t}$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Solution:

We now plot the four functions

$$\mathbf{x}^{(1)}, -\mathbf{x}^{(1)},$$

 $\mathbf{x}^{(2)}, -\mathbf{x}^{(2)}.$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Solution:

We now plot the four functions

$$\mathbf{x}^{(1)}, -\mathbf{x}^{(1)},$$

 $\mathbf{x}^{(2)}, -\mathbf{x}^{(2)}.$

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution:

We now plot the four functions

 $\boldsymbol{x^{(1)}}, \ -\boldsymbol{x^{(1)}}, \ \boldsymbol{x^{(2)}}, \ -\boldsymbol{x^{(2)}},$

and $\boldsymbol{x}^{(1)} + \boldsymbol{x}^{(2)}$,

$$\begin{bmatrix} 1\\1 \end{bmatrix} e^{4t} + \begin{bmatrix} -1\\1 \end{bmatrix} e^{-2t}.$$

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Solution:

We now plot the four functions

$$\mathbf{x}^{(1)}, -\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, -\mathbf{x}^{(2)},$$

and $\boldsymbol{x}^{(1)} + \boldsymbol{x}^{(2)}$,

$$\begin{bmatrix} 1\\1 \end{bmatrix} e^{4t} + \begin{bmatrix} -1\\1 \end{bmatrix} e^{-2t}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● のへで

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Solution:

We now plot the eight functions

$$\begin{split} & \mathbf{x}^{(1)}, \ -\mathbf{x}^{(1)}, \ \mathbf{x}^{(2)}, \ -\mathbf{x}^{(2)}, \\ & \mathbf{x}^{(1)}+\mathbf{x}^{(2)}, \ -\mathbf{x}^{(1)}+\mathbf{x}^{(2)}, \\ & \mathbf{x}^{(1)}-\mathbf{x}^{(2)}, \ -\mathbf{x}^{(1)}-\mathbf{x}^{(2)}. \end{split}$$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Solution:

We now plot the eight functions

$$\begin{aligned} & \mathbf{x}^{(1)}, \ -\mathbf{x}^{(1)}, \ \mathbf{x}^{(2)}, \ -\mathbf{x}^{(2)}, \\ & \mathbf{x}^{(1)} + \mathbf{x}^{(2)}, \ -\mathbf{x}^{(1)} + \mathbf{x}^{(2)}, \\ & \mathbf{x}^{(1)} - \mathbf{x}^{(2)}, \ -\mathbf{x}^{(1)} - \mathbf{x}^{(2)}. \end{aligned}$$

Problem:

Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions).

Problem:

Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions).

Given a solution $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$, to $\mathbf{x}'(t) = A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_1 and c_2 .

Problem:

Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions).

Given a solution $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$, to $\mathbf{x}'(t) = A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_1 and c_2 .

The plots are different depending on the eigenvalues signs.

Problem:

Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions).

Given a solution $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$, to $\mathbf{x}'(t) = A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_1 and c_2 .

The plots are different depending on the eigenvalues signs. We have the following three sub-cases:

Problem:

Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions).

Given a solution $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$, to $\mathbf{x}'(t) = A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_1 and c_2 .

The plots are different depending on the eigenvalues signs. We have the following three sub-cases:

(i) $0 < \lambda_2 < \lambda_1$, both positive;

Problem:

Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions).

Given a solution $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$, to $\mathbf{x}'(t) = A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_1 and c_2 .

The plots are different depending on the eigenvalues signs. We have the following three sub-cases:

(i) $0 < \lambda_2 < \lambda_1$, both positive;

(ii) $\lambda_2 < 0 < \lambda_1$, one positive the other negative;

Problem:

Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions).

Given a solution $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$, to $\mathbf{x}'(t) = A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_1 and c_2 .

The plots are different depending on the eigenvalues signs. We have the following three sub-cases:

(i) $0 < \lambda_2 < \lambda_1$, both positive;

(ii) $\lambda_2 < 0 < \lambda_1$, one positive the other negative;

(iii) $\lambda_2 < \lambda_1 < 0$, both negative.

Phase portrait: Case (a), two different, real eigenvalues $\lambda_1 \neq \lambda_2$, sub-case $0 < \lambda_2 < \lambda_1$, both eigenvalue positive.

Phase portrait: Case (a), two different, real eigenvalues $\lambda_1 \neq \lambda_2$, sub-case $\lambda_2 < 0 < \lambda_1$, one eigenvalue positive the other negative.

Phase portrait: Case (a), two different, real eigenvalues $\lambda_1 \neq \lambda_2$, sub-case $\lambda_2 < \lambda_1 < 0$, both eigenvalues negative.

Complex, distinct eigenvalues (Sect. 5.8)

- Review: The case of diagonalizable matrices.
- Classification of 2 × 2 diagonalizable systems.
- Real matrix with a pair of complex eigenvalues.

• Phase portraits for 2×2 systems.

Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:
$$\lambda_1 = 4$$
, $\mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_2 = -2$, $\mathbf{v}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

・ロト ・雪ト ・ヨト ・ヨー うへぐ

Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:
$$\lambda_1 = 4$$
, $\mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_2 = -2$, $\mathbf{v}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.
The general solution is: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$.

Complex, distinct eigenvalues (Sect. 5.8)

- Review: The case of diagonalizable matrices.
- ► Classification of 2 × 2 diagonalizable systems.

- Real matrix with a pair of complex eigenvalues.
- Phase portraits for 2×2 systems.

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

(a) $\lambda_1 \neq \lambda_2$, real-valued. Hence, *A* has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions), (Section 5.7).

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

- (a) $\lambda_1 \neq \lambda_2$, real-valued. Hence, *A* has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions), (Section 5.7).
- (b) $\lambda_1 = \overline{\lambda}_2$, complex-valued. Hence, *A* has two non-proportional eigenvectors $\mathbf{v}_1 = \overline{\mathbf{v}}_2$, (Section 5.8).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

- (a) $\lambda_1 \neq \lambda_2$, real-valued. Hence, *A* has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions), (Section 5.7).
- (b) $\lambda_1 = \overline{\lambda}_2$, complex-valued. Hence, *A* has two non-proportional eigenvectors $\mathbf{v}_1 = \overline{\mathbf{v}}_2$, (Section 5.8).
- (c-1) $\lambda_1 = \lambda_2$ real-valued with two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 , (Section 5.9).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

- (a) $\lambda_1 \neq \lambda_2$, real-valued. Hence, *A* has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions), (Section 5.7).
- (b) $\lambda_1 = \overline{\lambda}_2$, complex-valued. Hence, *A* has two non-proportional eigenvectors $\mathbf{v}_1 = \overline{\mathbf{v}}_2$, (Section 5.8).
- (c-1) $\lambda_1 = \lambda_2$ real-valued with two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 , (Section 5.9).

Remark:

(c-2) $\lambda_1 = \lambda_2$ real-valued with only one eigen-direction. Hence, A is not diagonalizable, (Section 5.9).

Complex, distinct eigenvalues (Sect. 5.8)

- Review: The case of diagonalizable matrices.
- Classification of 2 × 2 diagonalizable systems.
- ► Real matrix with a pair of complex eigenvalues.

• Phase portraits for 2×2 systems.

Theorem

If $\{\lambda, \mathbf{v}\}\$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\overline{\lambda}, \overline{\mathbf{v}}\}\$ also is an eigen-pair of matrix A.

Theorem If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\overline{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A\mathbf{v} = \lambda \mathbf{v}$ and $\overline{A} = A$.

Theorem If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\overline{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Proof: By hypothesis $A\mathbf{v} = \lambda \mathbf{v}$ and $\overline{A} = A$. Then

 $\overline{A}\,\mathbf{v}=\overline{\lambda}\,\mathbf{v}$

Theorem

If $\{\lambda, \mathbf{v}\}\$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\overline{\lambda}, \overline{\mathbf{v}}\}\$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A\mathbf{v} = \lambda \mathbf{v}$ and $\overline{A} = A$. Then

$$\overline{A}\,\overline{\mathbf{v}} = \overline{\lambda}\,\overline{\mathbf{v}} \quad \Leftrightarrow \quad \overline{A}\,\overline{\mathbf{v}} = \overline{\lambda}\,\overline{\mathbf{v}}$$

Theorem

If $\{\lambda, \mathbf{v}\}\$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\overline{\lambda}, \overline{\mathbf{v}}\}\$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A\mathbf{v} = \lambda \mathbf{v}$ and $\overline{A} = A$. Then

$$\overline{A}\,\overline{\mathbf{v}} = \overline{\lambda}\,\overline{\mathbf{v}} \quad \Leftrightarrow \quad \overline{A}\,\overline{\mathbf{v}} = \overline{\lambda}\,\overline{\mathbf{v}} \quad \Leftrightarrow \quad A\,\overline{\mathbf{v}} = \overline{\lambda}\,\overline{\mathbf{v}}.$$

Theorem

If $\{\lambda, \mathbf{v}\}\$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\overline{\lambda}, \overline{\mathbf{v}}\}\$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A\mathbf{v} = \lambda \mathbf{v}$ and $\overline{A} = A$. Then

$$\overline{A}\,\overline{\mathbf{v}} = \overline{\lambda}\,\overline{\mathbf{v}} \quad \Leftrightarrow \quad \overline{A}\,\overline{\mathbf{v}} = \overline{\lambda}\,\overline{\mathbf{v}} \quad \Leftrightarrow \quad A\,\overline{\mathbf{v}} = \overline{\lambda}\,\overline{\mathbf{v}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Therefore $\{\overline{\lambda}, \overline{\mathbf{v}}\}$ is an eigen-pair of matrix A.

Theorem

If $\{\lambda, \mathbf{v}\}\$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\overline{\lambda}, \overline{\mathbf{v}}\}\$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A\mathbf{v} = \lambda \mathbf{v}$ and $\overline{A} = A$. Then

$$\overline{A}\,\overline{\mathbf{v}} = \overline{\lambda}\,\overline{\mathbf{v}} \quad \Leftrightarrow \quad \overline{A}\,\overline{\mathbf{v}} = \overline{\lambda}\,\overline{\mathbf{v}} \quad \Leftrightarrow \quad A\,\overline{\mathbf{v}} = \overline{\lambda}\,\overline{\mathbf{v}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Therefore $\{\overline{\lambda}, \overline{\mathbf{v}}\}$ is an eigen-pair of matrix A.

Remark: The Theorem above is equivalent to the following:

Theorem

If $\{\lambda, \mathbf{v}\}\$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\overline{\lambda}, \overline{\mathbf{v}}\}\$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A\mathbf{v} = \lambda \mathbf{v}$ and $\overline{A} = A$. Then

$$\overline{A}\,\overline{\mathbf{v}} = \overline{\lambda}\,\overline{\mathbf{v}} \quad \Leftrightarrow \quad \overline{A}\,\overline{\overline{\mathbf{v}}} = \overline{\lambda}\,\overline{\overline{\mathbf{v}}} \quad \Leftrightarrow \quad A\,\overline{\overline{\mathbf{v}}} = \overline{\lambda}\,\overline{\overline{\mathbf{v}}}.$$

Therefore $\{\overline{\lambda}, \overline{\mathbf{v}}\}$ is an eigen-pair of matrix A.

Remark: The Theorem above is equivalent to the following: If an $n \times n$ real-valued matrix A has eigen pairs

$$\lambda_1 = \alpha + i\beta, \quad \mathbf{v}_1 = \mathbf{a} + i\mathbf{b},$$

with $\alpha, \beta \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$, then so is

$$\lambda_2 = \alpha - i\beta, \quad \mathbf{v}_2 = \mathbf{a} - i\mathbf{b}.$$

- ロ ト - 4 回 ト - 4 □ - 4

Theorem (Complex pairs)

If an $n \times n$ real-valued matrix A has eigen pairs

 $\lambda_{\pm} = \alpha \pm i\beta, \quad \mathbf{v}^{(\pm)} = \mathbf{a} \pm i\mathbf{b},$

with $\alpha, \beta \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$, then the differential equation $\mathbf{x}'(t) = A\mathbf{x}(t)$

has a linearly independent set of two complex-valued solutions $\mathbf{x}^{(+)} = \mathbf{v}^{(+)} e^{\lambda_+ t}, \qquad \mathbf{x}^{(-)} = \mathbf{v}^{(-)} e^{\lambda_- t},$

and it also has a linearly independent set of two real-valued solutions $\mathbf{x}^{(1)} = \begin{bmatrix} \mathbf{a} \cos(\beta t) & \mathbf{b} \sin(\beta t) \end{bmatrix} \mathbf{a}^{\alpha t}$

$$\mathbf{x}^{(1)} = \begin{bmatrix} \mathbf{a} \cos(eta t) - \mathbf{b} \sin(eta t) \end{bmatrix} e^{lpha t},$$

 $\mathbf{x}^{(2)} = [\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t)] e^{\alpha t}.$

Proof: We know that one solution to the differential equation is

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

$$\mathbf{x}^{(+)} = \mathbf{v}^{(+)} e^{\lambda_+ t}$$

Proof: We know that one solution to the differential equation is

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

$$\mathbf{x}^{(+)} = \mathbf{v}^{(+)} e^{\lambda_{+} t} = (\mathbf{a} + i\mathbf{b}) e^{(\alpha + i\beta)t}$$

Proof: We know that one solution to the differential equation is

$$\mathbf{x}^{(+)} = \mathbf{v}^{(+)} e^{\lambda_{+} t} = (\mathbf{a} + i\mathbf{b}) e^{(\alpha + i\beta)t} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} e^{i\beta t}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Proof: We know that one solution to the differential equation is

$$\mathbf{x}^{(+)} = \mathbf{v}^{(+)} e^{\lambda_+ t} = (\mathbf{a} + i\mathbf{b}) e^{(\alpha + i\beta)t} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} e^{i\beta t}.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Euler equation implies

Proof: We know that one solution to the differential equation is

$$\mathbf{x}^{(+)} = \mathbf{v}^{(+)} e^{\lambda_+ t} = (\mathbf{a} + i\mathbf{b}) e^{(\alpha + i\beta)t} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} e^{i\beta t}.$$

Euler equation implies

$$\mathbf{x}^{(+)} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} \left[\cos(\beta t) + i \sin(\beta t) \right],$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Proof: We know that one solution to the differential equation is

$$\mathbf{x}^{(+)} = \mathbf{v}^{(+)} e^{\lambda_{+} t} = (\mathbf{a} + i\mathbf{b}) e^{(\alpha + i\beta)t} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} e^{i\beta t}.$$

Euler equation implies

$$\mathbf{x}^{(+)} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} \left[\cos(\beta t) + i \sin(\beta t) \right],$$

 $\mathbf{x}^{(+)} = \left[\mathbf{a}\,\cos(\beta t) - \mathbf{b}\,\sin(\beta t)\right]e^{\alpha t} + i\left[\mathbf{a}\,\sin(\beta t) + \mathbf{b}\,\cos(\beta t)\right]e^{\alpha t}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof: We know that one solution to the differential equation is

$$\mathbf{x}^{(+)} = \mathbf{v}^{(+)} e^{\lambda_{+} t} = (\mathbf{a} + i\mathbf{b}) e^{(\alpha + i\beta)t} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} e^{i\beta t}.$$

Euler equation implies

$$\mathbf{x}^{(+)} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} \left[\cos(\beta t) + i \sin(\beta t) \right],$$

 $\mathbf{x}^{(+)} = \left[\mathbf{a}\,\cos(\beta t) - \mathbf{b}\,\sin(\beta t)\right]e^{\alpha t} + i\left[\mathbf{a}\,\sin(\beta t) + \mathbf{b}\,\cos(\beta t)\right]e^{\alpha t}$

A similar calculation done on $\mathbf{x}^{(-)}$ implies

 $\mathbf{x}^{(-)} = \left[\mathbf{a}\,\cos(\beta t) - \mathbf{b}\,\sin(\beta t)\right] e^{\alpha t} - i\left[\mathbf{a}\,\sin(\beta t) + \mathbf{b}\,\cos(\beta t)\right] e^{\alpha t}.$

Proof: We know that one solution to the differential equation is

$$\mathbf{x}^{(+)} = \mathbf{v}^{(+)} e^{\lambda_{+} t} = (\mathbf{a} + i\mathbf{b}) e^{(\alpha + i\beta)t} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} e^{i\beta t}.$$

Euler equation implies

$$\mathbf{x}^{(+)} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} \left[\cos(\beta t) + i \sin(\beta t) \right],$$

 $\mathbf{x}^{(+)} = \left[\mathbf{a}\,\cos(\beta t) - \mathbf{b}\,\sin(\beta t)\right]e^{\alpha t} + i\left[\mathbf{a}\,\sin(\beta t) + \mathbf{b}\,\cos(\beta t)\right]e^{\alpha t}$

A similar calculation done on $\mathbf{x}^{(-)}$ implies

 $\mathbf{x}^{(-)} = \left[\mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t)\right] e^{\alpha t} - i \left[\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t)\right] e^{\alpha t}.$ Introduce $\mathbf{x}^{(1)} = (\mathbf{x}^{(+)} + \mathbf{x}^{(-)})/2$,

Proof: We know that one solution to the differential equation is

$$\mathbf{x}^{(+)} = \mathbf{v}^{(+)} e^{\lambda_{+} t} = (\mathbf{a} + i\mathbf{b}) e^{(\alpha + i\beta)t} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} e^{i\beta t}.$$

Euler equation implies

$$\mathbf{x}^{(+)} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} \left[\cos(\beta t) + i \sin(\beta t) \right],$$

 $\mathbf{x}^{(+)} = \left[\mathbf{a}\,\cos(\beta t) - \mathbf{b}\,\sin(\beta t)\right]e^{\alpha t} + i\left[\mathbf{a}\,\sin(\beta t) + \mathbf{b}\,\cos(\beta t)\right]e^{\alpha t}$

A similar calculation done on $\mathbf{x}^{(-)}$ implies

 $\mathbf{x}^{(-)} = \left[\mathbf{a}\,\cos(\beta t) - \mathbf{b}\,\sin(\beta t)\right] e^{\alpha t} - i\left[\mathbf{a}\,\sin(\beta t) + \mathbf{b}\,\cos(\beta t)\right] e^{\alpha t}.$

Introduce $\mathbf{x}^{(1)} = (\mathbf{x}^{(+)} + \mathbf{x}^{(-)})/2$, $\mathbf{x}^{(2)} = (\mathbf{x}^{(+)} - \mathbf{x}^{(-)})/(2i)$,

Proof: We know that one solution to the differential equation is

$$\mathbf{x}^{(+)} = \mathbf{v}^{(+)} e^{\lambda_+ t} = (\mathbf{a} + i\mathbf{b}) e^{(\alpha + i\beta)t} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} e^{i\beta t}.$$

Euler equation implies

$$\mathbf{x}^{(+)} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} \left[\cos(\beta t) + i \sin(\beta t) \right],$$

 $\mathbf{x}^{(+)} = \left[\mathbf{a}\,\cos(\beta t) - \mathbf{b}\,\sin(\beta t)\right]e^{\alpha t} + i\left[\mathbf{a}\,\sin(\beta t) + \mathbf{b}\,\cos(\beta t)\right]e^{\alpha t}$

A similar calculation done on $\mathbf{x}^{(-)}$ implies

$$\mathbf{x}^{(-)} = \begin{bmatrix} \mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t) \end{bmatrix} e^{\alpha t} - i \begin{bmatrix} \mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t) \end{bmatrix} e^{\alpha t}.$$

Introduce $\mathbf{x}^{(1)} = (\mathbf{x}^{(+)} + \mathbf{x}^{(-)})/2$, $\mathbf{x}^{(2)} = (\mathbf{x}^{(+)} - \mathbf{x}^{(-)})/(2i)$, then
 $\mathbf{x}^{(1)} = \begin{bmatrix} \mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t) \end{bmatrix} e^{\alpha t},$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof: We know that one solution to the differential equation is

$$\mathbf{x}^{(+)} = \mathbf{v}^{(+)} e^{\lambda_{+} t} = (\mathbf{a} + i\mathbf{b}) e^{(\alpha + i\beta)t} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} e^{i\beta t}.$$

Euler equation implies

$$\mathbf{x}^{(+)} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} \left[\cos(\beta t) + i \sin(\beta t) \right],$$

 $\mathbf{x}^{(+)} = \left[\mathbf{a}\,\cos(\beta t) - \mathbf{b}\,\sin(\beta t)\right]e^{\alpha t} + i\left[\mathbf{a}\,\sin(\beta t) + \mathbf{b}\,\cos(\beta t)\right]e^{\alpha t}$

A similar calculation done on $\mathbf{x}^{(-)}$ implies

$$\mathbf{x}^{(-)} = \begin{bmatrix} \mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t) \end{bmatrix} e^{\alpha t} - i \begin{bmatrix} \mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t) \end{bmatrix} e^{\alpha t}.$$

Introduce $\mathbf{x}^{(1)} = (\mathbf{x}^{(+)} + \mathbf{x}^{(-)})/2$, $\mathbf{x}^{(2)} = (\mathbf{x}^{(+)} - \mathbf{x}^{(-)})/(2i)$, then
 $\mathbf{x}^{(1)} = \begin{bmatrix} \mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t) \end{bmatrix} e^{\alpha t},$
 $\mathbf{x}^{(2)} = \begin{bmatrix} \mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t) \end{bmatrix} e^{\alpha t}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: (1) Find the eigenvalues of matrix A above,

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

- ロ ト - 4 回 ト - 4 □ - 4

Solution: (1) Find the eigenvalues of matrix A above,

 $p(\lambda) = \det(A - \lambda I)$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: (1) Find the eigenvalues of matrix A above,

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (2 - \lambda) & 3 \\ -3 & (2 - \lambda) \end{vmatrix}$$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: (1) Find the eigenvalues of matrix A above,

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (2 - \lambda) & 3 \\ -3 & (2 - \lambda) \end{vmatrix} = (\lambda - 2)^2 + 9.$$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: (1) Find the eigenvalues of matrix A above,

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (2 - \lambda) & 3 \\ -3 & (2 - \lambda) \end{vmatrix} = (\lambda - 2)^2 + 9.$$

- ロ ト - 4 回 ト - 4 □ - 4

The roots of the characteristic polynomial are

$$(\lambda-2)^2+9=0$$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: (1) Find the eigenvalues of matrix A above,

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (2 - \lambda) & 3 \\ -3 & (2 - \lambda) \end{vmatrix} = (\lambda - 2)^2 + 9.$$

- ロ ト - 4 回 ト - 4 □ - 4

The roots of the characteristic polynomial are

$$(\lambda - 2)^2 + 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} - 2 = \pm 3i$$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: (1) Find the eigenvalues of matrix A above,

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (2 - \lambda) & 3 \\ -3 & (2 - \lambda) \end{vmatrix} = (\lambda - 2)^2 + 9.$$

The roots of the characteristic polynomial are

$$(\lambda - 2)^2 + 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} - 2 = \pm 3i \quad \Rightarrow \quad \lambda_{\pm} = 2 \pm 3i.$$

- ロ ト - 4 回 ト - 4 □ - 4

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$$

Solution: (1) Find the eigenvalues of matrix A above,

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (2 - \lambda) & 3 \\ -3 & (2 - \lambda) \end{vmatrix} = (\lambda - 2)^2 + 9.$$

The roots of the characteristic polynomial are

$$(\lambda - 2)^2 + 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} - 2 = \pm 3i \quad \Rightarrow \quad \lambda_{\pm} = 2 \pm 3i.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(2) Find the eigenvectors of matrix A above.

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$$

Solution: (1) Find the eigenvalues of matrix A above,

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (2 - \lambda) & 3 \\ -3 & (2 - \lambda) \end{vmatrix} = (\lambda - 2)^2 + 9.$$

The roots of the characteristic polynomial are

$$(\lambda - 2)^2 + 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} - 2 = \pm 3i \quad \Rightarrow \quad \lambda_{\pm} = 2 \pm 3i.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(2) Find the eigenvectors of matrix A above. For λ_+ ,

$$A - \lambda_+ I$$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$$

Solution: (1) Find the eigenvalues of matrix A above,

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (2 - \lambda) & 3 \\ -3 & (2 - \lambda) \end{vmatrix} = (\lambda - 2)^2 + 9.$$

The roots of the characteristic polynomial are

$$(\lambda - 2)^2 + 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} - 2 = \pm 3i \quad \Rightarrow \quad \lambda_{\pm} = 2 \pm 3i.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(2) Find the eigenvectors of matrix A above. For λ_+ ,

$$A - \lambda_+ I = A - (2 + 3i)I$$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$$

Solution: (1) Find the eigenvalues of matrix A above,

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (2 - \lambda) & 3 \\ -3 & (2 - \lambda) \end{vmatrix} = (\lambda - 2)^2 + 9.$$

The roots of the characteristic polynomial are

$$(\lambda - 2)^2 + 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} - 2 = \pm 3i \quad \Rightarrow \quad \lambda_{\pm} = 2 \pm 3i.$$

(2) Find the eigenvectors of matrix A above. For λ_+ ,

$$A - \lambda_+ I = A - (2 + 3i)I = \begin{bmatrix} 2 - (2 + 3i) & 3 \\ -3 & 2 - (2 + 3i) \end{bmatrix}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: $\lambda_{\pm} = 2 \pm 3i, \ (A - \lambda_{\pm} I) = \begin{bmatrix} 2 - (2 + 3i) & 3 \\ -3 & 2 - (2 + 3i) \end{bmatrix}.$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3\\ -3 & 2 \end{bmatrix}.$$

Solution: $\lambda_{\pm} = 2 \pm 3i, (A - \lambda_{+} I) = \begin{bmatrix} 2 - (2 + 3i) & 3\\ -3 & 2 - (2 + 3i) \end{bmatrix}.$
We need to solve $(A - \lambda_{+} I) \mathbf{v}^{(+)} = \mathbf{0}$ for $\mathbf{v}^{(+)}$.

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: $\lambda_{\pm} = 2 \pm 3i, (A - \lambda_{+} I) = \begin{bmatrix} 2 - (2 + 3i) & 3 \\ -3 & 2 - (2 + 3i) \end{bmatrix}.$
We need to solve $(A - \lambda_{+} I)\mathbf{v}^{(+)} = \mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$\begin{bmatrix} -3i & 3\\ -3 & -3i \end{bmatrix}$$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: $\lambda_{\pm} = 2 \pm 3i, (A - \lambda_{+} I) = \begin{bmatrix} 2 - (2 + 3i) & 3 \\ -3 & 2 - (2 + 3i) \end{bmatrix}.$
We need to solve $(A - \lambda_{+} I) \mathbf{v}^{(+)} = \mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > <

$$\begin{bmatrix} -3i & 3\\ -3 & -3i \end{bmatrix} \rightarrow \begin{bmatrix} -i & 1\\ -1 & -i \end{bmatrix}$$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: $\lambda_{\pm} = 2 \pm 3i, \ (A - \lambda_{+} I) = \begin{bmatrix} 2 - (2 + 3i) & 3 \\ -3 & 2 - (2 + 3i) \end{bmatrix}.$
We need to solve $(A - \lambda_{+} I)\mathbf{v}^{(+)} = \mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$\begin{bmatrix} -3i & 3\\ -3 & -3i \end{bmatrix} \rightarrow \begin{bmatrix} -i & 1\\ -1 & -i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i\\ -1 & -i \end{bmatrix}$$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: $\lambda_{\pm} = 2 \pm 3i, (A - \lambda_{+} I) = \begin{bmatrix} 2 - (2 + 3i) & 3 \\ -3 & 2 - (2 + 3i) \end{bmatrix}.$
We need to solve $(A - \lambda_{+} I)\mathbf{v}^{(+)} = \mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations
$$\begin{bmatrix} -3i & 3 \\ -3 & -3i \end{bmatrix} \rightarrow \begin{bmatrix} -i & 1 \\ -1 & -i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i \\ -1 & -i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i \\ 0 & 0 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへで

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: $\lambda_{\pm} = 2 \pm 3i, (A - \lambda_{+} I) = \begin{bmatrix} 2 - (2 + 3i) & 3 \\ -3 & 2 - (2 + 3i) \end{bmatrix}.$
We need to solve $(A - \lambda_{+} I)\mathbf{v}^{(+)} = \mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations
$$\begin{bmatrix} -3i & 3 \\ -3 & -3i \end{bmatrix} \rightarrow \begin{bmatrix} -i & 1 \\ -1 & -i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i \\ -1 & -i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i \\ 0 & 0 \end{bmatrix}.$$

So, the eigenvector $\mathbf{v}^{(+)} = \begin{bmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \end{bmatrix}$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: $\lambda_{\pm} = 2 \pm 3i$, $(A - \lambda_{+} I) = \begin{bmatrix} 2 - (2 + 3i) & 3 \\ -3 & 2 - (2 + 3i) \end{bmatrix}.$
We need to solve $(A - \lambda_{+} I)\mathbf{v}^{(+)} = \mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations
$$\begin{bmatrix} -3i & 3 \\ -3 & -3i \end{bmatrix} \rightarrow \begin{bmatrix} -i & 1 \\ -1 & -i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i \\ -1 & -i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i \\ 0 & 0 \end{bmatrix}.$$

So, the eigenvector $\mathbf{v}^{(+)} = \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}$ is given by $v_{1} = -iv_{2}$.

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: $\lambda_{\pm} = 2 \pm 3i, (A - \lambda_{+} I) = \begin{bmatrix} 2 - (2 + 3i) & 3 \\ -3 & 2 - (2 + 3i) \end{bmatrix}.$
We need to solve $(A - \lambda_{+} I)\mathbf{v}^{(+)} = \mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations
 $\begin{bmatrix} -3i & 3 \\ -3 & -3i \end{bmatrix} \rightarrow \begin{bmatrix} -i & 1 \\ -1 & -i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i \\ -1 & -i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i \\ 0 & 0 \end{bmatrix}.$
So, the eigenvector $\mathbf{v}^{(+)} = \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}$ is given by $v_{1} = -iv_{2}$. Choose

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

 $v_2=1, \quad v_1=-i,$

Example

Find a real-valued set of fundamental solutions to the equation

 $\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{vmatrix} 2 & 3 \\ -3 & 2 \end{vmatrix}.$ Solution: $\lambda_{\pm} = 2 \pm 3i$, $(A - \lambda_{+} I) = \begin{vmatrix} 2 - (2 + 3i) & 3 \\ -3 & 2 - (2 + 3i) \end{vmatrix}$. We need to solve $(A - \lambda_+ I) \mathbf{v}^{(+)} = \mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations $\begin{vmatrix} -3i & 3 \\ -3 & -3i \end{vmatrix} \rightarrow \begin{vmatrix} -i & 1 \\ -1 & -i \end{vmatrix} \rightarrow \begin{vmatrix} 1 & i \\ -1 & -i \end{vmatrix} \rightarrow \begin{vmatrix} 1 & i \\ -1 & -i \end{vmatrix} \rightarrow \begin{vmatrix} 1 & i \\ 0 & 0 \end{vmatrix}.$ So, the eigenvector $\mathbf{v}^{(+)} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ is given by $v_1 = -iv_2$. Choose $\mathbf{v}_2 = \mathbf{1}, \quad \mathbf{v}_1 = -i, \quad \Rightarrow \quad \mathbf{v}^{(+)} = \begin{bmatrix} -i \\ 1 \end{bmatrix}, \quad \lambda_+ = \mathbf{2} + \mathbf{3}i.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: eigenvalues $\lambda_{\pm} = 2 \pm 3i$, and $\mathbf{v}^{(+)} = \begin{bmatrix} -i \\ 1 \end{bmatrix}$.

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: eigenvalues $\lambda_{\pm} = 2 \pm 3i$, and $\mathbf{v}^{(+)} = \begin{bmatrix} -i \\ 1 \end{bmatrix}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The second eigenvector is $\mathbf{v}^{(-)} = \overline{\mathbf{v}}^{(+)}$,

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: eigenvalues $\lambda_{\pm} = 2 \pm 3i$, and $\mathbf{v}^{(+)} = \begin{bmatrix} -i \\ 1 \end{bmatrix}$.
The second eigenvector is $\mathbf{v}^{(-)} = \overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)} = \begin{bmatrix} i \\ 1 \end{bmatrix}$.

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: eigenvalues $\lambda_{\pm} = 2 \pm 3i$, and $\mathbf{v}^{(+)} = \begin{bmatrix} -i \\ 1 \end{bmatrix}$.
The second eigenvector is $\mathbf{v}^{(-)} = \overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)} = \begin{bmatrix} i \\ 1 \end{bmatrix}$.
Notice that $\mathbf{v}^{(\pm)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \pm \begin{bmatrix} -1 \\ 0 \end{bmatrix} i$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: eigenvalues $\lambda_{\pm} = 2 \pm 3i$, and $\mathbf{v}^{(+)} = \begin{bmatrix} -i \\ 1 \end{bmatrix}.$
The second eigenvector is $\mathbf{v}^{(-)} = \overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)} = \begin{bmatrix} i \\ 1 \end{bmatrix}.$
Notice that $\mathbf{v}^{(\pm)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \pm \begin{bmatrix} -1 \\ 0 \end{bmatrix} i.$
The notation $\lambda_{\pm} = \alpha \pm \beta i$ and $\mathbf{v}^{(\pm)} = \mathbf{a} \pm \mathbf{b} i$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: eigenvalues $\lambda_{\pm} = 2 \pm 3i$, and $\mathbf{v}^{(+)} = \begin{bmatrix} -i \\ 1 \end{bmatrix}$
The second eigenvector is $\mathbf{v}^{(-)} = \overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)} = \begin{bmatrix} i \\ 1 \end{bmatrix}.$
Notice that $\mathbf{v}^{(\pm)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \pm \begin{bmatrix} -1 \\ 0 \end{bmatrix} i.$
The notation $\lambda_{\pm} = \alpha \pm \beta i$ and $\mathbf{v}^{(\pm)} = \mathbf{a} \pm \mathbf{b} i$ implies

$$\alpha = 2,$$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: eigenvalues $\lambda_{\pm} = 2 \pm 3i$, and $\mathbf{v}^{(+)} = \begin{bmatrix} -i \\ 1 \end{bmatrix}$
The second eigenvector is $\mathbf{v}^{(-)} = \overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)} = \begin{bmatrix} i \\ 1 \end{bmatrix}.$
Notice that $\mathbf{v}^{(\pm)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \pm \begin{bmatrix} -1 \\ 0 \end{bmatrix} i.$
The notation $\lambda_{\pm} = \alpha \pm \beta i$ and $\mathbf{v}^{(\pm)} = \mathbf{a} \pm \mathbf{b} i$ implies

$$\alpha = 2, \qquad \beta = 3,$$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: eigenvalues $\lambda_{\pm} = 2 \pm 3i$, and $\mathbf{v}^{(+)} = \begin{bmatrix} -i \\ 1 \end{bmatrix}.$
The second eigenvector is $\mathbf{v}^{(-)} = \overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)} = \begin{bmatrix} i \\ 1 \end{bmatrix}.$
Notice that $\mathbf{v}^{(\pm)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \pm \begin{bmatrix} -1 \\ 0 \end{bmatrix} i.$
The notation $\lambda_{\pm} = \alpha \pm \beta i$ and $\mathbf{v}^{(\pm)} = \mathbf{a} \pm \mathbf{b} i$ implies
 $\alpha = 2, \qquad \beta = 3, \qquad \mathbf{a} = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: eigenvalues $\lambda_{\pm} = 2 \pm 3i$, and $\mathbf{v}^{(+)} = \begin{bmatrix} -i \\ 1 \end{bmatrix}.$
The second eigenvector is $\mathbf{v}^{(-)} = \overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)} = \begin{bmatrix} i \\ 1 \end{bmatrix}.$
Notice that $\mathbf{v}^{(\pm)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \pm \begin{bmatrix} -1 \\ 0 \end{bmatrix} i.$
The notation $\lambda_{\pm} = \alpha \pm \beta i$ and $\mathbf{v}^{(\pm)} = \mathbf{a} \pm \mathbf{b} i$ implies
 $\alpha = 2, \qquad \beta = 3, \qquad \mathbf{a} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: $\alpha = 2, \ \beta = 3, \ \mathbf{a} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \text{and} \ \mathbf{b} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: $\alpha = 2$, $\beta = 3$, $\mathbf{a} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$.
Real-valued solutions are $\mathbf{x}^{(1)} = \begin{bmatrix} \mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t) \end{bmatrix} e^{\alpha t}$, and

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: $\alpha = 2$, $\beta = 3$, $\mathbf{a} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$
Real-valued solutions are $\mathbf{x}^{(1)} = \begin{bmatrix} \mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t) \end{bmatrix} e^{\alpha t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} \mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t) \end{bmatrix} e^{\alpha t}.$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: $\alpha = 2$, $\beta = 3$, $\mathbf{a} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$
Real-valued solutions are $\mathbf{x}^{(1)} = \begin{bmatrix} \mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t) \end{bmatrix} e^{\alpha t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} \mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t) \end{bmatrix} e^{\alpha t}$. That is

$$\mathbf{x}^{(1)} = \left(\begin{bmatrix} 0\\1 \end{bmatrix} \cos(3t) - \begin{bmatrix} -1\\0 \end{bmatrix} \sin(3t) \right) e^{2t}$$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: $\alpha = 2, \ \beta = 3, \ \mathbf{a} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \text{and} \ \mathbf{b} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$
Real-valued solutions are $\mathbf{x}^{(1)} = \begin{bmatrix} \mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t) \end{bmatrix} e^{\alpha t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} \mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t) \end{bmatrix} e^{\alpha t}.$ That is

$$\mathbf{x}^{(1)} = \left(\begin{bmatrix} 0\\1 \end{bmatrix} \cos(3t) - \begin{bmatrix} -1\\0 \end{bmatrix} \sin(3t) \right) e^{2t} \Rightarrow \mathbf{x}^{(1)} = \begin{bmatrix} \sin(3t)\\\cos(3t) \end{bmatrix} e^{2t}.$$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3\\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: $\alpha = 2, \ \beta = 3, \ \mathbf{a} = \begin{bmatrix} 0\\ 1 \end{bmatrix}, \ \text{and} \ \mathbf{b} = \begin{bmatrix} -1\\ 0 \end{bmatrix}.$
Real-valued solutions are $\mathbf{x}^{(1)} = \begin{bmatrix} \mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t) \end{bmatrix} e^{\alpha t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} \mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t) \end{bmatrix} e^{\alpha t}.$ That is
 $\mathbf{x}^{(1)} = \left(\begin{bmatrix} 0\\ 1 \end{bmatrix} \cos(3t) - \begin{bmatrix} -1\\ 0 \end{bmatrix} \sin(3t) \right) e^{2t} \Rightarrow \mathbf{x}^{(1)} = \begin{bmatrix} \sin(3t)\\ \cos(3t) \end{bmatrix} e^{2t}.$
 $\mathbf{x}^{(2)} = \left(\begin{bmatrix} 0\\ 1 \end{bmatrix} \sin(3t) + \begin{bmatrix} -1\\ 0 \end{bmatrix} \cos(3t) \right) e^{2t}$

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: $\alpha = 2, \ \beta = 3, \ \mathbf{a} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \text{and} \ \mathbf{b} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$
Real-valued solutions are $\mathbf{x}^{(1)} = \begin{bmatrix} \mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t) \end{bmatrix} e^{\alpha t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} \mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t) \end{bmatrix} e^{\alpha t}.$ That is
 $\mathbf{x}^{(1)} = \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \cos(3t) - \begin{bmatrix} -1 \\ 0 \end{bmatrix} \sin(3t) \right) e^{2t} \Rightarrow \mathbf{x}^{(1)} = \begin{bmatrix} \sin(3t) \\ \cos(3t) \end{bmatrix} e^{2t}.$
 $\mathbf{x}^{(2)} = \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \sin(3t) + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \cos(3t) \right) e^{2t} \Rightarrow \mathbf{x}^{(2)} = \begin{bmatrix} -\cos(3t) \\ \sin(3t) \end{bmatrix} e^{2t}.$

Complex, distinct eigenvalues (Sect. 5.8)

- Review: The case of diagonalizable matrices.
- Classification of 2 × 2 diagonalizable systems.
- Real matrix with a pair of complex eigenvalues.

• Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}' = A\mathbf{x}$, $A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example

Sketch a phase portrait for solutions of $\mathbf{x}' = A\mathbf{x}$, $A = \begin{vmatrix} 2 & 3 \\ -3 & 2 \end{vmatrix}$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Solution:

The phase portrait of the vectors

$$\tilde{\mathbf{x}}^{(1)} = \begin{bmatrix} \sin(3t) \\ \cos(3t) \end{bmatrix},$$

Example

Sketch a phase portrait for solutions of $\mathbf{x}' = A\mathbf{x}$, $A = \begin{vmatrix} 2 & 3 \\ -3 & 2 \end{vmatrix}$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Solution:

The phase portrait of the vectors

$$\tilde{\mathbf{x}}^{(1)} = \begin{bmatrix} \sin(3t) \\ \cos(3t) \end{bmatrix},$$
$$\tilde{\mathbf{x}}^{(2)} = \begin{bmatrix} -\cos(3t) \\ \sin(3t) \end{bmatrix},$$

Example

Sketch a phase portrait for solutions of $\mathbf{x}' = A\mathbf{x}$, $A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Solution:

The phase portrait of the vectors

$$\tilde{\mathbf{x}}^{(1)} = \begin{bmatrix} \sin(3t) \\ \cos(3t) \end{bmatrix},$$
$$\tilde{\mathbf{x}}^{(2)} = \begin{bmatrix} -\cos(3t) \\ \sin(3t) \end{bmatrix},$$

is a radius one circle.

Example

Sketch a phase portrait for solutions of $\mathbf{x}' = A\mathbf{x}$, $A = \begin{vmatrix} 2 & 3 \\ -3 & 2 \end{vmatrix}$.

Solution: The phase portrait of the vectors

$$\tilde{\mathbf{x}}^{(1)} = \begin{bmatrix} \sin(3t) \\ \cos(3t) \end{bmatrix},$$
$$\tilde{\mathbf{x}}^{(2)} = \begin{bmatrix} -\cos(3t) \\ \sin(3t) \end{bmatrix},$$

is a radius one circle.

Example

Sketch a phase portrait for solutions of $\mathbf{x}' = A\mathbf{x}$, $A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Solution:

The phase portrait of the solutions

$$\tilde{\mathbf{x}}^{(1)} = \begin{bmatrix} \sin(3t) \\ \cos(3t) \end{bmatrix} e^{2t},$$

$$\tilde{\mathbf{x}}^{(2)} = \begin{bmatrix} -\cos(3t) \\ \sin(3t) \end{bmatrix} e^{2t},$$

are outgoing spirals.

Example

Sketch a phase portrait for solutions of $\mathbf{x}' = A\mathbf{x}$, $A = \begin{vmatrix} 2 & 3 \\ -3 & 2 \end{vmatrix}$.

Solution:

The phase portrait of the solutions

$$\tilde{\mathbf{x}}^{(1)} = \begin{bmatrix} \sin(3t) \\ \cos(3t) \end{bmatrix} e^{2t},$$

$$\tilde{\mathbf{x}}^{(2)} = \begin{bmatrix} -\cos(3t) \\ \sin(3t) \end{bmatrix} e^{2t},$$

are outgoing spirals.

Example

Given any vectors \mathbf{a} and \mathbf{b} , sketch qualitative phase portraits of

 $\mathbf{x}^{(1)} = \left[\mathbf{a}\,\cos(\beta t) - \mathbf{b}\,\sin(\beta t)\right] e^{\alpha t}, \, \mathbf{x}^{(2)} = \left[\mathbf{a}\,\sin(\beta t) + \mathbf{b}\,\cos(\beta t)\right] e^{\alpha t}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

for the cases $\alpha = 0$, $\alpha > 0$, and $\alpha < 0$, where $\beta > 0$.

Example

Given any vectors \mathbf{a} and \mathbf{b} , sketch qualitative phase portraits of

 $\mathbf{x}^{(1)} = \left[\mathbf{a}\,\cos(\beta t) - \mathbf{b}\,\sin(\beta t)\right] e^{\alpha t}, \, \mathbf{x}^{(2)} = \left[\mathbf{a}\,\sin(\beta t) + \mathbf{b}\,\cos(\beta t)\right] e^{\alpha t}.$

for the cases $\alpha=$ 0, $\alpha>$ 0, and $\alpha<$ 0, where $\beta>$ 0.

Solution:

Example

Given any vectors \mathbf{a} and \mathbf{b} , sketch qualitative phase portraits of

 $\mathbf{x}^{(1)} = \left[\mathbf{a}\,\cos(\beta t) - \mathbf{b}\,\sin(\beta t)\right] e^{\alpha t}, \, \mathbf{x}^{(2)} = \left[\mathbf{a}\,\sin(\beta t) + \mathbf{b}\,\cos(\beta t)\right] e^{\alpha t}.$

for the cases $\alpha=$ 0, $\alpha>$ 0, and $\alpha<$ 0, where $\beta>$ 0.

Solution:

Example

Given any vectors \mathbf{a} and \mathbf{b} , sketch qualitative phase portraits of

 $\mathbf{x}^{(1)} = \left[\mathbf{a}\,\cos(\beta t) - \mathbf{b}\,\sin(\beta t)\right] e^{\alpha t}, \, \mathbf{x}^{(2)} = \left[\mathbf{a}\,\sin(\beta t) + \mathbf{b}\,\cos(\beta t)\right] e^{\alpha t}.$

for the cases $\alpha=$ 0, $\alpha>$ 0, and $\alpha<$ 0, where $\beta>$ 0.

Solution:

(日)、

Complex, distinct eigenvalues (Sect. 5.9)

- Review: Classification of 2×2 diagonalizable systems.
- Review: The case of diagonalizable matrices.
- ► The algebraic multiplicity of an eigenvalue.
- ► Non-diagonalizable matrices with a repeated eigenvalue.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Phase portraits for 2×2 systems.

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

(a) $\lambda_1 \neq \lambda_2$, real-valued. Hence, *A* has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions), (Section 5.7).

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

- (a) $\lambda_1 \neq \lambda_2$, real-valued. Hence, *A* has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions), (Section 5.7).
- (b) $\lambda_1 = \overline{\lambda}_2$, complex-valued. Hence, *A* has two non-proportional eigenvectors $\mathbf{v}_1 = \overline{\mathbf{v}}_2$, (Section 5.8).

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

- (a) $\lambda_1 \neq \lambda_2$, real-valued. Hence, *A* has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions), (Section 5.7).
- (b) $\lambda_1 = \overline{\lambda}_2$, complex-valued. Hence, *A* has two non-proportional eigenvectors $\mathbf{v}_1 = \overline{\mathbf{v}}_2$, (Section 5.8).
- (c-1) $\lambda_1 = \lambda_2$ real-valued with two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 , (Section 5.9).

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

- (a) $\lambda_1 \neq \lambda_2$, real-valued. Hence, *A* has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions), (Section 5.7).
- (b) $\lambda_1 = \overline{\lambda}_2$, complex-valued. Hence, *A* has two non-proportional eigenvectors $\mathbf{v}_1 = \overline{\mathbf{v}}_2$, (Section 5.8).

(c-1) $\lambda_1 = \lambda_2$ real-valued with two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 , (Section 5.9).

Remark:

(c-2) $\lambda_1 = \lambda_2$ real-valued with only one eigen-direction. Hence, A is not diagonalizable, (Section 5.9).

Complex, distinct eigenvalues (Sect. 5.9)

- Review: Classification of 2×2 diagonalizable systems.
- ► Review: The case of diagonalizable matrices.
- ► The algebraic multiplicity of an eigenvalue.
- ► Non-diagonalizable matrices with a repeated eigenvalue.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Phase portraits for 2×2 systems.

Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \dots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$\mathbf{x}'(t) = A\mathbf{x}(t)$$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Complex, distinct eigenvalues (Sect. 5.9)

- Review: Classification of 2×2 diagonalizable systems.
- Review: The case of diagonalizable matrices.
- ► The algebraic multiplicity of an eigenvalue.
- ► Non-diagonalizable matrices with a repeated eigenvalue.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Phase portraits for 2×2 systems.

Definition

Let $\{\lambda_1, \cdots, \lambda_k\}$ be the set of eigenvalues of an $n \times n$ matrix, where $1 \leq k \leq n$, hence the characteristic polynomial is

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)^{r_1} \cdots (\lambda - \lambda_k)^{r_k}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The positive integer r_i , for $i = 1, \dots, k$, is called the *algebraic multiplicity* of the eigenvalue λ_i . The eigenvalue λ_i is called *repeated* iff $r_i > 1$.

Definition

Let $\{\lambda_1, \cdots, \lambda_k\}$ be the set of eigenvalues of an $n \times n$ matrix, where $1 \leq k \leq n$, hence the characteristic polynomial is

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)^{r_1} \cdots (\lambda - \lambda_k)^{r_k}.$$

The positive integer r_i , for $i = 1, \dots, k$, is called the *algebraic multiplicity* of the eigenvalue λ_i . The eigenvalue λ_i is called *repeated* iff $r_i > 1$.

Remark:

 A matrix with repeated eigenvalues may or may not be diagonalizable.

Definition

Let $\{\lambda_1, \dots, \lambda_k\}$ be the set of eigenvalues of an $n \times n$ matrix, where $1 \leq k \leq n$, hence the characteristic polynomial is

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)^{r_1} \cdots (\lambda - \lambda_k)^{r_k}.$$

The positive integer r_i , for $i = 1, \dots, k$, is called the *algebraic multiplicity* of the eigenvalue λ_i . The eigenvalue λ_i is called *repeated* iff $r_i > 1$.

Remark:

- A matrix with repeated eigenvalues may or may not be diagonalizable.
- ▶ Equivalently: An *n* × *n* matrix with repeated eigenvalues may or may not have a linearly independent set of *n* eigenvectors.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solution: The eigenvalues of A are the solutions of

$$egin{pmatrix} (3-\lambda) & 0 & 1 \ 0 & (3-\lambda) & 2 \ 0 & 0 & (1-\lambda) \ \end{pmatrix}$$

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solution: The eigenvalues of A are the solutions of

$$egin{array}{cccc} |(3-\lambda) & 0 & 1 \ 0 & (3-\lambda) & 2 \ 0 & 0 & (1-\lambda) \ \end{array} = -(\lambda-3)^2\,(\lambda-1)$$

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solution: The eigenvalues of A are the solutions of

$$egin{array}{cccc} (3-\lambda) & 0 & 1 \ 0 & (3-\lambda) & 2 \ 0 & 0 & (1-\lambda) \end{array} \end{vmatrix} = -(\lambda-3)^2\,(\lambda-1) = 0,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solution: The eigenvalues of A are the solutions of

$$egin{array}{c|c} (3-\lambda) & 0 & 1 \ 0 & (3-\lambda) & 2 \ 0 & 0 & (1-\lambda) \end{array} = -(\lambda-3)^2\,(\lambda-1) = 0,$$

We conclude: $\lambda_1 = 3$, $r_1 = 2$,

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solution: The eigenvalues of A are the solutions of

$$egin{array}{c|c} |(3-\lambda) & 0 & 1 \ 0 & (3-\lambda) & 2 \ 0 & 0 & (1-\lambda) \ \end{array} = -(\lambda-3)^2\,(\lambda-1) = 0,$$

We conclude: $\lambda_1 = 3$, $r_1 = 2$, and $\lambda_2 = 1$, $r_2 = 1$.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solution: The eigenvalues of A are the solutions of

$$egin{array}{c|c} (3-\lambda) & 0 & 1 \ 0 & (3-\lambda) & 2 \ 0 & 0 & (1-\lambda) \end{array} = -(\lambda-3)^2\,(\lambda-1) = 0,$$

We conclude: $\lambda_1 = 3$, $r_1 = 2$, and $\lambda_2 = 1$, $r_2 = 1$. Verify that the eigenvalues are: $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\-2\\2 \end{bmatrix} \right\}.$

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solution: The eigenvalues of A are the solutions of

$$\begin{vmatrix} (3-\lambda) & 0 & 1 \\ 0 & (3-\lambda) & 2 \\ 0 & 0 & (1-\lambda) \end{vmatrix} = -(\lambda-3)^2 \, (\lambda-1) = 0,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We conclude: $\lambda_1 = 3$, $r_1 = 2$, and $\lambda_2 = 1$, $r_2 = 1$. Verify that the eigenvalues are: $\left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} -1\\-2\\2 \end{bmatrix} \right\}$.

We conclude: A is diagonalizable.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Solution: The eigenvalues of B are the solutions of

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solution: The eigenvalues of B are the solutions of

$$egin{array}{cccc} (3-\lambda) & 1 & 1 \ 0 & (3-\lambda) & 2 \ 0 & 0 & (1-\lambda) \end{array}$$

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solution: The eigenvalues of B are the solutions of

$$egin{array}{c|c} (3-\lambda) & 1 & 1 \ 0 & (3-\lambda) & 2 \ 0 & 0 & (1-\lambda) \end{array} = -(\lambda-3)^2\,(\lambda-1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solution: The eigenvalues of B are the solutions of

$$egin{array}{cccc} |(3-\lambda) & 1 & 1 \ 0 & (3-\lambda) & 2 \ 0 & 0 & (1-\lambda) \ \end{array} = -(\lambda-3)^2\,(\lambda-1) = 0,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solution: The eigenvalues of B are the solutions of

$$egin{array}{c|c} (3-\lambda) & 1 & 1 \ 0 & (3-\lambda) & 2 \ 0 & 0 & (1-\lambda) \end{array} = -(\lambda-3)^2\,(\lambda-1) = 0,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We conclude: $\lambda_1 = 3$, $r_1 = 2$,

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solution: The eigenvalues of B are the solutions of

$$egin{array}{c|c} (3-\lambda) & 1 & 1 \ 0 & (3-\lambda) & 2 \ 0 & 0 & (1-\lambda) \end{array} = -(\lambda-3)^2\,(\lambda-1) = 0,$$

We conclude: $\lambda_1 = 3$, $r_1 = 2$, and $\lambda_2 = 1$, $r_2 = 1$.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solution: The eigenvalues of B are the solutions of

$$\begin{vmatrix} (3-\lambda) & 1 & 1 \\ 0 & (3-\lambda) & 2 \\ 0 & 0 & (1-\lambda) \end{vmatrix} = -(\lambda-3)^2 \, (\lambda-1) = 0,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We conclude: $\lambda_1 = 3$, $r_1 = 2$, and $\lambda_2 = 1$, $r_2 = 1$. Verify that the eigenvalues are: $\left\{ \begin{bmatrix} 1\\0\\0\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\-1\\1 \end{bmatrix} \right\}$.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solution: The eigenvalues of B are the solutions of

$$\begin{vmatrix} (3-\lambda) & 1 & 1 \\ 0 & (3-\lambda) & 2 \\ 0 & 0 & (1-\lambda) \end{vmatrix} = -(\lambda-3)^2 (\lambda-1) = 0,$$

We conclude: $\lambda_1 = 3$, $r_1 = 2$, and $\lambda_2 = 1$, $r_2 = 1$. Verify that the eigenvalues are: $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \right\}$.

We conclude: B is not diagonalizable.

Example

Find a fundamental set of solutions to

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix},$$

Solution: Since matrix A is diagonalizable, with eigen-pairs,

$$\lambda_1 = 3, \quad \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\} \text{ and } \lambda_2 = 1, \quad \left\{ \begin{bmatrix} -1\\-2\\2 \end{bmatrix} \right\}.$$

◆□▶ <□▶ < □▶ < □▶ < □▶ = - のへで</p>

Example

Find a fundamental set of solutions to

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix},$$

Solution: Since matrix A is diagonalizable, with eigen-pairs,

$$\lambda_1 = 3, \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\} \text{ and } \lambda_2 = 1, \left\{ \begin{bmatrix} -1\\-2\\2 \end{bmatrix} \right\}.$$

We conclude that a set of fundamental solutions is

$$\left\{\mathbf{x}_{1}(t) = \begin{bmatrix} 1\\0\\0 \end{bmatrix} e^{3t}, \ \mathbf{x}_{2}(t) = \begin{bmatrix} 0\\1\\0 \end{bmatrix} e^{3t}, \ \mathbf{x}_{3}(t) = \begin{bmatrix} -1\\-2\\2 \end{bmatrix} e^{t}\right\}.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへで

Complex, distinct eigenvalues (Sect. 5.9)

- Review: Classification of 2×2 diagonalizable systems.
- Review: The case of diagonalizable matrices.
- ► The algebraic multiplicity of an eigenvalue.
- ► Non-diagonalizable matrices with a repeated eigenvalue.

• Phase portraits for 2×2 systems.

Theorem (Repeated eigenvalue)

If λ is an eigenvalue of an $n \times n$ matrix A having algebraic multiplicity r = 2 and only one associated eigen-direction, then the differential equation

$$\mathbf{x}'(t) = A\mathbf{x}(t),$$

has a linearly independent set of solutions given by

$$\{\mathbf{x}^{(1)}(t) = \mathbf{v} \ e^{\lambda t}, \quad \mathbf{x}^{(2)}(t) = (\mathbf{v} \ t + \mathbf{w}) \ e^{\lambda t}\}.$$

where the vector \boldsymbol{w} is solution of

$$(A - \lambda I)\mathbf{w} = \mathbf{v}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

which always has a solution w.

Recall: The case of a single second order equation

 $y'' + a_1 y' + a_0 y = 0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall: The case of a single second order equation

 $y'' + a_1 y' + a_0 y = 0$

with characteristic polynomial

$$p(r)=r^2+a_1\,r+a_0$$

Recall: The case of a single second order equation

 $y'' + a_1 y' + a_0 y = 0$

with characteristic polynomial

$$p(r) = r^2 + a_1 r + a_0 = (r - r_1)^2$$

Recall: The case of a single second order equation

 $y'' + a_1 y' + a_0 y = 0$

with characteristic polynomial

$$p(r) = r^2 + a_1 r + a_0 = (r - r_1)^2.$$

In this case a fundamental set of solutions is

$$\{y_1(t) = e^{r_1 t}, \quad y_2(t) = t e^{r_1 t}\}.$$

Recall: The case of a single second order equation

 $y'' + a_1 y' + a_0 y = 0$

with characteristic polynomial

$$p(r) = r^2 + a_1 r + a_0 = (r - r_1)^2.$$

In this case a fundamental set of solutions is

$$\{y_1(t) = e^{r_1 t}, \quad y_2(t) = t e^{r_1 t}\}.$$

This is not the case with systems of first order linear equations,

$$\{\mathbf{x}^{(1)}(t) = \mathbf{v} \ e^{\lambda t}, \quad \mathbf{x}^{(2)}(t) = (\mathbf{v} \ t + \mathbf{w}) \ e^{\lambda t}\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recall: The case of a single second order equation

 $y'' + a_1 y' + a_0 y = 0$

with characteristic polynomial

$$p(r) = r^2 + a_1 r + a_0 = (r - r_1)^2.$$

In this case a fundamental set of solutions is

$$\{y_1(t) = e^{r_1 t}, \quad y_2(t) = t e^{r_1 t}\}.$$

This is not the case with systems of first order linear equations,

$$\left\{ \mathbf{x}^{(1)}(t) = \mathbf{v} \ e^{\lambda t}, \quad \mathbf{x}^{(2)}(t) = \left(\mathbf{v} \ t + \mathbf{w} \right) e^{\lambda t} \right\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In general, $\mathbf{w} \neq \mathbf{0}$.

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{vmatrix} -6 & 4 \\ -1 & -2 \end{vmatrix}$.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{vmatrix} -6 & 4 \\ -1 & -2 \end{vmatrix}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Solution: Find the eigenvalues of A.

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Find the eigenvalues of A. Its characteristic polynomial is

(ロ)、(型)、(E)、(E)、 E、 の(の)

$$p(\lambda) = \begin{vmatrix} \left(-\frac{3}{2} - \lambda\right) & 1\\ -\frac{1}{4} & \left(-\frac{1}{2} - \lambda\right) \end{vmatrix}$$

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$p(\lambda) = \begin{vmatrix} \left(-\frac{3}{2} - \lambda\right) & 1\\ -\frac{1}{4} & \left(-\frac{1}{2} - \lambda\right) \end{vmatrix} = \left(\lambda + \frac{3}{2}\right)\left(\lambda + \frac{1}{2}\right) + \frac{1}{4}.$$

(ロ)、(型)、(E)、(E)、 E、 のQの

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$p(\lambda) = egin{pmatrix} \left| egin{pmatrix} -rac{3}{2}-\lambda \end{pmatrix} & 1 \ -rac{1}{4} & \left(-rac{1}{2}-\lambda
ight) \end{bmatrix} = \left(\lambda+rac{3}{2}
ight) \left(\lambda+rac{1}{2}
ight)+rac{1}{4}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So $p(\lambda) = \lambda^2 + 2\lambda + 1$

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$p(\lambda) = \begin{vmatrix} \left(-\frac{3}{2} - \lambda\right) & 1\\ -\frac{1}{4} & \left(-\frac{1}{2} - \lambda\right) \end{vmatrix} = \left(\lambda + \frac{3}{2}\right)\left(\lambda + \frac{1}{2}\right) + \frac{1}{4}.$$

So $p(\lambda) = \lambda^2 + 2\lambda + 1 = (\lambda + 1)^2.$

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$p(\lambda) = \begin{vmatrix} \left(-\frac{3}{2} - \lambda\right) & 1\\ -\frac{1}{4} & \left(-\frac{1}{2} - \lambda\right) \end{vmatrix} = \left(\lambda + \frac{3}{2}\right)\left(\lambda + \frac{1}{2}\right) + \frac{1}{4}.$$

So $p(\lambda) = \lambda^2 + 2\lambda + 1 = (\lambda + 1)^2$. The roots and multiplicity are $\lambda = -1, \qquad r = 2.$

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$p(\lambda) = \begin{vmatrix} \left(-\frac{3}{2} - \lambda\right) & 1\\ -\frac{1}{4} & \left(-\frac{1}{2} - \lambda\right) \end{vmatrix} = \left(\lambda + \frac{3}{2}\right)\left(\lambda + \frac{1}{2}\right) + \frac{1}{4}.$$

So $p(\lambda) = \lambda^2 + 2\lambda + 1 = (\lambda + 1)^2$. The roots and multiplicity are $\lambda = -1, \qquad r = 2.$

The corresponding eigenvectors are the solutions of $(A + I)\mathbf{v} = \mathbf{0}$,

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$p(\lambda) = \begin{vmatrix} \left(-\frac{3}{2} - \lambda\right) & 1\\ -\frac{1}{4} & \left(-\frac{1}{2} - \lambda\right) \end{vmatrix} = \left(\lambda + \frac{3}{2}\right)\left(\lambda + \frac{1}{2}\right) + \frac{1}{4}.$$

So $p(\lambda) = \lambda^2 + 2\lambda + 1 = (\lambda + 1)^2$. The roots and multiplicity are $\lambda = -1, \qquad r = 2.$

The corresponding eigenvectors are the solutions of $(A + I)\mathbf{v} = \mathbf{0}$,

$$\begin{bmatrix} \left(-\frac{3}{2}+1\right) & 1\\ -\frac{1}{4} & \left(-\frac{1}{2}+1\right) \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & 1\\ -\frac{1}{4} & \frac{1}{2} \end{bmatrix}$$

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$p(\lambda) = \begin{vmatrix} \left(-\frac{3}{2} - \lambda\right) & 1\\ -\frac{1}{4} & \left(-\frac{1}{2} - \lambda\right) \end{vmatrix} = \left(\lambda + \frac{3}{2}\right)\left(\lambda + \frac{1}{2}\right) + \frac{1}{4}.$$

So $p(\lambda) = \lambda^2 + 2\lambda + 1 = (\lambda + 1)^2$. The roots and multiplicity are $\lambda = -1, \qquad r = 2.$

The corresponding eigenvectors are the solutions of $(A + I)\mathbf{v} = \mathbf{0}$,

$$\begin{bmatrix} \left(-\frac{3}{2}+1\right) & 1\\ -\frac{1}{4} & \left(-\frac{1}{2}+1\right) \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & 1\\ -\frac{1}{4} & \frac{1}{2} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2\\ 1 & -2 \end{bmatrix}$$

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$p(\lambda) = \begin{vmatrix} \left(-\frac{3}{2} - \lambda\right) & 1\\ -\frac{1}{4} & \left(-\frac{1}{2} - \lambda\right) \end{vmatrix} = \left(\lambda + \frac{3}{2}\right)\left(\lambda + \frac{1}{2}\right) + \frac{1}{4}.$$

So $p(\lambda) = \lambda^2 + 2\lambda + 1 = (\lambda + 1)^2$. The roots and multiplicity are $\lambda = -1, \qquad r = 2.$

The corresponding eigenvectors are the solutions of $(A + I)\mathbf{v} = \mathbf{0}$,

$$\begin{bmatrix} \begin{pmatrix} -\frac{3}{2}+1 \end{pmatrix} & 1 \\ -\frac{1}{4} & \begin{pmatrix} -\frac{1}{2}+1 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & 1 \\ -\frac{1}{4} & \frac{1}{2} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{vmatrix} -6 & 4 \\ -1 & -2 \end{vmatrix}$.

Solution: Recall: $\lambda = -1$, with r = 2, and $(A + I) \rightarrow \begin{vmatrix} 1 & -2 \\ 0 & 0 \end{vmatrix}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{vmatrix} -6 & 4 \\ -1 & -2 \end{vmatrix}$.

Solution: Recall: $\lambda = -1$, with r = 2, and $(A + I) \rightarrow \begin{vmatrix} 1 & -2 \\ 0 & 0 \end{vmatrix}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The eigenvector components satisfy: $v_1 = 2v_2$.

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{vmatrix} -6 & 4 \\ -1 & -2 \end{vmatrix}$.

Solution: Recall: $\lambda = -1$, with r = 2, and $(A + I) \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$.

The eigenvector components satisfy: $v_1 = 2v_2$. We obtain,

$$\lambda = -1, \qquad \mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} v_2.$$

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{vmatrix} -6 & 4 \\ -1 & -2 \end{vmatrix}$.

Solution: Recall: $\lambda = -1$, with r = 2, and $(A + I) \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$.

The eigenvector components satisfy: $v_1 = 2v_2$. We obtain,

$$\lambda = -1, \qquad \mathbf{v} = \begin{bmatrix} 2\\1 \end{bmatrix} v_2.$$

We conclude that this eigenvalue has only one eigen-direction.

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{vmatrix} -6 & 4 \\ -1 & -2 \end{vmatrix}$.

Solution: Recall: $\lambda = -1$, with r = 2, and $(A + I) \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$.

The eigenvector components satisfy: $v_1 = 2v_2$. We obtain,

$$\lambda = -1, \qquad \mathbf{v} = \begin{bmatrix} 2\\1 \end{bmatrix} v_2.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We conclude that this eigenvalue has only one eigen-direction. Matrix *A* is not diagonalizable.

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{vmatrix} -6 & 4 \\ -1 & -2 \end{vmatrix}$.

Solution: Recall: $\lambda = -1$, with r = 2, and $(A + I) \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$.

The eigenvector components satisfy: $v_1 = 2v_2$. We obtain,

$$\lambda = -1, \qquad \mathbf{v} = \begin{bmatrix} 2\\1 \end{bmatrix} v_2.$$

We conclude that this eigenvalue has only one eigen-direction. Matrix *A* is not diagonalizable.

Theorem above says we need to find **w** solution of $(A + I)\mathbf{w} = \mathbf{v}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{vmatrix} -6 & 4 \\ -1 & -2 \end{vmatrix}$.

Solution: Recall: $\lambda = -1$, with r = 2, and $(A + I) \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$.

The eigenvector components satisfy: $v_1 = 2v_2$. We obtain,

$$\lambda = -1, \qquad \mathbf{v} = \begin{bmatrix} 2\\1 \end{bmatrix} v_2.$$

We conclude that this eigenvalue has only one eigen-direction. Matrix *A* is not diagonalizable.

Theorem above says we need to find **w** solution of $(A + I)\mathbf{w} = \mathbf{v}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\begin{bmatrix} -\frac{1}{2} & 1 & | & 2\\ -\frac{1}{4} & \frac{1}{2} & | & 1 \end{bmatrix}$$

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{vmatrix} -6 & 4 \\ -1 & -2 \end{vmatrix}$.

Solution: Recall: $\lambda = -1$, with r = 2, and $(A + I) \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$.

The eigenvector components satisfy: $v_1 = 2v_2$. We obtain,

$$\lambda = -1, \qquad \mathbf{v} = \begin{bmatrix} 2\\1 \end{bmatrix} v_2.$$

We conclude that this eigenvalue has only one eigen-direction. Matrix *A* is not diagonalizable.

Theorem above says we need to find **w** solution of $(A + I)\mathbf{w} = \mathbf{v}$.

$$\begin{bmatrix} -\frac{1}{2} & 1 & | & 2 \\ -\frac{1}{4} & \frac{1}{2} & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & | & -4 \\ 1 & -2 & | & -4 \end{bmatrix}$$

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{vmatrix} -6 & 4 \\ -1 & -2 \end{vmatrix}$.

Solution: Recall: $\lambda = -1$, with r = 2, and $(A + I) \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$.

The eigenvector components satisfy: $v_1 = 2v_2$. We obtain,

$$\lambda = -1, \qquad \mathbf{v} = \begin{bmatrix} 2\\1 \end{bmatrix} v_2.$$

We conclude that this eigenvalue has only one eigen-direction. Matrix *A* is not diagonalizable.

Theorem above says we need to find **w** solution of $(A + I)\mathbf{w} = \mathbf{v}$.

$$\begin{bmatrix} -\frac{1}{2} & 1 & | & 2 \\ -\frac{1}{4} & \frac{1}{2} & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & | & -4 \\ 1 & -2 & | & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & | & -4 \\ 0 & 0 & | & 0 \end{bmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{vmatrix} -6 & 4 \\ -1 & -2 \end{vmatrix}$.

Solution: Recall that:

$$\lambda = -1$$
, $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} v_2$, and $(A+I)\mathbf{w} = \mathbf{v} \Rightarrow \begin{bmatrix} 1 & -2 & | & -4 \\ 0 & 0 & | & 0 \end{bmatrix}$.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Recall that:

$$\lambda = -1$$
, $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} v_2$, and $(A+I)\mathbf{w} = \mathbf{v} \Rightarrow \begin{bmatrix} 1 & -2 & | & -4 \\ 0 & 0 & | & 0 \end{bmatrix}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

We obtain $w_1 = 2w_2 - 4$.

Example

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Recall that:

$$\lambda = -1$$
, $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} v_2$, and $(A+I)\mathbf{w} = \mathbf{v} \Rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -4 \\ 0 \end{bmatrix}$.
We obtain $w_1 = 2w_2 - 4$. That is, $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} w_2 + \begin{bmatrix} -4 \\ 0 \end{bmatrix}$.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Recall that:

$$\lambda = -1$$
, $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} v_2$, and $(A+I)\mathbf{w} = \mathbf{v} \Rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -4 \\ 0 \end{bmatrix}$.
We obtain $w_1 = 2w_2 - 4$. That is, $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} w_2 + \begin{bmatrix} -4 \\ 0 \end{bmatrix}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Given a solution \mathbf{w} , then $c\mathbf{v} + \mathbf{w}$ is also a solution, $c \in \mathbb{R}$.

Example

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Recall that:

$$\lambda = -1$$
, $\mathbf{v} = \begin{bmatrix} 2\\1 \end{bmatrix} v_2$, and $(A+I)\mathbf{w} = \mathbf{v} \Rightarrow \begin{bmatrix} 1 & -2\\0 & 0 \end{bmatrix} \begin{bmatrix} -4\\0 \end{bmatrix}$.
We obtain $w_1 = 2w_2 - 4$. That is, $\mathbf{w} = \begin{bmatrix} 2\\1 \end{bmatrix} w_2 + \begin{bmatrix} -4\\0 \end{bmatrix}$.
Given a solution \mathbf{w} , then $c\mathbf{v} + \mathbf{w}$ is also a solution $c \in \mathbb{R}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We choose the simplest solution, $\mathbf{w} = \begin{bmatrix} -4 \\ 0 \end{bmatrix}$.

Example

Find fundamental solutions of $\mathbf{x}' = A\mathbf{x}$, with $A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}$.

Solution: Recall that:

$$\lambda = -1$$
, $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} v_2$, and $(A+I)\mathbf{w} = \mathbf{v} \Rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -4 \\ 0 \end{bmatrix}$.
We obtain $w_1 = 2w_2 - 4$. That is, $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} w_2 + \begin{bmatrix} -4 \\ 0 \end{bmatrix}$.
Given a solution \mathbf{w} , then $c\mathbf{v} + \mathbf{w}$ is also a solution, $c \in \mathbb{R}$.

We choose the simplest solution, $\mathbf{w} = \begin{bmatrix} -4 \\ 0 \end{bmatrix}$. We conclude,

$$\mathbf{x}^{(1)}(t) = \begin{bmatrix} 2\\ 1 \end{bmatrix} e^{-t}, \qquad \mathbf{x}^{(2)}(t) = \left(\begin{bmatrix} 2\\ 1 \end{bmatrix} t + \begin{bmatrix} -4\\ 0 \end{bmatrix} \right) e^{-t}.$$

◆□▶ <□▶ < □▶ < □▶ < □▶ = - のへで</p>

Example

Find the solution \mathbf{x} to the IVP

$$\mathbf{x}' = A\mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the solution \mathbf{x} to the IVP

$$\mathbf{x}' = A\mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}.$$

Solution: The general solution is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 2\\ 1 \end{bmatrix} e^{-t} + c_2 \left(\begin{bmatrix} 2\\ 1 \end{bmatrix} t + \begin{bmatrix} -4\\ 0 \end{bmatrix} \right) e^{-t}.$$

Example

Find the solution \mathbf{x} to the IVP

$$\mathbf{x}' = A\mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}.$$

Solution: The general solution is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} e^{-t} + c_2 \left(\begin{bmatrix} 2\\1 \end{bmatrix} t + \begin{bmatrix} -4\\0 \end{bmatrix} \right) e^{-t}.$$

The initial condition is $\mathbf{x}(0) = \begin{bmatrix} 1\\1 \end{bmatrix}$

Example

Find the solution \mathbf{x} to the IVP

$$\mathbf{x}' = A\mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: The general solution is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} e^{-t} + c_2 \left(\begin{bmatrix} 2\\1 \end{bmatrix} t + \begin{bmatrix} -4\\0 \end{bmatrix} \right) e^{-t}.$$

The initial condition is $\mathbf{x}(0) = \begin{bmatrix} 1\\1 \end{bmatrix} = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} + c_2 \begin{bmatrix} -4\\0 \end{bmatrix}.$

Example

Find the solution \mathbf{x} to the IVP

$$\mathbf{x}' = A\mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}.$$

Solution: The general solution is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} e^{-t} + c_2 \left(\begin{bmatrix} 2\\1 \end{bmatrix} t + \begin{bmatrix} -4\\0 \end{bmatrix} \right) e^{-t}.$$

The initial condition is $\mathbf{x}(0) = \begin{bmatrix} 1\\1 \end{bmatrix} = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} + c_2 \begin{bmatrix} -4\\0 \end{bmatrix}.$

$$\begin{bmatrix} 2 & -4 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Example

Find the solution \mathbf{x} to the IVP

$$\mathbf{x}' = A\mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}.$$

Solution: The general solution is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} e^{-t} + c_2 \left(\begin{bmatrix} 2\\1 \end{bmatrix} t + \begin{bmatrix} -4\\0 \end{bmatrix} \right) e^{-t}.$$

The initial condition is $\mathbf{x}(0) = \begin{bmatrix} 1\\1 \end{bmatrix} = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} + c_2 \begin{bmatrix} -4\\0 \end{bmatrix}.$
$$\begin{bmatrix} 2\\-4 \end{bmatrix} \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 0&4\\-1&2 \end{bmatrix} \begin{bmatrix} 1\\1 \end{bmatrix}$$

Example

Т

Find the solution \mathbf{x} to the IVP

$$\mathbf{x}' = A\mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}.$$

Solution: The general solution is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} e^{-t} + c_2 \left(\begin{bmatrix} 2\\1 \end{bmatrix} t + \begin{bmatrix} -4\\0 \end{bmatrix} \right) e^{-t}.$$

he initial condition is $\mathbf{x}(0) = \begin{bmatrix} 1\\1 \end{bmatrix} = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} + c_2 \begin{bmatrix} -4\\0 \end{bmatrix}.$
$$\begin{bmatrix} 2\\-4 \end{bmatrix} \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 0&4\\-1&2 \end{bmatrix} \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 1\\1/4 \end{bmatrix}.$$

Example

Find the solution \mathbf{x} to the IVP

$$\mathbf{x}' = A\mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}.$$

Solution: The general solution is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} e^{-t} + c_2 \left(\begin{bmatrix} 2\\1 \end{bmatrix} t + \begin{bmatrix} -4\\0 \end{bmatrix} \right) e^{-t}.$$

The initial condition is $\mathbf{x}(0) = \begin{bmatrix} 1\\1 \end{bmatrix} = c_1 \begin{bmatrix} 2\\1 \end{bmatrix} + c_2 \begin{bmatrix} -4\\0 \end{bmatrix}.$

$$\begin{bmatrix} 2\\1 \end{bmatrix} \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 0&4\\-1&2 \end{bmatrix} \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 1\\1/4 \end{bmatrix}.$$

We conclude: $\mathbf{x}(t) = \begin{bmatrix} 2\\1 \end{bmatrix} e^{-t} + \frac{1}{4} \left(\begin{bmatrix} 2\\1 \end{bmatrix} t + \begin{bmatrix} -4\\0 \end{bmatrix} \right) e^{-t}.$

Complex, distinct eigenvalues (Sect. 5.9)

- Review: Classification of 2×2 diagonalizable systems.
- Review: The case of diagonalizable matrices.
- ► The algebraic multiplicity of an eigenvalue.
- ► Non-diagonalizable matrices with a repeated eigenvalue.

• Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of

$$\mathbf{x}' = A\mathbf{x}, \ A = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -1 & -2 \end{bmatrix}.$$

Example

Sketch a phase portrait for solutions of

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathbf{x}' = A\mathbf{x}, \ A = \frac{1}{4} \begin{bmatrix} -6 & 4\\ -1 & -2 \end{bmatrix}.$$

Solution:

We start plotting the vectors

$$\mathbf{v} = \begin{bmatrix} 2\\1 \end{bmatrix},$$
$$\mathbf{w} = \begin{bmatrix} -4\\0 \end{bmatrix}.$$

Example

Sketch a phase portrait for solutions of

$$\mathbf{x}' = A\mathbf{x}, \ A = \frac{1}{4} \begin{bmatrix} -6 & 4\\ -1 & -2 \end{bmatrix}.$$

Solution:

We start plotting the vectors

$$\mathbf{v} = \begin{bmatrix} 2\\1 \end{bmatrix},$$
$$\mathbf{w} = \begin{bmatrix} -4\\0 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Example

Sketch a phase portrait for solutions of

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathbf{x}' = A\mathbf{x}, \ A = \frac{1}{4} \begin{bmatrix} -6 & 4\\ -1 & -2 \end{bmatrix}.$$

Solution:

Now plot the solutions

$$\mathbf{x}^{(1)} = \begin{bmatrix} 2\\1 \end{bmatrix} e^{-t}$$
$$\mathbf{x}^{(2)} = \left(\begin{bmatrix} 2\\1 \end{bmatrix} t + \begin{bmatrix} -4\\0 \end{bmatrix} \right) e^{-t}.$$

Example

Sketch a phase portrait for solutions of

$$\mathbf{x}' = A\mathbf{x}, \quad A = \frac{1}{4} \begin{bmatrix} -6 & 4\\ -1 & -2 \end{bmatrix}.$$

Solution:

Now plot the solutions

$$\mathbf{x}^{(1)} = \begin{bmatrix} 2\\1 \end{bmatrix} e^{-t}$$
$$\mathbf{x}^{(2)} = \left(\begin{bmatrix} 2\\1 \end{bmatrix} t + \begin{bmatrix} -4\\0 \end{bmatrix} \right) e^{-t}.$$

・ロト ・ 雪 ト ・ ヨ ト

- 3

Example

Sketch a phase portrait for solutions of

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

$$\mathbf{x}' = A\mathbf{x}, \ A = \frac{1}{4} \begin{bmatrix} -6 & 4\\ -1 & -2 \end{bmatrix}.$$

Solution:

Now plot the solutions

 $\mathbf{x}^{(1)}, -\mathbf{x}^{(1)},$ $\mathbf{x}^{(2)}, -\mathbf{x}^{(2)},$

Example

Sketch a phase portrait for solutions of

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\mathbf{x}' = A\mathbf{x}, \ A = \frac{1}{4} \begin{bmatrix} -6 & 4\\ -1 & -2 \end{bmatrix}.$$

Solution:

Now plot the solutions

 $\mathbf{x}^{(1)}, -\mathbf{x}^{(1)},$ $\mathbf{x}^{(2)}, -\mathbf{x}^{(2)},$

This is the case $\lambda < 0$.

Example

Sketch a phase portrait for solutions of

$$\mathbf{x}' = A\mathbf{x}, \ A = \frac{1}{4} \begin{bmatrix} -6 & 4\\ -1 & -2 \end{bmatrix}.$$

Solution:

Now plot the solutions

 $\mathbf{x^{(1)}}, \quad -\mathbf{x^{(1)}},$ $\mathbf{x^{(2)}}, \quad -\mathbf{x^{(2)}},$ This is the case $\lambda < 0.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Example

Given any vectors ${\bf v}$ and ${\bf w},$ and any constant $\lambda,$ plot the phase portraits of the functions

$$\mathbf{x}^{(1)}(t) = \mathbf{v} \, e^{\lambda t}, \qquad \mathbf{x}^{(2)}(t) = \left(\mathbf{v} \, t + \mathbf{w}\right) e^{\lambda t},$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:

The case $\lambda < 0$. We plot the functions

$$\mathbf{x}^{(1)}, -\mathbf{x}^{(1)},$$

 $\mathbf{x}^{(2)}, -\mathbf{x}^{(2)}.$

Example

Given any vectors ${\bf v}$ and ${\bf w},$ and any constant $\lambda,$ plot the phase portraits of the functions

 $\mathbf{x}^{(1)}(t) = \mathbf{v} \, e^{\lambda t}, \qquad \mathbf{x}^{(2)}(t) = \left(\mathbf{v} \, t + \mathbf{w}\right) e^{\lambda t},$

Solution:

The case $\lambda < 0.$ We plot the functions

$$\mathbf{x}^{(1)}, -\mathbf{x}^{(1)},$$

 $\mathbf{x}^{(2)}, -\mathbf{x}^{(2)}.$

Example

Given any vectors ${\bf v}$ and ${\bf w},$ and any constant $\lambda,$ plot the phase portraits of the functions

$$\mathbf{x}^{(1)}(t) = \mathbf{v} \, e^{\lambda t}, \qquad \mathbf{x}^{(2)}(t) = \left(\mathbf{v} \, t + \mathbf{w}\right) e^{\lambda t},$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:

The case $\lambda > 0$. We plot the functions

$$\mathbf{x}^{(1)}, -\mathbf{x}^{(1)},$$

 $\mathbf{x}^{(2)}, -\mathbf{x}^{(2)}.$

Example

Given any vectors ${\bf v}$ and ${\bf w},$ and any constant $\lambda,$ plot the phase portraits of the functions

 $\mathbf{x}^{(1)}(t) = \mathbf{v} \, e^{\lambda t}, \qquad \mathbf{x}^{(2)}(t) = \left(\mathbf{v} \, t + \mathbf{w}\right) e^{\lambda t},$

Solution:

The case $\lambda > 0$. We plot the functions

 $\mathbf{x}^{(1)}, -\mathbf{x}^{(1)},$ $\mathbf{x}^{(2)}, -\mathbf{x}^{(2)}.$

