
Differential linear systems (Sect. 5.4, 5.6, 5.7)

I n × n linear differential systems (5.4).

I Constant coefficients homogenoues systems (5.6).

I Examples: 2× 2 linear systems (5.6).

I Phase portraits for 2× 2 systems (5.7).



n × n linear differential systems (5.4).

Definition
An n × n linear differential system is a the following: Given an
n× n matrix-valued function A, and an n-vector-valued function b,
find an n-vector-valued function x solution of

x′(t) = A(t) x(t) + b(t).

The system above is called homogeneous iff holds b = 0.

Recall:

A(t) =

a11(t) · · · a1n(t)
...

...
an1(t) · · · ann(t)

 , b(t) =

b1(t)
...

bn(t)

 , x(t) =

x1(t)
...

xn(t)

 .

x′(t) = A(t) x(t) + b(t) ⇔

x ′
1 = a11(t) x1 + · · ·+ a1n(t) xn + b1(t)

...

x ′
n = an1(t) x1 + · · ·+ ann(t) xn + bn(t).
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n × n linear differential systems (5.4).

Example

Find the explicit expression for the linear system x′ = Ax + b in the
case that

A =

[
1 3
3 1

]
, b(t) =

[
et

2e3t

]
, x =

[
x1

x2

]
.

Solution: The 2× 2 linear system is given by[
x ′1
x ′2

]
=

[
1 3
3 1

] [
x1

x2

]
+

[
et

2e3t

]
.

That is,
x ′1(t) = x1(t) + 3x2(t) + et ,

x ′2(t) = 3x1(t) + x2(t) + 2e3t .

C
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n × n linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed
component-wise.

x′(t) =

x1(t)
...

xn(t)


′

=

x ′1(t)
...

x ′n(t)

 .

Example

Compute x′ for x(t) =

 e2t

sin(t)
cos(t)

.

Solution:

x′(t)

 e2t

sin(t)
cos(t)

′ =

 2e2t

cos(t)
− sin(t)

 .

C
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Differential linear systems (Sect. 5.4, 5.6, 5.7)

I n × n linear differential systems (5.4).

I Constant coefficients homogenoues systems (5.6).

I Examples: 2× 2 linear systems (5.6).

I Phase portraits for 2× 2 systems (5.7).



Constant coefficients homogenoues systems (5.6).

Remarks:

I Given an n × n matrix A(t), n-vector b(t), find x(t) solution

x′(t) = A(t) x(t) + b(t).

I The system is homogeneous iff b = 0, that is,

x′(t) = A(t) x(t).

I The system has constant coefficients iff matrix A does not
depend on t, that is,

x′(t) = A x(t) + b(t).

I We study homogeneous, constant coefficient systems, that is,

x′(t) = A x(t).
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Constant coefficients homogenoues systems (5.6).
Theorem (Diagonalizable matrix)

If n × n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1, · · · , vn} and corresponding eigenvalues
{λ1, · · · , λn}, then the general solution x to the homogeneous,
constant coefficients, linear system

x′(t) = A x(t)

is given by the expression below, where c1, · · · , cn ∈ R,

x(t) = c1v1 eλ1t + · · ·+ cnvn eλnt .

Remark:

I The differential system for the variable x is coupled, that is, A
is not diagonal.

I We transform the system into a system for a variable y such
that the system for y is decoupled, that is, y′(t) = D y(t),
where D is a diagonal matrix.

I We solve for y(t) and we transform back to x(t).
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Examples: 2× 2 linear systems (5.6).

Example

Find the general solution to x′ = Ax, with A =

[
1 3
3 1

]
.

Solution: Find eigenvalues and eigenvectors of A. We found that:

λ1 = 4, v(1) =

[
1
1

]
, and λ2 = −2, v(2) =

[
−1
1

]
.

Fundamental solutions are

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

The general solution is x(t) = c1 x(1)(t) + c2 x(2)(t), that is,

x(t) = c1

[
1
1

]
e4t + c2

[
−1
1

]
e−2t , c1, c2 ∈ R. C
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Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that A = PDP−1,

with

P =
[
v1, · · · , vn

]
, D = diag

[
λ1, · · · , λn

]
.

Equivalently, P−1AP = D. Multiply x′ = A x by P−1 on the left

P−1x′(t) = P−1A x(t) ⇔
(
P−1x

)′
=

(
P−1AP

) (
P−1x

)
.

Introduce the new unknown y(t) = P−1x(t), then

y′(t) = D y(t) ⇔


y ′1(t) = λ1 y1(t),

...

y ′n(t) = λn yn(t),

⇒ y(t) =

c1 eλ1t

...
cn eλnt

 .
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Constant coefficients homogenoues systems (5.6).

Proof: Recall: y(t) = P−1x(t), and y(t) =

c1 eλ1t

...
cn eλnt

.

Transform back to x(t), that is,

x(t) = P y(t) =
[
v1, · · · , vn

] c1 eλ1t

...
cn eλnt


We conclude: x(t) = c1v1 eλ1t + · · ·+ cnvn eλnt .

Remark:

I A vi = λivi .

I The eigenvalues and eigenvectors of A are crucial to solve the
differential linear system x′(t) = A x(t).
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Differential linear systems (Sect. 5.4, 5.6, 5.7)

I n × n linear differential systems (5.4).

I Constant coefficients homogenoues systems (5.6).

I Examples: 2× 2 linear systems (5.6).

I Phase portraits for 2× 2 systems (5.7).



Phase portraits for 2× 2 systems (5.7).
Remark:

I There are two main types of graphs for solutions of 2× 2
linear systems:

(i) The graphs of the vector components;
(ii) The phase portrait.

I Case (i): Express the solution in vector components

x(t) =

[
x1(t)
x2(t)

]
, and graph x1 and x2 as functions of t.

(Recall the solution in the IVP of the previous Example:
x1(t) = 3 e4t − e−2t and x2(t) = 3 e4t + e−2t .)

I Case (ii): Express the solution as a vector-valued function,

x(t) = c1 v1 eλ1t + c2 v2 eλ2t ,

and plot the vector x(t) for different values of t.

I Case (ii) is called a phase portrait.
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Phase portraits for 2× 2 systems (5.7).
Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

Solution:
We start plotting the
vectors

v1 =

[
1
1

]
,

v2 =

[
−1
1

]
.
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Phase portraits for 2× 2 systems (5.7).

Problem:
Case (a): Consider a 2× 2 matrix A having two different, real
eigenvalues λ1 6= λ2, so A has two non-proportional eigenvectors
v1, v2 (eigen-directions).

Given a solution x(t) = c1 v1 eλ1t + c2 v2 eλ2t , to x′(t) = A x(t),
plot different solution vectors x(t) on the plane as function of t for
different choices of the constants c1 and c2.

The plots are different depending on the eigenvalues signs.
We have the following three sub-cases:

(i) 0 < λ2 < λ1, both positive;

(ii) λ2 < 0 < λ1, one positive the other negative;

(iii) λ2 < λ1 < 0, both negative.
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Phase portraits for 2× 2 systems (5.7).

Phase portrait: Case (a), two different, real eigenvalues λ1 6= λ2,
sub-case 0 < λ2 < λ1, both eigenvalue positive.
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Phase portraits for 2× 2 systems.

Phase portrait: Case (a), two different, real eigenvalues λ1 6= λ2,
sub-case λ2 < 0 < λ1, one eigenvalue positive the other negative.
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Phase portraits for 2× 2 systems (5.7).

Phase portrait: Case (a), two different, real eigenvalues λ1 6= λ2,
sub-case λ2 < λ1 < 0, both eigenvalues negative.
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Complex, distinct eigenvalues (Sect. 5.8)

I Review: The case of diagonalizable matrices.

I Classification of 2× 2 diagonalizable systems.

I Real matrix with a pair of complex eigenvalues.

I Phase portraits for 2× 2 systems.



Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If n × n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1, · · · , vn} and corresponding eigenvalues
{λ1, · · · , λn}, then the general solution x to

x′(t) = A x(t)

is given by the expression below, where c1, · · · , cn ∈ R,

x(t) = c1v1 eλ1t + · · ·+ cnvn eλnt .

Example

Find the general solution to x′ = Ax, with A =

[
1 3
3 1

]
.

Solution: λ1 = 4, v(1) =

[
1
1

]
, λ2 = −2, v(2) =

[
−1
1

]
.

The general solution is: x(t) = c1

[
1
1

]
e4t + c2

[
−1
1

]
e−2t . C
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Complex, distinct eigenvalues (Sect. 5.8)

I Review: The case of diagonalizable matrices.

I Classification of 2× 2 diagonalizable systems.

I Real matrix with a pair of complex eigenvalues.

I Phase portraits for 2× 2 systems.



Review: Classification of 2× 2 diagonalizable systems.

Remark:
Diagonalizable 2× 2 matrices A with real coefficients are classified
according to their eigenvalues.

(a) λ1 6= λ2, real-valued. Hence, A has two non-proportional
eigenvectors v1, v2 (eigen-directions), (Section 5.7).

(b) λ1 = λ2, complex-valued. Hence, A has two non-proportional
eigenvectors v1 = v2, (Section 5.8).

(c-1) λ1 = λ2 real-valued with two non-proportional eigenvectors v1,
v2, (Section 5.9).

Remark:

(c-2) λ1 = λ2 real-valued with only one eigen-direction. Hence, A is
not diagonalizable, (Section 5.9).
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Complex, distinct eigenvalues (Sect. 5.8)

I Review: The case of diagonalizable matrices.

I Classification of 2× 2 diagonalizable systems.

I Real matrix with a pair of complex eigenvalues.

I Phase portraits for 2× 2 systems.



Real matrix with a pair of complex eigenvalues.

Theorem
If {λ, v} is an eigen-pair of an n × n real-valued matrix A, then
{λ, v} also is an eigen-pair of matrix A.

Proof: By hypothesis A v = λ v and A = A. Then

A v = λ v ⇔ A v = λ v ⇔ A v = λ v.

Therefore {λ, v} is an eigen-pair of matrix A.

Remark: The Theorem above is equivalent to the following:
If an n × n real-valued matrix A has eigen pairs

λ1 = α + iβ, v1 = a + ib,

with α, β ∈ R and a,b ∈ Rn, then so is

λ2 = α− iβ, v2 = a− ib.
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Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: (1) Find the eigenvalues of matrix A above,

p(λ) = det(A− λ I ) =

∣∣∣∣ (2− λ) 3
−3 (2− λ)

∣∣∣∣ = (λ− 2)2 + 9.

The roots of the characteristic polynomial are

(λ− 2)2 + 9 = 0 ⇒ λ± − 2 = ±3i ⇒ λ± = 2± 3i .

(2) Find the eigenvectors of matrix A above. For λ+,

A− λ+I = A− (2 + 3i)I =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.
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[
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]
.

We need to solve (A− λ+ I ) v(+) = 0 for v(+). Gauss operations[
−3i 3
−3 −3i

]
→

[
−i 1
−1 −i

]
→

[
1 i
−1 −i

]
→

[
1 i
0 0

]
.

So, the eigenvector v(+) =

[
v1

v2

]
is given by v1 = −iv2. Choose

v2 = 1, v1 = −i , ⇒ v(+) =

[
−i
1

]
, λ+ = 2 + 3i .
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Complex, distinct eigenvalues (Sect. 5.8)

I Review: The case of diagonalizable matrices.

I Classification of 2× 2 diagonalizable systems.

I Real matrix with a pair of complex eigenvalues.

I Phase portraits for 2× 2 systems.



Phase portraits for 2× 2 systems.

Example

Sketch a phase portrait for solutions of x′ = Ax, A =

[
2 3
−3 2

]
.

Solution:
The phase portrait of the
vectors

x̃(1) =

[
sin(3t)
cos(3t)

]
,

x̃(2) =

[
− cos(3t)
sin(3t)

]
,

is a radius one circle.
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Phase portraits for 2× 2 systems.

Example
Given any vectors a and b, sketch qualitative phase portraits of

x(1) =
[
a cos(βt)− b sin(βt)

]
eαt , x(2) =

[
a sin(βt) + b cos(βt)

]
eαt .

for the cases α = 0, α > 0, and α < 0, where β > 0.

Solution:
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x(1) =
[
a cos(βt)− b sin(βt)

]
eαt , x(2) =
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]
eαt .
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Complex, distinct eigenvalues (Sect. 5.9)

I Review: Classification of 2× 2 diagonalizable systems.

I Review: The case of diagonalizable matrices.

I The algebraic multiplicity of an eigenvalue.

I Non-diagonalizable matrices with a repeated eigenvalue.

I Phase portraits for 2× 2 systems.



Review: Classification of 2× 2 diagonalizable systems.

Remark:
Diagonalizable 2× 2 matrices A with real coefficients are classified
according to their eigenvalues.

(a) λ1 6= λ2, real-valued. Hence, A has two non-proportional
eigenvectors v1, v2 (eigen-directions), (Section 5.7).

(b) λ1 = λ2, complex-valued. Hence, A has two non-proportional
eigenvectors v1 = v2, (Section 5.8).

(c-1) λ1 = λ2 real-valued with two non-proportional eigenvectors v1,
v2, (Section 5.9).

Remark:

(c-2) λ1 = λ2 real-valued with only one eigen-direction. Hence, A is
not diagonalizable, (Section 5.9).
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Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If n × n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1, · · · , vn} and corresponding eigenvalues
{λ1, · · · , λn}, then the general solution x to the homogeneous,
constant coefficients, linear system

x′(t) = A x(t)

is given by the expression below, where c1, · · · , cn ∈ R,

x(t) = c1v1 eλ1t + · · ·+ cnvn eλnt .



Complex, distinct eigenvalues (Sect. 5.9)

I Review: Classification of 2× 2 diagonalizable systems.

I Review: The case of diagonalizable matrices.

I The algebraic multiplicity of an eigenvalue.
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The algebraic multiplicity of an eigenvalue.

Definition
Let {λ1, · · · , λk} be the set of eigenvalues of an n × n matrix,
where 1 6 k 6 n, hence the characteristic polynomial is

p(λ) = (−1)n (λ− λ1)
r1 · · · (λ− λk)rk .

The positive integer ri , for i = 1, · · · , k, is called the algebraic
multiplicity of the eigenvalue λi . The eigenvalue λi is called
repeated iff ri > 1.

Remark:

I A matrix with repeated eigenvalues may or may not be
diagonalizable.

I Equivalently: An n × n matrix with repeated eigenvalues may
or may not have a linearly independent set of n eigenvectors.
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The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of A are the solutions of∣∣∣∣∣∣
(3− λ) 0 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 3)2 (λ− 1) = 0,

We conclude: λ1 = 3, r1 = 2, and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

0
1
0

 ,

−1
−2
2

}
.

We conclude: A is diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of A are the solutions of∣∣∣∣∣∣
(3− λ) 0 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣

= −(λ− 3)2 (λ− 1) = 0,

We conclude: λ1 = 3, r1 = 2, and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

0
1
0

 ,

−1
−2
2

}
.

We conclude: A is diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of A are the solutions of∣∣∣∣∣∣
(3− λ) 0 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 3)2 (λ− 1)

= 0,

We conclude: λ1 = 3, r1 = 2, and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

0
1
0

 ,

−1
−2
2

}
.

We conclude: A is diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of A are the solutions of∣∣∣∣∣∣
(3− λ) 0 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 3)2 (λ− 1) = 0,

We conclude: λ1 = 3, r1 = 2, and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

0
1
0

 ,

−1
−2
2

}
.

We conclude: A is diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of A are the solutions of∣∣∣∣∣∣
(3− λ) 0 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 3)2 (λ− 1) = 0,

We conclude: λ1 = 3, r1 = 2,

and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

0
1
0

 ,

−1
−2
2

}
.

We conclude: A is diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of A are the solutions of∣∣∣∣∣∣
(3− λ) 0 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 3)2 (λ− 1) = 0,

We conclude: λ1 = 3, r1 = 2, and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

0
1
0

 ,

−1
−2
2

}
.

We conclude: A is diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of A are the solutions of∣∣∣∣∣∣
(3− λ) 0 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 3)2 (λ− 1) = 0,

We conclude: λ1 = 3, r1 = 2, and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

0
1
0

 ,

−1
−2
2

}
.

We conclude: A is diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of A are the solutions of∣∣∣∣∣∣
(3− λ) 0 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 3)2 (λ− 1) = 0,

We conclude: λ1 = 3, r1 = 2, and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

0
1
0

 ,

−1
−2
2

}
.

We conclude: A is diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of B are the solutions of

∣∣∣∣∣∣
(3− λ) 1 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 3)2 (λ− 1) = 0,

We conclude: λ1 = 3, r1 = 2, and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

 0
−1
1

}
.

We conclude: B is not diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of B are the solutions of∣∣∣∣∣∣
(3− λ) 1 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣

= −(λ− 3)2 (λ− 1) = 0,

We conclude: λ1 = 3, r1 = 2, and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

 0
−1
1

}
.

We conclude: B is not diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of B are the solutions of∣∣∣∣∣∣
(3− λ) 1 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 3)2 (λ− 1)

= 0,

We conclude: λ1 = 3, r1 = 2, and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

 0
−1
1

}
.

We conclude: B is not diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of B are the solutions of∣∣∣∣∣∣
(3− λ) 1 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 3)2 (λ− 1) = 0,

We conclude: λ1 = 3, r1 = 2, and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

 0
−1
1

}
.

We conclude: B is not diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of B are the solutions of∣∣∣∣∣∣
(3− λ) 1 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 3)2 (λ− 1) = 0,

We conclude: λ1 = 3, r1 = 2,

and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

 0
−1
1

}
.

We conclude: B is not diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of B are the solutions of∣∣∣∣∣∣
(3− λ) 1 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 3)2 (λ− 1) = 0,

We conclude: λ1 = 3, r1 = 2, and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

 0
−1
1

}
.

We conclude: B is not diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of B are the solutions of∣∣∣∣∣∣
(3− λ) 1 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 3)2 (λ− 1) = 0,

We conclude: λ1 = 3, r1 = 2, and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

 0
−1
1

}
.

We conclude: B is not diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

A =

3 0 1
0 3 2
0 0 1

 , B =

3 1 1
0 3 2
0 0 1

 .

Solution: The eigenvalues of B are the solutions of∣∣∣∣∣∣
(3− λ) 1 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 3)2 (λ− 1) = 0,

We conclude: λ1 = 3, r1 = 2, and λ2 = 1, r2 = 1.

Verify that the eigenvalues are:
{1

0
0

 ,

 0
−1
1

}
.

We conclude: B is not diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example

Find a fundamental set of solutions to

x′(t) = A x(t), A =

3 0 1
0 3 2
0 0 1

 ,

Solution: Since matrix A is diagonalizable, with eigen-pairs,

λ1 = 3,
{1

0
0

 ,

0
1
0

}
and λ2 = 1,

{−1
−2
2

}
.

We conclude that a set of fundamental solutions is

{
x1(t) =

1
0
0

 e3t , x2(t) =

0
1
0

 e3t , x3(t) =

−1
−2
2

 et
}

.
C
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Non-diagonalizable matrices with a repeated eigenvalue.

Theorem (Repeated eigenvalue)

If λ is an eigenvalue of an n × n matrix A having algebraic
multiplicity r = 2 and only one associated eigen-direction, then the
differential equation

x′(t) = A x(t),

has a linearly independent set of solutions given by{
x(1)(t) = v eλt , x(2)(t) =

(
v t + w

)
eλt

}
.

where the vector w is solution of

(A− λI )w = v

which always has a solution w.



Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation

y ′′ + a1 y ′ + a0 y = 0

with characteristic polynomial

p(r) = r2 + a1 r + a0 = (r − r1)
2.

In this case a fundamental set of solutions is{
y1(t) = er1t , y2(t) = t er1t

}
.

This is not the case with systems of first order linear equations,{
x(1)(t) = v eλt , x(2)(t) =

(
v t + w

)
eλt

}
.

In general, w 6= 0.
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Complex, distinct eigenvalues (Sect. 5.9)

I Review: Classification of 2× 2 diagonalizable systems.

I Review: The case of diagonalizable matrices.

I The algebraic multiplicity of an eigenvalue.

I Non-diagonalizable matrices with a repeated eigenvalue.

I Phase portraits for 2× 2 systems.



Phase portraits for 2× 2 systems.

Example

Sketch a phase portrait for solutions of

x′ = Ax, A =
1
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−1 −2
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.

Solution:
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v =
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2
1

]
,

w =

[
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0

]
.
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Phase portraits for 2× 2 systems.
Example

Given any vectors v and w, and any constant λ, plot the phase
portraits of the functions

x(1)(t) = v eλt , x(2)(t) =
(
v t + w

)
eλt ,

Solution:
The case λ < 0. We plot
the functions

x(1), −x(1),

x(2), −x(2).
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