Differential linear systems (Sect. 5.4, 5.6, 5.7)

- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).
- Examples: 2×2 linear systems (5.6).
- Phase portraits for 2×2 systems (5.7).

$n \times n$ linear differential systems (5.4).

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b}, find an n-vector-valued function x solution of

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t) .
$$

The system above is called homogeneous iff holds $\mathbf{b}=0$.

$n \times n$ linear differential systems (5.4).

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b}, find an n-vector-valued function \mathbf{x} solution of

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t) .
$$

The system above is called homogeneous iff holds $\mathbf{b}=0$.
Recall:

$$
A(t)=\left[\begin{array}{ccc}
a_{11}(t) & \cdots & a_{1 n}(t) \\
\vdots & & \vdots \\
a_{n 1}(t) & \cdots & a_{n n}(t)
\end{array}\right]
$$

$n \times n$ linear differential systems (5.4).

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b}, find an n-vector-valued function \mathbf{x} solution of

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t) .
$$

The system above is called homogeneous iff holds $\mathbf{b}=0$.
Recall:

$$
A(t)=\left[\begin{array}{ccc}
a_{11}(t) & \cdots & a_{1 n}(t) \\
\vdots & & \vdots \\
a_{n 1}(t) & \cdots & a_{n n}(t)
\end{array}\right], \mathbf{b}(t)=\left[\begin{array}{c}
b_{1}(t) \\
\vdots \\
b_{n}(t)
\end{array}\right],
$$

$n \times n$ linear differential systems (5.4).

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b}, find an n-vector-valued function x solution of

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t) .
$$

The system above is called homogeneous iff holds $\mathbf{b}=0$.
Recall:

$$
A(t)=\left[\begin{array}{ccc}
a_{11}(t) & \cdots & a_{1 n}(t) \\
\vdots & & \vdots \\
a_{n 1}(t) & \cdots & a_{n n}(t)
\end{array}\right], \mathbf{b}(t)=\left[\begin{array}{c}
b_{1}(t) \\
\vdots \\
b_{n}(t)
\end{array}\right], \mathbf{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right] .
$$

$n \times n$ linear differential systems (5.4).

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b}, find an n-vector-valued function x solution of

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t) .
$$

The system above is called homogeneous iff holds $\mathbf{b}=0$.
Recall:

$$
\begin{aligned}
& A(t)=\left[\begin{array}{ccc}
a_{11}(t) & \cdots & a_{1 n}(t) \\
\vdots & & \vdots \\
a_{n 1}(t) & \cdots & a_{n n}(t)
\end{array}\right], \mathbf{b}(t)=\left[\begin{array}{c}
b_{1}(t) \\
\vdots \\
b_{n}(t)
\end{array}\right], \mathbf{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right] . \\
& \mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)
\end{aligned}
$$

$n \times n$ linear differential systems (5.4).

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b}, find an n-vector-valued function x solution of

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t) .
$$

The system above is called homogeneous iff holds $\mathbf{b}=0$.
Recall:

$$
\begin{aligned}
& A(t)=\left[\begin{array}{ccc}
a_{11}(t) & \cdots & a_{1 n}(t) \\
\vdots & & \vdots \\
a_{n 1}(t) & \cdots & a_{n n}(t)
\end{array}\right], \mathbf{b}(t)=\left[\begin{array}{c}
b_{1}(t) \\
\vdots \\
b_{n}(t)
\end{array}\right], \mathbf{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right] . \\
& x_{1}^{\prime}=a_{11}(t) x_{1}+\cdots+a_{1 n}(t) x_{n}+b_{1}(t) \\
& \mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t) \Leftrightarrow \\
& x_{n}^{\prime}=a_{n 1}(t) x_{1}+\cdots+a_{n n}(t) x_{n}+b_{n}(t) .
\end{aligned}
$$

$n \times n$ linear differential systems (5.4).

Example

Find the explicit expression for the linear system $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{b}$ in the case that

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right], \quad \mathbf{b}(t)=\left[\begin{array}{c}
e^{t} \\
2 e^{3 t}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

$n \times n$ linear differential systems (5.4).

Example

Find the explicit expression for the linear system $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{b}$ in the case that

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right], \quad \mathbf{b}(t)=\left[\begin{array}{c}
e^{t} \\
2 e^{3 t}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Solution: The 2×2 linear system is given by

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
e^{t} \\
2 e^{3 t}
\end{array}\right] .
$$

$n \times n$ linear differential systems (5.4).

Example

Find the explicit expression for the linear system $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{b}$ in the case that

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right], \quad \mathbf{b}(t)=\left[\begin{array}{c}
e^{t} \\
2 e^{3 t}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Solution: The 2×2 linear system is given by

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
e^{t} \\
2 e^{3 t}
\end{array}\right]
$$

That is,

$$
\begin{aligned}
& x_{1}^{\prime}(t)=x_{1}(t)+3 x_{2}(t)+e^{t} \\
& x_{2}^{\prime}(t)=3 x_{1}(t)+x_{2}(t)+2 e^{3 t}
\end{aligned}
$$

$n \times n$ linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed component-wise.

$n \times n$ linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed component-wise.

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]^{\prime}
$$

$n \times n$ linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed component-wise.

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]^{\prime}=\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right]
$$

$n \times n$ linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed component-wise.

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]^{\prime}=\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right]
$$

Example
Compute \mathbf{x}^{\prime} for $\mathbf{x}(t)=\left[\begin{array}{c}e^{2 t} \\ \sin (t) \\ \cos (t)\end{array}\right]$.

$n \times n$ linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed component-wise.

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]^{\prime}=\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right] .
$$

Example
Compute \mathbf{x}^{\prime} for $\mathbf{x}(t)=\left[\begin{array}{c}e^{2 t} \\ \sin (t) \\ \cos (t)\end{array}\right]$.
Solution:

$$
\mathbf{x}^{\prime}(t)\left[\begin{array}{c}
e^{2 t} \\
\sin (t) \\
\cos (t)
\end{array}\right]^{\prime}
$$

$n \times n$ linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed component-wise.

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]^{\prime}=\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right] .
$$

Example
Compute \mathbf{x}^{\prime} for $\mathbf{x}(t)=\left[\begin{array}{c}e^{2 t} \\ \sin (t) \\ \cos (t)\end{array}\right]$.
Solution:

$$
\mathbf{x}^{\prime}(t)\left[\begin{array}{c}
e^{2 t} \\
\sin (t) \\
\cos (t)
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{2 t} \\
\cos (t) \\
-\sin (t)
\end{array}\right]
$$

Differential linear systems (Sect. 5.4, 5.6, 5.7)

- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).
- Examples: 2×2 linear systems (5.6).
- Phase portraits for 2×2 systems (5.7).

Constant coefficients homogenoues systems (5.6).

Remarks:

- Given an $n \times n$ matrix $A(t)$, n-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t) .
$$

Constant coefficients homogenoues systems (5.6).

Remarks:

- Given an $n \times n$ matrix $A(t)$, n-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)
$$

- The system is homogeneous iff $\mathbf{b}=0$, that is,

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)
$$

Constant coefficients homogenoues systems (5.6).

Remarks:

- Given an $n \times n$ matrix $A(t)$, n-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)
$$

- The system is homogeneous iff $\mathbf{b}=0$, that is,

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)
$$

- The system has constant coefficients iff matrix A does not depend on t, that is,

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)+\mathbf{b}(t)
$$

Constant coefficients homogenoues systems (5.6).

Remarks:

- Given an $n \times n$ matrix $A(t)$, n-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)
$$

- The system is homogeneous iff $\mathbf{b}=0$, that is,

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)
$$

- The system has constant coefficients iff matrix A does not depend on t, that is,

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)+\mathbf{b}(t) .
$$

- We study homogeneous, constant coefficient systems, that is,

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

Constant coefficients homogenoues systems (5.6).

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Constant coefficients homogenoues systems (5.6).

 Theorem (Diagonalizable matrix)If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Remark:

- The differential system for the variable \mathbf{x} is coupled,

Constant coefficients homogenoues systems (5.6).

 Theorem (Diagonalizable matrix)If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Remark:

- The differential system for the variable \mathbf{x} is coupled, that is, A is not diagonal.

Constant coefficients homogenoues systems (5.6).

 Theorem (Diagonalizable matrix)If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Remark:

- The differential system for the variable \mathbf{x} is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable y such that the system for \mathbf{y} is decoupled,

Constant coefficients homogenoues systems (5.6).

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Remark:

- The differential system for the variable \mathbf{x} is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable y such that the system for \mathbf{y} is decoupled, that is, $\mathbf{y}^{\prime}(t)=D \mathbf{y}(t)$,

Constant coefficients homogenoues systems (5.6).

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Remark:

- The differential system for the variable \mathbf{x} is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable y such that the system for \mathbf{y} is decoupled, that is, $\mathbf{y}^{\prime}(t)=D \mathbf{y}(t)$, where D is a diagonal matrix.

Constant coefficients homogenoues systems (5.6).

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Remark:

- The differential system for the variable \mathbf{x} is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable y such that the system for \mathbf{y} is decoupled, that is, $\mathbf{y}^{\prime}(t)=D \mathbf{y}(t)$, where D is a diagonal matrix.
- We solve for $\mathbf{y}(t)$ and we transform back to $\mathbf{x}(t)$.

Differential linear systems (Sect. 5.4, 5.6, 5.7)

- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).
- Examples: 2×2 linear systems (5.6).
- Phase portraits for 2×2 systems (5.7).

Examples: 2×2 linear systems (5.6).

Example
Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Examples: 2×2 linear systems (5.6).

Example
Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Find eigenvalues and eigenvectors of A.

Examples: 2×2 linear systems (5.6).

Example
Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Find eigenvalues and eigenvectors of A. We found that:

$$
\lambda_{1}=4, \quad \mathbf{v}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Examples: 2×2 linear systems (5.6).

Example
Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Find eigenvalues and eigenvectors of A. We found that:

$$
\lambda_{1}=4, \quad \mathbf{v}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Examples: 2×2 linear systems (5.6).

Example

Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Find eigenvalues and eigenvectors of A. We found that:

$$
\lambda_{1}=4, \quad \mathbf{v}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Fundamental solutions are

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}
$$

Examples: 2×2 linear systems (5.6).

Example

Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Find eigenvalues and eigenvectors of A. We found that:

$$
\lambda_{1}=4, \quad \mathbf{v}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Fundamental solutions are

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

Examples: 2×2 linear systems (5.6).

Example

Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Find eigenvalues and eigenvectors of A. We found that:

$$
\lambda_{1}=4, \quad \mathbf{v}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Fundamental solutions are

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

The general solution is $\mathbf{x}(t)=c_{1} \mathbf{x}^{(1)}(t)+c_{2} \mathbf{x}^{(2)}(t)$,

Examples: 2×2 linear systems (5.6).

Example

Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Find eigenvalues and eigenvectors of A. We found that:

$$
\lambda_{1}=4, \quad \mathbf{v}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Fundamental solutions are

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

The general solution is $\mathbf{x}(t)=c_{1} \mathbf{x}^{(1)}(t)+c_{2} \mathbf{x}^{(2)}(t)$, that is,

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{c}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \quad \Rightarrow \quad \mathbf{x}^{(1) \prime}=4 \mathbf{x}^{(1)} .
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{c}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \quad \Rightarrow \quad \mathbf{x}^{(1) \prime}=4 \mathbf{x}^{(1)} .
$$

$A \mathbf{x}^{(1)}$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\begin{aligned}
& \mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \quad \Rightarrow \quad \mathbf{x}^{(1) \prime}=4 \mathbf{x}^{(1)} . \\
& A \mathbf{x}^{(1)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}
\end{aligned}
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\begin{aligned}
& \mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \quad \Rightarrow \quad \mathbf{x}^{(1) \prime}=4 \mathbf{x}^{(1)} . \\
& A \mathbf{x}^{(1)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}=\left[\begin{array}{l}
4 \\
4
\end{array}\right] e^{4 t}
\end{aligned}
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\begin{aligned}
& \mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \Rightarrow \mathbf{x}^{(1) \prime}=4 \mathbf{x}^{(1)} . \\
& A \mathbf{x}^{(1)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}=\left[\begin{array}{l}
4 \\
4
\end{array}\right] e^{4 t}=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}
\end{aligned}
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\begin{gathered}
\mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \Rightarrow \mathbf{x}^{(1) \prime}=4 \mathbf{x}^{(1)} . \\
A \mathbf{x}^{(1)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}=\left[\begin{array}{l}
4 \\
4
\end{array}\right] e^{4 t}=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \Rightarrow A \mathbf{x}^{(1)}=4 \mathbf{x}^{(1)} .
\end{gathered}
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\begin{gathered}
\mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \Rightarrow \mathbf{x}^{(1) \prime}=4 \mathbf{x}^{(1)} . \\
A \mathbf{x}^{(1)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}=\left[\begin{array}{l}
4 \\
4
\end{array}\right] e^{4 t}=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \Rightarrow A \mathbf{x}^{(1)}=4 \mathbf{x}^{(1)} .
\end{gathered}
$$

We conclude that $\mathbf{x}^{(1) \prime}=A \mathbf{x}^{(1)}$.

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \text { ' }}$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}
$$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]
$$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} \Rightarrow \mathbf{x}^{(2) \prime}=-2 \mathbf{x}^{(2)} .
$$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} \Rightarrow \mathbf{x}^{(2) \prime}=-2 \mathbf{x}^{(2)}
$$

$A \mathbf{x}^{(2)}$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\begin{gathered}
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} \Rightarrow \mathbf{x}^{(2) \prime}=-2 \mathbf{x}^{(2)} \\
A \mathbf{x}^{(2)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
\end{gathered}
$$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\begin{gathered}
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} \Rightarrow \mathbf{x}^{(2) \prime}=-2 \mathbf{x}^{(2)} . \\
A \mathbf{x}^{(2)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right] e^{-2 t}
\end{gathered}
$$

Examples: 2×2 linear systems (5.6).

Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\begin{gathered}
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} \Rightarrow \mathbf{x}^{(2) \prime}=-2 \mathbf{x}^{(2)} . \\
A \mathbf{x}^{(2)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right] e^{-2 t}=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t},
\end{gathered}
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $\boldsymbol{A} \mathbf{x}^{(2)}$,

$$
\begin{gathered}
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} \Rightarrow \mathbf{x}^{(2) \prime}=-2 \mathbf{x}^{(2)} . \\
A \mathbf{x}^{(2)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right] e^{-2 t}=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t},
\end{gathered}
$$

So, $A \mathbf{x}^{(2)}=-2 \mathbf{x}^{(2)}$.

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $\boldsymbol{A} \mathbf{x}^{(2)}$,

$$
\begin{gathered}
\mathbf{x}^{(2) \prime}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} \Rightarrow \mathbf{x}^{(2) \prime}=-2 \mathbf{x}^{(2)} . \\
A \mathbf{x}^{(2)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right] e^{-2 t}=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t},
\end{gathered}
$$

So, $A \mathbf{x}^{(2)}=-2 \mathbf{x}^{(2)}$. Hence, $\mathbf{x}^{(2) \prime}=A \mathbf{x}^{(2)}$.

Examples: 2×2 linear systems (5.6).

Example
Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Examples: 2×2 linear systems (5.6).

Example
Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: The general solution: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.

Examples: 2×2 linear systems (5.6).

Example
Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: The general solution: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.
The initial condition is,

$$
\mathbf{x}(0)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

Examples: 2×2 linear systems (5.6).

Example
Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: The general solution: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.
The initial condition is,

$$
\mathbf{x}(0)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

Examples: 2×2 linear systems (5.6).

Example
Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: The general solution: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.
The initial condition is,

$$
\mathbf{x}(0)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

We need to solve the linear system

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

Examples: 2×2 linear systems (5.6).

Example
Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: The general solution: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.
The initial condition is,

$$
\mathbf{x}(0)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

We need to solve the linear system

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right] .
$$

Examples: 2×2 linear systems (5.6).

Example
Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: The general solution: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.
The initial condition is,

$$
\mathbf{x}(0)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

We need to solve the linear system

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right] .
$$

Therefore, $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right]$,

Examples: 2×2 linear systems (5.6).

Example
Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: The general solution: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.
The initial condition is,

$$
\mathbf{x}(0)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

We need to solve the linear system

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right] .
$$

Therefore, $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right]$, hence $\mathbf{x}(t)=3\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t} . \triangleleft$

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$,

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right] .
$$

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right] .
$$

Equivalently, $P^{-1} A P=D$.

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right] .
$$

Equivalently, $P^{-1} A P=D$. Multiply $\mathbf{x}^{\prime}=A \mathbf{x}$ by P^{-1} on the left

$$
P^{-1} \mathbf{x}^{\prime}(t)=P^{-1} A \mathbf{x}(t)
$$

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right] .
$$

Equivalently, $P^{-1} A P=D$. Multiply $\mathbf{x}^{\prime}=A \mathbf{x}$ by P^{-1} on the left

$$
P^{-1} \mathbf{x}^{\prime}(t)=P^{-1} A \mathbf{x}(t) \quad \Leftrightarrow \quad\left(P^{-1} \mathbf{x}\right)^{\prime}=\left(P^{-1} A P\right)\left(P^{-1} \mathbf{x}\right) .
$$

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right] .
$$

Equivalently, $P^{-1} A P=D$. Multiply $\mathbf{x}^{\prime}=A \mathbf{x}$ by P^{-1} on the left

$$
P^{-1} \mathbf{x}^{\prime}(t)=P^{-1} A \mathbf{x}(t) \quad \Leftrightarrow \quad\left(P^{-1} \mathbf{x}\right)^{\prime}=\left(P^{-1} A P\right)\left(P^{-1} \mathbf{x}\right) .
$$

Introduce the new unknown $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$,

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right] .
$$

Equivalently, $P^{-1} A P=D$. Multiply $\mathbf{x}^{\prime}=A \mathbf{x}$ by P^{-1} on the left

$$
P^{-1} \mathbf{x}^{\prime}(t)=P^{-1} A \mathbf{x}(t) \quad \Leftrightarrow \quad\left(P^{-1} \mathbf{x}\right)^{\prime}=\left(P^{-1} A P\right)\left(P^{-1} \mathbf{x}\right) .
$$

Introduce the new unknown $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, then

$$
\mathbf{y}^{\prime}(t)=D \mathbf{y}(t)
$$

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right] .
$$

Equivalently, $P^{-1} A P=D$. Multiply $\mathbf{x}^{\prime}=A \mathbf{x}$ by P^{-1} on the left

$$
P^{-1} \mathbf{x}^{\prime}(t)=P^{-1} A \mathbf{x}(t) \quad \Leftrightarrow \quad\left(P^{-1} \mathbf{x}\right)^{\prime}=\left(P^{-1} A P\right)\left(P^{-1} \mathbf{x}\right)
$$

Introduce the new unknown $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, then

$$
\mathbf{y}^{\prime}(t)=D \mathbf{y}(t) \Leftrightarrow\left\{\begin{array}{c}
y_{1}^{\prime}(t)=\lambda_{1} y_{1}(t) \\
\vdots \\
y_{n}^{\prime}(t)=\lambda_{n} y_{n}(t)
\end{array}\right.
$$

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right] .
$$

Equivalently, $P^{-1} A P=D$. Multiply $\mathbf{x}^{\prime}=A \mathbf{x}$ by P^{-1} on the left

$$
P^{-1} \mathbf{x}^{\prime}(t)=P^{-1} A \mathbf{x}(t) \quad \Leftrightarrow \quad\left(P^{-1} \mathbf{x}\right)^{\prime}=\left(P^{-1} A P\right)\left(P^{-1} \mathbf{x}\right) .
$$

Introduce the new unknown $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, then

$$
\mathbf{y}^{\prime}(t)=D \mathbf{y}(t) \Leftrightarrow\left\{\begin{array}{c}
y_{1}^{\prime}(t)=\lambda_{1} y_{1}(t), \\
\vdots \\
y_{n}^{\prime}(t)=\lambda_{n} y_{n}(t),
\end{array} \Rightarrow \mathbf{y}(t)=\left[\begin{array}{c}
c_{1} e^{\lambda_{1} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right] .\right.
$$

Constant coefficients homogenoues systems (5.6).
Proof: Recall: $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, and $\mathbf{y}(t)=\left[\begin{array}{c}c_{1} e^{\lambda_{1} t} \\ \vdots \\ c_{n} e^{\lambda_{n} t}\end{array}\right]$.

Constant coefficients homogenoues systems (5.6).
Proof: Recall: $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, and $\mathbf{y}(t)=\left[\begin{array}{c}c_{1} e^{\lambda_{1} t} \\ \vdots \\ c_{n} e^{\lambda_{n} t}\end{array}\right]$.
Transform back to $\mathbf{x}(t)$,

Constant coefficients homogenoues systems (5.6).
Proof: Recall: $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, and $\mathbf{y}(t)=\left[\begin{array}{c}c_{1} e^{\lambda_{1} t} \\ \vdots \\ c_{n} e^{\lambda_{n} t}\end{array}\right]$.
Transform back to $\mathbf{x}(t)$, that is,

$$
\mathbf{x}(t)=P \mathbf{y}(t)
$$

Constant coefficients homogenoues systems (5.6).
Proof: Recall: $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, and $\mathbf{y}(t)=\left[\begin{array}{c}c_{1} e^{\lambda_{1} t} \\ \vdots \\ c_{n} e^{\lambda_{n} t}\end{array}\right]$.
Transform back to $\mathbf{x}(t)$, that is,

$$
\mathbf{x}(t)=P \mathbf{y}(t)=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right]\left[\begin{array}{c}
c_{1} e^{\lambda_{1} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right]
$$

Constant coefficients homogenoues systems (5.6).
Proof: Recall: $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, and $\mathbf{y}(t)=\left[\begin{array}{c}c_{1} e^{\lambda_{1} t} \\ \vdots \\ c_{n} \mathrm{e}^{\lambda_{n} t}\end{array}\right]$.
Transform back to $\mathbf{x}(t)$, that is,

$$
\mathbf{x}(t)=P \mathbf{y}(t)=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right]\left[\begin{array}{c}
c_{1} e^{\lambda_{1} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right]
$$

We conclude: $\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}$.

Constant coefficients homogenoues systems (5.6).

Proof: Recall: $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, and $\mathbf{y}(t)=\left[\begin{array}{c}c_{1} e^{\lambda_{1} t} \\ \vdots \\ c_{n} e^{\lambda_{n} t}\end{array}\right]$.
Transform back to $\mathbf{x}(t)$, that is,

$$
\mathbf{x}(t)=P \mathbf{y}(t)=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right]\left[\begin{array}{c}
c_{1} e^{\lambda_{1} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right]
$$

We conclude: $\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}$.
Remark:

- $A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$.

Constant coefficients homogenoues systems (5.6).

Proof: Recall: $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, and $\mathbf{y}(t)=\left[\begin{array}{c}c_{1} e^{\lambda_{1} t} \\ \vdots \\ c_{n} e^{\lambda_{n} t}\end{array}\right]$.
Transform back to $\mathbf{x}(t)$, that is,

$$
\mathbf{x}(t)=P \mathbf{y}(t)=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right]\left[\begin{array}{c}
c_{1} e^{\lambda_{1} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right]
$$

We conclude: $\quad \mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}$.
Remark:

- $A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$.
- The eigenvalues and eigenvectors of A are crucial to solve the differential linear system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.

Differential linear systems (Sect. 5.4, 5.6, 5.7)

- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).
- Examples: 2×2 linear systems (5.6).
- Phase portraits for 2×2 systems (5.7).

Phase portraits for 2×2 systems (5.7).

Remark:

- There are two main types of graphs for solutions of 2×2 linear systems:

Phase portraits for 2×2 systems (5.7).

Remark:

- There are two main types of graphs for solutions of 2×2 linear systems:
(i) The graphs of the vector components;

Phase portraits for 2×2 systems (5.7).

Remark:

- There are two main types of graphs for solutions of 2×2 linear systems:
(i) The graphs of the vector components;
(ii) The phase portrait.

Phase portraits for 2×2 systems (5.7).

Remark:

- There are two main types of graphs for solutions of 2×2 linear systems:
(i) The graphs of the vector components;
(ii) The phase portrait.
- Case (i): Express the solution in vector components

$$
\mathbf{x}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] \text {, and graph } x_{1} \text { and } x_{2} \text { as functions of } t
$$

Phase portraits for 2×2 systems (5.7).

Remark:

- There are two main types of graphs for solutions of 2×2 linear systems:
(i) The graphs of the vector components;
(ii) The phase portrait.
- Case (i): Express the solution in vector components $\mathbf{x}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$, and graph x_{1} and x_{2} as functions of t. (Recall the solution in the IVP of the previous Example:

Phase portraits for 2×2 systems (5.7).

Remark:

- There are two main types of graphs for solutions of 2×2 linear systems:
(i) The graphs of the vector components;
(ii) The phase portrait.
- Case (i): Express the solution in vector components $\mathbf{x}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$, and graph x_{1} and x_{2} as functions of t. (Recall the solution in the IVP of the previous Example: $x_{1}(t)=3 e^{4 t}-e^{-2 t}$ and $x_{2}(t)=3 e^{4 t}+e^{-2 t}$.)

Phase portraits for 2×2 systems (5.7).

Remark:

- There are two main types of graphs for solutions of 2×2 linear systems:
(i) The graphs of the vector components;
(ii) The phase portrait.
- Case (i): Express the solution in vector components $\mathbf{x}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$, and graph x_{1} and x_{2} as functions of t. (Recall the solution in the IVP of the previous Example: $x_{1}(t)=3 e^{4 t}-e^{-2 t}$ and $x_{2}(t)=3 e^{4 t}+e^{-2 t}$.)
- Case (ii): Express the solution as a vector-valued function,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}
$$

and plot the vector $\mathbf{x}(t)$ for different values of t.

Phase portraits for 2×2 systems (5.7).

Remark:

- There are two main types of graphs for solutions of 2×2 linear systems:
(i) The graphs of the vector components;
(ii) The phase portrait.
- Case (i): Express the solution in vector components $\mathbf{x}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$, and graph x_{1} and x_{2} as functions of t. (Recall the solution in the IVP of the previous Example: $x_{1}(t)=3 e^{4 t}-e^{-2 t}$ and $x_{2}(t)=3 e^{4 t}+e^{-2 t}$.)
- Case (ii): Express the solution as a vector-valued function,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}
$$

and plot the vector $\mathbf{x}(t)$ for different values of t.

- Case (ii) is called a phase portrait.

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t .}
$$

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t .}
$$

Solution:
We start plotting the vectors

$$
\begin{gathered}
\mathbf{v}^{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\mathbf{v}^{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
\end{gathered}
$$

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t .}
$$

Solution:
We start plotting the vectors

$$
\begin{gathered}
\mathbf{v}^{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\mathbf{v}^{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
\end{gathered}
$$

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t .}
$$

Solution:
We now plot the functions

$$
\begin{gathered}
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \\
\mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
\end{gathered}
$$

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t .}
$$

Solution:
We now plot the functions

$$
\begin{gathered}
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \\
\mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} .
\end{gathered}
$$

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} .
$$

Solution:
We now plot the functions

$$
\begin{gathered}
-\mathbf{x}^{(1)}=-\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \\
-\mathbf{x}^{(2)}=-\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} .
\end{gathered}
$$

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} .
$$

Solution:
We now plot the functions

$$
\begin{gathered}
-\mathbf{x}^{(1)}=-\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \\
-\mathbf{x}^{(2)}=-\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t .}
\end{gathered}
$$

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} .
$$

Solution:
We now plot the four functions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)}
\end{array}
$$

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} .
$$

Solution:
We now plot the four functions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)} \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)}
\end{array}
$$

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

Solution:
We now plot the four functions
$\mathbf{x}^{(1)},-\mathbf{x}^{(1)}, \mathbf{x}^{(2)},-\mathbf{x}^{(2)}$,
and $\mathbf{x}^{(1)}+\mathbf{x}^{(2)}$,

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}+\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

Solution:
We now plot the four functions

$$
\mathbf{x}^{(1)},-\mathbf{x}^{(1)}, \mathbf{x}^{(2)},-\mathbf{x}^{(2)}
$$

$$
\text { and } \mathbf{x}^{(1)}+\mathbf{x}^{(2)} \text {, }
$$

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}+\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

Solution:
We now plot the eight functions
$\mathbf{x}^{(1)},-\mathbf{x}^{(1)}, \mathbf{x}^{(2)},-\mathbf{x}^{(2)}$,
$\mathbf{x}^{(1)}+\mathbf{x}^{(2)}, \quad-\mathbf{x}^{(1)}+\mathbf{x}^{(2)}$,
$\mathbf{x}^{(1)}-\mathbf{x}^{(2)}, \quad-\mathbf{x}^{(1)}-\mathbf{x}^{(2)}$.

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} .
$$

Solution:
We now plot the eight functions
$\mathbf{x}^{(1)},-\mathbf{x}^{(1)}, \mathbf{x}^{(2)},-\mathbf{x}^{(2)}$,
$\mathbf{x}^{(1)}+\mathbf{x}^{(2)}, \quad-\mathbf{x}^{(1)}+\mathbf{x}^{(2)}$,
$\mathbf{x}^{(1)}-\mathbf{x}^{(2)}, \quad-\mathbf{x}^{(1)}-\mathbf{x}^{(2)}$.

Phase portraits for 2×2 systems (5.7).

Problem:
Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_{1} \neq \lambda_{2}$, so A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions).

Phase portraits for 2×2 systems (5.7).

Problem:
Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_{1} \neq \lambda_{2}$, so A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions).
Given a solution $\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}$, to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_{1} and c_{2}.

Phase portraits for 2×2 systems (5.7).

Problem:
Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_{1} \neq \lambda_{2}$, so A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions).
Given a solution $\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}$, to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_{1} and c_{2}.

The plots are different depending on the eigenvalues signs.

Phase portraits for 2×2 systems (5.7).

Problem:
Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_{1} \neq \lambda_{2}$, so A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions).
Given a solution $\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}$, to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_{1} and c_{2}.
The plots are different depending on the eigenvalues signs.
We have the following three sub-cases:

Phase portraits for 2×2 systems (5.7).

Problem:
Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_{1} \neq \lambda_{2}$, so A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions).
Given a solution $\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}$, to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_{1} and c_{2}.
The plots are different depending on the eigenvalues signs.
We have the following three sub-cases:
(i) $0<\lambda_{2}<\lambda_{1}$, both positive;

Phase portraits for 2×2 systems (5.7).

Problem:
Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_{1} \neq \lambda_{2}$, so A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions).
Given a solution $\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}$, to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_{1} and c_{2}.
The plots are different depending on the eigenvalues signs.
We have the following three sub-cases:
(i) $0<\lambda_{2}<\lambda_{1}$, both positive;
(ii) $\lambda_{2}<0<\lambda_{1}$, one positive the other negative;

Phase portraits for 2×2 systems (5.7).

Problem:
Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_{1} \neq \lambda_{2}$, so A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions).
Given a solution $\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}$, to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_{1} and c_{2}.
The plots are different depending on the eigenvalues signs.
We have the following three sub-cases:
(i) $0<\lambda_{2}<\lambda_{1}$, both positive;
(ii) $\lambda_{2}<0<\lambda_{1}$, one positive the other negative;
(iii) $\lambda_{2}<\lambda_{1}<0$, both negative.

Phase portraits for 2×2 systems (5.7).

Phase portrait: Case (a), two different, real eigenvalues $\lambda_{1} \neq \lambda_{2}$, sub-case $0<\lambda_{2}<\lambda_{1}$, both eigenvalue positive.

Phase portraits for 2×2 systems.

Phase portrait: Case (a), two different, real eigenvalues $\lambda_{1} \neq \lambda_{2}$, sub-case $\lambda_{2}<0<\lambda_{1}$, one eigenvalue positive the other negative.

Phase portraits for 2×2 systems (5.7).

Phase portrait: Case (a), two different, real eigenvalues $\lambda_{1} \neq \lambda_{2}$, sub-case $\lambda_{2}<\lambda_{1}<0$, both eigenvalues negative.

Complex, distinct eigenvalues (Sect. 5.8)

- Review: The case of diagonalizable matrices.
- Classification of 2×2 diagonalizable systems.
- Real matrix with a pair of complex eigenvalues.
- Phase portraits for 2×2 systems.

Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Example
Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Example
Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: $\lambda_{1}=4, \quad \mathbf{v}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \lambda_{2}=-2, \quad \mathbf{v}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.

Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Example
Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: $\lambda_{1}=4, \quad \mathbf{v}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \lambda_{2}=-2, \quad \mathbf{v}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
The general solution is: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.

Complex, distinct eigenvalues (Sect. 5.8)

- Review: The case of diagonalizable matrices.
- Classification of 2×2 diagonalizable systems.
- Real matrix with a pair of complex eigenvalues.
- Phase portraits for 2×2 systems.

Review: Classification of 2×2 diagonalizable systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

Review: Classification of 2×2 diagonalizable systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).

Review: Classification of 2×2 diagonalizable systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).
(b) $\lambda_{1}=\bar{\lambda}_{2}$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}=\overline{\mathbf{v}}_{2}$, (Section 5.8).

Review: Classification of 2×2 diagonalizable systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).
(b) $\lambda_{1}=\bar{\lambda}_{2}$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}=\overline{\mathbf{v}}_{2}$, (Section 5.8).
(c-1) $\lambda_{1}=\lambda_{2}$ real-valued with two non-proportional eigenvectors \mathbf{v}_{1}, \mathbf{v}_{2}, (Section 5.9).

Review: Classification of 2×2 diagonalizable systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).
(b) $\lambda_{1}=\bar{\lambda}_{2}$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}=\overline{\mathbf{v}}_{2}$, (Section 5.8).
(c-1) $\lambda_{1}=\lambda_{2}$ real-valued with two non-proportional eigenvectors \mathbf{v}_{1}, \mathbf{v}_{2}, (Section 5.9).

Remark:
(c-2) $\lambda_{1}=\lambda_{2}$ real-valued with only one eigen-direction. Hence, A is not diagonalizable, (Section 5.9).

Complex, distinct eigenvalues (Sect. 5.8)

- Review: The case of diagonalizable matrices.
- Classification of 2×2 diagonalizable systems.
- Real matrix with a pair of complex eigenvalues.
- Phase portraits for 2×2 systems.

Real matrix with a pair of complex eigenvalues.

Theorem
If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Real matrix with a pair of complex eigenvalues.

Theorem
If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v}=\lambda \mathbf{v}$ and $\bar{A}=A$.

Real matrix with a pair of complex eigenvalues.

Theorem
If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v}=\lambda \mathbf{v}$ and $\bar{A}=A$. Then

$$
\overline{A \mathbf{v}}=\overline{\lambda \mathbf{v}}
$$

Real matrix with a pair of complex eigenvalues.

Theorem
If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v}=\lambda \mathbf{v}$ and $\bar{A}=A$. Then

$$
\overline{A \mathbf{v}}=\overline{\lambda \mathbf{v}} \quad \Leftrightarrow \quad \bar{A} \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}}
$$

Real matrix with a pair of complex eigenvalues.

Theorem
If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v}=\lambda \mathbf{v}$ and $\bar{A}=A$. Then

$$
\overline{A \mathbf{v}}=\overline{\lambda \mathbf{v}} \quad \Leftrightarrow \quad \bar{A} \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} \quad \Leftrightarrow \quad A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} .
$$

Real matrix with a pair of complex eigenvalues.

Theorem
If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v}=\lambda \mathbf{v}$ and $\bar{A}=A$. Then

$$
\overline{A \mathbf{v}}=\overline{\lambda \mathbf{v}} \quad \Leftrightarrow \quad \bar{A} \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} \quad \Leftrightarrow \quad A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} .
$$

Therefore $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ is an eigen-pair of matrix A.

Real matrix with a pair of complex eigenvalues.

Theorem
If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v}=\lambda \mathbf{v}$ and $\bar{A}=A$. Then

$$
\overline{A \mathbf{v}}=\overline{\lambda \mathbf{v}} \quad \Leftrightarrow \quad \bar{A} \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} \quad \Leftrightarrow \quad A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} .
$$

Therefore $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ is an eigen-pair of matrix A.
Remark: The Theorem above is equivalent to the following:

Real matrix with a pair of complex eigenvalues.

Theorem
If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v}=\lambda \mathbf{v}$ and $\bar{A}=A$. Then

$$
\overline{A \mathbf{v}}=\overline{\lambda \mathbf{v}} \quad \Leftrightarrow \quad \bar{A} \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} \quad \Leftrightarrow \quad A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} .
$$

Therefore $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ is an eigen-pair of matrix A.
Remark: The Theorem above is equivalent to the following: If an $n \times n$ real-valued matrix A has eigen pairs

$$
\lambda_{1}=\alpha+i \beta, \quad \mathbf{v}_{1}=\mathbf{a}+i \mathbf{b}
$$

with $\alpha, \beta \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$, then so is

$$
\lambda_{2}=\alpha-i \beta, \quad \mathbf{v}_{2}=\mathbf{a}-i \mathbf{b} .
$$

Real matrix with a pair of complex eigenvalues.

Theorem (Complex pairs)
If an $n \times n$ real-valued matrix A has eigen pairs

$$
\lambda_{ \pm}=\alpha \pm i \beta, \quad \mathbf{v}^{(\pm)}=\mathbf{a} \pm i \mathbf{b},
$$

with $\alpha, \beta \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$, then the differential equation

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

has a linearly independent set of two complex-valued solutions

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda_{+} t}, \quad \mathbf{x}^{(-)}=\mathbf{v}^{(-)} e^{\lambda_{-} t},
$$

and it also has a linearly independent set of two real-valued solutions

$$
\begin{aligned}
& \mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \\
& \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
\end{aligned}
$$

Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda_{+} t}
$$

Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda_{+} t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}
$$

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda+t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda+t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda+t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

$$
\mathbf{x}^{(+)}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)]
$$

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda+t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

$$
\begin{gathered}
\mathbf{x}^{(+)}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(+)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}+i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}
\end{gathered}
$$

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda+t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

$$
\begin{gathered}
\mathbf{x}^{(+)}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(+)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}+i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}
\end{gathered}
$$

A similar calculation done on $\mathbf{x}^{(-)}$implies
$\mathbf{x}^{(-)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}-i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$.

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda+t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

$$
\begin{gathered}
\mathbf{x}^{(+)}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(+)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}+i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}
\end{gathered}
$$

A similar calculation done on $\mathbf{x}^{(-)}$implies
$\mathbf{x}^{(-)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}-i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$.
Introduce $\mathbf{x}^{(1)}=\left(\mathbf{x}^{(+)}+\mathbf{x}^{(-)}\right) / 2$,

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda_{+} t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

$$
\begin{gathered}
\mathbf{x}^{(+)}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(+)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}+i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}
\end{gathered}
$$

A similar calculation done on $\mathbf{x}^{(-)}$implies
$\mathbf{x}^{(-)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}-i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$.
Introduce $\mathbf{x}^{(1)}=\left(\mathbf{x}^{(+)}+\mathbf{x}^{(-)}\right) / 2, \mathbf{x}^{(2)}=\left(\mathbf{x}^{(+)}-\mathbf{x}^{(-)}\right) /(2 i)$,

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda_{+} t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

$$
\begin{gathered}
\mathbf{x}^{(+)}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(+)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}+i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}
\end{gathered}
$$

A similar calculation done on $\mathbf{x}^{(-)}$implies
$\mathbf{x}^{(-)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}-i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$.
Introduce $\mathbf{x}^{(1)}=\left(\mathbf{x}^{(+)}+\mathbf{x}^{(-)}\right) / 2, \mathbf{x}^{(2)}=\left(\mathbf{x}^{(+)}-\mathbf{x}^{(-)}\right) /(2 i)$, then

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}
$$

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda_{+} t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

$$
\begin{gathered}
\mathbf{x}^{(+)}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(+)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}+i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}
\end{gathered}
$$

A similar calculation done on $\mathbf{x}^{(-)}$implies
$\mathbf{x}^{(-)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}-i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$.
Introduce $\mathbf{x}^{(1)}=\left(\mathbf{x}^{(+)}+\mathbf{x}^{(-)}\right) / 2, \mathbf{x}^{(2)}=\left(\mathbf{x}^{(+)}-\mathbf{x}^{(-)}\right) /(2 i)$, then

$$
\begin{aligned}
& \mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \\
& \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
\end{aligned}
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: (1) Find the eigenvalues of matrix A above,

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9 .
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9 .
$$

The roots of the characteristic polynomial are

$$
(\lambda-2)^{2}+9=0
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9 .
$$

The roots of the characteristic polynomial are

$$
(\lambda-2)^{2}+9=0 \quad \Rightarrow \quad \lambda_{ \pm}-2= \pm 3 i
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9 .
$$

The roots of the characteristic polynomial are

$$
(\lambda-2)^{2}+9=0 \quad \Rightarrow \quad \lambda_{ \pm}-2= \pm 3 i \quad \Rightarrow \quad \lambda_{ \pm}=2 \pm 3 i
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9 .
$$

The roots of the characteristic polynomial are

$$
(\lambda-2)^{2}+9=0 \quad \Rightarrow \quad \lambda_{ \pm}-2= \pm 3 i \quad \Rightarrow \quad \lambda_{ \pm}=2 \pm 3 i
$$

(2) Find the eigenvectors of matrix A above.

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9 .
$$

The roots of the characteristic polynomial are

$$
(\lambda-2)^{2}+9=0 \quad \Rightarrow \quad \lambda_{ \pm}-2= \pm 3 i \quad \Rightarrow \quad \lambda_{ \pm}=2 \pm 3 i
$$

(2) Find the eigenvectors of matrix A above. For λ_{+},

$$
A-\lambda_{+} I
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9 .
$$

The roots of the characteristic polynomial are

$$
(\lambda-2)^{2}+9=0 \quad \Rightarrow \quad \lambda_{ \pm}-2= \pm 3 i \quad \Rightarrow \quad \lambda_{ \pm}=2 \pm 3 i
$$

(2) Find the eigenvectors of matrix A above. For λ_{+},

$$
A-\lambda_{+} I=A-(2+3 i) I
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9 .
$$

The roots of the characteristic polynomial are

$$
(\lambda-2)^{2}+9=0 \quad \Rightarrow \quad \lambda_{ \pm}-2= \pm 3 i \quad \Rightarrow \quad \lambda_{ \pm}=2 \pm 3 i
$$

(2) Find the eigenvectors of matrix A above. For λ_{+},

$$
A-\lambda_{+} I=A-(2+3 i) I=\left[\begin{array}{cc}
2-(2+3 i) & 3 \\
-3 & 2-(2+3 i)
\end{array}\right]
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$.

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right]
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right]
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
-1 & -i
\end{array}\right]
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
0 & 0
\end{array}\right] .
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
0 & 0
\end{array}\right]
$$

So, the eigenvector $\mathbf{v}^{(+)}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
0 & 0
\end{array}\right]
$$

So, the eigenvector $\mathbf{v}^{(+)}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ is given by $v_{1}=-i v_{2}$.

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & i \\
0 & 0
\end{array}\right] .
$$

So, the eigenvector $\mathbf{v}^{(+)}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ is given by $v_{1}=-i v_{2}$. Choose

$$
v_{2}=1, \quad v_{1}=-i,
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
0 & 0
\end{array}\right]
$$

So, the eigenvector $\mathbf{v}^{(+)}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ is given by $v_{1}=-i v_{2}$. Choose

$$
v_{2}=1, \quad v_{1}=-i, \quad \Rightarrow \quad \mathbf{v}^{(+)}=\left[\begin{array}{r}
-i \\
1
\end{array}\right], \quad \lambda_{+}=2+3 i
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\overline{\mathbf{v}}^{(+)}$,

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
Notice that $\mathbf{v}^{(\pm)}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \pm\left[\begin{array}{c}-1 \\ 0\end{array}\right] i$.

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
Notice that $\mathbf{v}^{(\pm)}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \pm\left[\begin{array}{c}-1 \\ 0\end{array}\right] i$.
The notation $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b} i$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
Notice that $\mathbf{v}^{(\pm)}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \pm\left[\begin{array}{c}-1 \\ 0\end{array}\right] i$.
The notation $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b i}$ implies

$$
\alpha=2,
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
Notice that $\mathbf{v}^{(\pm)}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \pm\left[\begin{array}{c}-1 \\ 0\end{array}\right] i$.
The notation $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b i}$ implies

$$
\alpha=2, \quad \beta=3
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
Notice that $\mathbf{v}^{(\pm)}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \pm\left[\begin{array}{c}-1 \\ 0\end{array}\right] i$.
The notation $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b i}$ implies

$$
\alpha=2, \quad \beta=3, \quad \mathbf{a}=\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
Notice that $\mathbf{v}^{(\pm)}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \pm\left[\begin{array}{c}-1 \\ 0\end{array}\right] i$.
The notation $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b i}$ implies

$$
\alpha=2, \quad \beta=3, \quad \mathbf{a}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] .
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: $\alpha=2, \beta=3, \quad \mathbf{a}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \quad$ and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: $\alpha=2, \quad \beta=3, \quad \mathbf{a}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \quad$ and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Real-valued solutions are $\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}$, and

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: $\alpha=2, \quad \beta=3, \quad \mathbf{a}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \quad$ and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Real-valued solutions are $\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}$, and $\mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$.

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: Recall: $\alpha=2, \quad \beta=3, \quad \mathbf{a}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \quad$ and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Real-valued solutions are $\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}$, and $\mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$. That is

$$
\mathbf{x}^{(1)}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] \cos (3 t)-\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \sin (3 t)\right) e^{2 t}
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: Recall: $\alpha=2, \beta=3, \quad \mathbf{a}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Real-valued solutions are $\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}$, and $\mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$. That is

$$
\mathbf{x}^{(1)}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] \cos (3 t)-\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \sin (3 t)\right) e^{2 t} \Rightarrow \mathbf{x}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right] e^{2 t}
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: Recall: $\alpha=2, \beta=3, \mathbf{a}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Real-valued solutions are $\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}$, and $\mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$. That is

$$
\begin{aligned}
& \mathbf{x}^{(1)}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] \cos (3 t)-\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \sin (3 t)\right) e^{2 t} \Rightarrow \mathbf{x}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right] e^{2 t} . \\
& \mathbf{x}^{(2)}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] \sin (3 t)+\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \cos (3 t)\right) e^{2 t}
\end{aligned}
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: Recall: $\alpha=2, \beta=3, \mathbf{a}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Real-valued solutions are $\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}$, and $\mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$. That is

$$
\begin{aligned}
& \mathbf{x}^{(1)}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] \cos (3 t)-\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \sin (3 t)\right) e^{2 t} \Rightarrow \mathbf{x}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right] e^{2 t} . \\
& \mathbf{x}^{(2)}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] \sin (3 t)+\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \cos (3 t)\right) e^{2 t} \Rightarrow \mathbf{x}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right] e^{2 t} .
\end{aligned}
$$

Complex, distinct eigenvalues (Sect. 5.8)

- Review: The case of diagonalizable matrices.
- Classification of 2×2 diagonalizable systems.
- Real matrix with a pair of complex eigenvalues.
- Phase portraits for 2×2 systems.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right]$.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{rr}2 & 3 \\ -3 & 2\end{array}\right]$.
Solution:
The phase portrait of the vectors

$$
\tilde{\mathbf{x}}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right],
$$

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right]$.
Solution:
The phase portrait of the vectors

$$
\begin{gathered}
\tilde{\mathbf{x}}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right], \\
\tilde{\mathbf{x}}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right],
\end{gathered}
$$

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right]$.
Solution:
The phase portrait of the vectors

$$
\begin{gathered}
\tilde{\mathbf{x}}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right], \\
\tilde{\mathbf{x}}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right],
\end{gathered}
$$

is a radius one circle.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right]$.
Solution:
The phase portrait of the vectors

$$
\begin{gathered}
\tilde{\mathbf{x}}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right], \\
\tilde{\mathbf{x}}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right],
\end{gathered}
$$

is a radius one circle.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right]$.
Solution:
The phase portrait of the solutions

$$
\tilde{\mathbf{x}}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right] e^{2 t},
$$

$$
\tilde{\mathbf{x}}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right] e^{2 t}
$$

are outgoing spirals.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right]$.

Solution:

The phase portrait of the solutions

$$
\begin{gathered}
\tilde{\mathbf{x}}^{(1)}=\left[\begin{array}{l}
\sin (3 t) \\
\cos (3 t)
\end{array}\right] e^{2 t} \\
\tilde{\mathbf{x}}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right] e^{2 t},
\end{gathered}
$$

are outgoing spirals.

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{a} and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha=0, \alpha>0$, and $\alpha<0$, where $\beta>0$.

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{a} and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha=0, \alpha>0$, and $\alpha<0$, where $\beta>0$.
Solution:

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{a} and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha=0, \alpha>0$, and $\alpha<0$, where $\beta>0$.
Solution:

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{a} and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha=0, \alpha>0$, and $\alpha<0$, where $\beta>0$.
Solution:

Complex, distinct eigenvalues (Sect. 5.9)

- Review: Classification of 2×2 diagonalizable systems.
- Review: The case of diagonalizable matrices.
- The algebraic multiplicity of an eigenvalue.
- Non-diagonalizable matrices with a repeated eigenvalue.
- Phase portraits for 2×2 systems.

Review: Classification of 2×2 diagonalizable systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

Review: Classification of 2×2 diagonalizable systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).

Review: Classification of 2×2 diagonalizable systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).
(b) $\lambda_{1}=\bar{\lambda}_{2}$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}=\overline{\mathbf{v}}_{2}$, (Section 5.8).

Review: Classification of 2×2 diagonalizable systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).
(b) $\lambda_{1}=\bar{\lambda}_{2}$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}=\overline{\mathbf{v}}_{2}$, (Section 5.8).
(c-1) $\lambda_{1}=\lambda_{2}$ real-valued with two non-proportional eigenvectors \mathbf{v}_{1}, \mathbf{v}_{2}, (Section 5.9).

Review: Classification of 2×2 diagonalizable systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).
(b) $\lambda_{1}=\bar{\lambda}_{2}$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}=\overline{\mathbf{v}}_{2}$, (Section 5.8).
(c-1) $\lambda_{1}=\lambda_{2}$ real-valued with two non-proportional eigenvectors \mathbf{v}_{1}, \mathbf{v}_{2}, (Section 5.9).

Remark:
(c-2) $\lambda_{1}=\lambda_{2}$ real-valued with only one eigen-direction. Hence, A is not diagonalizable, (Section 5.9).

Complex, distinct eigenvalues (Sect. 5.9)

- Review: Classification of 2×2 diagonalizable systems.
- Review: The case of diagonalizable matrices.
- The algebraic multiplicity of an eigenvalue.
- Non-diagonalizable matrices with a repeated eigenvalue.
- Phase portraits for 2×2 systems.

Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Complex, distinct eigenvalues (Sect. 5.9)

- Review: Classification of 2×2 diagonalizable systems.
- Review: The case of diagonalizable matrices.
- The algebraic multiplicity of an eigenvalue.
- Non-diagonalizable matrices with a repeated eigenvalue.
- Phase portraits for 2×2 systems.

The algebraic multiplicity of an eigenvalue.

Definition

Let $\left\{\lambda_{1}, \cdots, \lambda_{k}\right\}$ be the set of eigenvalues of an $n \times n$ matrix, where $1 \leqslant k \leqslant n$, hence the characteristic polynomial is

$$
p(\lambda)=(-1)^{n}\left(\lambda-\lambda_{1}\right)^{r_{1}} \cdots\left(\lambda-\lambda_{k}\right)^{r_{k}} .
$$

The positive integer r_{i}, for $i=1, \cdots, k$, is called the algebraic multiplicity of the eigenvalue λ_{i}. The eigenvalue λ_{i} is called repeated iff $r_{i}>1$.

The algebraic multiplicity of an eigenvalue.

Definition

Let $\left\{\lambda_{1}, \cdots, \lambda_{k}\right\}$ be the set of eigenvalues of an $n \times n$ matrix, where $1 \leqslant k \leqslant n$, hence the characteristic polynomial is

$$
p(\lambda)=(-1)^{n}\left(\lambda-\lambda_{1}\right)^{r_{1}} \cdots\left(\lambda-\lambda_{k}\right)^{r_{k}} .
$$

The positive integer r_{i}, for $i=1, \cdots, k$, is called the algebraic multiplicity of the eigenvalue λ_{i}. The eigenvalue λ_{i} is called repeated iff $r_{i}>1$.

Remark:

- A matrix with repeated eigenvalues may or may not be diagonalizable.

The algebraic multiplicity of an eigenvalue.

Definition

Let $\left\{\lambda_{1}, \cdots, \lambda_{k}\right\}$ be the set of eigenvalues of an $n \times n$ matrix, where $1 \leqslant k \leqslant n$, hence the characteristic polynomial is

$$
p(\lambda)=(-1)^{n}\left(\lambda-\lambda_{1}\right)^{r_{1}} \cdots\left(\lambda-\lambda_{k}\right)^{r_{k}} .
$$

The positive integer r_{i}, for $i=1, \cdots, k$, is called the algebraic multiplicity of the eigenvalue λ_{i}. The eigenvalue λ_{i} is called repeated iff $r_{i}>1$.

Remark:

- A matrix with repeated eigenvalues may or may not be diagonalizable.
- Equivalently: An $n \times n$ matrix with repeated eigenvalues may or may not have a linearly independent set of n eigenvectors.

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solution: The eigenvalues of A are the solutions of

$$
\left|\begin{array}{ccc}
(3-\lambda) & 0 & 1 \\
0 & (3-\lambda) & 2 \\
0 & 0 & (1-\lambda)
\end{array}\right|
$$

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solution: The eigenvalues of A are the solutions of

$$
\left|\begin{array}{ccc}
(3-\lambda) & 0 & 1 \\
0 & (3-\lambda) & 2 \\
0 & 0 & (1-\lambda)
\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)
$$

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solution: The eigenvalues of A are the solutions of

$$
\left|\begin{array}{ccc}
(3-\lambda) & 0 & 1 \\
0 & (3-\lambda) & 2 \\
0 & 0 & (1-\lambda)
\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)=0
$$

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solution: The eigenvalues of A are the solutions of

$$
\left|\begin{array}{ccc}
(3-\lambda) & 0 & 1 \\
0 & (3-\lambda) & 2 \\
0 & 0 & (1-\lambda)
\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)=0
$$

We conclude: $\lambda_{1}=3, r_{1}=2$,

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solution: The eigenvalues of A are the solutions of

$$
\left|\begin{array}{ccc}
(3-\lambda) & 0 & 1 \\
0 & (3-\lambda) & 2 \\
0 & 0 & (1-\lambda)
\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)=0
$$

We conclude: $\lambda_{1}=3, r_{1}=2$, and $\lambda_{2}=1, r_{2}=1$.

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solution: The eigenvalues of A are the solutions of

$$
\left|\begin{array}{ccc}
(3-\lambda) & 0 & 1 \\
0 & (3-\lambda) & 2 \\
0 & 0 & (1-\lambda)
\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)=0
$$

We conclude: $\lambda_{1}=3, r_{1}=2$, and $\lambda_{2}=1, r_{2}=1$.
Verify that the eigenvalues are: $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ -2 \\ 2\end{array}\right]\right\}$.

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solution: The eigenvalues of A are the solutions of

$$
\left|\begin{array}{ccc}
(3-\lambda) & 0 & 1 \\
0 & (3-\lambda) & 2 \\
0 & 0 & (1-\lambda)
\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)=0
$$

We conclude: $\lambda_{1}=3, r_{1}=2$, and $\lambda_{2}=1, r_{2}=1$.
Verify that the eigenvalues are: $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ -2 \\ 2\end{array}\right]\right\}$.
We conclude: A is diagonalizable.

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solution: The eigenvalues of B are the solutions of

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solution: The eigenvalues of B are the solutions of

$$
\left|\begin{array}{ccc}
(3-\lambda) & 1 & 1 \\
0 & (3-\lambda) & 2 \\
0 & 0 & (1-\lambda)
\end{array}\right|
$$

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solution: The eigenvalues of B are the solutions of

$$
\left|\begin{array}{ccc}
(3-\lambda) & 1 & 1 \\
0 & (3-\lambda) & 2 \\
0 & 0 & (1-\lambda)
\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)
$$

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solution: The eigenvalues of B are the solutions of

$$
\left|\begin{array}{ccc}
(3-\lambda) & 1 & 1 \\
0 & (3-\lambda) & 2 \\
0 & 0 & (1-\lambda)
\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)=0
$$

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solution: The eigenvalues of B are the solutions of

$$
\left|\begin{array}{ccc}
(3-\lambda) & 1 & 1 \\
0 & (3-\lambda) & 2 \\
0 & 0 & (1-\lambda)
\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)=0
$$

We conclude: $\lambda_{1}=3, r_{1}=2$,

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solution: The eigenvalues of B are the solutions of

$$
\left|\begin{array}{ccc}
(3-\lambda) & 1 & 1 \\
0 & (3-\lambda) & 2 \\
0 & 0 & (1-\lambda)
\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)=0
$$

We conclude: $\lambda_{1}=3, r_{1}=2$, and $\lambda_{2}=1, r_{2}=1$.

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solution: The eigenvalues of B are the solutions of

$$
\left|\begin{array}{ccc}
(3-\lambda) & 1 & 1 \\
0 & (3-\lambda) & 2 \\
0 & 0 & (1-\lambda)
\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)=0
$$

We conclude: $\lambda_{1}=3, r_{1}=2$, and $\lambda_{2}=1, r_{2}=1$.
Verify that the eigenvalues are: $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\right\}$.

The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solution: The eigenvalues of B are the solutions of

$$
\left|\begin{array}{ccc}
(3-\lambda) & 1 & 1 \\
0 & (3-\lambda) & 2 \\
0 & 0 & (1-\lambda)
\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)=0
$$

We conclude: $\lambda_{1}=3, r_{1}=2$, and $\lambda_{2}=1, r_{2}=1$.
Verify that the eigenvalues are: $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\right\}$.
We conclude: B is not diagonalizable.

The algebraic multiplicity of an eigenvalue.

Example
Find a fundamental set of solutions to

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), \quad A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right],
$$

Solution: Since matrix A is diagonalizable, with eigen-pairs,

$$
\lambda_{1}=3, \quad\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} \quad \text { and } \quad \lambda_{2}=1, \quad\left\{\left[\begin{array}{c}
-1 \\
-2 \\
2
\end{array}\right]\right\} .
$$

The algebraic multiplicity of an eigenvalue.

Example
Find a fundamental set of solutions to

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), \quad A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right],
$$

Solution: Since matrix A is diagonalizable, with eigen-pairs,

$$
\lambda_{1}=3, \quad\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} \quad \text { and } \quad \lambda_{2}=1, \quad\left\{\left[\begin{array}{c}
-1 \\
-2 \\
2
\end{array}\right]\right\} .
$$

We conclude that a set of fundamental solutions is

$$
\left\{\mathbf{x}_{1}(t)=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] e^{3 t}, \mathbf{x}_{2}(t)=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] e^{3 t}, \mathbf{x}_{3}(t)=\left[\begin{array}{c}
-1 \\
-2 \\
2
\end{array}\right] e^{t}\right\} .
$$

Complex, distinct eigenvalues (Sect. 5.9)

- Review: Classification of 2×2 diagonalizable systems.
- Review: The case of diagonalizable matrices.
- The algebraic multiplicity of an eigenvalue.
- Non-diagonalizable matrices with a repeated eigenvalue.
- Phase portraits for 2×2 systems.

Non-diagonalizable matrices with a repeated eigenvalue.

Theorem (Repeated eigenvalue)
If λ is an eigenvalue of an $n \times n$ matrix A having algebraic multiplicity $r=2$ and only one associated eigen-direction, then the differential equation

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

has a linearly independent set of solutions given by

$$
\left\{\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}\right\}
$$

where the vector \mathbf{w} is solution of

$$
(A-\lambda I) \mathbf{w}=\mathbf{v}
$$

which always has a solution \mathbf{w}.

Non-diagonalizable matrices with a repeated eigenvalue.
Recall: The case of a single second order equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}=\left(r-r_{1}\right)^{2} .
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}=\left(r-r_{1}\right)^{2} .
$$

In this case a fundamental set of solutions is

$$
\left\{y_{1}(t)=e^{r_{1} t}, \quad y_{2}(t)=t e^{r_{1} t}\right\}
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}=\left(r-r_{1}\right)^{2} .
$$

In this case a fundamental set of solutions is

$$
\left\{y_{1}(t)=e^{r_{1} t}, \quad y_{2}(t)=t e^{r_{1} t}\right\} .
$$

This is not the case with systems of first order linear equations,

$$
\left\{\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}\right\} .
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}=\left(r-r_{1}\right)^{2} .
$$

In this case a fundamental set of solutions is

$$
\left\{y_{1}(t)=e^{r_{1} t}, \quad y_{2}(t)=t e^{r_{1} t}\right\} .
$$

This is not the case with systems of first order linear equations,

$$
\left\{\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}\right\} .
$$

In general, $\mathbf{w} \neq \mathbf{0}$.

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.

Non-diagonalizable matrices with a repeated eigenvalue.

Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A.

Non-diagonalizable matrices with a repeated eigenvalue.

Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

So $p(\lambda)=\lambda^{2}+2 \lambda+1$

Non-diagonalizable matrices with a repeated eigenvalue.

Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

So $p(\lambda)=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2}$.

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

So $p(\lambda)=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2}$. The roots and multiplicity are

$$
\lambda=-1, \quad r=2 .
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

So $p(\lambda)=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2}$. The roots and multiplicity are

$$
\lambda=-1, \quad r=2 .
$$

The corresponding eigenvectors are the solutions of $(A+I) \mathbf{v}=\mathbf{0}$,

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

So $p(\lambda)=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2}$. The roots and multiplicity are

$$
\lambda=-1, \quad r=2 .
$$

The corresponding eigenvectors are the solutions of $(A+I) \mathbf{v}=\mathbf{0}$,

$$
\left[\begin{array}{cc}
\left(-\frac{3}{2}+1\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}+1\right)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & 1 \\
-\frac{1}{4} & \frac{1}{2}
\end{array}\right]
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

So $p(\lambda)=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2}$. The roots and multiplicity are

$$
\lambda=-1, \quad r=2 .
$$

The corresponding eigenvectors are the solutions of $(A+I) \mathbf{v}=\mathbf{0}$,

$$
\left[\begin{array}{cc}
\left(-\frac{3}{2}+1\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}+1\right)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & 1 \\
-\frac{1}{4} & \frac{1}{2}
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right]
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

So $p(\lambda)=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2}$. The roots and multiplicity are

$$
\lambda=-1, \quad r=2 .
$$

The corresponding eigenvectors are the solutions of $(A+I) \mathbf{v}=\mathbf{0}$,

$$
\left[\begin{array}{cc}
\left(-\frac{3}{2}+1\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}+1\right)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & 1 \\
-\frac{1}{4} & \frac{1}{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$.

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$. We obtain,

$$
\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] v_{2} .
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$. We obtain,

$$
\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] v_{2}
$$

We conclude that this eigenvalue has only one eigen-direction.

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$. We obtain,

$$
\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] v_{2} .
$$

We conclude that this eigenvalue has only one eigen-direction. Matrix A is not diagonalizable.

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$. We obtain,

$$
\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] v_{2} .
$$

We conclude that this eigenvalue has only one eigen-direction. Matrix A is not diagonalizable. Theorem above says we need to find \mathbf{w} solution of $(A+I) \mathbf{w}=\mathbf{v}$.

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$. We obtain,

$$
\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] v_{2}
$$

We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find \mathbf{w} solution of $(A+I) \mathbf{w}=\mathbf{v}$.

$$
\left[\begin{array}{rr|r}
-\frac{1}{2} & 1 & 2 \\
-\frac{1}{4} & \frac{1}{2} & 1
\end{array}\right]
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$. We obtain,

$$
\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] v_{2}
$$

We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find \mathbf{w} solution of $(A+I) \mathbf{w}=\mathbf{v}$.

$$
\left[\begin{array}{rr|r}
-\frac{1}{2} & 1 & 2 \\
-\frac{1}{4} & \frac{1}{2} & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & -2 & -4 \\
1 & -2 & -4
\end{array}\right]
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$. We obtain,

$$
\lambda=-1, \quad v=\left[\begin{array}{l}
2 \\
1
\end{array}\right] v_{2} .
$$

We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find \mathbf{w} solution of $(A+I) \mathbf{w}=\mathbf{v}$.

$$
\left[\begin{array}{cc|c}
-\frac{1}{2} & 1 & 2 \\
-\frac{1}{4} & \frac{1}{2} & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & -2 & -4 \\
1 & -2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & -2 & -4 \\
0 & 0 & 0
\end{array}\right]
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall that:
$\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right] \quad v_{2}$, and $(A+I) \mathbf{w}=\mathbf{v} \Rightarrow\left[\begin{array}{cc|c}1 & -2 & -4 \\ 0 & 0 & 0\end{array}\right]$.

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall that:

$$
\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \quad v_{2}, \quad \text { and }(A+I) \mathbf{w}=\mathbf{v} \Rightarrow\left[\begin{array}{cc|c}
1 & -2 & -4 \\
0 & 0 & 0
\end{array}\right] .
$$

We obtain $w_{1}=2 w_{2}-4$.

Non-diagonalizable matrices with a repeated eigenvalue.

Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall that:

$$
\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \quad v_{2}, \quad \text { and }(A+I) \mathbf{w}=\mathbf{v} \Rightarrow\left[\begin{array}{cc|c}
1 & -2 & -4 \\
0 & 0 & 0
\end{array}\right] .
$$

We obtain $w_{1}=2 w_{2}-4$. That is, $\mathbf{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right] w_{2}+\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall that:
$\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right] v_{2}$, and $(A+I) \mathbf{w}=\mathbf{v} \Rightarrow\left[\begin{array}{cc|c}1 & -2 & -4 \\ 0 & 0 & 0\end{array}\right]$.
We obtain $w_{1}=2 w_{2}-4$. That is, $\mathbf{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right] w_{2}+\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.
Given a solution \mathbf{w}, then $c \mathbf{v}+\mathbf{w}$ is also a solution, $c \in \mathbb{R}$.

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall that:
$\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right] \quad v_{2}$, and $(A+I) \mathbf{w}=\mathbf{v} \Rightarrow\left[\begin{array}{cc|c}1 & -2 & -4 \\ 0 & 0 & 0\end{array}\right]$.
We obtain $w_{1}=2 w_{2}-4$. That is, $\mathbf{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right] w_{2}+\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.
Given a solution \mathbf{w}, then $c \mathbf{v}+\mathbf{w}$ is also a solution, $c \in \mathbb{R}$.
We choose the simplest solution, $\mathbf{w}=\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall that:
$\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right] \quad v_{2}$, and $(A+I) \mathbf{w}=\mathbf{v} \Rightarrow\left[\begin{array}{cc|c}1 & -2 & -4 \\ 0 & 0 & 0\end{array}\right]$.
We obtain $w_{1}=2 w_{2}-4$. That is, $\mathbf{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right] w_{2}+\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.
Given a solution \mathbf{w}, then $c \mathbf{v}+\mathbf{w}$ is also a solution, $c \in \mathbb{R}$.
We choose the simplest solution, $\mathbf{w}=\left[\begin{array}{c}-4 \\ 0\end{array}\right]$. We conclude,

$$
\mathbf{x}^{(1)}(t)=\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}, \quad \mathbf{x}^{(2)}(t)=\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t} .
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find the solution \mathbf{x} to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right]
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example
Find the solution \mathbf{x} to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right]
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t}
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find the solution \mathbf{x} to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right]
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{r}
-4 \\
0
\end{array}\right]\right) e^{-t}
$$

The initial condition is $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find the solution x to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right] .
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t}
$$

The initial condition is $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find the solution x to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right] .
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t} .
$$

The initial condition is $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.

$$
\left[\begin{array}{cc}
2 & -4 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example
Find the solution x to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right] .
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t} .
$$

The initial condition is $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.

$$
\left[\begin{array}{cc}
2 & -4 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
0 & 4 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example

Find the solution \mathbf{x} to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right] .
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t} .
$$

The initial condition is $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.

$$
\left[\begin{array}{cc}
2 & -4 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
0 & 4 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 / 4
\end{array}\right] .
$$

Non-diagonalizable matrices with a repeated eigenvalue.

Example
Find the solution x to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right] .
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t} .
$$

The initial condition is $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.

$$
\left[\begin{array}{cc}
2 & -4 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
0 & 4 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 / 4
\end{array}\right] .
$$

We conclude: $\mathbf{x}(t)=\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}+\frac{1}{4}\left(\left[\begin{array}{c}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-4 \\ 0\end{array}\right]\right) e^{-t}$.

Complex, distinct eigenvalues (Sect. 5.9)

- Review: Classification of 2×2 diagonalizable systems.
- Review: The case of diagonalizable matrices.
- The algebraic multiplicity of an eigenvalue.
- Non-diagonalizable matrices with a repeated eigenvalue.
- Phase portraits for 2×2 systems.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
We start plotting the vectors

$$
\begin{gathered}
\mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \\
\mathbf{w}=\left[\begin{array}{c}
-4 \\
0
\end{array}\right] .
\end{gathered}
$$

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
We start plotting the vectors

$$
\begin{gathered}
\mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \\
\mathbf{w}=\left[\begin{array}{c}
-4 \\
0
\end{array}\right] .
\end{gathered}
$$

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
Now plot the solutions

$$
\begin{gathered}
\mathbf{x}^{(1)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t} \\
\mathbf{x}^{(2)}=\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t} .
\end{gathered}
$$

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
Now plot the solutions

$$
\begin{gathered}
\mathbf{x}^{(1)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t} \\
\mathbf{x}^{(2)}=\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t} .
\end{gathered}
$$

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
Now plot the solutions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)},
\end{array}
$$

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
Now plot the solutions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)},
\end{array}
$$

This is the case $\lambda<0$.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
Now plot the solutions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)},
\end{array}
$$

This is the case $\lambda<0$.

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{v} and \mathbf{w}, and any constant λ, plot the phase portraits of the functions

$$
\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}
$$

Solution:
The case $\lambda<0$. We plot the functions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)}
\end{array}
$$

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{v} and \mathbf{w}, and any constant λ, plot the phase portraits of the functions

$$
\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}
$$

Solution:
The case $\lambda<0$. We plot the functions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)}
\end{array}
$$

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{v} and \mathbf{w}, and any constant λ, plot the phase portraits of the functions

$$
\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}
$$

Solution:
The case $\lambda>0$. We plot the functions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)}
\end{array}
$$

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{v} and \mathbf{w}, and any constant λ, plot the phase portraits of the functions

$$
\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}
$$

Solution:
The case $\lambda>0$. We plot the functions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)} \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)}
\end{array}
$$

