The Laplace Transform of step functions (Sect. 4.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

Overview and notation.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with discontinuous source functions.

Overview and notation.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with discontinuous source functions.

Notation:
If $\mathcal{L}[f(t)]=F(s)$, then we denote $\mathcal{L}^{-1}[F(s)]=f(t)$.

Overview and notation.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with discontinuous source functions.

Notation:
If $\mathcal{L}[f(t)]=F(s)$, then we denote $\mathcal{L}^{-1}[F(s)]=f(t)$.
Remark: One can show that for a particular type of functions f, that includes all functions we work with in this Section, the notation above is well-defined.

Overview and notation.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with discontinuous source functions.

Notation:
If $\mathcal{L}[f(t)]=F(s)$, then we denote $\mathcal{L}^{-1}[F(s)]=f(t)$.
Remark: One can show that for a particular type of functions f, that includes all functions we work with in this Section, the notation above is well-defined.

Example

From the Laplace Transform table we know that $\mathcal{L}\left[e^{a t}\right]=\frac{1}{s-a}$.

Overview and notation.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with discontinuous source functions.

Notation:
If $\mathcal{L}[f(t)]=F(s)$, then we denote $\mathcal{L}^{-1}[F(s)]=f(t)$.
Remark: One can show that for a particular type of functions f, that includes all functions we work with in this Section, the notation above is well-defined.

Example

From the Laplace Transform table we know that $\mathcal{L}\left[e^{a t}\right]=\frac{1}{s-a}$.
Then also holds that $\mathcal{L}^{-1}\left[\frac{1}{s-a}\right]=e^{a t}$.

The Laplace Transform of step functions (Sect. 4.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

The definition of a step function.

Definition
A function u is called a step function at $t=0$ iff holds

$$
u(t)= \begin{cases}0 & \text { for } t<0 \\ 1 & \text { for } t \geqslant 0\end{cases}
$$

The definition of a step function.

Definition
A function u is called a step function at $t=0$ iff holds

$$
u(t)= \begin{cases}0 & \text { for } t<0 \\ 1 & \text { for } t \geqslant 0\end{cases}
$$

Example

Graph the step function values $u(t)$ above, and the translations $u(t-c)$ and $u(t+c)$ with $c>0$.

The definition of a step function.

Definition
A function u is called a step function at $t=0$ iff holds

$$
u(t)= \begin{cases}0 & \text { for } t<0 \\ 1 & \text { for } t \geqslant 0\end{cases}
$$

Example

Graph the step function values $u(t)$ above, and the translations $u(t-c)$ and $u(t+c)$ with $c>0$.

Solution:

The definition of a step function.

Definition

A function u is called a step function at $t=0$ iff holds

$$
u(t)= \begin{cases}0 & \text { for } t<0 \\ 1 & \text { for } t \geqslant 0\end{cases}
$$

Example

Graph the step function values $u(t)$ above, and the translations $u(t-c)$ and $u(t+c)$ with $c>0$.

Solution:

The definition of a step function.

Definition

A function u is called a step function at $t=0$ iff holds

$$
u(t)= \begin{cases}0 & \text { for } t<0 \\ 1 & \text { for } t \geqslant 0\end{cases}
$$

Example

Graph the step function values $u(t)$ above, and the translations $u(t-c)$ and $u(t+c)$ with $c>0$.

Solution:

The definition of a step function.

Remark: Given any function values $f(t)$ and $c>0$, then $f(t-c)$ is a right translation of f and $f(t+c)$ is a left translation of f.

The definition of a step function.

Remark: Given any function values $f(t)$ and $c>0$, then $f(t-c)$ is a right translation of f and $f(t+c)$ is a left translation of f.

Example

The definition of a step function.

Remark: Given any function values $f(t)$ and $c>0$, then $f(t-c)$ is a right translation of f and $f(t+c)$ is a left translation of f.

Example

The definition of a step function.

Remark: Given any function values $f(t)$ and $c>0$, then $f(t-c)$ is a right translation of f and $f(t+c)$ is a left translation of f.

Example

The definition of a step function.

Remark: Given any function values $f(t)$ and $c>0$, then $f(t-c)$ is a right translation of f and $f(t+c)$ is a left translation of f.

Example

The Laplace Transform of step functions (Sect. 4.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

Piecewise discontinuous functions.

Example

Graph of the function $b(t)=u(t-a)-u(t-b)$, with $0<a<b$.

Piecewise discontinuous functions.

Example

Graph of the function $b(t)=u(t-a)-u(t-b)$, with $0<a<b$.
Solution: The bump function b can be graphed as follows:

Piecewise discontinuous functions.

Example

Graph of the function $b(t)=u(t-a)-u(t-b)$, with $0<a<b$.
Solution: The bump function b can be graphed as follows:

Piecewise discontinuous functions.

Example
Graph of the function $b(t)=u(t-a)-u(t-b)$, with $0<a<b$.
Solution: The bump function b can be graphed as follows:

Piecewise discontinuous functions.

Example

Graph of the function $f(t)=e^{a t}[u(t-1)-u(t-2)]$.

Piecewise discontinuous functions.

Example
Graph of the function $f(t)=e^{a t}[u(t-1)-u(t-2)]$.
Solution:

Piecewise discontinuous functions.

Example
Graph of the function $f(t)=e^{a t}[u(t-1)-u(t-2)]$.
Solution:

Notation: It is common in the literature to denote the function values $u(t-c)$ as $u_{c}(t)$.

The Laplace Transform of step functions (Sect. 4.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

The Laplace Transform of discontinuous functions.

Theorem
Given any real number $c \geqslant 0$, the following equation holds,

$$
\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}, \quad s>0
$$

The Laplace Transform of discontinuous functions.

Theorem
Given any real number $c \geqslant 0$, the following equation holds,

$$
\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}, \quad s>0
$$

Proof:

$$
\mathcal{L}[u(t-c)]=\int_{0}^{\infty} e^{-s t} u(t-c) d t
$$

The Laplace Transform of discontinuous functions.

Theorem
Given any real number $c \geqslant 0$, the following equation holds,

$$
\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}, \quad s>0
$$

Proof:

$$
\mathcal{L}[u(t-c)]=\int_{0}^{\infty} e^{-s t} u(t-c) d t=\int_{c}^{\infty} e^{-s t} d t
$$

The Laplace Transform of discontinuous functions.

Theorem
Given any real number $c \geqslant 0$, the following equation holds,

$$
\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}, \quad s>0
$$

Proof:

$$
\begin{gathered}
\mathcal{L}[u(t-c)]=\int_{0}^{\infty} e^{-s t} u(t-c) d t=\int_{c}^{\infty} e^{-s t} d t \\
\mathcal{L}[u(t-c)]=\lim _{N \rightarrow \infty}-\frac{1}{s}\left(e^{-N s}-e^{-c s}\right)
\end{gathered}
$$

The Laplace Transform of discontinuous functions.

Theorem
Given any real number $c \geqslant 0$, the following equation holds,

$$
\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}, \quad s>0
$$

Proof:

$$
\begin{gathered}
\mathcal{L}[u(t-c)]=\int_{0}^{\infty} e^{-s t} u(t-c) d t=\int_{c}^{\infty} e^{-s t} d t, \\
\mathcal{L}[u(t-c)]=\lim _{N \rightarrow \infty}-\frac{1}{s}\left(e^{-N s}-e^{-c s}\right)=\frac{e^{-c s}}{s}, \quad s>0 .
\end{gathered}
$$

We conclude that $\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}$.

The Laplace Transform of discontinuous functions.
Example
Compute $\mathcal{L}[3 u(t-2)]$.

The Laplace Transform of discontinuous functions.
Example
Compute $\mathcal{L}[3 u(t-2)]$.

Solution: $\quad \mathcal{L}[3 u(t-2)]=3 \mathcal{L}[u(t-2)]$

The Laplace Transform of discontinuous functions.
Example
Compute $\mathcal{L}[3 u(t-2)]$.
Solution: $\quad \mathcal{L}[3 u(t-2)]=3 \mathcal{L}[u(t-2)]=3 \frac{e^{-2 s}}{s}$.

The Laplace Transform of discontinuous functions.
Example
Compute $\mathcal{L}[3 u(t-2)]$.
Solution: $\quad \mathcal{L}[3 u(t-2)]=3 \mathcal{L}[u(t-2)]=3 \frac{e^{-2 s}}{s}$.
We conclude: $\quad \mathcal{L}[3 u(t-2)]=\frac{3 e^{-2 s}}{s}$.

The Laplace Transform of discontinuous functions.

Example
Compute $\mathcal{L}[3 u(t-2)]$.
Solution: $\quad \mathcal{L}[3 u(t-2)]=3 \mathcal{L}[u(t-2)]=3 \frac{e^{-2 s}}{s}$.
We conclude: $\quad \mathcal{L}[3 u(t-2)]=\frac{3 e^{-2 s}}{s}$.
Example
Compute $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s}\right]$.

The Laplace Transform of discontinuous functions.

Example
Compute $\mathcal{L}[3 u(t-2)]$.
Solution: $\quad \mathcal{L}[3 u(t-2)]=3 \mathcal{L}[u(t-2)]=3 \frac{e^{-2 s}}{s}$.
We conclude: $\quad \mathcal{L}[3 u(t-2)]=\frac{3 e^{-2 s}}{s}$.
Example
Compute $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s}\right]$.
Solution: Since $\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}$,

The Laplace Transform of discontinuous functions.

Example
Compute $\mathcal{L}[3 u(t-2)]$.
Solution: $\quad \mathcal{L}[3 u(t-2)]=3 \mathcal{L}[u(t-2)]=3 \frac{e^{-2 s}}{s}$.
We conclude: $\quad \mathcal{L}[3 u(t-2)]=\frac{3 e^{-2 s}}{s}$.
Example
Compute $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s}\right]$.
Solution: Since $\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}$, for $c=3$ we get $\mathcal{L}^{-1}\left[\frac{e^{-3 s}}{s}\right]$

The Laplace Transform of discontinuous functions.

Example
Compute $\mathcal{L}[3 u(t-2)]$.
Solution: $\quad \mathcal{L}[3 u(t-2)]=3 \mathcal{L}[u(t-2)]=3 \frac{e^{-2 s}}{s}$.
We conclude: $\quad \mathcal{L}[3 u(t-2)]=\frac{3 e^{-2 s}}{s}$.
Example
Compute $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s}\right]$.
Solution: Since $\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}$, for $c=3$ we get
$\mathcal{L}^{-1}\left[\frac{e^{-3 s}}{s}\right]=u(t-3)$.

The Laplace Transform of discontinuous functions.

Example
Compute $\mathcal{L}[3 u(t-2)]$.
Solution: $\quad \mathcal{L}[3 u(t-2)]=3 \mathcal{L}[u(t-2)]=3 \frac{e^{-2 s}}{s}$.
We conclude: $\mathcal{L}[3 u(t-2)]=\frac{3 e^{-2 s}}{s}$.
Example
Compute $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s}\right]$.
Solution: Since $\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}$, for $c=3$ we get
$\mathcal{L}^{-1}\left[\frac{e^{-3 s}}{s}\right]=u(t-3)$. Therefore, $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s}\right]=2 u(t-3)$.

The Laplace Transform of step functions (Sect. 4.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

Properties of the Laplace Transform.

Theorem (Translations)
If $F(s)=\mathcal{L}[f(t)]$ exists for $s>a \geqslant 0$ and $c \geqslant 0$, then holds

$$
\mathcal{L}[u(t-c) f(t-c)]=e^{-c s} F(s), \quad s>a .
$$

Furthermore,

$$
\mathcal{L}\left[e^{c t} f(t)\right]=F(s-c), \quad s>a+c .
$$

Properties of the Laplace Transform.

Theorem (Translations)
If $F(s)=\mathcal{L}[f(t)]$ exists for $s>a \geqslant 0$ and $c \geqslant 0$, then holds

$$
\mathcal{L}[u(t-c) f(t-c)]=e^{-c s} F(s), \quad s>a .
$$

Furthermore,

$$
\mathcal{L}\left[e^{c t} f(t)\right]=F(s-c), \quad s>a+c .
$$

Remark:

- $\mathcal{L}[$ translation $(u f)]=(\exp)(\mathcal{L}[f])$.

Properties of the Laplace Transform.

Theorem (Translations)
If $F(s)=\mathcal{L}[f(t)]$ exists for $s>a \geqslant 0$ and $c \geqslant 0$, then holds

$$
\mathcal{L}[u(t-c) f(t-c)]=e^{-c s} F(s), \quad s>a .
$$

Furthermore,

$$
\mathcal{L}\left[e^{c t} f(t)\right]=F(s-c), \quad s>a+c .
$$

Remark:

- $\mathcal{L}[$ translation $(u f)]=(\exp)(\mathcal{L}[f])$.
- $\mathcal{L}[(\exp)(f)]=$ translation $(\mathcal{L}[f])$.

Properties of the Laplace Transform.

Theorem (Translations)
If $F(s)=\mathcal{L}[f(t)]$ exists for $s>a \geqslant 0$ and $c \geqslant 0$, then holds

$$
\mathcal{L}[u(t-c) f(t-c)]=e^{-c s} F(s), \quad s>a .
$$

Furthermore,

$$
\mathcal{L}\left[e^{c t} f(t)\right]=F(s-c), \quad s>a+c .
$$

Remark:

- $\mathcal{L}[$ translation $(u f)]=(\exp)(\mathcal{L}[f])$.
- $\mathcal{L}[(\exp)(f)]=$ translation $(\mathcal{L}[f])$.

Equivalent notation:

- $\mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$,

Properties of the Laplace Transform.

Theorem (Translations)
If $F(s)=\mathcal{L}[f(t)]$ exists for $s>a \geqslant 0$ and $c \geqslant 0$, then holds

$$
\mathcal{L}[u(t-c) f(t-c)]=e^{-c s} F(s), \quad s>a .
$$

Furthermore,

$$
\mathcal{L}\left[e^{c t} f(t)\right]=F(s-c), \quad s>a+c .
$$

Remark:

- $\mathcal{L}[$ translation $(u f)]=(\exp)(\mathcal{L}[f])$.
- $\mathcal{L}[(\exp)(f)]=$ translation $(\mathcal{L}[f])$.

Equivalent notation:

- $\mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$,
- $\mathcal{L}\left[e^{c t} f(t)\right]=\mathcal{L}[f](s-c)$.

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.

Properties of the Laplace Transform.

Example

Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}$,

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$.

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$.

$$
\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \mathcal{L}[\sin (a t)]
$$

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$.

$$
\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \mathcal{L}[\sin (a t)]=e^{-2 s} \frac{a}{s^{2}+a^{2}} .
$$

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$.

$$
\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \mathcal{L}[\sin (a t)]=e^{-2 s} \frac{a}{s^{2}+a^{2}} .
$$

We conclude: $\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \frac{a}{s^{2}+a^{2}}$.

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$.

$$
\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \mathcal{L}[\sin (a t)]=e^{-2 s} \frac{a}{s^{2}+a^{2}} .
$$

We conclude: $\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \frac{a}{s^{2}+a^{2}}$.
Example
Compute $\mathcal{L}\left[e^{3 t} \sin (a t)\right]$.

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$.

$$
\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \mathcal{L}[\sin (a t)]=e^{-2 s} \frac{a}{s^{2}+a^{2}} .
$$

We conclude: $\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \frac{a}{s^{2}+a^{2}}$.
Example
Compute $\mathcal{L}\left[e^{3 t} \sin (a t)\right]$.
Solution: Recall: $\mathcal{L}\left[e^{c t} f(t)\right]=\mathcal{L}[f](s-c)$,

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$.

$$
\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \mathcal{L}[\sin (a t)]=e^{-2 s} \frac{a}{s^{2}+a^{2}} .
$$

We conclude: $\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \frac{a}{s^{2}+a^{2}}$.
Example
Compute $\mathcal{L}\left[e^{3 t} \sin (a t)\right]$.
Solution: Recall: $\mathcal{L}\left[e^{c t} f(t)\right]=\mathcal{L}[f](s-c), \quad \mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}$.

Properties of the Laplace Transform.

Example
Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$.

$$
\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \mathcal{L}[\sin (a t)]=e^{-2 s} \frac{a}{s^{2}+a^{2}} .
$$

We conclude: $\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \frac{a}{s^{2}+a^{2}}$.
Example
Compute $\mathcal{L}\left[e^{3 t} \sin (a t)\right]$.
Solution: Recall: $\mathcal{L}\left[e^{c t} f(t)\right]=\mathcal{L}[f](s-c), \quad \mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}$.
We conclude: $\mathcal{L}\left[e^{3 t} \sin (a t)\right]=\frac{a}{(s-3)^{2}+a^{2}}$, with $s>3$.

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Using step function notation,

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Using step function notation,

$$
f(t)=u(t-1)\left(t^{2}-2 t+2\right)
$$

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Using step function notation,

$$
f(t)=u(t-1)\left(t^{2}-2 t+2\right)
$$

Completing the square we obtain,

$$
t^{2}-2 t+2=\left(t^{2}-2 t+1\right)-1+2
$$

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Using step function notation,

$$
f(t)=u(t-1)\left(t^{2}-2 t+2\right)
$$

Completing the square we obtain,

$$
t^{2}-2 t+2=\left(t^{2}-2 t+1\right)-1+2=(t-1)^{2}+1
$$

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Using step function notation,

$$
f(t)=u(t-1)\left(t^{2}-2 t+2\right)
$$

Completing the square we obtain,

$$
t^{2}-2 t+2=\left(t^{2}-2 t+1\right)-1+2=(t-1)^{2}+1
$$

This is a parabola t^{2} translated to the right by 1 and up by one.

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Using step function notation,

$$
f(t)=u(t-1)\left(t^{2}-2 t+2\right)
$$

Completing the square we obtain,

$$
t^{2}-2 t+2=\left(t^{2}-2 t+1\right)-1+2=(t-1)^{2}+1
$$

This is a parabola t^{2} translated to the right by 1 and up by one. Because of the step function, this is a discontinuous function at $t=1$.

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Using step function notation,

$$
f(t)=u(t-1)\left(t^{2}-2 t+2\right)
$$

Completing the square we obtain,

$$
t^{2}-2 t+2=\left(t^{2}-2 t+1\right)-1+2=(t-1)^{2}+1
$$

This is a parabola t^{2} translated to the right by 1 and up by one. Because of the step function, this is a discontinuous function at $t=1$.

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Recall: $f(t)=u(t-1)\left[(t-1)^{2}+1\right]$.

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Recall: $f(t)=u(t-1)\left[(t-1)^{2}+1\right]$.
This is equivalent to

$$
f(t)=u(t-1)(t-1)^{2}+u(t-1) .
$$

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Recall: $f(t)=u(t-1)\left[(t-1)^{2}+1\right]$.
This is equivalent to

$$
f(t)=u(t-1)(t-1)^{2}+u(t-1) .
$$

Since $\mathcal{L}\left[t^{2}\right]=2 / s^{3}$,

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Recall: $f(t)=u(t-1)\left[(t-1)^{2}+1\right]$.
This is equivalent to

$$
f(t)=u(t-1)(t-1)^{2}+u(t-1)
$$

Since $\mathcal{L}\left[t^{2}\right]=2 / s^{3}$, and $\mathcal{L}[u(t-c) g(t-c)]=e^{-c s} \mathcal{L}[g(t)]$,

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Recall: $f(t)=u(t-1)\left[(t-1)^{2}+1\right]$.
This is equivalent to

$$
f(t)=u(t-1)(t-1)^{2}+u(t-1)
$$

Since $\mathcal{L}\left[t^{2}\right]=2 / s^{3}$, and $\mathcal{L}[u(t-c) g(t-c)]=e^{-c s} \mathcal{L}[g(t)]$, then

$$
\mathcal{L}[f(t)]=\mathcal{L}\left[u(t-1)(t-1)^{2}\right]+\mathcal{L}[u(t-1)]
$$

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Recall: $f(t)=u(t-1)\left[(t-1)^{2}+1\right]$.
This is equivalent to

$$
f(t)=u(t-1)(t-1)^{2}+u(t-1)
$$

Since $\mathcal{L}\left[t^{2}\right]=2 / s^{3}$, and $\mathcal{L}[u(t-c) g(t-c)]=e^{-c s} \mathcal{L}[g(t)]$, then

$$
\mathcal{L}[f(t)]=\mathcal{L}\left[u(t-1)(t-1)^{2}\right]+\mathcal{L}[u(t-1)]=e^{-s} \frac{2}{s^{3}}+e^{-s} \frac{1}{s}
$$

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Recall: $f(t)=u(t-1)\left[(t-1)^{2}+1\right]$.
This is equivalent to

$$
f(t)=u(t-1)(t-1)^{2}+u(t-1)
$$

Since $\mathcal{L}\left[t^{2}\right]=2 / s^{3}$, and $\mathcal{L}[u(t-c) g(t-c)]=e^{-c s} \mathcal{L}[g(t)]$, then

$$
\mathcal{L}[f(t)]=\mathcal{L}\left[u(t-1)(t-1)^{2}\right]+\mathcal{L}[u(t-1)]=e^{-s} \frac{2}{s^{3}}+e^{-s} \frac{1}{s} .
$$

We conclude: $\quad \mathcal{L}[f(t)]=\frac{e^{-s}}{s^{3}}\left(2+s^{2}\right)$.

Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

$$
\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c)
$$

Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

$$
\begin{gathered}
\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c) \\
\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)
\end{gathered}
$$

Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

$$
\begin{gathered}
\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c) \\
\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)
\end{gathered}
$$

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]$.

Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

$$
\begin{gathered}
\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c) \\
\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)
\end{gathered}
$$

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-4 s} \frac{3}{s^{2}+9}\right]$.

Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

$$
\begin{gathered}
\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c) \\
\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)
\end{gathered}
$$

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-4 s} \frac{3}{s^{2}+9}\right]$.
Recall: $\mathcal{L}^{-1}\left[\frac{a}{s^{2}+a^{2}}\right]=\sin (a t)$.

Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

$$
\begin{gathered}
\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c) \\
\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)
\end{gathered}
$$

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-4 s} \frac{3}{s^{2}+9}\right]$.
Recall: $\mathcal{L}^{-1}\left[\frac{a}{s^{2}+a^{2}}\right]=\sin (a t)$. Then, we conclude that

$$
\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]=\frac{1}{3} u(t-4) \sin (3(t-4)) .
$$

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]$.

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{s}{s^{2}+a^{2}}\right]=\cos (a t)$,

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{s}{s^{2}+a^{2}}\right]=\cos (a t), \mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$.

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{s}{s^{2}+a^{2}}\right]=\cos (a t), \mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$.
We conclude: $\quad \mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]=e^{2 t} \cos (3 t)$.

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{s}{s^{2}+a^{2}}\right]=\cos (a t), \mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$.
We conclude: $\quad \mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]=e^{2 t} \cos (3 t)$.
Example
Find $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]$.

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{s}{s^{2}+a^{2}}\right]=\cos (a t), \mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$.
We conclude: $\quad \mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]=e^{2 t} \cos (3 t)$.

Example
Find $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]$.
Solution: Recall: $\mathcal{L}^{-1}\left[\frac{a}{s^{2}-a^{2}}\right]=\sinh (a t)$

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{s}{s^{2}+a^{2}}\right]=\cos (a t), \mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$.
We conclude: $\quad \mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]=e^{2 t} \cos (3 t)$.
Example
Find $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]$.
Solution: Recall: $\mathcal{L}^{-1}\left[\frac{a}{s^{2}-a^{2}}\right]=\sinh (a t)$ and $\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c)$.

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]$.
Solution: Recall:

$$
\mathcal{L}^{-1}\left[\frac{a}{s^{2}-a^{2}}\right]=\sinh (a t), \quad \mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c)
$$

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]$.
Solution: Recall:

$$
\begin{gathered}
\mathcal{L}^{-1}\left[\frac{a}{s^{2}-a^{2}}\right]=\sinh (a t), \quad \mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c) . \\
\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]=\mathcal{L}^{-1}\left[e^{-3 s} \frac{2}{s^{2}-4}\right] .
\end{gathered}
$$

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]$.
Solution: Recall:

$$
\begin{gathered}
\mathcal{L}^{-1}\left[\frac{a}{s^{2}-a^{2}}\right]=\sinh (a t), \quad \mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c) . \\
\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]=\mathcal{L}^{-1}\left[e^{-3 s} \frac{2}{s^{2}-4}\right] .
\end{gathered}
$$

We conclude: $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]=u(t-3) \sinh (2(t-3))$.

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Find the roots of the denominator:

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1+8}]
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Find the roots of the denominator:

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1+8}] \Rightarrow\left\{\begin{array}{l}
s_{+}=1 \\
s_{-}=-2
\end{array}\right.
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Find the roots of the denominator:

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1+8}] \Rightarrow\left\{\begin{array}{l}
s_{+}=1 \\
s_{-}=-2
\end{array}\right.
$$

Therefore, $s^{2}+s-2=(s-1)(s+2)$.

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Find the roots of the denominator:

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1+8}] \Rightarrow\left\{\begin{array}{l}
s_{+}=1 \\
s_{-}=-2
\end{array}\right.
$$

Therefore, $s^{2}+s-2=(s-1)(s+2)$.
Use partial fractions to simplify the rational function:

$$
\frac{1}{s^{2}+s-2}=\frac{1}{(s-1)(s+2)}
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Find the roots of the denominator:

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1+8}] \Rightarrow\left\{\begin{array}{l}
s_{+}=1 \\
s_{-}=-2
\end{array}\right.
$$

Therefore, $s^{2}+s-2=(s-1)(s+2)$.
Use partial fractions to simplify the rational function:

$$
\frac{1}{s^{2}+s-2}=\frac{1}{(s-1)(s+2)}=\frac{a}{(s-1)}+\frac{b}{(s+2)}
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Find the roots of the denominator:

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1+8}] \Rightarrow\left\{\begin{array}{l}
s_{+}=1 \\
s_{-}=-2
\end{array}\right.
$$

Therefore, $s^{2}+s-2=(s-1)(s+2)$.
Use partial fractions to simplify the rational function:

$$
\begin{aligned}
& \frac{1}{s^{2}+s-2}=\frac{1}{(s-1)(s+2)}=\frac{a}{(s-1)}+\frac{b}{(s+2)}, \\
& \frac{1}{s^{2}+s-2}=a(s+2)+b(s-1)
\end{aligned}
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Find the roots of the denominator:

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1+8}] \Rightarrow\left\{\begin{array}{l}
s_{+}=1 \\
s_{-}=-2
\end{array}\right.
$$

Therefore, $s^{2}+s-2=(s-1)(s+2)$.
Use partial fractions to simplify the rational function:

$$
\begin{gathered}
\frac{1}{s^{2}+s-2}=\frac{1}{(s-1)(s+2)}=\frac{a}{(s-1)}+\frac{b}{(s+2)}, \\
\frac{1}{s^{2}+s-2}=a(s+2)+b(s-1)=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)} .
\end{gathered}
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
a+b=0,
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
a+b=0, \quad 2 a-b=1,
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
a+b=0, \quad 2 a-b=1, \quad \Rightarrow \quad a=\frac{1}{3}, \quad b=-\frac{1}{3} .
$$

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
\begin{gathered}
a+b=0, \quad 2 a-b=1, \quad \Rightarrow \quad a=\frac{1}{3}, \quad b=-\frac{1}{3} . \\
\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s-1}\right]-\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s+2}\right] .
\end{gathered}
$$

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
\begin{gathered}
a+b=0, \quad 2 a-b=1, \quad \Rightarrow \quad a=\frac{1}{3}, \quad b=-\frac{1}{3} . \\
\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s-1}\right]-\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s+2}\right] .
\end{gathered}
$$

Recall: $\mathcal{L}^{-1}\left[\frac{1}{s-a}\right]=e^{a t}$,

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
\begin{gathered}
a+b=0, \quad 2 a-b=1, \quad \Rightarrow \quad a=\frac{1}{3}, \quad b=-\frac{1}{3} . \\
\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s-1}\right]-\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s+2}\right] .
\end{gathered}
$$

Recall: $\mathcal{L}^{-1}\left[\frac{1}{s-a}\right]=e^{a t}, \quad \mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c)$,

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
\begin{gathered}
a+b=0, \quad 2 a-b=1, \quad \Rightarrow \quad a=\frac{1}{3}, \quad b=-\frac{1}{3} \\
\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s-1}\right]-\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s+2}\right] .
\end{gathered}
$$

Recall: $\mathcal{L}^{-1}\left[\frac{1}{s-a}\right]=e^{a t}, \quad \mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c)$,

$$
\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} u(t-2) e^{(t-2)}-\frac{1}{3} u(t-2) e^{-2(t-2)} .
$$

Properties of the Laplace Transform.

Example
Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
\begin{gathered}
a+b=0, \quad 2 a-b=1, \quad \Rightarrow \quad a=\frac{1}{3}, \quad b=-\frac{1}{3} \\
\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s-1}\right]-\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s+2}\right] .
\end{gathered}
$$

Recall: $\mathcal{L}^{-1}\left[\frac{1}{s-a}\right]=e^{a t}, \quad \mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c)$,

$$
\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} u(t-2) e^{(t-2)}-\frac{1}{3} u(t-2) e^{-2(t-2)} .
$$

Hence: $\quad \mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} u(t-2)\left[e^{(t-2)}-e^{-2(t-2)}\right]$.

The Laplace Transform of step functions (Sect. 4.3).

Last Lecture

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

This Lecture

- Differential equations with discontinuous sources.

Equations with discontinuous sources (Sect. 4.3).

- Differential equations with discontinuous sources.
- We solve the IVPs:
(a) Example 1:

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

(b) Example 2:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

(c) Example 3:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} g(t)= \begin{cases}\sin (t), & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Equations with discontinuous sources (Sect. 4.3).

- Differential equations with discontinuous sources.
- We solve the IVPs:
(a) Example 1:

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

(b) Example 2:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

(c) Example 3:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} g(t)= \begin{cases}\sin (t), & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Compute the Laplace transform of the whole equation,

$$
\mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[u(t-4)]
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Compute the Laplace transform of the whole equation,

$$
\mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[u(t-4)]=\frac{e^{-4 s}}{s}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Compute the Laplace transform of the whole equation,

$$
\mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[u(t-4)]=\frac{e^{-4 s}}{s}
$$

From the previous Section we know that
$[s \mathcal{L}[y]-y(0)]+2 \mathcal{L}[y]=\frac{e^{-4 s}}{s}$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Compute the Laplace transform of the whole equation,

$$
\mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[u(t-4)]=\frac{e^{-4 s}}{s}
$$

From the previous Section we know that

$$
[s \mathcal{L}[y]-y(0)]+2 \mathcal{L}[y]=\frac{e^{-4 s}}{s} \Rightarrow(s+2) \mathcal{L}[y]=y(0)+\frac{e^{-4 s}}{s}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Compute the Laplace transform of the whole equation,

$$
\mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[u(t-4)]=\frac{e^{-4 s}}{s}
$$

From the previous Section we know that

$$
[s \mathcal{L}[y]-y(0)]+2 \mathcal{L}[y]=\frac{e^{-4 s}}{s} \Rightarrow(s+2) \mathcal{L}[y]=y(0)+\frac{e^{-4 s}}{s}
$$

Introduce the initial condition,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Compute the Laplace transform of the whole equation,

$$
\mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[u(t-4)]=\frac{e^{-4 s}}{s}
$$

From the previous Section we know that
$[s \mathcal{L}[y]-y(0)]+2 \mathcal{L}[y]=\frac{e^{-4 s}}{s} \Rightarrow(s+2) \mathcal{L}[y]=y(0)+\frac{e^{-4 s}}{s}$.
Introduce the initial condition, $\mathcal{L}[y]=\frac{3}{(s+2)}+e^{-4 s} \frac{1}{s(s+2)}$,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Compute the Laplace transform of the whole equation,

$$
\mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[u(t-4)]=\frac{e^{-4 s}}{s}
$$

From the previous Section we know that
$[s \mathcal{L}[y]-y(0)]+2 \mathcal{L}[y]=\frac{e^{-4 s}}{s} \Rightarrow(s+2) \mathcal{L}[y]=y(0)+\frac{e^{-4 s}}{s}$.
Introduce the initial condition, $\mathcal{L}[y]=\frac{3}{(s+2)}+e^{-4 s} \frac{1}{s(s+2)}$,
Use the table: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term. Partial fractions:

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term. Partial fractions:

$$
\frac{1}{s(s+2)}=\frac{a}{s}+\frac{b}{(s+2)}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term. Partial fractions:

$$
\frac{1}{s(s+2)}=\frac{a}{s}+\frac{b}{(s+2)}=\frac{a(s+2)+b s}{s(s+2)}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term. Partial fractions:

$$
\frac{1}{s(s+2)}=\frac{a}{s}+\frac{b}{(s+2)}=\frac{a(s+2)+b s}{s(s+2)}=\frac{(a+b) s+(2 a)}{s(s+2)}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term. Partial fractions:

$$
\frac{1}{s(s+2)}=\frac{a}{s}+\frac{b}{(s+2)}=\frac{a(s+2)+b s}{s(s+2)}=\frac{(a+b) s+(2 a)}{s(s+2)}
$$

We get, $a+b=0, \quad 2 a=1$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term. Partial fractions:

$$
\frac{1}{s(s+2)}=\frac{a}{s}+\frac{b}{(s+2)}=\frac{a(s+2)+b s}{s(s+2)}=\frac{(a+b) s+(2 a)}{s(s+2)}
$$

We get, $a+b=0,2 a=1$. We obtain: $a=\frac{1}{2}, \quad b=-\frac{1}{2}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term. Partial fractions:

$$
\frac{1}{s(s+2)}=\frac{a}{s}+\frac{b}{(s+2)}=\frac{a(s+2)+b s}{s(s+2)}=\frac{(a+b) s+(2 a)}{s(s+2)}
$$

We get, $a+b=0,2 a=1$. We obtain: $a=\frac{1}{2}, b=-\frac{1}{2}$. Hence,

$$
\frac{1}{s(s+2)}=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right]
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\frac{1}{s(s+2)}=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\frac{1}{s(s+2)}=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right]$.
The algebraic equation for $\mathcal{L}[y]$ has the form,

$$
\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}\left[e^{-4 s} \frac{1}{s}-e^{-4 s} \frac{1}{(s+2)}\right] .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\frac{1}{s(s+2)}=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right]$.
The algebraic equation for $\mathcal{L}[y]$ has the form,

$$
\begin{aligned}
& \mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}\left[e^{-4 s} \frac{1}{s}-e^{-4 s} \frac{1}{(s+2)}\right] \\
& \mathcal{L}[y]= 3 \mathcal{L}\left[e^{-2 t}\right]
\end{aligned}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\frac{1}{s(s+2)}=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right]$.
The algebraic equation for $\mathcal{L}[y]$ has the form,

$$
\begin{aligned}
& \mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}\left[e^{-4 s} \frac{1}{s}-e^{-4 s} \frac{1}{(s+2)}\right] . \\
& \mathcal{L}[y]= 3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}(\mathcal{L}[u(t-4)]
\end{aligned}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\frac{1}{s(s+2)}=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right]$.
The algebraic equation for $\mathcal{L}[y]$ has the form,

$$
\begin{gathered}
\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}\left[e^{-4 s} \frac{1}{s}-e^{-4 s} \frac{1}{(s+2)}\right] \\
\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}\left(\mathcal{L}[u(t-4)]-\mathcal{L}\left[u(t-4) e^{-2(t-4)}\right]\right) .
\end{gathered}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\frac{1}{s(s+2)}=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right]$.
The algebraic equation for $\mathcal{L}[y]$ has the form,

$$
\begin{gathered}
\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}\left[e^{-4 s} \frac{1}{s}-e^{-4 s} \frac{1}{(s+2)}\right] . \\
\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}\left(\mathcal{L}[u(t-4)]-\mathcal{L}\left[u(t-4) e^{-2(t-4)}\right]\right) .
\end{gathered}
$$

We conclude that

$$
y(t)=3 e^{-2 t}+\frac{1}{2} u(t-4)\left[1-e^{-2(t-4)}\right] .
$$

Equations with discontinuous sources (Sect. 4.3).

- Differential equations with discontinuous sources.
- We solve the IVPs:
(a) Example 1:

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

(b) Example 2:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

(c) Example 3:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} g(t)= \begin{cases}\sin (t), & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: The graphs imply: $b(t)=u(t)-u(t-\pi)$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: The graphs imply: $b(t)=u(t)-u(t-\pi)$
Now is simple to find $\mathcal{L}[b]$,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: The graphs imply: $b(t)=u(t)-u(t-\pi)$
Now is simple to find $\mathcal{L}[b]$, since

$$
\mathcal{L}[b(t)]=\mathcal{L}[u(t)]-\mathcal{L}[u(t-\pi)]
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: The graphs imply: $b(t)=u(t)-u(t-\pi)$
Now is simple to find $\mathcal{L}[b]$, since

$$
\mathcal{L}[b(t)]=\mathcal{L}[u(t)]-\mathcal{L}[u(t-\pi)]=\frac{1}{s}-\frac{e^{-\pi s}}{s} .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{array}{r}
y(0)=0, \\
y^{\prime}(0)=0,
\end{array} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: The graphs imply: $b(t)=u(t)-u(t-\pi)$
Now is simple to find $\mathcal{L}[b]$, since

$$
\mathcal{L}[b(t)]=\mathcal{L}[u(t)]-\mathcal{L}[u(t-\pi)]=\frac{1}{s}-\frac{e^{-\pi s}}{s} .
$$

So, the source is $\mathcal{L}[b(t)]=\left(1-e^{-\pi s}\right) \frac{1}{s}$,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: The graphs imply: $b(t)=u(t)-u(t-\pi)$
Now is simple to find $\mathcal{L}[b]$, since

$$
\mathcal{L}[b(t)]=\mathcal{L}[u(t)]-\mathcal{L}[u(t-\pi)]=\frac{1}{s}-\frac{e^{-\pi s}}{s} .
$$

So, the source is $\mathcal{L}[b(t)]=\left(1-e^{-\pi s}\right) \frac{1}{s}$, and the equation is

$$
\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s} .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.
The initial conditions imply:

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.
The initial conditions imply: $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad y(0)=0, \quad y^{\prime}(0)=0, \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\ 0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.
The initial conditions imply: $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]$ and $\mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.
The initial conditions imply: $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]$ and $\mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]$.
Therefore, $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.
The initial conditions imply: $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]$ and $\mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]$.
Therefore, $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.
We arrive at the expression: $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad y(0)=0, \quad y^{\prime}(0)=0, \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\ 0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad y(0)=0, \quad y^{\prime}(0)=0, \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\ 0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$.
Denoting: $H(s)=\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad y(0)=0, \quad y^{\prime}(0)=0, \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\ 0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$.
Denoting: $H(s)=\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$,
we obtain, $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) H(s)$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$.
Denoting: $H(s)=\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$,
we obtain, $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) H(s)$.
In other words: $y(t)=\mathcal{L}^{-1}[H(s)]-\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]-\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]-\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.
Denoting: $h(t)=\mathcal{L}^{-1}[H(s)]$,

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]-\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.
Denoting: $h(t)=\mathcal{L}^{-1}[H(s)]$, the $\mathcal{L}[$] properties imply

$$
\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]=u(t-\pi) h(t-\pi) .
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]-\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.
Denoting: $h(t)=\mathcal{L}^{-1}[H(s)]$, the $\mathcal{L}[]$ properties imply

$$
\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]=u(t-\pi) h(t-\pi) .
$$

Therefore, the solution has the form

$$
y(t)=h(t)-u(t-\pi) h(t-\pi) .
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]-\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.
Denoting: $h(t)=\mathcal{L}^{-1}[H(s)]$, the $\mathcal{L}[]$ properties imply

$$
\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]=u(t-\pi) h(t-\pi) .
$$

Therefore, the solution has the form

$$
y(t)=h(t)-u(t-\pi) h(t-\pi) .
$$

We only need to find $h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
Partial fractions:

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
Partial fractions: Find the zeros of the denominator,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}]
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}] \Rightarrow \text { Complex roots. }
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad y(0)=0, \quad y^{\prime}(0)=0, \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\ 0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}] \Rightarrow \text { Complex roots. }
$$

The partial fraction decomposition is:

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}] \Rightarrow \text { Complex roots. }
$$

The partial fraction decomposition is:

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $\quad h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}] \Rightarrow \text { Complex roots. }
$$

The partial fraction decomposition is:

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+s+\frac{5}{4}\right)}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+s+\frac{5}{4}\right)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad y(0)=0, \quad y^{\prime}(0)=0, \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\ 0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+s+\frac{5}{4}\right)}$.
The partial fraction decomposition is:

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+s+\frac{5}{4}\right)}$.
The partial fraction decomposition is:

$$
1=a\left(s^{2}+s+\frac{5}{4}\right)+s(b s+c)
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+s+\frac{5}{4}\right)}$.
The partial fraction decomposition is:

$$
1=a\left(s^{2}+s+\frac{5}{4}\right)+s(b s+c)=(a+b) s^{2}+(a+c) s+\frac{5}{4} a .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+s+\frac{5}{4}\right)}$.
The partial fraction decomposition is:

$$
1=a\left(s^{2}+s+\frac{5}{4}\right)+s(b s+c)=(a+b) s^{2}+(a+c) s+\frac{5}{4} a .
$$

This equation implies that a, b, and c, are solutions of

$$
a+b=0, \quad a+c=0, \quad \frac{5}{4} a=1 .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $a=\frac{4}{5}, \quad b=-\frac{4}{5}, \quad c=-\frac{4}{5}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $a=\frac{4}{5}, \quad b=-\frac{4}{5}, \quad c=-\frac{4}{5}$.
Hence, we have found that,

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad y(0)=0, \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\ 0, & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $a=\frac{4}{5}, \quad b=-\frac{4}{5}, \quad c=-\frac{4}{5}$.
Hence, we have found that,

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{4}{5}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $a=\frac{4}{5}, \quad b=-\frac{4}{5}, \quad c=-\frac{4}{5}$.
Hence, we have found that,

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{4}{5}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]
$$

We have to compute the inverse Laplace Transform

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $a=\frac{4}{5}, \quad b=-\frac{4}{5}, \quad c=-\frac{4}{5}$.
Hence, we have found that,

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{4}{5}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]
$$

We have to compute the inverse Laplace Transform

$$
h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
In this case we complete the square in the denominator,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
In this case we complete the square in the denominator,

$$
s^{2}+s+\frac{5}{4}=\left[s^{2}+2\left(\frac{1}{2}\right) s+\frac{1}{4}\right]-\frac{1}{4}+\frac{5}{4}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
In this case we complete the square in the denominator,

$$
s^{2}+s+\frac{5}{4}=\left[s^{2}+2\left(\frac{1}{2}\right) s+\frac{1}{4}\right]-\frac{1}{4}+\frac{5}{4}=\left(s+\frac{1}{2}\right)^{2}+1 .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
In this case we complete the square in the denominator,

$$
s^{2}+s+\frac{5}{4}=\left[s^{2}+2\left(\frac{1}{2}\right) s+\frac{1}{4}\right]-\frac{1}{4}+\frac{5}{4}=\left(s+\frac{1}{2}\right)^{2}+1 .
$$

So: $h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
In this case we complete the square in the denominator,

$$
s^{2}+s+\frac{5}{4}=\left[s^{2}+2\left(\frac{1}{2}\right) s+\frac{1}{4}\right]-\frac{1}{4}+\frac{5}{4}=\left(s+\frac{1}{2}\right)^{2}+1 .
$$

So: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.
That is, $h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)+\frac{1}{2}}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad y(0)=0, \quad y^{\prime}(0)=0, \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\ 0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)+\frac{1}{2}}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad y(0)=0, \quad y^{\prime}(0)=0, \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\ 0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)+\frac{1}{2}}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.

$$
h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]-\frac{2}{5} \mathcal{L}^{-1}\left[\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right] .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad y(0)=0, \quad y^{\prime}(0)=0, \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\ 0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)+\frac{1}{2}}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.

$$
h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]-\frac{2}{5} \mathcal{L}^{-1}\left[\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right] .
$$

Recall: $\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad y(0)=0, \quad y^{\prime}(0)=0, \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\ 0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)+\frac{1}{2}}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.

$$
h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]-\frac{2}{5} \mathcal{L}^{-1}\left[\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right] .
$$

Recall: $\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$. Hence,

$$
h(t)=\frac{4}{5}\left[1-e^{-t / 2} \cos (t)-\frac{1}{2} e^{-t / 2} \sin (t)\right] .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad y(0)=0, \quad y^{\prime}(0)=0, \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\ 0, & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)+\frac{1}{2}}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.

$$
h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]-\frac{2}{5} \mathcal{L}^{-1}\left[\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right] .
$$

Recall: $\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$. Hence,

$$
h(t)=\frac{4}{5}\left[1-e^{-t / 2} \cos (t)-\frac{1}{2} e^{-t / 2} \sin (t)\right] .
$$

We conclude: $y(t)=h(t)+u(t-\pi) h(t-\pi)$.

Equations with discontinuous sources (Sect. 4.3).

- Differential equations with discontinuous sources.
- We solve the IVPs:
(a) Example 1:

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

(b) Example 2:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

(c) Example 3:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} g(t)= \begin{cases}\sin (t), & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution: The graphs imply: $g(t)=[u(t)-u(t-\pi)] \sin (t)$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: The graphs imply: $g(t)=[u(t)-u(t-\pi)] \sin (t)$.
Recall the identity: $\sin (t)=-\sin (t-\pi)$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: The graphs imply: $g(t)=[u(t)-u(t-\pi)] \sin (t)$.
Recall the identity: $\sin (t)=-\sin (t-\pi)$. Then,

$$
g(t)=u(t) \sin (t)-u(t-\pi) \sin (t),
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: The graphs imply: $g(t)=[u(t)-u(t-\pi)] \sin (t)$.
Recall the identity: $\sin (t)=-\sin (t-\pi)$. Then,

$$
\begin{gathered}
g(t)=u(t) \sin (t)-u(t-\pi) \sin (t), \\
g(t)=u(t) \sin (t)+u(t-\pi) \sin (t-\pi) .
\end{gathered}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: The graphs imply: $g(t)=[u(t)-u(t-\pi)] \sin (t)$.
Recall the identity: $\sin (t)=-\sin (t-\pi)$. Then,

$$
\begin{gathered}
g(t)=u(t) \sin (t)-u(t-\pi) \sin (t), \\
g(t)=u(t) \sin (t)+u(t-\pi) \sin (t-\pi) .
\end{gathered}
$$

Now is simple to find $\mathcal{L}[g]$,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: The graphs imply: $g(t)=[u(t)-u(t-\pi)] \sin (t)$.
Recall the identity: $\sin (t)=-\sin (t-\pi)$. Then,

$$
\begin{gathered}
g(t)=u(t) \sin (t)-u(t-\pi) \sin (t), \\
g(t)=u(t) \sin (t)+u(t-\pi) \sin (t-\pi) .
\end{gathered}
$$

Now is simple to find $\mathcal{L}[g]$, since

$$
\mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)] .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $\quad \mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $\mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)]$.

$$
\mathcal{L}[g(t)]=\frac{1}{\left(s^{2}+1\right)}+e^{-\pi s} \frac{1}{\left(s^{2}+1\right)} .
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $\quad \mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)]$.

$$
\mathcal{L}[g(t)]=\frac{1}{\left(s^{2}+1\right)}+e^{-\pi s} \frac{1}{\left(s^{2}+1\right)}
$$

Recall the Laplace transform of the differential equation

$$
\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\mathcal{L}[g]
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $\quad \mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)]$.

$$
\mathcal{L}[g(t)]=\frac{1}{\left(s^{2}+1\right)}+e^{-\pi s} \frac{1}{\left(s^{2}+1\right)}
$$

Recall the Laplace transform of the differential equation

$$
\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\mathcal{L}[g] .
$$

The initial conditions imply:

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $\quad \mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)]$.

$$
\mathcal{L}[g(t)]=\frac{1}{\left(s^{2}+1\right)}+e^{-\pi s} \frac{1}{\left(s^{2}+1\right)}
$$

Recall the Laplace transform of the differential equation

$$
\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\mathcal{L}[g] .
$$

The initial conditions imply: $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $\quad \mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)]$.

$$
\mathcal{L}[g(t)]=\frac{1}{\left(s^{2}+1\right)}+e^{-\pi s} \frac{1}{\left(s^{2}+1\right)}
$$

Recall the Laplace transform of the differential equation

$$
\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\mathcal{L}[g] .
$$

The initial conditions imply: $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]$ and $\mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]$.

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $\mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)]$.

$$
\mathcal{L}[g(t)]=\frac{1}{\left(s^{2}+1\right)}+e^{-\pi s} \frac{1}{\left(s^{2}+1\right)}
$$

Recall the Laplace transform of the differential equation

$$
\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\mathcal{L}[g] .
$$

The initial conditions imply: $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]$ and $\mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]$.
Therefore, $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+1\right)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+1\right)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+1\right)}$.

$$
\mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad y(0)=0, \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+1\right)}$.

$$
\mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}
$$

Introduce the function $H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad y(0)=0, \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+1\right)}$.

$$
\mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)} .
$$

Introduce the function $H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}$.
Then, $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$, and

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)} .
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$, and

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)} .
$$

Partial fractions:

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$, and

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)} .
$$

Partial fractions: Find the zeros of the denominator,

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$, and

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)} .
$$

Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}]
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$, and

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)} .
$$

Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}] \quad \Rightarrow \quad \text { Complex roots }
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$, and

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)} .
$$

Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}] \quad \Rightarrow \quad \text { Complex roots. }
$$

The partial fraction decomposition is:

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$, and

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)} .
$$

Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}] \Rightarrow \text { Complex roots. }
$$

The partial fraction decomposition is:

$$
\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}=\frac{(a s+b)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(c s+d)}{\left(s^{2}+1\right)} .
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}=\frac{(a s+b)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(c s+d)}{\left(s^{2}+1\right)}$.

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}=\frac{(a s+b)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(c s+d)}{\left(s^{2}+1\right)}$.
Therefore, we get

$$
1=(a s+b)\left(s^{2}+1\right)+(c s+d)\left(s^{2}+s+\frac{5}{4}\right)
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}=\frac{(a s+b)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(c s+d)}{\left(s^{2}+1\right)}$.
Therefore, we get

$$
\begin{gathered}
1=(a s+b)\left(s^{2}+1\right)+(c s+d)\left(s^{2}+s+\frac{5}{4}\right) \\
1=(a+c) s^{3}+(b+c+d) s^{2}+\left(a+\frac{5}{4} c+d\right) s+\left(b+\frac{5}{4} d\right) .
\end{gathered}
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0)=0, \\ y^{\prime}(0)=0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}=\frac{(a s+b)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(c s+d)}{\left(s^{2}+1\right)}$.
Therefore, we get

$$
\begin{gathered}
1=(a s+b)\left(s^{2}+1\right)+(c s+d)\left(s^{2}+s+\frac{5}{4}\right) \\
1=(a+c) s^{3}+(b+c+d) s^{2}+\left(a+\frac{5}{4} c+d\right) s+\left(b+\frac{5}{4} d\right) .
\end{gathered}
$$

This equation implies that a, b, c, and d, are solutions of

$$
a+c=0, \quad b+c+d=0, \quad a+\frac{5}{4} c+d=0, \quad b+\frac{5}{4} d=1 .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $a=\frac{16}{17}, \quad b=\frac{12}{17}, \quad c=-\frac{16}{17}, \quad d=\frac{4}{17}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $a=\frac{16}{17}, \quad b=\frac{12}{17}, c=-\frac{16}{17}, \quad d=\frac{4}{17}$.
We have found: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $a=\frac{16}{17}, b=\frac{12}{17}, c=-\frac{16}{17}, d=\frac{4}{17}$.
We have found: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Complete the square in the denominator,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $a=\frac{16}{17}, \quad b=\frac{12}{17}, c=-\frac{16}{17}, \quad d=\frac{4}{17}$.
We have found: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Complete the square in the denominator,

$$
s^{2}+s+\frac{5}{4}=\left[s^{2}+2\left(\frac{1}{2}\right) s+\frac{1}{4}\right]-\frac{1}{4}+\frac{5}{4}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $a=\frac{16}{17}, \quad b=\frac{12}{17}, \quad c=-\frac{16}{17}, \quad d=\frac{4}{17}$.
We have found: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Complete the square in the denominator,

$$
s^{2}+s+\frac{5}{4}=\left[s^{2}+2\left(\frac{1}{2}\right) s+\frac{1}{4}\right]-\frac{1}{4}+\frac{5}{4}=\left(s+\frac{1}{2}\right)^{2}+1 .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $a=\frac{16}{17}, b=\frac{12}{17}, c=-\frac{16}{17}, d=\frac{4}{17}$.
We have found: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Complete the square in the denominator,

$$
\begin{gathered}
s^{2}+s+\frac{5}{4}=\left[s^{2}+2\left(\frac{1}{2}\right) s+\frac{1}{4}\right]-\frac{1}{4}+\frac{5}{4}=\left(s+\frac{1}{2}\right)^{2}+1 . \\
H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right] .
\end{gathered}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
\begin{aligned}
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), & y(0)=0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad y(0)=0, \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Rewrite the polynomial in the numerator,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad y(0)=0, \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Rewrite the polynomial in the numerator,

$$
(4 s+3)=4\left(s+\frac{1}{2}-\frac{1}{2}\right)+3
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad y(0)=0, \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Rewrite the polynomial in the numerator,

$$
(4 s+3)=4\left(s+\frac{1}{2}-\frac{1}{2}\right)+3=4\left(s+\frac{1}{2}\right)+1
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution: So: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Rewrite the polynomial in the numerator,

$$
\begin{gathered}
(4 s+3)=4\left(s+\frac{1}{2}-\frac{1}{2}\right)+3=4\left(s+\frac{1}{2}\right)+1, \\
H(s)=\frac{4}{17}\left[4 \frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}-4 \frac{s}{\left(s^{2}+1\right)}+\frac{1}{\left(s^{2}+1\right)}\right],
\end{gathered}
$$

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution:
$H(s)=\frac{4}{17}\left[4 \frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}-4 \frac{s}{\left(s^{2}+1\right)}+\frac{1}{\left(s^{2}+1\right)}\right]$,

Differential equations with discontinuous sources.

Example
Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution:
$H(s)=\frac{4}{17}\left[4 \frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}-4 \frac{s}{\left(s^{2}+1\right)}+\frac{1}{\left(s^{2}+1\right)}\right]$,
Use the Laplace Transform table to get $H(s)$ equal to
$H(s)=\frac{4}{17}\left[4 \mathcal{L}\left[e^{-t / 2} \cos (t)\right]+\mathcal{L}\left[e^{-t / 2} \sin (t)\right]-4 \mathcal{L}[\cos (t)]+\mathcal{L}[\sin (t)]\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution:
$H(s)=\frac{4}{17}\left[4 \frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}-4 \frac{s}{\left(s^{2}+1\right)}+\frac{1}{\left(s^{2}+1\right)}\right]$,
Use the Laplace Transform table to get $H(s)$ equal to

$$
\begin{aligned}
& H(s)=\frac{4}{17}\left[4 \mathcal{L}\left[e^{-t / 2} \cos (t)\right]+\mathcal{L}\left[e^{-t / 2} \sin (t)\right]-4 \mathcal{L}[\cos (t)]+\mathcal{L}[\sin (t)]\right] . \\
& H(s)=\mathcal{L}\left[\frac{4}{17}\left(4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right)\right] .
\end{aligned}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall:

$$
H(s)=\mathcal{L}\left[\frac{4}{17}\left(4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right)\right]
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall:

$$
H(s)=\mathcal{L}\left[\frac{4}{17}\left(4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right)\right]
$$

Denote:

$$
h(t)=\frac{4}{17}\left[4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right] .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall:

$$
H(s)=\mathcal{L}\left[\frac{4}{17}\left(4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right)\right]
$$

Denote:

$$
h(t)=\frac{4}{17}\left[4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right] .
$$

Then, $H(s)=\mathcal{L}[h(t)]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall:

$$
H(s)=\mathcal{L}\left[\frac{4}{17}\left(4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right)\right] .
$$

Denote:

$$
h(t)=\frac{4}{17}\left[4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right] .
$$

Then, $H(s)=\mathcal{L}[h(t)]$. Recalling: $\mathcal{L}[y(t)]=H(s)+e^{-\pi s} H(s)$,

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall:

$$
H(s)=\mathcal{L}\left[\frac{4}{17}\left(4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right)\right] .
$$

Denote:

$$
h(t)=\frac{4}{17}\left[4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right] .
$$

Then, $H(s)=\mathcal{L}[h(t)]$. Recalling: $\mathcal{L}[y(t)]=H(s)+e^{-\pi s} H(s)$,

$$
\mathcal{L}[y(t)]=\mathcal{L}[h(t)]+e^{-\pi s} \mathcal{L}[h(t)] .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution: Recall:

$$
H(s)=\mathcal{L}\left[\frac{4}{17}\left(4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right)\right] .
$$

Denote:

$$
h(t)=\frac{4}{17}\left[4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right] .
$$

Then, $H(s)=\mathcal{L}[h(t)]$. Recalling: $\mathcal{L}[y(t)]=H(s)+e^{-\pi s} H(s)$,

$$
\mathcal{L}[y(t)]=\mathcal{L}[h(t)]+e^{-\pi s} \mathcal{L}[h(t)] .
$$

We conclude: $y(t)=h(t)+u(t-\pi) h(t-\pi)$.

Generalized sources (Sect. 4.4).

- The Dirac delta generalized function.
- Properties of Dirac's delta.
- Relation between deltas and steps.
- Dirac's delta in Physics.
- The Laplace Transform of Dirac's delta.
- Differential equations with Dirac's delta sources.

Generalized sources (Sect. 4.4).

- The Dirac delta generalized function.
- Properties of Dirac's delta.
- Relation between deltas and steps.
- Dirac's delta in Physics.
- The Laplace Transform of Dirac's delta.
- Differential equations with Dirac's delta sources.

The Dirac delta generalized function.

Definition

Consider the sequence of functions for $n \geqslant 1$,

$$
\delta_{n}(t)=\left\{\begin{array}{lc}
0, & t<0 \\
n, & 0 \leqslant t \leqslant \frac{1}{n} \\
0, & t>\frac{1}{n} .
\end{array}\right.
$$

The Dirac delta generalized function.

Definition

Consider the sequence of functions for $n \geqslant 1$,

$$
\delta_{n}(t)=\left\{\begin{array}{cc}
0, & t<0 \\
n, & 0 \leqslant t \leqslant \frac{1}{n} \\
0, & t>\frac{1}{n} .
\end{array}\right.
$$

The Dirac delta generalized function.

Definition

Consider the sequence of functions for $n \geqslant 1$,

$$
\delta_{n}(t)=\left\{\begin{array}{lc}
0, & t<0 \\
n, & 0 \leqslant t \leqslant \frac{1}{n} \\
0, & t>\frac{1}{n} .
\end{array}\right.
$$

The Dirac delta generalized function is given by

$$
\lim _{n \rightarrow \infty} \delta_{n}(t)=\delta(t), \quad t \in \mathbb{R}
$$

The Dirac delta generalized function.

Definition

Consider the sequence of functions for $n \geqslant 1$,

$$
\delta_{n}(t)=\left\{\begin{array}{lc}
0, & t<0 \\
n, & 0 \leqslant t \leqslant \frac{1}{n} \\
0, & t>\frac{1}{n} .
\end{array}\right.
$$

The Dirac delta generalized function is given by

$$
\lim _{n \rightarrow \infty} \delta_{n}(t)=\delta(t), \quad t \in \mathbb{R}
$$

Remarks:
(a) There exist infinitely many sequences δ_{n} that define the same generalized function δ.

The Dirac delta generalized function.

Definition

Consider the sequence of functions for $n \geqslant 1$,

$$
\delta_{n}(t)=\left\{\begin{array}{lc}
0, & t<0 \\
n, & 0 \leqslant t \leqslant \frac{1}{n} \\
0, & t>\frac{1}{n} .
\end{array}\right.
$$

The Dirac delta generalized function is given by

$$
\lim _{n \rightarrow \infty} \delta_{n}(t)=\delta(t), \quad t \in \mathbb{R}
$$

Remarks:
(a) There exist infinitely many sequences δ_{n} that define the same generalized function δ.
(b) For example, compare with the sequences δ_{n} in the literature.

The Dirac delta generalized function.

The Dirac delta generalized function.

The Dirac delta generalized function.

Remarks:
(a) The Dirac δ is a function on the domain $\mathbb{R}-\{0\}$, and $\delta(t)=0$ for $t \in \mathbb{R}-\{0\}$.

The Dirac delta generalized function.

Remarks:
(a) The Dirac δ is a function on the domain $\mathbb{R}-\{0\}$, and $\delta(t)=0$ for $t \in \mathbb{R}-\{0\}$.
(b) δ at $t=0$ is not defined, since $\delta(0)=\lim _{n \rightarrow \infty} n=+\infty$.

The Dirac delta generalized function.

Remarks:
(a) The Dirac δ is a function on the domain $\mathbb{R}-\{0\}$, and $\delta(t)=0$ for $t \in \mathbb{R}-\{0\}$.
(b) δ at $t=0$ is not defined, since $\delta(0)=\lim _{n \rightarrow \infty} n=+\infty$.
(c) δ is not a function on \mathbb{R}.

Generalized sources (Sect. 4.4).

- The Dirac delta generalized function.
- Properties of Dirac's delta.
- Relation between deltas and steps.
- Dirac's delta in Physics.
- The Laplace Transform of Dirac's delta.
- Differential equations with Dirac's delta sources.

Properties of Dirac's delta.

Remark: The Dirac δ is not a function on \mathbb{R}.

Properties of Dirac's delta.

Remark: The Dirac δ is not a function on \mathbb{R}.
We define operations on Dirac's δ as limits $n \rightarrow \infty$ of the operation on the sequence elements δ_{n}.

Properties of Dirac's delta.

Remark: The Dirac δ is not a function on \mathbb{R}.
We define operations on Dirac's δ as limits $n \rightarrow \infty$ of the operation on the sequence elements δ_{n}.

Definition

$$
\delta(t-c)=\lim _{n \rightarrow \infty} \delta_{n}(t-c)
$$

Properties of Dirac's delta.

Remark: The Dirac δ is not a function on \mathbb{R}.
We define operations on Dirac's δ as limits $n \rightarrow \infty$ of the operation on the sequence elements δ_{n}.

Definition

$$
\begin{aligned}
\delta(t-c) & =\lim _{n \rightarrow \infty} \delta_{n}(t-c), \\
a \delta(t)+b \delta(t) & =\lim _{n \rightarrow \infty}\left[a \delta_{n}(t)+b \delta_{n}(t)\right],
\end{aligned}
$$

Properties of Dirac's delta.

Remark: The Dirac δ is not a function on \mathbb{R}.
We define operations on Dirac's δ as limits $n \rightarrow \infty$ of the operation on the sequence elements δ_{n}.

Definition

$$
\begin{aligned}
\delta(t-c) & =\lim _{n \rightarrow \infty} \delta_{n}(t-c), \\
a \delta(t)+b \delta(t) & =\lim _{n \rightarrow \infty}\left[a \delta_{n}(t)+b \delta_{n}(t)\right], \\
f(t) \delta(t) & =\lim _{n \rightarrow \infty}\left[f(t) \delta_{n}(t)\right],
\end{aligned}
$$

Properties of Dirac's delta.

Remark: The Dirac δ is not a function on \mathbb{R}.
We define operations on Dirac's δ as limits $n \rightarrow \infty$ of the operation on the sequence elements δ_{n}.

Definition

$$
\begin{aligned}
\delta(t-c) & =\lim _{n \rightarrow \infty} \delta_{n}(t-c), \\
a \delta(t)+b \delta(t) & =\lim _{n \rightarrow \infty}\left[a \delta_{n}(t)+b \delta_{n}(t)\right], \\
f(t) \delta(t) & =\lim _{n \rightarrow \infty}\left[f(t) \delta_{n}(t)\right], \\
\int_{a}^{b} \delta(t) d t & =\lim _{n \rightarrow \infty} \int_{a}^{b} \delta_{n}(t) d t,
\end{aligned}
$$

Properties of Dirac's delta.

Remark: The Dirac δ is not a function on \mathbb{R}.
We define operations on Dirac's δ as limits $n \rightarrow \infty$ of the operation on the sequence elements δ_{n}.

Definition

$$
\begin{aligned}
\delta(t-c) & =\lim _{n \rightarrow \infty} \delta_{n}(t-c) \\
a \delta(t)+b \delta(t) & =\lim _{n \rightarrow \infty}\left[a \delta_{n}(t)+b \delta_{n}(t)\right] \\
f(t) \delta(t) & =\lim _{n \rightarrow \infty}\left[f(t) \delta_{n}(t)\right] \\
\int_{a}^{b} \delta(t) d t & =\lim _{n \rightarrow \infty} \int_{a}^{b} \delta_{n}(t) d t \\
\mathcal{L}[\delta] & =\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}\right]
\end{aligned}
$$

Properties of Dirac's delta.

Theorem

$$
\int_{-a}^{a} \delta(t) d t=1, \quad a>0
$$

Properties of Dirac's delta.

Theorem

$$
\int_{-a}^{a} \delta(t) d t=1, \quad a>0
$$

Proof:

$$
\int_{-a}^{a} \delta(t) d t
$$

Properties of Dirac's delta.

Theorem

$$
\int_{-a}^{a} \delta(t) d t=1, \quad a>0
$$

Proof:

$$
\int_{-a}^{a} \delta(t) d t=\lim _{n \rightarrow \infty} \int_{-a}^{a} \delta_{n}(t) d t
$$

Properties of Dirac's delta.

Theorem

$$
\int_{-a}^{a} \delta(t) d t=1, \quad a>0
$$

Proof:

$$
\int_{-a}^{a} \delta(t) d t=\lim _{n \rightarrow \infty} \int_{-a}^{a} \delta_{n}(t) d t=\lim _{n \rightarrow \infty} \int_{0}^{1 / n} n d t
$$

Properties of Dirac's delta.

Theorem

$$
\int_{-a}^{a} \delta(t) d t=1, \quad a>0
$$

Proof:

$$
\begin{aligned}
& \int_{-a}^{a} \delta(t) d t=\lim _{n \rightarrow \infty} \int_{-a}^{a} \delta_{n}(t) d t=\lim _{n \rightarrow \infty} \int_{0}^{1 / n} n d t \\
& \int_{-a}^{a} \delta(t) d t=\lim _{n \rightarrow \infty}\left[n\left(\left.t\right|_{0} ^{1 / n}\right)\right]
\end{aligned}
$$

Properties of Dirac's delta.

Theorem

$$
\int_{-a}^{a} \delta(t) d t=1, \quad a>0
$$

Proof:

$$
\begin{gathered}
\int_{-a}^{a} \delta(t) d t=\lim _{n \rightarrow \infty} \int_{-a}^{a} \delta_{n}(t) d t=\lim _{n \rightarrow \infty} \int_{0}^{1 / n} n d t \\
\int_{-a}^{a} \delta(t) d t=\lim _{n \rightarrow \infty}\left[n\left(\left.t\right|_{0} ^{1 / n}\right)\right]=\lim _{n \rightarrow \infty}\left[n \frac{1}{n}\right]
\end{gathered}
$$

Properties of Dirac's delta.

Theorem

$$
\int_{-a}^{a} \delta(t) d t=1, \quad a>0
$$

Proof:

$$
\begin{aligned}
& \int_{-a}^{a} \delta(t) d t=\lim _{n \rightarrow \infty} \int_{-a}^{a} \delta_{n}(t) d t=\lim _{n \rightarrow \infty} \int_{0}^{1 / n} n d t \\
& \int_{-a}^{a} \delta(t) d t=\lim _{n \rightarrow \infty}\left[n\left(\left.t\right|_{0} ^{1 / n}\right)\right]=\lim _{n \rightarrow \infty}\left[n \frac{1}{n}\right] .
\end{aligned}
$$

We conclude: $\int_{-a}^{a} \delta(t) d t=1$.

Properties of Dirac's delta.

Theorem
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $t_{0} \in \mathbb{R}$ and $a>0$, then

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

Properties of Dirac's delta.

Theorem
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $t_{0} \in \mathbb{R}$ and $a>0$, then

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

Proof: Introduce the change of variable $\tau=t-t_{0}$,

$$
I=\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t
$$

Properties of Dirac's delta.

Theorem
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $t_{0} \in \mathbb{R}$ and $a>0$, then

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

Proof: Introduce the change of variable $\tau=t-t_{0}$,

$$
I=\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=\int_{-a}^{a} \delta(\tau) f\left(\tau+t_{0}\right) d \tau
$$

Properties of Dirac's delta.

Theorem
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $t_{0} \in \mathbb{R}$ and $a>0$, then

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

Proof: Introduce the change of variable $\tau=t-t_{0}$,

$$
\begin{aligned}
& \quad I=\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=\int_{-a}^{a} \delta(\tau) f\left(\tau+t_{0}\right) d \tau \\
& I=\lim _{n \rightarrow \infty} \int_{-a}^{a} \delta_{n}(\tau) f\left(\tau+t_{0}\right) d \tau
\end{aligned}
$$

Properties of Dirac's delta.

Theorem
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $t_{0} \in \mathbb{R}$ and $a>0$, then

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

Proof: Introduce the change of variable $\tau=t-t_{0}$,

$$
\begin{gathered}
I=\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=\int_{-a}^{a} \delta(\tau) f\left(\tau+t_{0}\right) d \tau \\
I=\lim _{n \rightarrow \infty} \int_{-a}^{a} \delta_{n}(\tau) f\left(\tau+t_{0}\right) d \tau=\lim _{n \rightarrow \infty} \int_{0}^{1 / n} n f\left(\tau+t_{0}\right) d \tau
\end{gathered}
$$

Properties of Dirac's delta.

Theorem
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $t_{0} \in \mathbb{R}$ and $a>0$, then

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

Proof: Introduce the change of variable $\tau=t-t_{0}$,

$$
\begin{gathered}
I=\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=\int_{-a}^{a} \delta(\tau) f\left(\tau+t_{0}\right) d \tau \\
I=\lim _{n \rightarrow \infty} \int_{-a}^{a} \delta_{n}(\tau) f\left(\tau+t_{0}\right) d \tau=\lim _{n \rightarrow \infty} \int_{0}^{1 / n} n f\left(\tau+t_{0}\right) d \tau
\end{gathered}
$$

Therefore, $I=\lim _{n \rightarrow \infty} n \int_{0}^{1 / n} F^{\prime}\left(\tau+t_{0}\right) d \tau$,

Properties of Dirac's delta.

Theorem
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $t_{0} \in \mathbb{R}$ and $a>0$, then

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

Proof: Introduce the change of variable $\tau=t-t_{0}$,

$$
\begin{gathered}
I=\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=\int_{-a}^{a} \delta(\tau) f\left(\tau+t_{0}\right) d \tau \\
I=\lim _{n \rightarrow \infty} \int_{-a}^{a} \delta_{n}(\tau) f\left(\tau+t_{0}\right) d \tau=\lim _{n \rightarrow \infty} \int_{0}^{1 / n} n f\left(\tau+t_{0}\right) d \tau
\end{gathered}
$$

Therefore, $I=\lim _{n \rightarrow \infty} n \int_{0}^{1 / n} F^{\prime}\left(\tau+t_{0}\right) d \tau$, where we introduced the primitive $F(t)=\int f(t) d t$, that is, $f(t)=F^{\prime}(t)$.

Properties of Dirac's delta.

Theorem
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $t_{0} \in \mathbb{R}$ and $a>0$, then

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

Proof: So, $I=\lim _{n \rightarrow \infty} n \int_{0}^{1 / n} F^{\prime}\left(\tau+t_{0}\right) d \tau$, with $f(t)=F^{\prime}(t)$.

Properties of Dirac's delta.

Theorem
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $t_{0} \in \mathbb{R}$ and $a>0$, then

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

Proof: So, $I=\lim _{n \rightarrow \infty} n \int_{0}^{1 / n} F^{\prime}\left(\tau+t_{0}\right) d \tau$, with $f(t)=F^{\prime}(t)$.

$$
I=\lim _{n \rightarrow \infty} n\left[\left.F\left(\tau+t_{0}\right)\right|_{0} ^{1 / n}\right]
$$

Properties of Dirac's delta.

Theorem
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $t_{0} \in \mathbb{R}$ and $a>0$, then

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

Proof: So, $I=\lim _{n \rightarrow \infty} n \int_{0}^{1 / n} F^{\prime}\left(\tau+t_{0}\right) d \tau$, with $f(t)=F^{\prime}(t)$.

$$
I=\lim _{n \rightarrow \infty} n\left[\left.F\left(\tau+t_{0}\right)\right|_{0} ^{1 / n}\right]=\lim _{n \rightarrow \infty} n\left[F\left(t_{0}+\frac{1}{n}\right)-F\left(t_{0}\right)\right] .
$$

Properties of Dirac's delta.

Theorem
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $t_{0} \in \mathbb{R}$ and $a>0$, then

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

Proof: So, $I=\lim _{n \rightarrow \infty} n \int_{0}^{1 / n} F^{\prime}\left(\tau+t_{0}\right) d \tau$, with $f(t)=F^{\prime}(t)$.

$$
\begin{gathered}
I=\lim _{n \rightarrow \infty} n\left[\left.F\left(\tau+t_{0}\right)\right|_{0} ^{1 / n}\right]=\lim _{n \rightarrow \infty} n\left[F\left(t_{0}+\frac{1}{n}\right)-F\left(t_{0}\right)\right] . \\
I=\lim _{n \rightarrow \infty} \frac{\left[F\left(t_{0}+\frac{1}{n}\right)-F\left(t_{0}\right)\right]}{\frac{1}{n}}
\end{gathered}
$$

Properties of Dirac's delta.

Theorem
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $t_{0} \in \mathbb{R}$ and $a>0$, then

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

Proof: So, $I=\lim _{n \rightarrow \infty} n \int_{0}^{1 / n} F^{\prime}\left(\tau+t_{0}\right) d \tau$, with $f(t)=F^{\prime}(t)$.

$$
\begin{gathered}
I=\lim _{n \rightarrow \infty} n\left[\left.F\left(\tau+t_{0}\right)\right|_{0} ^{1 / n}\right]=\lim _{n \rightarrow \infty} n\left[F\left(t_{0}+\frac{1}{n}\right)-F\left(t_{0}\right)\right] . \\
I=\lim _{n \rightarrow \infty} \frac{\left[F\left(t_{0}+\frac{1}{n}\right)-F\left(t_{0}\right)\right]}{\frac{1}{n}}=F^{\prime}\left(t_{0}\right)
\end{gathered}
$$

Properties of Dirac's delta.

Theorem
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $t_{0} \in \mathbb{R}$ and $a>0$, then

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

Proof: So, $I=\lim _{n \rightarrow \infty} n \int_{0}^{1 / n} F^{\prime}\left(\tau+t_{0}\right) d \tau$, with $f(t)=F^{\prime}(t)$.

$$
\begin{gathered}
I=\lim _{n \rightarrow \infty} n\left[\left.F\left(\tau+t_{0}\right)\right|_{0} ^{1 / n}\right]=\lim _{n \rightarrow \infty} n\left[F\left(t_{0}+\frac{1}{n}\right)-F\left(t_{0}\right)\right] . \\
I=\lim _{n \rightarrow \infty} \frac{\left[F\left(t_{0}+\frac{1}{n}\right)-F\left(t_{0}\right)\right]}{\frac{1}{n}}=F^{\prime}\left(t_{0}\right)=f\left(t_{0}\right)
\end{gathered}
$$

Properties of Dirac's delta.

Theorem
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $t_{0} \in \mathbb{R}$ and $a>0$, then

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

Proof: So, $I=\lim _{n \rightarrow \infty} n \int_{0}^{1 / n} F^{\prime}\left(\tau+t_{0}\right) d \tau$, with $f(t)=F^{\prime}(t)$.

$$
\begin{gathered}
I=\lim _{n \rightarrow \infty} n\left[\left.F\left(\tau+t_{0}\right)\right|_{0} ^{1 / n}\right]=\lim _{n \rightarrow \infty} n\left[F\left(t_{0}+\frac{1}{n}\right)-F\left(t_{0}\right)\right] . \\
I=\lim _{n \rightarrow \infty} \frac{\left[F\left(t_{0}+\frac{1}{n}\right)-F\left(t_{0}\right)\right]}{\frac{1}{n}}=F^{\prime}\left(t_{0}\right)=f\left(t_{0}\right) .
\end{gathered}
$$

We conclude: $\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)$.

Generalized sources (Sect. 4.4).

- The Dirac delta generalized function.
- Properties of Dirac's delta.
- Relation between deltas and steps.
- Dirac's delta in Physics.
- The Laplace Transform of Dirac's delta.
- Differential equations with Dirac's delta sources.

Relation between deltas and steps.

Theorem
The sequence of functions for $n \geqslant 1$,

$$
u_{n}(t)=\left\{\begin{array}{cc}
0, & t<0 \\
n t, & 0 \leqslant t \leqslant \frac{1}{n} \\
1, & t>\frac{1}{n}
\end{array}\right.
$$

Relation between deltas and steps.

Theorem
The sequence of functions for $n \geqslant 1$,

$$
u_{n}(t)=\left\{\begin{array}{cc}
0, & t<0 \\
n t, & 0 \leqslant t \leqslant \frac{1}{n} \\
1, & t>\frac{1}{n} .
\end{array}\right.
$$

Relation between deltas and steps.

Theorem
The sequence of functions for $n \geqslant 1$,

$$
u_{n}(t)=\left\{\begin{array}{cc}
0, & t<0 \\
n t, & 0 \leqslant t \leqslant \frac{1}{n} \\
1, & t>\frac{1}{n}
\end{array}\right.
$$

satisfies, for $t \in(-\infty, 0) \cup(0,1 / n) \cup(1 / n, \infty)$, both equations,

$$
u_{n}^{\prime}(t)=\delta_{n}(t), \quad \lim _{n \rightarrow \infty} u_{n}(t)=u(t), \quad t \in \mathbb{R}
$$

Relation between deltas and steps.

Theorem
The sequence of functions for $n \geqslant 1$,

$$
u_{n}(t)=\left\{\begin{array}{cc}
0, & t<0 \\
n t, & 0 \leqslant t \leqslant \frac{1}{n} \\
1, & t>\frac{1}{n}
\end{array}\right.
$$

satisfies, for $t \in(-\infty, 0) \cup(0,1 / n) \cup(1 / n, \infty)$, both equations,

$$
u_{n}^{\prime}(t)=\delta_{n}(t), \quad \lim _{n \rightarrow \infty} u_{n}(t)=u(t), \quad t \in \mathbb{R}
$$

Remark:

- If we generalize the notion of derivative as

$$
u^{\prime}(t)=\lim _{n \rightarrow \infty} u_{n}^{\prime}(t), \text { then holds } u^{\prime}(t)=\delta(t)
$$

Relation between deltas and steps.

Theorem
The sequence of functions for $n \geqslant 1$,

$$
u_{n}(t)=\left\{\begin{array}{cc}
0, & t<0 \\
n t, & 0 \leqslant t \leqslant \frac{1}{n} \\
1, & t>\frac{1}{n}
\end{array}\right.
$$

satisfies, for $t \in(-\infty, 0) \cup(0,1 / n) \cup(1 / n, \infty)$, both equations,

$$
u_{n}^{\prime}(t)=\delta_{n}(t), \quad \lim _{n \rightarrow \infty} u_{n}(t)=u(t), \quad t \in \mathbb{R}
$$

Remark:

- If we generalize the notion of derivative as $u^{\prime}(t)=\lim _{n \rightarrow \infty} u_{n}^{\prime}(t)$, then holds $u^{\prime}(t)=\delta(t)$.
- Dirac's delta is a generalized derivative of the step function.

Generalized sources (Sect. 4.4).

- The Dirac delta generalized function.
- Properties of Dirac's delta.
- Relation between deltas and steps.
- Dirac's delta in Physics.
- The Laplace Transform of Dirac's delta.
- Differential equations with Dirac's delta sources.

Dirac's delta in Physics.

Remarks:
(a) Dirac's delta generalized function is useful to describe impulsive forces in mechanical systems.

Dirac's delta in Physics.

Remarks:
(a) Dirac's delta generalized function is useful to describe impulsive forces in mechanical systems.
(b) An impulsive force transmits a finite momentum in an infinitely short time.

Dirac's delta in Physics.

Remarks:
(a) Dirac's delta generalized function is useful to describe impulsive forces in mechanical systems.
(b) An impulsive force transmits a finite momentum in an infinitely short time.
(c) For example: The momentum transmitted to a pendulum when hit by a hammer.

Dirac's delta in Physics.

Remarks:
(a) Dirac's delta generalized function is useful to describe impulsive forces in mechanical systems.
(b) An impulsive force transmits a finite momentum in an infinitely short time.
(c) For example: The momentum transmitted to a pendulum when hit by a hammer. Newton's law of motion says,

$$
m v^{\prime}(t)=F(t)
$$

Dirac's delta in Physics.

Remarks:
(a) Dirac's delta generalized function is useful to describe impulsive forces in mechanical systems.
(b) An impulsive force transmits a finite momentum in an infinitely short time.
(c) For example: The momentum transmitted to a pendulum when hit by a hammer. Newton's law of motion says,

$$
m v^{\prime}(t)=F(t), \quad \text { with } \quad F(t)=F_{0} \delta\left(t-t_{0}\right) .
$$

Dirac's delta in Physics.

Remarks:
(a) Dirac's delta generalized function is useful to describe impulsive forces in mechanical systems.
(b) An impulsive force transmits a finite momentum in an infinitely short time.
(c) For example: The momentum transmitted to a pendulum when hit by a hammer. Newton's law of motion says,

$$
m v^{\prime}(t)=F(t), \quad \text { with } \quad F(t)=F_{0} \delta\left(t-t_{0}\right) .
$$

The momentum transfer is:

$$
\Delta I=\left.\lim _{\Delta t \rightarrow 0} m v(t)\right|_{t_{0}-\Delta t} ^{t_{0}+\Delta t}
$$

Dirac's delta in Physics.

Remarks:

(a) Dirac's delta generalized function is useful to describe impulsive forces in mechanical systems.
(b) An impulsive force transmits a finite momentum in an infinitely short time.
(c) For example: The momentum transmitted to a pendulum when hit by a hammer. Newton's law of motion says,

$$
m v^{\prime}(t)=F(t), \quad \text { with } \quad F(t)=F_{0} \delta\left(t-t_{0}\right) .
$$

The momentum transfer is:

$$
\Delta I=\left.\lim _{\Delta t \rightarrow 0} m v(t)\right|_{t_{0}-\Delta t} ^{t_{0}+\Delta t}=\lim _{\Delta t \rightarrow 0} \int_{t_{0}-\Delta t}^{t_{0}+\Delta t} F(t) d t
$$

Dirac's delta in Physics.

Remarks:

(a) Dirac's delta generalized function is useful to describe impulsive forces in mechanical systems.
(b) An impulsive force transmits a finite momentum in an infinitely short time.
(c) For example: The momentum transmitted to a pendulum when hit by a hammer. Newton's law of motion says,

$$
m v^{\prime}(t)=F(t), \quad \text { with } \quad F(t)=F_{0} \delta\left(t-t_{0}\right) .
$$

The momentum transfer is:

$$
\Delta I=\left.\lim _{\Delta t \rightarrow 0} m v(t)\right|_{t_{0}-\Delta t} ^{t_{0}+\Delta t}=\lim _{\Delta t \rightarrow 0} \int_{t_{0}-\Delta t}^{t_{0}+\Delta t} F(t) d t=F_{0}
$$

Dirac's delta in Physics.

Remarks:

(a) Dirac's delta generalized function is useful to describe impulsive forces in mechanical systems.
(b) An impulsive force transmits a finite momentum in an infinitely short time.
(c) For example: The momentum transmitted to a pendulum when hit by a hammer. Newton's law of motion says,

$$
m v^{\prime}(t)=F(t), \quad \text { with } \quad F(t)=F_{0} \delta\left(t-t_{0}\right) .
$$

The momentum transfer is:

$$
\Delta I=\left.\lim _{\Delta t \rightarrow 0} m v(t)\right|_{t_{0}-\Delta t} ^{t_{0}+\Delta t}=\lim _{\Delta t \rightarrow 0} \int_{t_{0}-\Delta t}^{t_{0}+\Delta t} F(t) d t=F_{0}
$$

That is, $\Delta I=F_{0}$.

Generalized sources (Sect. 4.4).

- The Dirac delta generalized function.
- Properties of Dirac's delta.
- Relation between deltas and steps.
- Dirac's delta in Physics.
- The Laplace Transform of Dirac's delta.
- Differential equations with Dirac's delta sources.

The Laplace Transform of Dirac's delta.

Recall: The Laplace Transform can be generalized from functions to δ,

The Laplace Transform of Dirac's delta.

Recall: The Laplace Transform can be generalized from functions to δ, as follows, $\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}(t-c)\right]$.

The Laplace Transform of Dirac's delta.

Recall: The Laplace Transform can be generalized from functions to δ, as follows, $\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}(t-c)\right]$.

Theorem

$$
\mathcal{L}[\delta(t-c)]=e^{-c s} .
$$

The Laplace Transform of Dirac's delta.

Recall: The Laplace Transform can be generalized from functions to δ, as follows, $\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}(t-c)\right]$.

Theorem

$$
\mathcal{L}[\delta(t-c)]=e^{-c s} .
$$

Proof:
$\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}(t-c)\right]$,

The Laplace Transform of Dirac's delta.

Recall: The Laplace Transform can be generalized from functions to δ, as follows, $\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}(t-c)\right]$.
Theorem

$$
\mathcal{L}[\delta(t-c)]=e^{-c s}
$$

Proof:

$$
\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}(t-c)\right], \quad \delta_{n}(t)=n\left[u(t)-u\left(t-\frac{1}{n}\right)\right] .
$$

The Laplace Transform of Dirac's delta.

Recall: The Laplace Transform can be generalized from functions to δ, as follows, $\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}(t-c)\right]$.

Theorem

$$
\mathcal{L}[\delta(t-c)]=e^{-c s} .
$$

Proof:

$$
\begin{gathered}
\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}(t-c)\right], \quad \delta_{n}(t)=n\left[u(t)-u\left(t-\frac{1}{n}\right)\right] . \\
\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} n\left(\mathcal{L}[u(t-c)]-\mathcal{L}\left[u\left(t-c-\frac{1}{n}\right)\right]\right)
\end{gathered}
$$

The Laplace Transform of Dirac's delta.

Recall: The Laplace Transform can be generalized from functions to δ, as follows, $\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}(t-c)\right]$.

Theorem

$$
\mathcal{L}[\delta(t-c)]=e^{-c s} .
$$

Proof:

$$
\begin{aligned}
& \mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}(t-c)\right], \quad \delta_{n}(t)=n\left[u(t)-u\left(t-\frac{1}{n}\right)\right] . \\
& \mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} n\left(\mathcal{L}[u(t-c)]-\mathcal{L}\left[u\left(t-c-\frac{1}{n}\right)\right]\right) \\
& \mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} n\left(\frac{e^{-c s}}{s}-\frac{e^{-\left(c+\frac{1}{n}\right) s}}{s}\right)
\end{aligned}
$$

The Laplace Transform of Dirac's delta.

Recall: The Laplace Transform can be generalized from functions to δ, as follows, $\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}(t-c)\right]$.

Theorem

$$
\mathcal{L}[\delta(t-c)]=e^{-c s} .
$$

Proof:

$$
\begin{gathered}
\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}(t-c)\right], \quad \delta_{n}(t)=n\left[u(t)-u\left(t-\frac{1}{n}\right)\right] . \\
\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} n\left(\mathcal{L}[u(t-c)]-\mathcal{L}\left[u\left(t-c-\frac{1}{n}\right)\right]\right) \\
\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} n\left(\frac{e^{-c s}}{s}-\frac{e^{-\left(c+\frac{1}{n}\right) s}}{s}\right)=e^{-c s} \lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)} .
\end{gathered}
$$

The Laplace Transform of Dirac's delta.

Recall: The Laplace Transform can be generalized from functions to δ, as follows, $\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}(t-c)\right]$.

Theorem

$$
\mathcal{L}[\delta(t-c)]=e^{-c s} .
$$

Proof:

$$
\begin{gathered}
\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}(t-c)\right], \quad \delta_{n}(t)=n\left[u(t)-u\left(t-\frac{1}{n}\right)\right] . \\
\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} n\left(\mathcal{L}[u(t-c)]-\mathcal{L}\left[u\left(t-c-\frac{1}{n}\right)\right]\right) \\
\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} n\left(\frac{e^{-c s}}{s}-\frac{e^{-\left(c+\frac{1}{n}\right) s}}{s}\right)=e^{-c s} \lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)} .
\end{gathered}
$$

This is a singular limit, $\frac{0}{0}$.

The Laplace Transform of Dirac's delta.

Recall: The Laplace Transform can be generalized from functions to δ, as follows, $\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}(t-c)\right]$.

Theorem

$$
\mathcal{L}[\delta(t-c)]=e^{-c s} .
$$

Proof:

$$
\begin{gathered}
\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} \mathcal{L}\left[\delta_{n}(t-c)\right], \quad \delta_{n}(t)=n\left[u(t)-u\left(t-\frac{1}{n}\right)\right] . \\
\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} n\left(\mathcal{L}[u(t-c)]-\mathcal{L}\left[u\left(t-c-\frac{1}{n}\right)\right]\right) \\
\mathcal{L}[\delta(t-c)]=\lim _{n \rightarrow \infty} n\left(\frac{e^{-c s}}{s}-\frac{e^{-\left(c+\frac{1}{n}\right) s}}{s}\right)=e^{-c s} \lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)} .
\end{gathered}
$$

This is a singular limit, $\frac{0}{0}$. Use l'Hôpital rule.

The Laplace Transform of Dirac's delta.
Proof: Recall: $\mathcal{L}[\delta(t-c)]=e^{-c s} \lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}$.

The Laplace Transform of Dirac's delta.
Proof: Recall: $\mathcal{L}[\delta(t-c)]=e^{-c s} \lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}$.

$$
\lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}
$$

The Laplace Transform of Dirac's delta.

Proof: Recall: $\mathcal{L}[\delta(t-c)]=e^{-c s} \lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}$.

$$
\lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}=\lim _{n \rightarrow \infty} \frac{\left(-\frac{s}{n^{2}} e^{-\frac{s}{n}}\right)}{\left(-\frac{s}{n^{2}}\right)}
$$

The Laplace Transform of Dirac's delta.

Proof: Recall: $\mathcal{L}[\delta(t-c)]=e^{-c s} \lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}$.

$$
\lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}=\lim _{n \rightarrow \infty} \frac{\left(-\frac{s}{n^{2}} e^{-\frac{s}{n}}\right)}{\left(-\frac{s}{n^{2}}\right)}=\lim _{n \rightarrow \infty} e^{-\frac{s}{n}}
$$

The Laplace Transform of Dirac's delta.

Proof: Recall: $\mathcal{L}[\delta(t-c)]=e^{-c s} \lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}$.

$$
\lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}=\lim _{n \rightarrow \infty} \frac{\left(-\frac{s}{n^{2}} e^{-\frac{s}{n}}\right)}{\left(-\frac{s}{n^{2}}\right)}=\lim _{n \rightarrow \infty} e^{-\frac{s}{n}}=1 .
$$

The Laplace Transform of Dirac's delta.

Proof: Recall: $\mathcal{L}[\delta(t-c)]=e^{-c s} \lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}$.

$$
\lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}=\lim _{n \rightarrow \infty} \frac{\left(-\frac{s}{n^{2}} e^{-\frac{s}{n}}\right)}{\left(-\frac{s}{n^{2}}\right)}=\lim _{n \rightarrow \infty} e^{-\frac{s}{n}}=1
$$

We therefore conclude that $\mathcal{L}[\delta(t-c)]=e^{-c s}$.

The Laplace Transform of Dirac's delta.

Proof: Recall: $\mathcal{L}[\delta(t-c)]=e^{-c s} \lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}$.

$$
\lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}=\lim _{n \rightarrow \infty} \frac{\left(-\frac{s}{n^{2}} e^{-\frac{s}{n}}\right)}{\left(-\frac{s}{n^{2}}\right)}=\lim _{n \rightarrow \infty} e^{-\frac{s}{n}}=1
$$

We therefore conclude that $\mathcal{L}[\delta(t-c)]=e^{-c s}$.
Remarks:
(a) This result is consistent with a previous result:

The Laplace Transform of Dirac's delta.

Proof: Recall: $\mathcal{L}[\delta(t-c)]=e^{-c s} \lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}$.

$$
\lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}=\lim _{n \rightarrow \infty} \frac{\left(-\frac{s}{n^{2}} e^{-\frac{s}{n}}\right)}{\left(-\frac{s}{n^{2}}\right)}=\lim _{n \rightarrow \infty} e^{-\frac{s}{n}}=1
$$

We therefore conclude that $\mathcal{L}[\delta(t-c)]=e^{-c s}$.
Remarks:
(a) This result is consistent with a previous result:

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

The Laplace Transform of Dirac's delta.

Proof: Recall: $\mathcal{L}[\delta(t-c)]=e^{-c s} \lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}$.

$$
\lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}=\lim _{n \rightarrow \infty} \frac{\left(-\frac{s}{n^{2}} e^{-\frac{s}{n}}\right)}{\left(-\frac{s}{n^{2}}\right)}=\lim _{n \rightarrow \infty} e^{-\frac{s}{n}}=1
$$

We therefore conclude that $\mathcal{L}[\delta(t-c)]=e^{-c s}$.
Remarks:
(a) This result is consistent with a previous result:

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

(b) $\mathcal{L}[\delta(t-c)]=\int_{0}^{\infty} \delta(t-c) e^{-s t} d t=e^{-c s}$.

The Laplace Transform of Dirac's delta.

Proof: Recall: $\mathcal{L}[\delta(t-c)]=e^{-c s} \lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}$.

$$
\lim _{n \rightarrow \infty} \frac{\left(1-e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}=\lim _{n \rightarrow \infty} \frac{\left(-\frac{s}{n^{2}} e^{-\frac{s}{n}}\right)}{\left(-\frac{s}{n^{2}}\right)}=\lim _{n \rightarrow \infty} e^{-\frac{s}{n}}=1
$$

We therefore conclude that $\mathcal{L}[\delta(t-c)]=e^{-c s}$.
Remarks:
(a) This result is consistent with a previous result:

$$
\int_{t_{0}-a}^{t_{0}+a} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)
$$

(b) $\mathcal{L}[\delta(t-c)]=\int_{0}^{\infty} \delta(t-c) e^{-s t} d t=e^{-c s}$.
(c) $\mathcal{L}[\delta(t-c) f(t)]=\int_{0}^{\infty} \delta(t-c) e^{-s t} f(t) d t=e^{-c s} f(c)$.

Generalized sources (Sect. 4.4).

- The Dirac delta generalized function.
- Properties of Dirac's delta.
- Relation between deltas and steps.
- Dirac's delta in Physics.
- The Laplace Transform of Dirac's delta.
- Differential equations with Dirac's delta sources.

Differential equations with Dirac's delta sources.

Example
Find the solution y to the initial value problem

$$
y^{\prime \prime}-y=-20 \delta(t-3), \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Differential equations with Dirac's delta sources.

Example
Find the solution y to the initial value problem

$$
y^{\prime \prime}-y=-20 \delta(t-3), \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Solution: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]-\mathcal{L}[y]=-20 \mathcal{L}[\delta(t-3)]$.

Differential equations with Dirac's delta sources.

Example
Find the solution y to the initial value problem

$$
y^{\prime \prime}-y=-20 \delta(t-3), \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Solution: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]-\mathcal{L}[y]=-20 \mathcal{L}[\delta(t-3)]$.

$$
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0)
$$

Differential equations with Dirac's delta sources.

Example
Find the solution y to the initial value problem

$$
y^{\prime \prime}-y=-20 \delta(t-3), \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Solution: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]-\mathcal{L}[y]=-20 \mathcal{L}[\delta(t-3)]$.

$$
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0) \quad \Rightarrow \quad\left(s^{2}-1\right) \mathcal{L}[y]-s=-20 e^{-3 s},
$$

Differential equations with Dirac's delta sources.

Example
Find the solution y to the initial value problem

$$
y^{\prime \prime}-y=-20 \delta(t-3), \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Solution: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]-\mathcal{L}[y]=-20 \mathcal{L}[\delta(t-3)]$.
$\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0) \quad \Rightarrow \quad\left(s^{2}-1\right) \mathcal{L}[y]-s=-20 e^{-3 s}$,
We arrive to the equation $\mathcal{L}[y]=\frac{s}{\left(s^{2}-1\right)}-20 e^{-3 s} \frac{1}{\left(s^{2}-1\right)}$,

Differential equations with Dirac's delta sources.

Example
Find the solution y to the initial value problem

$$
y^{\prime \prime}-y=-20 \delta(t-3), \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Solution: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]-\mathcal{L}[y]=-20 \mathcal{L}[\delta(t-3)]$.
$\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0) \quad \Rightarrow \quad\left(s^{2}-1\right) \mathcal{L}[y]-s=-20 e^{-3 s}$,
We arrive to the equation $\mathcal{L}[y]=\frac{s}{\left(s^{2}-1\right)}-20 e^{-3 s} \frac{1}{\left(s^{2}-1\right)}$,

$$
\mathcal{L}[y]=\mathcal{L}[\cosh (t)]-20 \mathcal{L}[u(t-3) \sinh (t-3)],
$$

Differential equations with Dirac's delta sources.

Example
Find the solution y to the initial value problem

$$
y^{\prime \prime}-y=-20 \delta(t-3), \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Solution: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]-\mathcal{L}[y]=-20 \mathcal{L}[\delta(t-3)]$.
$\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0) \quad \Rightarrow \quad\left(s^{2}-1\right) \mathcal{L}[y]-s=-20 e^{-3 s}$,
We arrive to the equation $\mathcal{L}[y]=\frac{s}{\left(s^{2}-1\right)}-20 e^{-3 s} \frac{1}{\left(s^{2}-1\right)}$,

$$
\mathcal{L}[y]=\mathcal{L}[\cosh (t)]-20 \mathcal{L}[u(t-3) \sinh (t-3)],
$$

We conclude: $\quad y(t)=\cosh (t)-20 u(t-3) \sinh (t-3)$.

Differential equations with Dirac's delta sources.

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}+4 y=\delta(t-\pi)-\delta(t-2 \pi), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Differential equations with Dirac's delta sources.

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}+4 y=\delta(t-\pi)-\delta(t-2 \pi), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Solution: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]+4 \mathcal{L}[y]=\mathcal{L}[\delta(t-\pi)]-\mathcal{L}[\delta(t-2 \pi)]$,

Differential equations with Dirac's delta sources.

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}+4 y=\delta(t-\pi)-\delta(t-2 \pi), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Solution: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]+4 \mathcal{L}[y]=\mathcal{L}[\delta(t-\pi)]-\mathcal{L}[\delta(t-2 \pi)]$,

$$
\left(s^{2}+4\right) \mathcal{L}[y]=e^{-\pi s}-e^{-2 \pi s}
$$

Differential equations with Dirac's delta sources.

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}+4 y=\delta(t-\pi)-\delta(t-2 \pi), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Solution: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]+4 \mathcal{L}[y]=\mathcal{L}[\delta(t-\pi)]-\mathcal{L}[\delta(t-2 \pi)]$,

$$
\left(s^{2}+4\right) \mathcal{L}[y]=e^{-\pi s}-e^{-2 \pi s} \quad \Rightarrow \quad \mathcal{L}[y]=\frac{e^{-\pi s}}{\left(s^{2}+4\right)}-\frac{e^{-2 \pi s}}{\left(s^{2}+4\right)},
$$

Differential equations with Dirac's delta sources.

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}+4 y=\delta(t-\pi)-\delta(t-2 \pi), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Solution: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]+4 \mathcal{L}[y]=\mathcal{L}[\delta(t-\pi)]-\mathcal{L}[\delta(t-2 \pi)]$,

$$
\left(s^{2}+4\right) \mathcal{L}[y]=e^{-\pi s}-e^{-2 \pi s} \quad \Rightarrow \quad \mathcal{L}[y]=\frac{e^{-\pi s}}{\left(s^{2}+4\right)}-\frac{e^{-2 \pi s}}{\left(s^{2}+4\right)},
$$

that is, $\mathcal{L}[y]=\frac{e^{-\pi s}}{2} \frac{2}{\left(s^{2}+4\right)}-\frac{e^{-2 \pi s}}{2} \frac{2}{\left(s^{2}+4\right)}$.

Differential equations with Dirac's delta sources.

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}+4 y=\delta(t-\pi)-\delta(t-2 \pi), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Solution: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]+4 \mathcal{L}[y]=\mathcal{L}[\delta(t-\pi)]-\mathcal{L}[\delta(t-2 \pi)]$,
$\left(s^{2}+4\right) \mathcal{L}[y]=e^{-\pi s}-e^{-2 \pi s} \quad \Rightarrow \quad \mathcal{L}[y]=\frac{e^{-\pi s}}{\left(s^{2}+4\right)}-\frac{e^{-2 \pi s}}{\left(s^{2}+4\right)}$,
that is, $\mathcal{L}[y]=\frac{e^{-\pi s}}{2} \frac{2}{\left(s^{2}+4\right)}-\frac{e^{-2 \pi s}}{2} \frac{2}{\left(s^{2}+4\right)}$.
Recall: $\quad e^{-c s} \mathcal{L}[f(t)]=\mathcal{L}[u(t-c) f(t-c)]$.

Differential equations with Dirac's delta sources.

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}+4 y=\delta(t-\pi)-\delta(t-2 \pi), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Solution: Compute: $\mathcal{L}\left[y^{\prime \prime}\right]+4 \mathcal{L}[y]=\mathcal{L}[\delta(t-\pi)]-\mathcal{L}[\delta(t-2 \pi)]$,
$\left(s^{2}+4\right) \mathcal{L}[y]=e^{-\pi s}-e^{-2 \pi s} \quad \Rightarrow \quad \mathcal{L}[y]=\frac{e^{-\pi s}}{\left(s^{2}+4\right)}-\frac{e^{-2 \pi s}}{\left(s^{2}+4\right)}$,
that is, $\mathcal{L}[y]=\frac{e^{-\pi s}}{2} \frac{2}{\left(s^{2}+4\right)}-\frac{e^{-2 \pi s}}{2} \frac{2}{\left(s^{2}+4\right)}$.
Recall: $\quad e^{-c s} \mathcal{L}[f(t)]=\mathcal{L}[u(t-c) f(t-c)]$. Therefore,
$\mathcal{L}[y]=\frac{1}{2} \mathcal{L}[u(t-\pi) \sin [2(t-\pi)]]-\frac{1}{2} \mathcal{L}[u(t-2 \pi) \sin [2(t-2 \pi)]]$.

Differential equations with Dirac's delta sources.

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}+4 y=\delta(t-\pi)-\delta(t-2 \pi), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Recall:
$\mathcal{L}[y]=\frac{1}{2} \mathcal{L}[u(t-\pi) \sin [2(t-\pi)]]-\frac{1}{2} \mathcal{L}[u(t-2 \pi) \sin [2(t-2 \pi)]]$.

Differential equations with Dirac's delta sources.

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}+4 y=\delta(t-\pi)-\delta(t-2 \pi), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Solution: Recall:
$\mathcal{L}[y]=\frac{1}{2} \mathcal{L}[u(t-\pi) \sin [2(t-\pi)]]-\frac{1}{2} \mathcal{L}[u(t-2 \pi) \sin [2(t-2 \pi)]]$.
This implies that,

$$
y(t)=\frac{1}{2} u(t-\pi) \sin [2(t-\pi)]-\frac{1}{2} u(t-2 \pi) \sin [2(t-2 \pi)],
$$

Differential equations with Dirac's delta sources.

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}+4 y=\delta(t-\pi)-\delta(t-2 \pi), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution: Recall:
$\mathcal{L}[y]=\frac{1}{2} \mathcal{L}[u(t-\pi) \sin [2(t-\pi)]]-\frac{1}{2} \mathcal{L}[u(t-2 \pi) \sin [2(t-2 \pi)]]$.
This implies that,

$$
y(t)=\frac{1}{2} u(t-\pi) \sin [2(t-\pi)]-\frac{1}{2} u(t-2 \pi) \sin [2(t-2 \pi)],
$$

We conclude: $y(t)=\frac{1}{2}[u(t-\pi)-u(t-2 \pi)] \sin (2 t)$.

