Review for Exam 2.

- 6 or 7 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Variation of parameters (2.6).
- Undetermined coefficients (2.5).
- Constant coefficients, homogeneous, (2.2)-(2.4).
- Reduction order method, (2.4.2).
- Second order variable coefficients, (2.1).
- First order homogeneous (1.3.2).

Review for Exam 2.

Notation for webwork: Consider the equation:

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{2} y=0
$$

Let r_{+}, r_{-}be the roots of the characteristic polynomial.

- If $r_{+}>r_{-}$real, then
- First fundamental solution: $y_{1}(t)=e^{r+t}$.
- Second fundamental solution: $y_{2}(t)=e^{r-t}$.
- If $r_{ \pm}=\alpha \pm i \beta$ complex, then
- First fundamental solution: $y_{1}(t)=e^{\alpha t} \cos (\beta t)$.
- Second fundamental solution: $y_{2}(t)=e^{\alpha t} \sin (\beta t)$.
- If $r_{+}=r_{-}=r$ real, then
- First fundamental solution: $y_{1}(t)=e^{r t}$.
- Second fundamental solution: $y_{2}(t)=t e^{r t}$.

Review for Exam 2.

- 6 or 7 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Variation of parameters (2.6).
- Undetermined coefficients (2.5).
- Constant coefficients, homogeneous, (2.2)-(2.4).
- Reduction order method, (2.4.2).
- Second order variable coefficients, (2.1).
- First order homogeneous (1.3.2).

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation. Solution: We first need to divide the equation by x^{2},

$$
y^{\prime \prime}-\frac{6}{x} y^{\prime}+\frac{10}{x^{2}} y=2 x^{8}
$$

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation. Solution: We first need to divide the equation by x^{2},

$$
y^{\prime \prime}-\frac{6}{x} y^{\prime}+\frac{10}{x^{2}} y=2 x^{8}
$$

Then the source function is $f(x)=2 x^{8}$.

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation. Solution: We first need to divide the equation by x^{2},

$$
y^{\prime \prime}-\frac{6}{x} y^{\prime}+\frac{10}{x^{2}} y=2 x^{8}
$$

Then the source function is $f(x)=2 x^{8}$. We now compute the Wronskian of y_{1}, y_{2},

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation. Solution: We first need to divide the equation by x^{2},

$$
y^{\prime \prime}-\frac{6}{x} y^{\prime}+\frac{10}{x^{2}} y=2 x^{8}
$$

Then the source function is $f(x)=2 x^{8}$. We now compute the Wronskian of y_{1}, y_{2},

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x^{5} & x^{2} \\
5 x^{4} & 2 x
\end{array}\right|
$$

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation. Solution: We first need to divide the equation by x^{2},

$$
y^{\prime \prime}-\frac{6}{x} y^{\prime}+\frac{10}{x^{2}} y=2 x^{8}
$$

Then the source function is $f(x)=2 x^{8}$. We now compute the Wronskian of y_{1}, y_{2},

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x^{5} & x^{2} \\
5 x^{4} & 2 x
\end{array}\right|=2 x^{6}-5 x^{6} .
$$

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation. Solution: We first need to divide the equation by x^{2},

$$
y^{\prime \prime}-\frac{6}{x} y^{\prime}+\frac{10}{x^{2}} y=2 x^{8},
$$

Then the source function is $f(x)=2 x^{8}$. We now compute the Wronskian of y_{1}, y_{2},

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x^{5} & x^{2} \\
5 x^{4} & 2 x
\end{array}\right|=2 x^{6}-5 x^{6} .
$$

Hence $W=-3 x^{6}$.

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: $y_{1}=x^{5}, y_{2}=x^{2}, f=2 x^{8}, W=-3 x^{6}$.

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: $y_{1}=x^{5}, y_{2}=x^{2}, f=2 x^{8}, W=-3 x^{6}$.
Now we find the functions u_{1} and u_{2},

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: $y_{1}=x^{5}, y_{2}=x^{2}, f=2 x^{8}, W=-3 x^{6}$.
Now we find the functions u_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{y_{2} f}{W}
$$

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: $y_{1}=x^{5}, y_{2}=x^{2}, f=2 x^{8}, W=-3 x^{6}$.
Now we find the functions u_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{y_{2} f}{W}=-\frac{x^{2} 2 x^{8}}{(-3) x^{6}}
$$

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: $y_{1}=x^{5}, y_{2}=x^{2}, f=2 x^{8}, W=-3 x^{6}$.
Now we find the functions u_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{y_{2} f}{W}=-\frac{x^{2} 2 x^{8}}{(-3) x^{6}}=\frac{2}{3} x^{4}
$$

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: $y_{1}=x^{5}, y_{2}=x^{2}, f=2 x^{8}, W=-3 x^{6}$.
Now we find the functions u_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{y_{2} f}{W}=-\frac{x^{2} 2 x^{8}}{(-3) x^{6}}=\frac{2}{3} x^{4} \quad \Rightarrow \quad u_{1}=\frac{2}{15} x^{5} .
$$

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: $y_{1}=x^{5}, y_{2}=x^{2}, f=2 x^{8}, W=-3 x^{6}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{y_{2} f}{W}=-\frac{x^{2} 2 x^{8}}{(-3) x^{6}}=\frac{2}{3} x^{4} \Rightarrow u_{1}=\frac{2}{15} x^{5} \\
& u_{2}^{\prime}=\frac{y_{1} f}{W}
\end{aligned}
$$

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: $y_{1}=x^{5}, y_{2}=x^{2}, f=2 x^{8}, W=-3 x^{6}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{y_{2} f}{W}=-\frac{x^{2} 2 x^{8}}{(-3) x^{6}}=\frac{2}{3} x^{4} \Rightarrow u_{1}=\frac{2}{15} x^{5} . \\
& u_{2}^{\prime}=\frac{y_{1} f}{W}=\frac{x^{5} 2 x^{8}}{(-3) x^{6}}
\end{aligned}
$$

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: $y_{1}=x^{5}, y_{2}=x^{2}, f=2 x^{8}, W=-3 x^{6}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{y_{2} f}{W}=-\frac{x^{2} 2 x^{8}}{(-3) x^{6}}=\frac{2}{3} x^{4} \quad \Rightarrow \quad u_{1}=\frac{2}{15} x^{5} . \\
& u_{2}^{\prime}=\frac{y_{1} f}{W}=\frac{x^{5} 2 x^{8}}{(-3) x^{6}}=-\frac{2}{3} x^{7}
\end{aligned}
$$

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: $y_{1}=x^{5}, y_{2}=x^{2}, f=2 x^{8}, W=-3 x^{6}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{y_{2} f}{W}=-\frac{x^{2} 2 x^{8}}{(-3) x^{6}}=\frac{2}{3} x^{4} \quad \Rightarrow \quad u_{1}=\frac{2}{15} x^{5} . \\
& u_{2}^{\prime}=\frac{y_{1} f}{W}=\frac{x^{5} 2 x^{8}}{(-3) x^{6}}=-\frac{2}{3} x^{7} \quad \Rightarrow \quad u_{2}=-\frac{2}{24} x^{8} .
\end{aligned}
$$

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: $y_{1}=x^{5}, y_{2}=x^{2}, f=2 x^{8}, W=-3 x^{6}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} f}{W}=-\frac{x^{2} 2 x^{8}}{(-3) x^{6}}=\frac{2}{3} x^{4} \quad \Rightarrow \quad u_{1}=\frac{2}{15} x^{5} . \\
u_{2}^{\prime}=\frac{y_{1} f}{W}=\frac{x^{5} 2 x^{8}}{(-3) x^{6}}=-\frac{2}{3} x^{7} \Rightarrow u_{2}=-\frac{2}{24} x^{8} . \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}
\end{gathered}
$$

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: $y_{1}=x^{5}, y_{2}=x^{2}, f=2 x^{8}, W=-3 x^{6}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} f}{W}=-\frac{x^{2} 2 x^{8}}{(-3) x^{6}}=\frac{2}{3} x^{4} \quad \Rightarrow \quad u_{1}=\frac{2}{15} x^{5} . \\
u_{2}^{\prime}=\frac{y_{1} f}{W}=\frac{x^{5} 2 x^{8}}{(-3) x^{6}}=-\frac{2}{3} x^{7} \quad \Rightarrow \quad u_{2}=-\frac{2}{24} x^{8} . \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=\frac{2}{15} x^{5} x^{5}-\frac{2}{24} x^{8} x^{2}
\end{gathered}
$$

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: $y_{1}=x^{5}, y_{2}=x^{2}, f=2 x^{8}, W=-3 x^{6}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} f}{W}=-\frac{x^{2} 2 x^{8}}{(-3) x^{6}}=\frac{2}{3} x^{4} \quad \Rightarrow \quad u_{1}=\frac{2}{15} x^{5} . \\
u_{2}^{\prime}=\frac{y_{1} f}{W}=\frac{x^{5} 2 x^{8}}{(-3) x^{6}}=-\frac{2}{3} x^{7} \quad \Rightarrow \quad u_{2}=-\frac{2}{24} x^{8} . \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=\frac{2}{15} x^{5} x^{5}-\frac{2}{24} x^{8} x^{2}=\frac{2}{3} x^{10}\left(\frac{1}{5}-\frac{1}{8}\right)
\end{gathered}
$$

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: $y_{1}=x^{5}, y_{2}=x^{2}, f=2 x^{8}, W=-3 x^{6}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} f}{W}=-\frac{x^{2} 2 x^{8}}{(-3) x^{6}}=\frac{2}{3} x^{4} \quad \Rightarrow \quad u_{1}=\frac{2}{15} x^{5} . \\
u_{2}^{\prime}=\frac{y_{1} f}{W}=\frac{x^{5} 2 x^{8}}{(-3) x^{6}}=-\frac{2}{3} x^{7} \quad \Rightarrow \quad u_{2}=-\frac{2}{24} x^{8} . \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=\frac{2}{15} x^{5} x^{5}-\frac{2}{24} x^{8} x^{2}=\frac{2}{3} x^{10}\left(\frac{1}{5}-\frac{1}{8}\right)
\end{gathered}
$$

that is, $y_{p}=\frac{2}{3} x^{10}\left(\frac{8-5}{40}\right)$,

Variation of parameters (2.6).

Example

Find a particular solution of the equation

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=2 x^{10}
$$

knowing that $y_{1}=x^{5}$ and $y_{2}=x^{2}$ are solutions to the homogeneous equation.
Solution: $y_{1}=x^{5}, y_{2}=x^{2}, f=2 x^{8}, W=-3 x^{6}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} f}{W}=-\frac{x^{2} 2 x^{8}}{(-3) x^{6}}=\frac{2}{3} x^{4} \quad \Rightarrow \quad u_{1}=\frac{2}{15} x^{5} . \\
u_{2}^{\prime}=\frac{y_{1} f}{W}=\frac{x^{5} 2 x^{8}}{(-3) x^{6}}=-\frac{2}{3} x^{7} \quad \Rightarrow \quad u_{2}=-\frac{2}{24} x^{8} . \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=\frac{2}{15} x^{5} x^{5}-\frac{2}{24} x^{8} x^{2}=\frac{2}{3} x^{10}\left(\frac{1}{5}-\frac{1}{8}\right)
\end{gathered}
$$

that is, $y_{p}=\frac{2}{3} x^{10}\left(\frac{8-5}{40}\right)$, hence, $y_{p}=\frac{1}{20} x^{10}$.

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: We find the solutions of the homogeneous equation,

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}]
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,
$r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2$.
Fundamental solutions of the homogeneous equations are

$$
y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x} .
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2
$$

Fundamental solutions of the homogeneous equations are

$$
y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}
$$

We now compute their Wronskian,

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2
$$

Fundamental solutions of the homogeneous equations are

$$
y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}
$$

We now compute their Wronskian,

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-2 x} & x e^{-2 x} \\
-2 e^{-2 x} & (1-2 x) e^{-2 x}
\end{array}\right|
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2
$$

Fundamental solutions of the homogeneous equations are

$$
y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x} .
$$

We now compute their Wronskian,

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-2 x} & x e^{-2 x} \\
-2 e^{-2 x} & (1-2 x) e^{-2 x}
\end{array}\right|=(1-2 x) e^{-4 x}+2 x e^{-4 x} .
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2
$$

Fundamental solutions of the homogeneous equations are

$$
y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x} .
$$

We now compute their Wronskian,

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-2 x} & x e^{-2 x} \\
-2 e^{-2 x} & (1-2 x) e^{-2 x}
\end{array}\right|=(1-2 x) e^{-4 x}+2 x e^{-4 x} .
$$

Hence $W=e^{-4 x}$.

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \quad \Rightarrow \quad u_{1}=-\ln |x| .
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \Rightarrow u_{1}=-\ln |x| . \\
& u_{2}^{\prime}=\frac{y_{1} g}{W}
\end{aligned}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \quad \Rightarrow \quad u_{1}=-\ln |x| . \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}
\end{gathered}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \Rightarrow u_{1}=-\ln |x| . \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2}
\end{gathered}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \quad \Rightarrow \quad u_{1}=-\ln |x| . \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \quad \Rightarrow \quad u_{2}=-\frac{1}{x} .
\end{gathered}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \quad \Rightarrow \quad u_{1}=-\ln |x| . \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \quad \Rightarrow \quad u_{2}=-\frac{1}{x} .
\end{gathered}
$$

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \quad \Rightarrow \quad u_{1}=-\ln |x| . \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \quad \Rightarrow \quad u_{2}=-\frac{1}{x} . \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\ln |x| e^{-2 x}-\frac{1}{x} x e^{-2 x}
\end{gathered}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \Rightarrow u_{1}=-\ln |x| \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \Rightarrow u_{2}=-\frac{1}{x} \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\ln |x| e^{-2 x}-\frac{1}{x} x e^{-2 x}=-(1+\ln |x|) e^{-2 x} .
\end{gathered}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \Rightarrow u_{1}=-\ln |x| \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \Rightarrow u_{2}=-\frac{1}{x} \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\ln |x| e^{-2 x}-\frac{1}{x} x e^{-2 x}=-(1+\ln |x|) e^{-2 x} .
\end{gathered}
$$

Since $\tilde{y}_{P}=-\ln |x| e^{-2 x}$ is solution,

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \Rightarrow u_{1}=-\ln |x| \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \Rightarrow u_{2}=-\frac{1}{x} \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\ln |x| e^{-2 x}-\frac{1}{x} x e^{-2 x}=-(1+\ln |x|) e^{-2 x} .
\end{gathered}
$$

Since $\tilde{y}_{p}=-\ln |x| e^{-2 x}$ is solution, $y=\left(c_{1}+c_{2} x-\ln |x|\right) e^{-2 x} . \triangleleft$

Review for Exam 2.

- 5 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Variation of parameters (2.6).
- Undetermined coefficients (2.5).
- Constant coefficients, homogeneous, (2.2)-(2.4).
- Reduction order method, (2.4.2).
- Second order variable coefficients, (2.1).
- First order homogeneous (1.3.2).

Undetermined coefficients (2.5).

Guessing Solution Table.

$f_{i}(t) \quad(K, m, a, b$, given. $)$	$y_{p_{i}}(t) \quad$ (Guess) (k not given.)
$K e^{a t}$	$k e^{a t}$
$K t^{m}$	$k_{m} t^{m}+k_{m-1} t^{m-1}+\cdots+k_{0}$
$K \cos (b t)$	$k_{1} \cos (b t)+k_{2} \sin (b t)$
$K \sin (b t)$	$k_{1} \cos (b t)+k_{2} \sin (b t)$
$K t^{m} e^{a t}$	$e^{a t}\left(k_{m} t^{m}+\cdots+k_{0}\right)$
$K e^{a t} \cos (b t)$	$e^{a t}\left[k_{1} \cos (b t)+k_{2} \sin (b t)\right]$
$K K e^{a t} \sin (b t)$	$e^{a t}\left[k_{1} \cos (b t)+k_{2} \sin (b t)\right]$
$K t^{m} \cos (b t)$	$\left(k_{m} t^{m}+\cdots+k_{0}\right)\left[a_{1} \cos (b t)+a_{2} \sin (b t)\right]$
$K t^{m} \sin (b t)$	$\left(k_{m} t^{m}+\cdots+k_{0}\right)\left[a_{1} \cos (b t)+a_{2} \sin (b t)\right]$

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Since the source is and exponential $f(t)=e^{-4 i t}$,

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Since the source is and exponential $f(t)=e^{-4 i t}$, we guess as particular solution the exponential $y_{p}(t)=k e^{-4 i t}$.

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Since the source is and exponential $f(t)=e^{-4 i t}$, we guess as particular solution the exponential $y_{p}(t)=k e^{-4 i t}$. We now check whether y_{p} is solution ot the homogeneous eq.:

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Since the source is and exponential $f(t)=e^{-4 i t}$, we guess as particular solution the exponential $y_{p}(t)=k e^{-4 i t}$. We now check whether y_{p} is solution ot the homogeneous eq.:

$$
r^{2}+2 r-2=0
$$

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Since the source is and exponential $f(t)=e^{-4 i t}$, we guess as particular solution the exponential $y_{p}(t)=k e^{-4 i t}$. We now check whether y_{p} is solution ot the homogeneous eq.:

$$
r^{2}+2 r-2=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4+8}]
$$

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Since the source is and exponential $f(t)=e^{-4 i t}$, we guess as particular solution the exponential $y_{p}(t)=k e^{-4 i t}$. We now check whether y_{p} is solution ot the homogeneous eq.:

$$
r^{2}+2 r-2=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4+8}] \quad \Rightarrow \quad \text { Real roots }
$$

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Since the source is and exponential $f(t)=e^{-4 i t}$, we guess as particular solution the exponential $y_{p}(t)=k e^{-4 i t}$. We now check whether y_{p} is solution ot the homogeneous eq.:

$$
r^{2}+2 r-2=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-2 \pm \sqrt{4+8}] \quad \Rightarrow \quad \text { Real roots }
$$

Hence y_{p} is not solution of the homogeneous equation.

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Recall: $y_{p}(t)=k e^{-4 i t}$.

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Recall: $y_{p}(t)=k e^{-4 i t}$.

$$
\left[(-4 i)^{2}+2(-4 i)-2\right] k e^{-4 i t}=e^{-4 i t}
$$

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Recall: $y_{p}(t)=k e^{-4 i t}$.

$$
\left[(-4 i)^{2}+2(-4 i)-2\right] k e^{-4 i t}=e^{-4 i t} \quad \Rightarrow \quad(-16-8 i-2) k=1
$$

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Recall: $y_{p}(t)=k e^{-4 i t}$.

$$
\begin{aligned}
& {\left[(-4 i)^{2}+2(-4 i)-2\right] k e^{-4 i t}=e^{-4 i t} \Rightarrow(-16-8 i-2) k=1} \\
& \quad k=-\frac{1}{18+8 i}
\end{aligned}
$$

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Recall: $y_{p}(t)=k e^{-4 i t}$.

$$
\begin{aligned}
& {\left[(-4 i)^{2}+2(-4 i)-2\right] k e^{-4 i t}=e^{-4 i t} \quad \Rightarrow \quad(-16-8 i-2) k=1} \\
& \quad k=-\frac{1}{18+8 i}=-\frac{1}{2} \frac{1}{(9+4 i)}
\end{aligned}
$$

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Recall: $y_{p}(t)=k e^{-4 i t}$.

$$
\begin{aligned}
& {\left[(-4 i)^{2}+2(-4 i)-2\right] k e^{-4 i t}=e^{-4 i t} \quad \Rightarrow \quad(-16-8 i-2) k=1} \\
& k=-\frac{1}{18+8 i}=-\frac{1}{2} \frac{1}{(9+4 i)} \frac{(9-4 i)}{(9-4 i)}
\end{aligned}
$$

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Recall: $y_{p}(t)=k e^{-4 i t}$.

$$
\begin{gathered}
{\left[(-4 i)^{2}+2(-4 i)-2\right] k e^{-4 i t}=e^{-4 i t} \quad \Rightarrow \quad(-16-8 i-2) k=1} \\
k=-\frac{1}{18+8 i}=-\frac{1}{2} \frac{1}{(9+4 i)} \frac{(9-4 i)}{(9-4 i)}=-\frac{1}{2} \frac{(9-4 i)}{\left(9^{2}+4^{2}\right)} .
\end{gathered}
$$

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Recall: $y_{p}(t)=k e^{-4 i t}$.

$$
\begin{gathered}
{\left[(-4 i)^{2}+2(-4 i)-2\right] k e^{-4 i t}=e^{-4 i t} \quad \Rightarrow \quad(-16-8 i-2) k=1} \\
k=-\frac{1}{18+8 i}=-\frac{1}{2} \frac{1}{(9+4 i)} \frac{(9-4 i)}{(9-4 i)}=-\frac{1}{2} \frac{(9-4 i)}{\left(9^{2}+4^{2}\right)} .
\end{gathered}
$$

Hence, $y_{p}(t)=-\frac{1}{2\left(9^{2}+4^{2}\right)}(9-4 i) e^{-4 i t}$.

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Recall: $y_{p}(t)=-\frac{1}{2\left(9^{2}+4^{2}\right)}(9-4 i) e^{-4 i t}$.

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Recall: $y_{p}(t)=-\frac{1}{2\left(9^{2}+4^{2}\right)}(9-4 i) e^{-4 i t}$.
For the second part of the problem,

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t}
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Recall: $y_{p}(t)=-\frac{1}{2\left(9^{2}+4^{2}\right)}(9-4 i) e^{-4 i t}$.
For the second part of the problem, we need to compute the real and imaginary parts of or solution:

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t} .
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Recall: $y_{p}(t)=-\frac{1}{2\left(9^{2}+4^{2}\right)}(9-4 i) e^{-4 i t}$.
For the second part of the problem, we need to compute the real and imaginary parts of or solution:

$$
y_{p}(t)=-\frac{1}{2\left(9^{2}+4^{2}\right)}(9-4 i)[\cos (4 t)-i \sin (4 t)]
$$

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t} .
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Recall: $y_{p}(t)=-\frac{1}{2\left(9^{2}+4^{2}\right)}(9-4 i) e^{-4 i t}$.
For the second part of the problem, we need to compute the real and imaginary parts of or solution:

$$
\begin{aligned}
y_{p}(t) & =-\frac{1}{2\left(9^{2}+4^{2}\right)}(9-4 i)[\cos (4 t)-i \sin (4 t)] \\
y_{p_{r}} & =-\frac{1}{2\left(9^{2}+4^{2}\right)}[9 \cos (4 t)-4 \sin (4 t)]
\end{aligned}
$$

Undetermined coefficients (2.5).

Example

Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}-2 y=e^{-4 i t} .
$$

Using this solution find particular solutions to the equations

$$
y^{\prime \prime}+2 y^{\prime}-2 y=\cos (-4 t), \quad y^{\prime \prime}+2 y^{\prime}-2 y=\sin (-4 t)
$$

Solution: Recall: $y_{p}(t)=-\frac{1}{2\left(9^{2}+4^{2}\right)}(9-4 i) e^{-4 i t}$.
For the second part of the problem, we need to compute the real and imaginary parts of or solution:

$$
\begin{aligned}
y_{p}(t) & =-\frac{1}{2\left(9^{2}+4^{2}\right)}(9-4 i)[\cos (4 t)-i \sin (4 t)] \\
y_{p_{r}} & =-\frac{1}{2\left(9^{2}+4^{2}\right)}[9 \cos (4 t)-4 \sin (4 t)] \\
y_{p_{i}} & =-\frac{1}{2\left(9^{2}+4^{2}\right)}[-4 \cos (4 t)-9 \sin (4 t)]
\end{aligned}
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.
Following the table: Since $f=2 \sin (t)$,

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.

Following the table: Since $f=2 \sin (t)$, then we guess

$$
y_{p}=k_{1} \sin (t)+k_{2} \cos (t)
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.
Following the table: Since $f=2 \sin (t)$, then we guess

$$
y_{p}=k_{1} \sin (t)+k_{2} \cos (t)
$$

This guess satisfies $L\left(y_{p}\right) \neq 0$.

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.

Following the table: Since $f=2 \sin (t)$, then we guess

$$
y_{p}=k_{1} \sin (t)+k_{2} \cos (t)
$$

This guess satisfies $L\left(y_{p}\right) \neq 0$.
Compute: $y_{p}^{\prime}=k_{1} \cos (t)-k_{2} \sin (t), y_{p}^{\prime \prime}=-k_{1} \sin (t)-k_{2} \cos (t)$.

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.
Following the table: Since $f=2 \sin (t)$, then we guess

$$
y_{p}=k_{1} \sin (t)+k_{2} \cos (t)
$$

This guess satisfies $L\left(y_{p}\right) \neq 0$.
Compute: $y_{p}^{\prime}=k_{1} \cos (t)-k_{2} \sin (t), y_{p}^{\prime \prime}=-k_{1} \sin (t)-k_{2} \cos (t)$.

$$
\begin{gathered}
L\left(y_{p}\right)=\left[-k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
-4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t)
\end{gathered}
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall:

$$
\begin{aligned}
L\left(y_{p}\right)=[& \left.-k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
& -4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t)
\end{aligned}
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall:

$$
\begin{aligned}
& L\left(y_{p}\right)=[\left.-k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
&-4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t) \\
&\left(-5 k_{1}+3 k_{2}\right) \sin (t)+\left(-3 k_{1}-5 k_{2}\right) \cos (t)=2 \sin (t)
\end{aligned}
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall:

$$
\begin{aligned}
& L\left(y_{p}\right)=[-\left.k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
&-4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t) \\
&\left(-5 k_{1}+3 k_{2}\right) \sin (t)+\left(-3 k_{1}-5 k_{2}\right) \cos (t)=2 \sin (t)
\end{aligned}
$$

This equation holds for all $t \in \mathbb{R}$. In particular, at $t=\frac{\pi}{2}, t=0$.

$$
\begin{aligned}
& -5 k_{1}+3 k_{2}=2, \\
& -3 k_{1}-5 k_{2}=0,
\end{aligned}
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall:

$$
\begin{aligned}
& L\left(y_{p}\right)=\left[-k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
& \quad-4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t) \\
& \left(-5 k_{1}+3 k_{2}\right) \sin (t)+\left(-3 k_{1}-5 k_{2}\right) \cos (t)=2 \sin (t)
\end{aligned}
$$

This equation holds for all $t \in \mathbb{R}$. In particular, at $t=\frac{\pi}{2}, t=0$.

$$
\left.\begin{array}{l}
-5 k_{1}+3 k_{2}=2, \\
-3 k_{1}-5 k_{2}=0,
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
k_{1}=-\frac{5}{17} \\
k_{2}=\frac{3}{17}
\end{array}\right.
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall: $k_{1}=-\frac{5}{17}$ and $k_{2}=\frac{3}{17}$.

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall: $k_{1}=-\frac{5}{17}$ and $k_{2}=\frac{3}{17}$.
So the particular solution to the inhomogeneous equation is

$$
y_{p}(t)=\frac{1}{17}[-5 \sin (t)+3 \cos (t)]
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall: $k_{1}=-\frac{5}{17}$ and $k_{2}=\frac{3}{17}$.
So the particular solution to the inhomogeneous equation is

$$
y_{p}(t)=\frac{1}{17}[-5 \sin (t)+3 \cos (t)]
$$

The general solution is

$$
y(t)=c_{1} e^{4 t}+c_{2} e^{-t}+\frac{1}{17}[-5 \sin (t)+3 \cos (t)]
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
r^{2}+4=0
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Start with the first source, $f_{1}(x)=3 \sin (2 x)$.

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Start with the first source, $f_{1}(x)=3 \sin (2 x)$.
The function $\tilde{y}_{p_{1}}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Start with the first source, $f_{1}(x)=3 \sin (2 x)$.
The function $\tilde{y}_{p_{1}}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the wrong guess,

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Start with the first source, $f_{1}(x)=3 \sin (2 x)$.
The function $\tilde{y}_{p_{1}}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the wrong guess, since it is solution of the homogeneous equation.

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Start with the first source, $f_{1}(x)=3 \sin (2 x)$.
The function $\tilde{y}_{p_{1}}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the wrong guess, since it is solution of the homogeneous equation. We guess:

$$
y_{p}=x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right] .
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Start with the first source, $f_{1}(x)=3 \sin (2 x)$.
The function $\tilde{y}_{p_{1}}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the wrong guess, since it is solution of the homogeneous equation. We guess:

$$
\begin{gathered}
y_{p}=x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right] \\
y_{p}^{\prime}=\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]+2 x\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]
\end{gathered}
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Start with the first source, $f_{1}(x)=3 \sin (2 x)$.
The function $\tilde{y}_{p_{1}}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the wrong guess, since it is solution of the homogeneous equation. We guess:

$$
\begin{gathered}
y_{p}=x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right] \\
y_{p}^{\prime}=\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]+2 x\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right] . \\
y_{p}^{\prime \prime}=4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right] .
\end{gathered}
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.
Evaluating at $x=0$ and $x=\pi / 4$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.
Evaluating at $x=0$ and $x=\pi / 4$ we get

$$
4 k_{1}=0, \quad-4 k_{2}=3
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.
Evaluating at $x=0$ and $x=\pi / 4$ we get

$$
4 k_{1}=0, \quad-4 k_{2}=3 \quad \Rightarrow \quad k_{1}=0, \quad k_{2}=-\frac{3}{4} .
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.
Evaluating at $x=0$ and $x=\pi / 4$ we get

$$
4 k_{1}=0, \quad-4 k_{2}=3 \quad \Rightarrow \quad k_{1}=0, \quad k_{2}=-\frac{3}{4}
$$

Therefore, $y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.

Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $\quad y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.

Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $\quad y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.
We now compute $y_{p_{2}}$ for $f_{2}(x)=e^{3 x}$.

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $\quad y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.
We now compute $y_{p_{2}}$ for $f_{2}(x)=e^{3 x}$.
We guess: $y_{p_{2}}=k e^{3 x}$. Then, $y_{p_{2}}^{\prime \prime}=9 e^{3 x}$,

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $\quad y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.
We now compute $y_{p_{2}}$ for $f_{2}(x)=e^{3 x}$.
We guess: $y_{p_{2}}=k e^{3 x}$. Then, $y_{p_{2}}^{\prime \prime}=9 e^{3 x}$,

$$
(9+4) k e^{3 x}=e^{3 x}
$$

Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $\quad y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.
We now compute $y_{p_{2}}$ for $f_{2}(x)=e^{3 x}$.
We guess: $y_{p_{2}}=k e^{3 x}$. Then, $y_{p_{2}}^{\prime \prime}=9 e^{3 x}$,

$$
(9+4) k e^{3 x}=e^{3 x} \quad \Rightarrow \quad k=\frac{1}{13}
$$

Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $\quad y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.
We now compute $y_{p_{2}}$ for $f_{2}(x)=e^{3 x}$.
We guess: $y_{p_{2}}=k e^{3 x}$. Then, $y_{p_{2}}^{\prime \prime}=9 e^{3 x}$,

$$
(9+4) k e^{3 x}=e^{3 x} \Rightarrow k=\frac{1}{13} \quad \Rightarrow \quad y_{p_{2}}=\frac{1}{13} e^{3 x}
$$

Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $\quad y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.
We now compute $y_{p_{2}}$ for $f_{2}(x)=e^{3 x}$.
We guess: $y_{p_{2}}=k e^{3 x}$. Then, $y_{p_{2}}^{\prime \prime}=9 e^{3 x}$,

$$
(9+4) k e^{3 x}=e^{3 x} \quad \Rightarrow \quad k=\frac{1}{13} \quad \Rightarrow \quad y_{p_{2}}=\frac{1}{13} e^{3 x} .
$$

Therefore, the general solution is

$$
y(x)=c_{1} \sin (2 x)+\left(c_{2}-\frac{3}{4} x\right) \cos (2 x)+\frac{1}{13} e^{3 x}
$$

Undetermined coefficients (2.5).

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$,

Undetermined coefficients (2.5).

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t} .
$$

Undetermined coefficients (2.5).

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=2 t^{2} e^{3 t}$,

Undetermined coefficients (2.5).

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=2 t^{2} e^{3 t}$, guess

$$
y_{p}(t)=\left(k_{0}+k_{1} t+k_{2} t^{2}\right) e^{3 t} .
$$

Undetermined coefficients (2.5).

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=2 t^{2} e^{3 t}$, guess

$$
y_{p}(t)=\left(k_{0}+k_{1} t+k_{2} t^{2}\right) e^{3 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 t \sin (t)$,

Undetermined coefficients (2.5).

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=2 t^{2} e^{3 t}$, guess

$$
y_{p}(t)=\left(k_{0}+k_{1} t+k_{2} t^{2}\right) e^{3 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 t \sin (t)$, guess

$$
y_{p}(t)=\left(1+k_{1} t\right)\left[k_{2} \sin (t)+k_{3} \cos (t)\right] .
$$

Review for Exam 2.

- 6 or 7 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Variation of parameters (2.6).
- Undetermined coefficients (2.5).
- Constant coefficients, homogeneous, (2.2)-(2.4).
- Reduction order method, (2.4.2).
- Second order variable coefficients, (2.1).
- First order homogeneous (1.3.2).

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$.

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$.

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$. We need to compute

$$
y_{2}=v t
$$

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$. We need to compute

$$
y_{2}=v t, \quad y_{2}^{\prime}=t v^{\prime}+v,
$$

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$. We need to compute

$$
y_{2}=v t, \quad y_{2}^{\prime}=t v^{\prime}+v, \quad y_{2}^{\prime \prime}=t v^{\prime \prime}+2 v^{\prime} .
$$

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$. We need to compute

$$
y_{2}=v t, \quad y_{2}^{\prime}=t v^{\prime}+v, \quad y_{2}^{\prime \prime}=t v^{\prime \prime}+2 v^{\prime}
$$

So, the equation for v is given by

$$
t^{2}\left(t v^{\prime \prime}+2 v^{\prime}\right)+2 t\left(t v^{\prime}+v\right)-2 t v=0
$$

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$. We need to compute

$$
y_{2}=v t, \quad y_{2}^{\prime}=t v^{\prime}+v, \quad y_{2}^{\prime \prime}=t v^{\prime \prime}+2 v^{\prime}
$$

So, the equation for v is given by

$$
\begin{aligned}
& t^{2}\left(t v^{\prime \prime}+2 v^{\prime}\right)+2 t\left(t v^{\prime}+v\right)-2 t v=0 \\
& t^{3} v^{\prime \prime}+\left(2 t^{2}+2 t^{2}\right) v^{\prime}+(2 t-2 t) v=0
\end{aligned}
$$

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$. We need to compute

$$
y_{2}=v t, \quad y_{2}^{\prime}=t v^{\prime}+v, \quad y_{2}^{\prime \prime}=t v^{\prime \prime}+2 v^{\prime}
$$

So, the equation for v is given by

$$
\begin{aligned}
& t^{2}\left(t v^{\prime \prime}+2 v^{\prime}\right)+2 t\left(t v^{\prime}+v\right)-2 t v=0 \\
& t^{3} v^{\prime \prime}+\left(2 t^{2}+2 t^{2}\right) v^{\prime}+(2 t-2 t) v=0 \\
& t^{3} v^{\prime \prime}+\left(4 t^{2}\right) v^{\prime}=0
\end{aligned}
$$

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$. We need to compute

$$
y_{2}=v t, \quad y_{2}^{\prime}=t v^{\prime}+v, \quad y_{2}^{\prime \prime}=t v^{\prime \prime}+2 v^{\prime}
$$

So, the equation for v is given by

$$
\begin{aligned}
& t^{2}\left(t v^{\prime \prime}+2 v^{\prime}\right)+2 t\left(t v^{\prime}+v\right)-2 t v=0 \\
& t^{3} v^{\prime \prime}+\left(2 t^{2}+2 t^{2}\right) v^{\prime}+(2 t-2 t) v=0 \\
& t^{3} v^{\prime \prime}+\left(4 t^{2}\right) v^{\prime}=0 \quad \Rightarrow \quad v^{\prime \prime}+\frac{4}{t} v^{\prime}=0
\end{aligned}
$$

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$,

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$,

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t}
$$

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t} \Rightarrow \ln (w)=-4 \ln (t)+c_{0}
$$

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t} \Rightarrow \ln (w)=-4 \ln (t)+c_{0} \Rightarrow w(t)=c_{1} t^{-4}, c_{1} \in \mathbb{R}
$$

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t} \Rightarrow \ln (w)=-4 \ln (t)+c_{0} \Rightarrow w(t)=c_{1} t^{-4}, c_{1} \in \mathbb{R}
$$

Integrating w we obtain v,

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t} \Rightarrow \ln (w)=-4 \ln (t)+c_{0} \Rightarrow w(t)=c_{1} t^{-4}, c_{1} \in \mathbb{R}
$$

Integrating w we obtain v, that is, $v=c_{2} t^{-3}+c_{3}$, with $c_{2}, c_{3} \in \mathbb{R}$.

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t} \Rightarrow \ln (w)=-4 \ln (t)+c_{0} \Rightarrow w(t)=c_{1} t^{-4}, c_{1} \in \mathbb{R}
$$

Integrating w we obtain v, that is, $v=c_{2} t^{-3}+c_{3}$, with $c_{2}, c_{3} \in \mathbb{R}$. Recalling that $y_{2}=t v$

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t} \Rightarrow \ln (w)=-4 \ln (t)+c_{0} \Rightarrow w(t)=c_{1} t^{-4}, c_{1} \in \mathbb{R}
$$

Integrating w we obtain v, that is, $v=c_{2} t^{-3}+c_{3}$, with $c_{2}, c_{3} \in \mathbb{R}$. Recalling that $y_{2}=t v$ we then conclude that $y_{2}=c_{2} t^{-2}+c_{3} t$.

Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t} \Rightarrow \ln (w)=-4 \ln (t)+c_{0} \Rightarrow w(t)=c_{1} t^{-4}, c_{1} \in \mathbb{R}
$$

Integrating w we obtain v, that is, $v=c_{2} t^{-3}+c_{3}$, with $c_{2}, c_{3} \in \mathbb{R}$.
Recalling that $y_{2}=t v$ we then conclude that $y_{2}=c_{2} t^{-2}+c_{3} t$.
Choosing $c_{2}=1$ and $c_{3}=0$ we obtain the fundamental solutions
$y_{1}(t)=t$ and $y_{2}(t)=\frac{1}{t^{2}}$.

Review for Exam 2.

- 6 or 7 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Variation of parameters (2.6).
- Undetermined coefficients (2.5).
- Constant coefficients, homogeneous, (2.2)-(2.4).
- Reduction order method, (2.4.2).
- Second order variable coefficients, (2.1).
- First order homogeneous (1.3.2).

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)}
$$

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \Rightarrow y^{\prime}=\frac{1+3\left(\frac{y}{t}\right)^{2}}{2\left(\frac{y}{t}\right)}
$$

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \Rightarrow y^{\prime}=\frac{1+3\left(\frac{y}{t}\right)^{2}}{2\left(\frac{y}{t}\right)}
$$

Therefore, we introduce the change of unknown $v=y / t$,

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \Rightarrow y^{\prime}=\frac{1+3\left(\frac{y}{t}\right)^{2}}{2\left(\frac{y}{t}\right)}
$$

Therefore, we introduce the change of unknown $v=y / t$, so $y=t v$ and $y^{\prime}=v+t v^{\prime}$.

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \Rightarrow y^{\prime}=\frac{1+3\left(\frac{y}{t}\right)^{2}}{2\left(\frac{y}{t}\right)}
$$

Therefore, we introduce the change of unknown $v=y / t$, so $y=t v$ and $y^{\prime}=v+t v^{\prime}$. Hence

$$
v+t v^{\prime}=\frac{1+3 v^{2}}{2 v}
$$

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \Rightarrow y^{\prime}=\frac{1+3\left(\frac{y}{t}\right)^{2}}{2\left(\frac{y}{t}\right)}
$$

Therefore, we introduce the change of unknown $v=y / t$, so $y=t v$ and $y^{\prime}=v+t v^{\prime}$. Hence

$$
v+t v^{\prime}=\frac{1+3 v^{2}}{2 v} \Rightarrow t v^{\prime}=\frac{1+3 v^{2}}{2 v}-v
$$

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \Rightarrow y^{\prime}=\frac{1+3\left(\frac{y}{t}\right)^{2}}{2\left(\frac{y}{t}\right)}
$$

Therefore, we introduce the change of unknown $v=y / t$, so $y=t v$ and $y^{\prime}=v+t v^{\prime}$. Hence

$$
v+t v^{\prime}=\frac{1+3 v^{2}}{2 v} \Rightarrow t v^{\prime}=\frac{1+3 v^{2}}{2 v}-v=\frac{1+3 v^{2}-2 v^{2}}{2 v}
$$

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: The equation is homogeneous, since

$$
y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \Rightarrow y^{\prime}=\frac{1+3\left(\frac{y}{t}\right)^{2}}{2\left(\frac{y}{t}\right)}
$$

Therefore, we introduce the change of unknown $v=y / t$, so $y=t v$ and $y^{\prime}=v+t v^{\prime}$. Hence

$$
v+t v^{\prime}=\frac{1+3 v^{2}}{2 v} \Rightarrow t v^{\prime}=\frac{1+3 v^{2}}{2 v}-v=\frac{1+3 v^{2}-2 v^{2}}{2 v}
$$

We obtain the separable equation $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$.

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$.

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t}
$$

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$,

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so
$\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0}$

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so

$$
\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0} \Rightarrow \ln (u)=\ln (t)+c_{0}
$$

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so

$$
\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0} \Rightarrow \ln (u)=\ln (t)+c_{0} \quad \Rightarrow \quad u=e^{\ln (t)+c_{0}}
$$

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so
$\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0} \Rightarrow \ln (u)=\ln (t)+c_{0} \quad \Rightarrow \quad u=e^{\ln (t)+c_{0}}$.
But $u=e^{\ln (t)} e^{c_{0}}$,

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so
$\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0} \Rightarrow \ln (u)=\ln (t)+c_{0} \quad \Rightarrow \quad u=e^{\ln (t)+c_{0}}$.
But $u=e^{\ln (t)} e^{c_{0}}$, so denoting $c_{1}=e^{c_{0}}$, then $u=c_{1} t$.

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so
$\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0} \Rightarrow \ln (u)=\ln (t)+c_{0} \quad \Rightarrow \quad u=e^{\ln (t)+c_{0}}$.
But $u=e^{\ln (t)} e^{c_{0}}$, so denoting $c_{1}=e^{c_{0}}$, then $u=c_{1} t$. Hence

$$
1+v^{2}=c_{1} t
$$

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so
$\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0} \Rightarrow \ln (u)=\ln (t)+c_{0} \quad \Rightarrow \quad u=e^{\ln (t)+c_{0}}$.
But $u=e^{\ln (t)} e^{c_{0}}$, so denoting $c_{1}=e^{c_{0}}$, then $u=c_{1} t$. Hence
$1+v^{2}=c_{1} t \quad \Rightarrow \quad 1+\left(\frac{y}{t}\right)^{2}=c_{1} t$

First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation $y^{\prime}=\frac{t^{2}+3 y^{2}}{2 t y}$.
Solution: Recall: $v^{\prime}=\frac{1}{t}\left(\frac{1+v^{2}}{2 v}\right)$. We rewrite and integrate it,

$$
\frac{2 v}{1+v^{2}} v^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int \frac{2 v}{1+v^{2}} v^{\prime} d t=\int \frac{1}{t} d t+c_{0}
$$

The substitution $u=1+v^{2}(t)$ implies $d u=2 v(t) v^{\prime}(t) d t$, so
$\int \frac{d u}{u}=\int \frac{d t}{t}+c_{0} \Rightarrow \ln (u)=\ln (t)+c_{0} \quad \Rightarrow \quad u=e^{\ln (t)+c_{0}}$.
But $u=e^{\ln (t)} e^{c_{0}}$, so denoting $c_{1}=e^{c_{0}}$, then $u=c_{1} t$. Hence

$$
1+v^{2}=c_{1} t \quad \Rightarrow \quad 1+\left(\frac{y}{t}\right)^{2}=c_{1} t \quad \Rightarrow \quad y(t)= \pm t \sqrt{c_{1} t-1}
$$

Mechanical and electrical oscillations (Sect. 2.7?)

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Application: Mechanical Oscillations.
- Application: The RLC electrical circuit.

Remark:
Different physical systems may have identical mathematical descriptions.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Summary of solutions of the differential equation

$$
\begin{gathered}
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad a_{1}, a_{2} \in \mathbb{R}, \\
\text { and characteristic roots } r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}}
\end{gathered}
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Summary of solutions of the differential equation

$$
\begin{aligned}
& y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad a_{1}, a_{2} \in \mathbb{R}, \\
& \text { tic roots } r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}} .
\end{aligned}
$$

(1) Over damped systems: If $a_{1}^{2}-4 a_{0}>0$,

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Summary of solutions of the differential equation

$$
\begin{aligned}
& y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad a_{1}, a_{2} \in \mathbb{R}, \\
& \text { stic roots } r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}} .
\end{aligned}
$$

(1) Over damped systems: If $a_{1}^{2}-4 a_{0}>0$, then,

$$
y_{1}(t)=e^{r_{+} t}, \quad y_{2}(t)=e^{r-t} .
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Summary of solutions of the differential equation

$$
\begin{aligned}
& y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad a_{1}, a_{2} \in \mathbb{R}, \\
& \text { stic roots } r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}} .
\end{aligned}
$$

(1) Over damped systems: If $a_{1}^{2}-4 a_{0}>0$, then,

$$
y_{1}(t)=e^{r_{+} t}, \quad y_{2}(t)=e^{r-t} .
$$

(2) Critically damped systems: If $a_{1}^{2}-4 a_{0}=0$,

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Summary of solutions of the differential equation

$$
\begin{aligned}
& y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad a_{1}, a_{2} \in \mathbb{R}, \\
& \text { stic roots } r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}} .
\end{aligned}
$$

(1) Over damped systems: If $a_{1}^{2}-4 a_{0}>0$, then,

$$
y_{1}(t)=e^{r+t}, \quad y_{2}(t)=e^{r-t} .
$$

(2) Critically damped systems: If $a_{1}^{2}-4 a_{0}=0$, then,

$$
y_{1}(t)=e^{-\frac{a_{1}}{2} t}, \quad y_{2}(t)=t e^{-\frac{a_{1}}{2} t}
$$

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Summary of solutions of the differential equation

$$
\begin{gathered}
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad a_{1}, a_{2} \in \mathbb{R}, \\
\text { stic roots } r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}} .
\end{gathered}
$$

(1) Over damped systems: If $a_{1}^{2}-4 a_{0}>0$, then,

$$
y_{1}(t)=e^{r+t}, \quad y_{2}(t)=e^{r-t} .
$$

(2) Critically damped systems: If $a_{1}^{2}-4 a_{0}=0$, then,

$$
y_{1}(t)=e^{-\frac{a_{1}}{2} t}, \quad y_{2}(t)=t e^{-\frac{a_{1}}{2} t}
$$

(3) Under damped systems: If $a_{1}^{2}-4 a_{0}<0$,

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Summary of solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad a_{1}, a_{2} \in \mathbb{R}
$$

and characteristic roots $r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}}$.
(1) Over damped systems: If $a_{1}^{2}-4 a_{0}>0$, then,

$$
y_{1}(t)=e^{r+t}, \quad y_{2}(t)=e^{r-t}
$$

(2) Critically damped systems: If $a_{1}^{2}-4 a_{0}=0$, then,

$$
y_{1}(t)=e^{-\frac{a_{1}}{2} t}, \quad y_{2}(t)=t e^{-\frac{a_{1}}{2} t}
$$

(3) Under damped systems: If $a_{1}^{2}-4 a_{0}<0$, then

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

with $\alpha=-\frac{a_{1}}{2}, \beta=\frac{1}{2} \sqrt{4 a_{0}-a_{1}^{2}}$.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Summary of solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad a_{1}, a_{2} \in \mathbb{R}
$$

and characteristic roots $r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}}$.
(1) Over damped systems: If $a_{1}^{2}-4 a_{0}>0$, then,

$$
y_{1}(t)=e^{r+t}, \quad y_{2}(t)=e^{r-t}
$$

(2) Critically damped systems: If $a_{1}^{2}-4 a_{0}=0$, then,

$$
y_{1}(t)=e^{-\frac{a_{1}}{2} t}, \quad y_{2}(t)=t e^{-\frac{a_{1}}{2} t}
$$

(3) Under damped systems: If $a_{1}^{2}-4 a_{0}<0$, then

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

with $\alpha=-\frac{a_{1}}{2}, \beta=\frac{1}{2} \sqrt{4 a_{0}-a_{1}^{2}}$. Not damped: If $a_{1}=0$.

Mechanical and electrical oscillations (Sect. 2.7?)

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Application: Mechanical Oscillations.
- Application: The RLC electrical circuit.

Application: Mechanical Oscillations.

Consider a spring attached to the ceiling, having rest length I, with an attached mass m.

- $(I+\Delta I)$ is called equilibrium position of the spring loaded with a mass m.
- The coordinate y measures vertical deviations from the equilibrium position.

Application: Mechanical Oscillations.

Consider a spring attached to the ceiling, having rest length $/$, with an attached mass m.

- $(I+\Delta I)$ is called equilibrium position of the spring loaded with a mass m.
- The coordinate y measures vertical deviations from the equilibrium position.

Forces acting on the system:

Application: Mechanical Oscillations.

Consider a spring attached to the ceiling, having rest length $/$, with an attached mass m.

- $(I+\Delta I)$ is called equilibrium position of the spring loaded with a mass m.
- The coordinate y measures vertical deviations from the
 equilibrium position.

Forces acting on the system:

- Weight: $F_{g}=m g$.

Application: Mechanical Oscillations.

Consider a spring attached to the ceiling, having rest length $/$, with an attached mass m.

- $(I+\Delta I)$ is called equilibrium position of the spring loaded with a mass m.
- The coordinate y measures vertical deviations from the equilibrium position.

Forces acting on the system:

- Weight: $F_{g}=m g$.
- Spring: $F_{s}=-k(\Delta I+y)$.

Application: Mechanical Oscillations.

Consider a spring attached to the ceiling, having rest length $/$, with an attached mass m.

- $(I+\Delta I)$ is called equilibrium position of the spring loaded with a mass m.
- The coordinate y measures vertical deviations from the
 equilibrium position.

Forces acting on the system:

- Weight: $F_{g}=m g$.
- Spring: $F_{s}=-k(\Delta I+y)$. Hooke's Law. (Small oscillations.)

Application: Mechanical Oscillations.

Consider a spring attached to the ceiling, having rest length $/$, with an attached mass m.

- $(I+\Delta I)$ is called equilibrium position of the spring loaded with a mass m.
- The coordinate y measures vertical deviations from the
 equilibrium position.

Forces acting on the system:

- Weight: $F_{g}=m g$.
- Spring: $F_{s}=-k(\Delta I+y)$. Hooke's Law. (Small oscillations.)
- Damping: $F_{d}(t)=-d y^{\prime}(t)$.

Application: Mechanical Oscillations.

Consider a spring attached to the ceiling, having rest length $/$, with an attached mass m.

- $(I+\Delta I)$ is called equilibrium position of the spring loaded with a mass m.
- The coordinate y measures vertical deviations from the
 equilibrium position.

Forces acting on the system:

- Weight: $F_{g}=m g$.
- Spring: $F_{s}=-k(\Delta I+y)$. Hooke's Law. (Small oscillations.)
- Damping: $F_{d}(t)=-d y^{\prime}(t)$. Fluid Resistance.

Application: Mechanical Oscillations.

Consider a spring attached to the ceiling, having rest length $/$, with an attached mass m.

- $(I+\Delta I)$ is called equilibrium position of the spring loaded with a mass m.
- The coordinate y measures vertical deviations from the
 equilibrium position.

Forces acting on the system:

- Weight: $F_{g}=m g$.
- Spring: $F_{s}=-k(\Delta I+y)$. Hooke's Law. (Small oscillations.)
- Damping: $F_{d}(t)=-d y^{\prime}(t)$. Fluid Resistance.

Newton's Law: $m y^{\prime \prime}(t)=F_{g}+F_{s}(t)+F_{d}(t)$.

Application: Mechanical Oscillations.

Recall: $F_{g}=m g, \quad F_{s}=-k(\Delta I+y), \quad F_{d}(t)=-d y^{\prime}(t)$.

$$
m y^{\prime \prime}(t)=F_{g}+F_{s}(t)+F_{d}(t)
$$

Application: Mechanical Oscillations.

Recall: $F_{g}=m g, \quad F_{s}=-k(\Delta I+y), \quad F_{d}(t)=-d y^{\prime}(t)$.

$$
m y^{\prime \prime}(t)=F_{g}+F_{s}(t)+F_{d}(t)
$$

That is,

$$
m y^{\prime \prime}(t)=m g-k(\Delta I+y(t))-d y^{\prime}(t)
$$

Application: Mechanical Oscillations.

Recall: $F_{g}=m g, \quad F_{s}=-k(\Delta I+y), \quad F_{d}(t)=-d y^{\prime}(t)$.

$$
m y^{\prime \prime}(t)=F_{g}+F_{s}(t)+F_{d}(t)
$$

That is, $\quad m y^{\prime \prime}(t)=m g-k(\Delta I+y(t))-d y^{\prime}(t)$.
At equilibrium, $y=0$,

Application: Mechanical Oscillations.

Recall: $F_{g}=m g, \quad F_{s}=-k(\Delta I+y), \quad F_{d}(t)=-d y^{\prime}(t)$.

$$
m y^{\prime \prime}(t)=F_{g}+F_{s}(t)+F_{d}(t)
$$

That is, $\quad m y^{\prime \prime}(t)=m g-k(\Delta I+y(t))-d y^{\prime}(t)$.
At equilibrium, $y=0, y^{\prime}=0$,

Application: Mechanical Oscillations.

Recall: $F_{g}=m g, \quad F_{s}=-k(\Delta I+y), \quad F_{d}(t)=-d y^{\prime}(t)$.

$$
m y^{\prime \prime}(t)=F_{g}+F_{s}(t)+F_{d}(t)
$$

That is, $\quad m y^{\prime \prime}(t)=m g-k(\Delta I+y(t))-d y^{\prime}(t)$.
At equilibrium, $y=0, y^{\prime}=0$, then $k \Delta I=m g$.

Application: Mechanical Oscillations.

Recall: $F_{g}=m g, \quad F_{s}=-k(\Delta I+y), \quad F_{d}(t)=-d y^{\prime}(t)$.

$$
m y^{\prime \prime}(t)=F_{g}+F_{s}(t)+F_{d}(t)
$$

That is,

$$
m y^{\prime \prime}(t)=m g-k(\Delta I+y(t))-d y^{\prime}(t)
$$

At equilibrium, $y=0, y^{\prime}=0$, then $k \Delta I=m g$. Hence

$$
m y^{\prime \prime}(t)=-k y(t)-d y^{\prime}(t)
$$

Application: Mechanical Oscillations.

Recall: $F_{g}=m g, \quad F_{s}=-k(\Delta I+y), \quad F_{d}(t)=-d y^{\prime}(t)$.

$$
m y^{\prime \prime}(t)=F_{g}+F_{s}(t)+F_{d}(t)
$$

That is,

$$
m y^{\prime \prime}(t)=m g-k(\Delta I+y(t))-d y^{\prime}(t)
$$

At equilibrium, $y=0, y^{\prime}=0$, then $k \Delta I=m g$. Hence

$$
\begin{gathered}
m y^{\prime \prime}(t)=-k y(t)-d y^{\prime}(t) \\
m y^{\prime \prime}+d y^{\prime}+k y=0
\end{gathered}
$$

Application: Mechanical Oscillations.

Recall: $F_{g}=m g, \quad F_{s}=-k(\Delta I+y), \quad F_{d}(t)=-d y^{\prime}(t)$.

$$
m y^{\prime \prime}(t)=F_{g}+F_{s}(t)+F_{d}(t)
$$

That is,

$$
m y^{\prime \prime}(t)=m g-k(\Delta I+y(t))-d y^{\prime}(t)
$$

At equilibrium, $y=0, y^{\prime}=0$, then $k \Delta I=m g$. Hence

$$
\begin{gathered}
m y^{\prime \prime}(t)=-k y(t)-d y^{\prime}(t) \\
m y^{\prime \prime}+d y^{\prime}+k y=0
\end{gathered}
$$

To solve for the function y, we need the characteristic equation

Application: Mechanical Oscillations.

Recall: $F_{g}=m g, \quad F_{s}=-k(\Delta I+y), \quad F_{d}(t)=-d y^{\prime}(t)$.

$$
m y^{\prime \prime}(t)=F_{g}+F_{s}(t)+F_{d}(t)
$$

That is,

$$
m y^{\prime \prime}(t)=m g-k(\Delta I+y(t))-d y^{\prime}(t)
$$

At equilibrium, $y=0, y^{\prime}=0$, then $k \Delta I=m g$. Hence

$$
\begin{gathered}
m y^{\prime \prime}(t)=-k y(t)-d y^{\prime}(t) \\
m y^{\prime \prime}+d y^{\prime}+k y=0
\end{gathered}
$$

To solve for the function y, we need the characteristic equation

$$
m r^{2}+d r+k=0
$$

Application: Mechanical Oscillations.

Recall: $F_{g}=m g, \quad F_{s}=-k(\Delta I+y), \quad F_{d}(t)=-d y^{\prime}(t)$.

$$
m y^{\prime \prime}(t)=F_{g}+F_{s}(t)+F_{d}(t)
$$

That is,

$$
m y^{\prime \prime}(t)=m g-k(\Delta I+y(t))-d y^{\prime}(t)
$$

At equilibrium, $y=0, y^{\prime}=0$, then $k \Delta I=m g$. Hence

$$
\begin{gathered}
m y^{\prime \prime}(t)=-k y(t)-d y^{\prime}(t) \\
m y^{\prime \prime}+d y^{\prime}+k y=0
\end{gathered}
$$

To solve for the function y, we need the characteristic equation

$$
m r^{2}+d r+k=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]
$$

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Not damped oscillations:

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Not damped oscillations: $d=0$.

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Not damped oscillations: $d=0$. No fluid friction.

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0, \quad$ and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Not damped oscillations: $d=0$. No fluid friction.

$$
r_{ \pm}= \pm \sqrt{-\frac{k}{m}}
$$

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0, \quad$ and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Not damped oscillations: $d=0$. No fluid friction.

$$
r_{ \pm}= \pm \sqrt{-\frac{k}{m}}, \quad \omega_{0}=\sqrt{\frac{k}{m}},
$$

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0, \quad$ and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Not damped oscillations: $d=0$. No fluid friction.

$$
r_{ \pm}= \pm \sqrt{-\frac{k}{m}}, \quad \omega_{0}=\sqrt{\frac{k}{m}}, \quad r_{ \pm}= \pm i \omega_{0}
$$

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Not damped oscillations: $d=0$. No fluid friction.

$$
\begin{gathered}
r_{ \pm}= \pm \sqrt{-\frac{k}{m}}, \quad \omega_{0}=\sqrt{\frac{k}{m}}, \quad r_{ \pm}= \pm i \omega_{0} \\
y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)
\end{gathered}
$$

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Not damped oscillations: $d=0$. No fluid friction.

$$
\begin{gathered}
r_{ \pm}= \pm \sqrt{-\frac{k}{m}}, \quad \omega_{0}=\sqrt{\frac{k}{m}}, \quad r_{ \pm}= \pm i \omega_{0} \\
y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)
\end{gathered}
$$

Remarks:

- Fundamental Frequency: ω_{0};

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Not damped oscillations: $d=0$. No fluid friction.

$$
\begin{gathered}
r_{ \pm}= \pm \sqrt{-\frac{k}{m}}, \quad \omega_{0}=\sqrt{\frac{k}{m}}, \quad r_{ \pm}= \pm i \omega_{0} \\
y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)
\end{gathered}
$$

Remarks:

- Fundamental Frequency: ω_{0}; Period: $T=\frac{2 \pi}{\omega_{0}}$.

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Not damped oscillations: $d=0$. No fluid friction.

$$
\begin{gathered}
r_{ \pm}= \pm \sqrt{-\frac{k}{m}}, \quad \omega_{0}=\sqrt{\frac{k}{m}}, \quad r_{ \pm}= \pm i \omega_{0} \\
y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)
\end{gathered}
$$

Remarks:

- Fundamental Frequency: ω_{0}; Period: $T=\frac{2 \pi}{\omega_{0}}$.
- Equivalent expression: $y(t)=A \cos \left(\omega_{0} t-\phi\right)$.

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Not damped oscillations: $d=0$. No fluid friction.

$$
\begin{gathered}
r_{ \pm}= \pm \sqrt{-\frac{k}{m}}, \quad \omega_{0}=\sqrt{\frac{k}{m}}, \quad r_{ \pm}= \pm i \omega_{0} \\
y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)
\end{gathered}
$$

Remarks:

- Fundamental Frequency: ω_{0}; Period: $T=\frac{2 \pi}{\omega_{0}}$.
- Equivalent expression: $y(t)=A \cos \left(\omega_{0} t-\phi\right)$.
- Amplitude: A; Phase shift: ϕ.

Application: Mechanical Oscillations.

Recall: Not damped oscillations:

$$
y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right) \quad \Leftrightarrow \quad y(t)=A \cos \left(\omega_{0} t-\phi\right)
$$

Application: Mechanical Oscillations.

Recall: Not damped oscillations:

$$
y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right) \quad \Leftrightarrow \quad y(t)=A \cos \left(\omega_{0} t-\phi\right)
$$

where $\omega_{0}=\sqrt{k / m}$ is the fundamental frequency, A is the amplitude, and ϕ the initial phase shift of the oscillations.

Application: Mechanical Oscillations.

Recall: Not damped oscillations:

$$
y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right) \quad \Leftrightarrow \quad y(t)=A \cos \left(\omega_{0} t-\phi\right)
$$

where $\omega_{0}=\sqrt{k / m}$ is the fundamental frequency, A is the amplitude, and ϕ the initial phase shift of the oscillations.
(Recall that the oscillation period is $T=\frac{2 \pi}{\omega_{0}}$.)

Application: Mechanical Oscillations.

Recall: Not damped oscillations:

$$
y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right) \quad \Leftrightarrow \quad y(t)=A \cos \left(\omega_{0} t-\phi\right)
$$

where $\omega_{0}=\sqrt{k / m}$ is the fundamental frequency, A is the amplitude, and ϕ the initial phase shift of the oscillations.
(Recall that the oscillation period is $T=\frac{2 \pi}{\omega_{0}}$.)
Proof: Recall the trigonometric identity:

$$
A \cos \left(\omega_{0} t-\phi\right)=A \cos \left(\omega_{0} t\right) \cos (\phi)+A \sin \left(\omega_{0} t\right) \sin (\phi)
$$

Application: Mechanical Oscillations.

Recall: Not damped oscillations:

$$
y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right) \quad \Leftrightarrow \quad y(t)=A \cos \left(\omega_{0} t-\phi\right)
$$

where $\omega_{0}=\sqrt{k / m}$ is the fundamental frequency, A is the amplitude, and ϕ the initial phase shift of the oscillations.
(Recall that the oscillation period is $T=\frac{2 \pi}{\omega_{0}}$.)
Proof: Recall the trigonometric identity:

$$
A \cos \left(\omega_{0} t-\phi\right)=A \cos \left(\omega_{0} t\right) \cos (\phi)+A \sin \left(\omega_{0} t\right) \sin (\phi)
$$

Therefore, comparing the first and last expressions above,

$$
\begin{aligned}
& c_{1}=A \cos (\phi) \\
& c_{2}=A \sin (\phi)
\end{aligned}
$$

Application: Mechanical Oscillations.

Recall: Not damped oscillations:

$$
y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right) \quad \Leftrightarrow \quad y(t)=A \cos \left(\omega_{0} t-\phi\right)
$$

where $\omega_{0}=\sqrt{k / m}$ is the fundamental frequency, A is the amplitude, and ϕ the initial phase shift of the oscillations.
(Recall that the oscillation period is $T=\frac{2 \pi}{\omega_{0}}$.)
Proof: Recall the trigonometric identity:

$$
A \cos \left(\omega_{0} t-\phi\right)=A \cos \left(\omega_{0} t\right) \cos (\phi)+A \sin \left(\omega_{0} t\right) \sin (\phi)
$$

Therefore, comparing the first and last expressions above,

$$
\left.\begin{array}{l}
c_{1}=A \cos (\phi) \\
c_{2}=A \sin (\phi)
\end{array}\right\} \quad \Leftrightarrow \quad\left\{\begin{array}{l}
A=\sqrt{c_{1}^{2}+c_{2}^{2}} \\
\phi=\arctan \left(\frac{c_{2}}{c_{1}}\right)
\end{array}\right.
$$

Application: Mechanical Oscillations.

Damped Oscillations

Application: Mechanical Oscillations.

Damped Oscillations
Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.

Application: Mechanical Oscillations.

Damped Oscillations
Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Rewrite: $r_{ \pm}=-\frac{d}{2 m} \pm \sqrt{\left(\frac{d}{2 m}\right)^{2}-\frac{k}{m}}$.

Application: Mechanical Oscillations.

Damped Oscillations
Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Rewrite: $r_{ \pm}=-\frac{d}{2 m} \pm \sqrt{\left(\frac{d}{2 m}\right)^{2}-\frac{k}{m}}$.
Introduce: $\omega_{0}=\sqrt{\frac{k}{m}}$, and $\omega_{d}=\frac{d}{2 m}$.

Application: Mechanical Oscillations.

Damped Oscillations
Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Rewrite: $r_{ \pm}=-\frac{d}{2 m} \pm \sqrt{\left(\frac{d}{2 m}\right)^{2}-\frac{k}{m}}$.
Introduce: $\omega_{0}=\sqrt{\frac{k}{m}}$, and $\omega_{d}=\frac{d}{2 m}$. Hence

$$
r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}} .
$$

Application: Mechanical Oscillations.

Damped Oscillations
Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Rewrite: $r_{ \pm}=-\frac{d}{2 m} \pm \sqrt{\left(\frac{d}{2 m}\right)^{2}-\frac{k}{m}}$.
Introduce: $\omega_{0}=\sqrt{\frac{k}{m}}$, and $\omega_{d}=\frac{d}{2 m}$. Hence

$$
r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}} .
$$

Remark: We have three cases of damped oscillations:

Application: Mechanical Oscillations.

Damped Oscillations
Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Rewrite: $r_{ \pm}=-\frac{d}{2 m} \pm \sqrt{\left(\frac{d}{2 m}\right)^{2}-\frac{k}{m}}$.
Introduce: $\omega_{0}=\sqrt{\frac{k}{m}}$, and $\omega_{d}=\frac{d}{2 m}$. Hence

$$
r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}} .
$$

Remark: We have three cases of damped oscillations:
(a) Over damped: $\omega_{d}>\omega_{0}$.

Application: Mechanical Oscillations.

Damped Oscillations
Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Rewrite: $r_{ \pm}=-\frac{d}{2 m} \pm \sqrt{\left(\frac{d}{2 m}\right)^{2}-\frac{k}{m}}$.
Introduce: $\omega_{0}=\sqrt{\frac{k}{m}}$, and $\omega_{d}=\frac{d}{2 m}$. Hence

$$
r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}} .
$$

Remark: We have three cases of damped oscillations:
(a) Over damped: $\omega_{d}>\omega_{0}$.
(b) Critically damped: $\omega_{d}=\omega_{0}$.

Application: Mechanical Oscillations.

Damped Oscillations
Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Rewrite: $r_{ \pm}=-\frac{d}{2 m} \pm \sqrt{\left(\frac{d}{2 m}\right)^{2}-\frac{k}{m}}$.
Introduce: $\omega_{0}=\sqrt{\frac{k}{m}}$, and $\omega_{d}=\frac{d}{2 m}$. Hence

$$
r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}} .
$$

Remark: We have three cases of damped oscillations:
(a) Over damped: $\omega_{d}>\omega_{0}$.
(b) Critically damped: $\omega_{d}=\omega_{0}$.
(c) Under damped: $\omega_{d}<\omega_{0}$.

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}$.
(a) Over damped: $\omega_{d}>\omega_{0}$.

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}$.
(a) Over damped: $\omega_{d}>\omega_{0}$. Two distinct real roots:

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}$.
(a) Over damped: $\omega_{d}>\omega_{0}$. Two distinct real roots:

$$
y(t)=c_{1} e^{r+t}+c_{2} e^{r-t}
$$

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}$.
(a) Over damped: $\omega_{d}>\omega_{0}$. Two distinct real roots:

$$
y(t)=c_{1} e^{r+t}+c_{2} e^{r-t}
$$

(b) Critically damped: $\omega_{d}=\omega_{0}$.

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}$.
(a) Over damped: $\omega_{d}>\omega_{0}$. Two distinct real roots:

$$
y(t)=c_{1} e^{r_{+} t}+c_{2} e^{r-t}
$$

(b) Critically damped: $\omega_{d}=\omega_{0}$. Repeated real root $r_{+}=r_{-}=\hat{r}$:

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}$.
(a) Over damped: $\omega_{d}>\omega_{0}$. Two distinct real roots:

$$
y(t)=c_{1} e^{r+t}+c_{2} e^{r-t}
$$

(b) Critically damped: $\omega_{d}=\omega_{0}$. Repeated real root $r_{+}=r_{-}=\hat{r}$:

$$
y(t)=\left(c_{1}+c_{2} t\right) e^{\hat{r} t} .
$$

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}$.
(a) Over damped: $\omega_{d}>\omega_{0}$. Two distinct real roots:

$$
y(t)=c_{1} e^{r+t}+c_{2} e^{r-t}
$$

(b) Critically damped: $\omega_{d}=\omega_{0}$. Repeated real root $r_{+}=r_{-}=\hat{r}$:

$$
y(t)=\left(c_{1}+c_{2} t\right) e^{\hat{\imath} t}
$$

(c) Under damped: $\omega_{d}<\omega_{0}$.

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}$.
(a) Over damped: $\omega_{d}>\omega_{0}$. Two distinct real roots:

$$
y(t)=c_{1} e^{r+t}+c_{2} e^{r-t}
$$

(b) Critically damped: $\omega_{d}=\omega_{0}$. Repeated real root $r_{+}=r_{-}=\hat{r}$:

$$
y(t)=\left(c_{1}+c_{2} t\right) e^{\hat{r} t}
$$

(c) Under damped: $\omega_{d}<\omega_{0}$. Complex roots:

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}$.
(a) Over damped: $\omega_{d}>\omega_{0}$. Two distinct real roots:

$$
y(t)=c_{1} e^{r+t}+c_{2} e^{r-t}
$$

(b) Critically damped: $\omega_{d}=\omega_{0}$. Repeated real root $r_{+}=r_{-}=\hat{r}$:

$$
y(t)=\left(c_{1}+c_{2} t\right) e^{\hat{r} t}
$$

(c) Under damped: $\omega_{d}<\omega_{0}$. Complex roots:

$$
y(t)=\left[c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right] e^{-\omega_{d} t}
$$

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}$.
(a) Over damped: $\omega_{d}>\omega_{0}$. Two distinct real roots:

$$
y(t)=c_{1} e^{r_{+} t}+c_{2} e^{r-t}
$$

(b) Critically damped: $\omega_{d}=\omega_{0}$. Repeated real root $r_{+}=r_{-}=\hat{r}$:

$$
y(t)=\left(c_{1}+c_{2} t\right) e^{\hat{\gamma} t} .
$$

(c) Under damped: $\omega_{d}<\omega_{0}$. Complex roots:

$$
\begin{gathered}
y(t)=\left[c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right] e^{-\omega_{d} t} \\
y(t)=A \cos (\beta t-\phi) e^{-\omega_{d} t}
\end{gathered}
$$

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}$.
(a) Over damped: $\omega_{d}>\omega_{0}$. Two distinct real roots:

$$
y(t)=c_{1} e^{r_{+} t}+c_{2} e^{r-t}
$$

(b) Critically damped: $\omega_{d}=\omega_{0}$. Repeated real root $r_{+}=r_{-}=\hat{r}$:

$$
y(t)=\left(c_{1}+c_{2} t\right) e^{\hat{\gamma} t} .
$$

(c) Under damped: $\omega_{d}<\omega_{0}$. Complex roots:

$$
\begin{gathered}
y(t)=\left[c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right] e^{-\omega_{d} t} \\
y(t)=A \cos (\beta t-\phi) e^{-\omega_{d} t}
\end{gathered}
$$

where $r_{ \pm}=-\omega_{d} \pm i \beta$, and $\beta=\sqrt{\omega_{0}^{2}-\omega_{d}^{2}}$.

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.

Solution: The equation is: $m y^{\prime \prime}+d y^{\prime}+k y=0$,

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.

Solution: The equation is: $m y^{\prime \prime}+d y^{\prime}+k y=0$, with $m=5$, $k=5, d=5$.

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.

Solution: The equation is: $m y^{\prime \prime}+d y^{\prime}+k y=0$, with $m=5$, $k=5, d=5$. The characteristic roots are

$$
r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.

Solution: The equation is: $m y^{\prime \prime}+d y^{\prime}+k y=0$, with $m=5$, $k=5, d=5$. The characteristic roots are

$$
r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}, \quad \omega_{d}=\frac{d}{2 m}
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.

Solution: The equation is: $m y^{\prime \prime}+d y^{\prime}+k y=0$, with $m=5$, $k=5, d=5$. The characteristic roots are

$$
r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}, \quad \omega_{d}=\frac{d}{2 m}=\frac{1}{2}
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.

Solution: The equation is: $m y^{\prime \prime}+d y^{\prime}+k y=0$, with $m=5$, $k=5, d=5$. The characteristic roots are

$$
r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}, \quad \omega_{d}=\frac{d}{2 m}=\frac{1}{2}, \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.

Solution: The equation is: $m y^{\prime \prime}+d y^{\prime}+k y=0$, with $m=5$, $k=5, d=5$. The characteristic roots are

$$
r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}, \quad \omega_{d}=\frac{d}{2 m}=\frac{1}{2}, \quad \omega_{0}=\sqrt{\frac{k}{m}}=1
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.

Solution: The equation is: $m y^{\prime \prime}+d y^{\prime}+k y=0$, with $m=5$, $k=5, d=5$. The characteristic roots are

$$
\begin{aligned}
& r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}, \quad \omega_{d}=\frac{d}{2 m}=\frac{1}{2}, \quad \omega_{0}=\sqrt{\frac{k}{m}}=1 . \\
& r_{ \pm}=-\frac{1}{2} \pm \sqrt{\frac{1}{4}-1}
\end{aligned}
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.

Solution: The equation is: $m y^{\prime \prime}+d y^{\prime}+k y=0$, with $m=5$, $k=5, d=5$. The characteristic roots are

$$
\begin{aligned}
& r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}, \quad \omega_{d}=\frac{d}{2 m}=\frac{1}{2}, \quad \omega_{0}=\sqrt{\frac{k}{m}}=1 . \\
& r_{ \pm}=-\frac{1}{2} \pm \sqrt{\frac{1}{4}-1}=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2} .
\end{aligned}
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.

Solution: The equation is: $m y^{\prime \prime}+d y^{\prime}+k y=0$, with $m=5$, $k=5, d=5$. The characteristic roots are

$$
\begin{gathered}
r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}, \quad \omega_{d}=\frac{d}{2 m}=\frac{1}{2}, \quad \omega_{0}=\sqrt{\frac{k}{m}}=1 \\
r_{ \pm}=-\frac{1}{2} \pm \sqrt{\frac{1}{4}-1}=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2} . \quad \text { Under damped oscillations. }
\end{gathered}
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.

Solution: The equation is: $m y^{\prime \prime}+d y^{\prime}+k y=0$, with $m=5$, $k=5, d=5$. The characteristic roots are

$$
\begin{gathered}
r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}, \quad \omega_{d}=\frac{d}{2 m}=\frac{1}{2}, \quad \omega_{0}=\sqrt{\frac{k}{m}}=1 \\
r_{ \pm}=-\frac{1}{2} \pm \sqrt{\frac{1}{4}-1}=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2} . \quad \text { Under damped oscillations. } \\
y(t)=A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}
\end{gathered}
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.
Solution: Recall: $y(t)=A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}$.

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.
Solution: Recall: $y(t)=A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}$. Hence, $y^{\prime}(t)=-\frac{\sqrt{3}}{2} A \sin \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}-\frac{1}{2} A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}$.

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.
Solution: Recall: $y(t)=A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}$. Hence,

$$
y^{\prime}(t)=-\frac{\sqrt{3}}{2} A \sin \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}-\frac{1}{2} A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}
$$

The initial conditions:

$$
\sqrt{3}=y(0)
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.
Solution: Recall: $y(t)=A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}$. Hence,

$$
y^{\prime}(t)=-\frac{\sqrt{3}}{2} A \sin \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}-\frac{1}{2} A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}
$$

The initial conditions:

$$
\sqrt{3}=y(0)=A \cos (\phi)
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.
Solution: Recall: $y(t)=A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}$. Hence,

$$
y^{\prime}(t)=-\frac{\sqrt{3}}{2} A \sin \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}-\frac{1}{2} A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}
$$

The initial conditions:

$$
\sqrt{3}=y(0)=A \cos (\phi), \quad 0=y^{\prime}(0)
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.
Solution: Recall: $y(t)=A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}$. Hence,

$$
y^{\prime}(t)=-\frac{\sqrt{3}}{2} A \sin \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}-\frac{1}{2} A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}
$$

The initial conditions:

$$
\sqrt{3}=y(0)=A \cos (\phi), \quad 0=y^{\prime}(0)=\frac{\sqrt{3}}{2} A \sin (\phi)-\frac{1}{2} A \cos (\phi)
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.
Solution: Recall: $y(t)=A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}$. Hence,

$$
y^{\prime}(t)=-\frac{\sqrt{3}}{2} A \sin \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}-\frac{1}{2} A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}
$$

The initial conditions:

$$
\begin{gathered}
\sqrt{3}=y(0)=A \cos (\phi), \quad 0=y^{\prime}(0)=\frac{\sqrt{3}}{2} A \sin (\phi)-\frac{1}{2} A \cos (\phi) \\
\tan (\phi)=\frac{1}{\sqrt{3}}
\end{gathered}
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.
Solution: Recall: $y(t)=A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}$. Hence,

$$
y^{\prime}(t)=-\frac{\sqrt{3}}{2} A \sin \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}-\frac{1}{2} A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2} .
$$

The initial conditions:

$$
\begin{aligned}
\sqrt{3}=y(0)=A \cos (\phi), & 0=y^{\prime}(0)=\frac{\sqrt{3}}{2} A \sin (\phi)-\frac{1}{2} A \cos (\phi) . \\
\tan (\phi)=\frac{1}{\sqrt{3}} & \Rightarrow \quad \phi=\frac{\pi}{6},
\end{aligned}
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.
Solution: Recall: $y(t)=A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}$. Hence,

$$
y^{\prime}(t)=-\frac{\sqrt{3}}{2} A \sin \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}-\frac{1}{2} A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2} .
$$

The initial conditions:

$$
\begin{array}{cl}
\sqrt{3}=y(0)=A \cos (\phi), & 0=y^{\prime}(0)=\frac{\sqrt{3}}{2} A \sin (\phi)-\frac{1}{2} A \cos (\phi) . \\
\tan (\phi)=\frac{1}{\sqrt{3}} \quad \Rightarrow \quad \phi=\frac{\pi}{6}, \quad \Rightarrow \quad A=2 .
\end{array}
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.
Solution: Recall: $y(t)=A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}$. Hence,

$$
y^{\prime}(t)=-\frac{\sqrt{3}}{2} A \sin \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}-\frac{1}{2} A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2} .
$$

The initial conditions:

$$
\begin{gathered}
\sqrt{3}=y(0)=A \cos (\phi), \quad 0=y^{\prime}(0)=\frac{\sqrt{3}}{2} A \sin (\phi)-\frac{1}{2} A \cos (\phi) . \\
\tan (\phi)=\frac{1}{\sqrt{3}} \quad \Rightarrow \quad \phi=\frac{\pi}{6}, \quad \Rightarrow \quad A=2 .
\end{gathered}
$$

We conclude: $y(t)=2 \cos \left(\frac{\sqrt{3}}{2} t-\frac{\pi}{6}\right) e^{-t / 2}$.

Mechanical and electrical oscillations (Sect. 2.7?)

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Application: Mechanical Oscillations.
- Application: The RLC electrical circuit.

The RLC electrical circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

The RLC electrical circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t) : electric current.

Kirchhoff's Law: The electric current flowing in the circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0
$$

The RLC electrical circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t) : electric current.

Kirchhoff's Law: The electric current flowing in the circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0
$$

Derivate both sides above: $L I^{\prime \prime}(t)+R I^{\prime}(t)+\frac{1}{C} I(t)=0$.

The RLC electrical circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t$)$: electric current.

Kirchhoff's Law: The electric current flowing in the circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0
$$

Derivate both sides above: $L I^{\prime \prime}(t)+R I^{\prime}(t)+\frac{1}{C} I(t)=0$.
Divide by $L: I^{\prime \prime}(t)+2\left(\frac{R}{2 L}\right) I^{\prime}(t)+\frac{1}{L C} I(t)=0$.

The RLC electrical circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t$)$: electric current.

Kirchhoff's Law: The electric current flowing in the circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0
$$

Derivate both sides above: $L I^{\prime \prime}(t)+R I^{\prime}(t)+\frac{1}{C} I(t)=0$.
Divide by $L: \quad I^{\prime \prime}(t)+2\left(\frac{R}{2 L}\right) I^{\prime}(t)+\frac{1}{L C} I(t)=0$.
Introduce $\alpha=\frac{R}{2 L}$ and $\omega=\frac{1}{\sqrt{L C}}$,

The RLC electrical circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t$)$: electric current.

Kirchhoff's Law: The electric current flowing in the circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0
$$

Derivate both sides above: $L I^{\prime \prime}(t)+R I^{\prime}(t)+\frac{1}{C} I(t)=0$.
Divide by $L: \quad I^{\prime \prime}(t)+2\left(\frac{R}{2 L}\right) I^{\prime}(t)+\frac{1}{L C} I(t)=0$.
Introduce $\alpha=\frac{R}{2 L}$ and $\omega=\frac{1}{\sqrt{L C}}$, then $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$.

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$.

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right]
$$

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$.

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$. This implies $\alpha=0$,

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$. This implies $\alpha=0$, so $r_{ \pm}= \pm i \omega$.

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \Rightarrow r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}} .
$$

Case (a) $R=0$. This implies $\alpha=0$, so $r_{ \pm}= \pm i \omega$. Therefore,

$$
I_{1}(t)=\cos (\omega t)
$$

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \quad \Rightarrow \quad r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$. This implies $\alpha=0$, so $r_{ \pm}= \pm i \omega$. Therefore,

$$
I_{1}(t)=\cos (\omega t), \quad I_{2}(t)=\sin (\omega t)
$$

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \Rightarrow r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}
$$

Case (a) $R=0$. This implies $\alpha=0$, so $r_{ \pm}= \pm i \omega$. Therefore,

$$
I_{1}(t)=\cos (\omega t), \quad I_{2}(t)=\sin (\omega t)
$$

Remark: When the circuit has no resistance, the current oscillates without dissipation.

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$.

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C}
$$

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C}
$$

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$.

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are

$$
I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right)
$$

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are

$$
I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right), \quad I_{2}(t)=e^{-\alpha t} \sin \left(\sqrt{\omega^{2}-\alpha^{2}} t\right)
$$

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are
$I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right), \quad I_{2}(t)=e^{-\alpha t} \sin \left(\sqrt{\omega^{2}-\alpha^{2}} t\right)$.

I (t) : electric current.

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are

$$
I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right), \quad I_{2}(t)=e^{-\alpha t} \sin \left(\sqrt{\omega^{2}-\alpha^{2}} t\right)
$$

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \quad \Leftrightarrow \quad \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2} .
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are
$I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right), \quad I_{2}(t)=e^{-\alpha t} \sin \left(\sqrt{\omega^{2}-\alpha^{2}} t\right)$.

The resistance R damps the current oscillations.

The Euler equation (Sect. 3.2).

- We study the Euler Equation:
$\left(x-x_{0}\right)^{2} y^{\prime \prime}+p_{0}\left(x-x_{0}\right) y^{\prime}+q_{0} y=0$.
- Solutions to the Euler equation near x_{0}.
- The roots of the indicial polynomial.
- Different real roots.
- Repeated roots.
- Different complex roots.

The Euler equation

Definition

Given real constants p_{0}, q_{0}, the Euler differential equation for the unknown y with singular point at $x_{0} \in R$ is given by

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+p_{0}\left(x-x_{0}\right) y^{\prime}+q_{0} y=0
$$

The Euler equation

Definition

Given real constants p_{0}, q_{0}, the Euler differential equation for the unknown y with singular point at $x_{0} \in R$ is given by

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+p_{0}\left(x-x_{0}\right) y^{\prime}+q_{0} y=0
$$

Remarks:

- The Euler equation has variable coefficients.

The Euler equation

Definition

Given real constants p_{0}, q_{0}, the Euler differential equation for the unknown y with singular point at $x_{0} \in R$ is given by

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+p_{0}\left(x-x_{0}\right) y^{\prime}+q_{0} y=0
$$

Remarks:

- The Euler equation has variable coefficients.
- Functions $y(x)=e^{r x}$ are not solutions of the Euler equation.

The Euler equation

Definition

Given real constants p_{0}, q_{0}, the Euler differential equation for the unknown y with singular point at $x_{0} \in R$ is given by

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+p_{0}\left(x-x_{0}\right) y^{\prime}+q_{0} y=0
$$

Remarks:

- The Euler equation has variable coefficients.
- Functions $y(x)=e^{r x}$ are not solutions of the Euler equation.
- The point $x_{0} \in \mathbb{R}$ is a singular point of the equation.

The Euler equation

Definition

Given real constants p_{0}, q_{0}, the Euler differential equation for the unknown y with singular point at $x_{0} \in R$ is given by

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+p_{0}\left(x-x_{0}\right) y^{\prime}+q_{0} y=0
$$

Remarks:

- The Euler equation has variable coefficients.
- Functions $y(x)=e^{r x}$ are not solutions of the Euler equation.
- The point $x_{0} \in \mathbb{R}$ is a singular point of the equation.
- The particular case $x_{0}=0$ is is given by

$$
x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y=0
$$

The Euler equation (Sect. 3.2).

- We study the Euler Equation:
$\left(x-x_{0}\right)^{2} y^{\prime \prime}+p_{0}\left(x-x_{0}\right) y^{\prime}+q_{0} y=0$.
- Solutions to the Euler equation near x_{0}.
- The roots of the indicial polynomial.
- Different real roots.
- Repeated roots.
- Different complex roots.

Solutions to the Euler equation near x_{0}.

Summary of the main idea:

- The main idea to find solution to the constant coefficients equation $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$ was to look for functions of the form $y(x)=e^{r x}$.

Solutions to the Euler equation near x_{0}.

Summary of the main idea:

- The main idea to find solution to the constant coefficients equation $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$ was to look for functions of the form $y(x)=e^{r x}$. The exponential cancels out from the equation and we obtain an equation only for r without x,

Solutions to the Euler equation near x_{0}.

Summary of the main idea:

- The main idea to find solution to the constant coefficients equation $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$ was to look for functions of the form $y(x)=e^{r x}$. The exponential cancels out from the equation and we obtain an equation only for r without x,

$$
\begin{equation*}
\left(r^{2}+a_{1} r+a_{0}\right) e^{r x}=0 \quad \Leftrightarrow \quad\left(r^{2}+a_{1} r+a_{0}\right)=0 \tag{1}
\end{equation*}
$$

Solutions to the Euler equation near x_{0}.

Summary of the main idea:

- The main idea to find solution to the constant coefficients equation $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$ was to look for functions of the form $y(x)=e^{r x}$. The exponential cancels out from the equation and we obtain an equation only for r without x,

$$
\begin{equation*}
\left(r^{2}+a_{1} r+a_{0}\right) e^{r x}=0 \quad \Leftrightarrow \quad\left(r^{2}+a_{1} r+a_{0}\right)=0 . \tag{1}
\end{equation*}
$$

- In the case of the Euler equation $x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y=0$ the exponential functions $e^{r x}$ do not have the property given in Eq. (1),

Solutions to the Euler equation near x_{0}.

Summary of the main idea:

- The main idea to find solution to the constant coefficients equation $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$ was to look for functions of the form $y(x)=e^{r x}$. The exponential cancels out from the equation and we obtain an equation only for r without x,

$$
\begin{equation*}
\left(r^{2}+a_{1} r+a_{0}\right) e^{r x}=0 \quad \Leftrightarrow \quad\left(r^{2}+a_{1} r+a_{0}\right)=0 \tag{1}
\end{equation*}
$$

- In the case of the Euler equation $x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y=0$ the exponential functions $e^{r x}$ do not have the property given in Eq. (1), since

$$
\left(x^{2} r^{2}+p_{0} x r+q_{0}\right) e^{r x}=0 \quad \Leftrightarrow \quad x^{2} r^{2}+p_{0} x r+q_{0}=0
$$

Solutions to the Euler equation near x_{0}.

Summary of the main idea:

- The main idea to find solution to the constant coefficients equation $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$ was to look for functions of the form $y(x)=e^{r x}$. The exponential cancels out from the equation and we obtain an equation only for r without x,

$$
\begin{equation*}
\left(r^{2}+a_{1} r+a_{0}\right) e^{r x}=0 \quad \Leftrightarrow \quad\left(r^{2}+a_{1} r+a_{0}\right)=0 \tag{1}
\end{equation*}
$$

- In the case of the Euler equation $x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y=0$ the exponential functions $e^{r x}$ do not have the property given in Eq. (1), since

$$
\left(x^{2} r^{2}+p_{0} x r+q_{0}\right) e^{r x}=0 \quad \Leftrightarrow \quad x^{2} r^{2}+p_{0} x r+q_{0}=0
$$

but the later equation still involves the variable x.

Solutions to the Euler equation near x_{0}.
Summary of the main idea: Look for solutions like $y(x)=x^{r}$.

Solutions to the Euler equation near x_{0}.

Summary of the main idea: Look for solutions like $y(x)=x^{r}$.
These function have the following property:

$$
y^{\prime}(x)=r x^{r-1}
$$

Solutions to the Euler equation near x_{0}.

Summary of the main idea: Look for solutions like $y(x)=x^{r}$.
These function have the following property:

$$
y^{\prime}(x)=r x^{r-1} \quad \Rightarrow \quad x y^{\prime}(x)=r x^{r} ;
$$

Solutions to the Euler equation near x_{0}.

Summary of the main idea: Look for solutions like $y(x)=x^{r}$.
These function have the following property:

$$
\begin{aligned}
& y^{\prime}(x)=r x^{r-1} \quad \Rightarrow \quad x y^{\prime}(x)=r x^{r} ; \\
& y^{\prime \prime}(x)=r(r-1) x^{r-2}
\end{aligned}
$$

Solutions to the Euler equation near x_{0}.

Summary of the main idea: Look for solutions like $y(x)=x^{r}$.
These function have the following property:

$$
\begin{array}{cc}
y^{\prime}(x)=r x^{r-1} \quad \Rightarrow \quad x y^{\prime}(x)=r x^{r} ; \\
y^{\prime \prime}(x)=r(r-1) x^{r-2} & \Rightarrow \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
\end{array}
$$

Solutions to the Euler equation near x_{0}.

Summary of the main idea: Look for solutions like $y(x)=x^{r}$.
These function have the following property:

$$
\begin{array}{cc}
y^{\prime}(x)=r x^{r-1} \quad \Rightarrow \quad x y^{\prime}(x)=r x^{r} ; \\
y^{\prime \prime}(x)=r(r-1) x^{r-2} & \Rightarrow \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
\end{array}
$$

Introduce $y=x^{r}$ into Euler's equation $x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y=0$,

Solutions to the Euler equation near x_{0}.

Summary of the main idea: Look for solutions like $y(x)=x^{r}$.
These function have the following property:

$$
\begin{array}{cc}
y^{\prime}(x)=r x^{r-1} \quad \Rightarrow \quad x y^{\prime}(x)=r x^{r} ; \\
y^{\prime \prime}(x)=r(r-1) x^{r-2} & \Rightarrow \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
\end{array}
$$

Introduce $y=x^{r}$ into Euler's equation $x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y=0$, for $x \neq 0$ we obtain

$$
\left[r(r-1)+p_{0} r+q_{0}\right] x^{r}=0
$$

Solutions to the Euler equation near x_{0}.

Summary of the main idea: Look for solutions like $y(x)=x^{r}$.
These function have the following property:

$$
\begin{array}{cc}
y^{\prime}(x)=r x^{r-1} \quad \Rightarrow \quad x y^{\prime}(x)=r x^{r} ; \\
y^{\prime \prime}(x)=r(r-1) x^{r-2} & \Rightarrow \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
\end{array}
$$

Introduce $y=x^{r}$ into Euler's equation $x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y=0$, for $x \neq 0$ we obtain

$$
\left[r(r-1)+p_{0} r+q_{0}\right] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)+p_{0} r+q_{0}=0 .
$$

Solutions to the Euler equation near x_{0}.

Summary of the main idea: Look for solutions like $y(x)=x^{r}$.
These function have the following property:

$$
\begin{array}{cc}
y^{\prime}(x)=r x^{r-1} \quad \Rightarrow \quad x y^{\prime}(x)=r x^{r} ; \\
y^{\prime \prime}(x)=r(r-1) x^{r-2} & \Rightarrow \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
\end{array}
$$

Introduce $y=x^{r}$ into Euler's equation $x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y=0$, for $x \neq 0$ we obtain

$$
\left[r(r-1)+p_{0} r+q_{0}\right] x^{r}=0 \Leftrightarrow r(r-1)+p_{0} r+q_{0}=0 .
$$

The last equation involves only r, not x.

Solutions to the Euler equation near x_{0}.

Summary of the main idea: Look for solutions like $y(x)=x^{r}$.
These function have the following property:

$$
\begin{array}{cc}
y^{\prime}(x)=r x^{r-1} \quad \Rightarrow \quad x y^{\prime}(x)=r x^{r} ; \\
y^{\prime \prime}(x)=r(r-1) x^{r-2} & \Rightarrow \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
\end{array}
$$

Introduce $y=x^{r}$ into Euler's equation $x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y=0$, for $x \neq 0$ we obtain

$$
\left[r(r-1)+p_{0} r+q_{0}\right] x^{r}=0 \Leftrightarrow r(r-1)+p_{0} r+q_{0}=0 .
$$

The last equation involves only r, not x.
This equation is called the indicial equation, and is also called the Euler characteristic equation.

Solutions to the Euler equation near x_{0}.

Theorem (Euler equation, $x_{0}=0$)
Given $p_{0}, q_{0}, x_{0} \in \mathbb{R}$, consider the Euler equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y=0 \tag{2}
\end{equation*}
$$

Let r_{+}, r_{-}be solutions of $r(r-1)+p_{0} r+q_{0}=0$.
(a) If $r_{+} \neq r_{-}$, then a general solution of Eq. (2) is

$$
y(x)=c_{0}|x|^{r_{+}}+c_{1}|x|^{r_{-}}, \quad x \neq 0, \quad c_{0}, \quad c_{1} \in \mathbb{R}(\text { or } \mathbb{C}) .
$$

(b) If $r_{+}=r_{-}=\hat{r}$, then a real-valued general solution of Eq. (2) is

$$
y(x)=\left[c_{0}+c_{1} \ln |x|\right]|x|^{\hat{r}}, \quad x \neq 0, \quad c_{0}, \quad c_{1} \in \mathbb{R}
$$

Given $x_{1} \neq 0, y_{0}, y_{1} \in \mathbb{R}$, there is a unique solution to the IVP

$$
x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y=0, \quad y\left(x_{1}\right)=y_{0}, \quad y^{\prime}\left(x_{1}\right)=y_{1} .
$$

Solutions to the Euler equation near x_{0}.

Theorem (Euler equation, $x_{0} \neq 0$)
Given $p_{0}, q_{0}, x_{0} \in \mathbb{R}$, consider the Euler equation

$$
\begin{equation*}
\left(x-x_{0}\right)^{2} y^{\prime \prime}+p_{0}\left(x-x_{0}\right) y^{\prime}+q_{0} y=0 . \tag{3}
\end{equation*}
$$

Let r_{+}, r_{-}be solutions of $r(r-1)+p_{0} r+q_{o}=0$.
(a) If $r_{+} \neq r_{-}$, then a general solution of Eq. (3) is

$$
y(x)=c_{0}\left|x-x_{0}\right|^{r_{+}}+c_{1}\left|x-x_{0}\right|^{r_{-}}, \quad x \neq x_{0}, \quad c_{0}, \quad c_{1} \in \mathbb{R}(\text { or } \mathbb{C}) .
$$

(b) If $r_{+}=r_{-}=\hat{r}$, then a real-valued general solution of Eq. (3) is

$$
y(x)=\left[c_{0}+c_{1} \ln \left|x-x_{0}\right|\right]\left|x-x_{0}\right|^{\hat{r}}, \quad x \neq x_{0}, \quad c_{0}, \quad c_{1} \in \mathbb{R} .
$$

Given $x_{1} \neq x_{0}, y_{0}, y_{1} \in \mathbb{R}$, there is a unique solution to the IVP $\left(x-x_{0}\right)^{2} y^{\prime \prime}+p_{0}\left(x-x_{0}\right) y^{\prime}+q_{0} y=0, \quad y\left(x_{1}\right)=y_{0}, \quad y^{\prime}\left(x_{1}\right)=y_{1}$.

The Euler equation (Sect. 3.2).

- We study the Euler Equation:
$\left(x-x_{0}\right)^{2} y^{\prime \prime}+p_{0}\left(x-x_{0}\right) y^{\prime}+q_{0} y=0$.
- Solutions to the Euler equation near x_{0}.
- The roots of the indicial polynomial.
- Different real roots.
- Repeated roots.
- Different complex roots.

Different real roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

Different real roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

Different real roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}
$$

Different real roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r}
$$

Different real roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
$$

Introduce $y(x)=x^{r}$ into Euler equation,

Different real roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
$$

Introduce $y(x)=x^{r}$ into Euler equation,

$$
[r(r-1)+4 r+2] x^{r}=0
$$

Different real roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
$$

Introduce $y(x)=x^{r}$ into Euler equation,

$$
[r(r-1)+4 r+2] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)+4 r+2=0
$$

Different real roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r}
$$

Introduce $y(x)=x^{r}$ into Euler equation,

$$
[r(r-1)+4 r+2] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)+4 r+2=0 .
$$

The solutions of $r^{2}+3 r+2=0$ are given by

Different real roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r}
$$

Introduce $y(x)=x^{r}$ into Euler equation,

$$
[r(r-1)+4 r+2] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)+4 r+2=0 .
$$

The solutions of $r^{2}+3 r+2=0$ are given by

$$
r_{ \pm}=\frac{1}{2}[-3 \pm \sqrt{9-8}]
$$

Different real roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
$$

Introduce $y(x)=x^{r}$ into Euler equation,

$$
[r(r-1)+4 r+2] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)+4 r+2=0
$$

The solutions of $r^{2}+3 r+2=0$ are given by

$$
r_{ \pm}=\frac{1}{2}[-3 \pm \sqrt{9-8}] \quad \Rightarrow \quad r_{+}=-1 \quad r_{-}=-2
$$

Different real roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
$$

Introduce $y(x)=x^{r}$ into Euler equation,

$$
[r(r-1)+4 r+2] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)+4 r+2=0
$$

The solutions of $r^{2}+3 r+2=0$ are given by

$$
r_{ \pm}=\frac{1}{2}[-3 \pm \sqrt{9-8}] \quad \Rightarrow \quad r_{+}=-1 \quad r_{-}=-2
$$

The general solution is $y(x)=c_{1}|x|^{-1}+c_{2}|x|^{-2}$.

The Euler equation (Sect. 3.2).

- We study the Euler Equation:
$\left(x-x_{0}\right)^{2} y^{\prime \prime}+p_{0}\left(x-x_{0}\right) y^{\prime}+q_{0} y=0$.
- Solutions to the Euler equation near x_{0}.
- The roots of the indicial polynomial.
- Different real roots.
- Repeated roots.
- Different complex roots.

Repeated roots.

Example

Find the general solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$.

Repeated roots.

Example

Find the general solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$.
Solution: We look for solutions of the form $y(x)=x^{r}$,

Repeated roots.

Example

Find the general solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$. Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}
$$

Repeated roots.

Example

Find the general solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$.
Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
$$

Repeated roots.

Example

Find the general solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$. Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
$$

Introduce $y(x)=x^{r}$ into Euler equation,

Repeated roots.

Example

Find the general solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$. Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
$$

Introduce $y(x)=x^{r}$ into Euler equation,

$$
[r(r-1)-3 r+4] x^{r}=0
$$

Repeated roots.

Example

Find the general solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$.
Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
$$

Introduce $y(x)=x^{r}$ into Euler equation,

$$
[r(r-1)-3 r+4] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)-3 r+4=0
$$

Repeated roots.

Example

Find the general solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$.
Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
$$

Introduce $y(x)=x^{r}$ into Euler equation,

$$
[r(r-1)-3 r+4] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)-3 r+4=0 .
$$

The solutions of $r^{2}-4 r+4=0$ are given by

Repeated roots.

Example

Find the general solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$.
Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
$$

Introduce $y(x)=x^{r}$ into Euler equation,

$$
[r(r-1)-3 r+4] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)-3 r+4=0
$$

The solutions of $r^{2}-4 r+4=0$ are given by

$$
r_{ \pm}=\frac{1}{2}[4 \pm \sqrt{16-16}]
$$

Repeated roots.

Example

Find the general solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$.
Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r} .
$$

Introduce $y(x)=x^{r}$ into Euler equation,

$$
[r(r-1)-3 r+4] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)-3 r+4=0
$$

The solutions of $r^{2}-4 r+4=0$ are given by

$$
r_{ \pm}=\frac{1}{2}[4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{+}=r_{-}=2
$$

Repeated roots.

Example

Find the general solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$.
Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r}
$$

Introduce $y(x)=x^{r}$ into Euler equation,

$$
[r(r-1)-3 r+4] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)-3 r+4=0
$$

The solutions of $r^{2}-4 r+4=0$ are given by

$$
r_{ \pm}=\frac{1}{2}[4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{+}=r_{-}=2
$$

Two linearly independent solutions are

$$
y_{1}(x)=x^{2}, \quad y_{2}=x^{2} \ln (|x|)
$$

Repeated roots.

Example

Find the general solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$.
Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r}
$$

Introduce $y(x)=x^{r}$ into Euler equation,

$$
[r(r-1)-3 r+4] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)-3 r+4=0
$$

The solutions of $r^{2}-4 r+4=0$ are given by

$$
r_{ \pm}=\frac{1}{2}[4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{+}=r_{-}=2
$$

Two linearly independent solutions are

$$
y_{1}(x)=x^{2}, \quad y_{2}=x^{2} \ln (|x|)
$$

The general solution is $y(x)=c_{1} x^{2}+c_{2} x^{2} \ln (|x|)$.

The Euler equation (Sect. 3.2).

- We study the Euler Equation:
$\left(x-x_{0}\right)^{2} y^{\prime \prime}+p_{0}\left(x-x_{0}\right) y^{\prime}+q_{0} y=0$.
- Solutions to the Euler equation near x_{0}.
- The roots of the indicial polynomial.
- Different real roots.
- Repeated roots.
- Different complex roots.

Different complex roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Different complex roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

Different complex roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}
$$

Different complex roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r}
$$

Different complex roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r}
$$

Introduce $y(x)=x^{r}$ into Euler equation

Different complex roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r}
$$

Introduce $y(x)=x^{r}$ into Euler equation

$$
[r(r-1)-3 r+13] x^{r}=0
$$

Different complex roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r}
$$

Introduce $y(x)=x^{r}$ into Euler equation

$$
[r(r-1)-3 r+13] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)-3 r+13=0 .
$$

Different complex roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r}
$$

Introduce $y(x)=x^{r}$ into Euler equation

$$
[r(r-1)-3 r+13] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)-3 r+13=0 .
$$

The solutions of the indicial equation $r^{2}-4 r+13=0$ are

$$
r_{ \pm}=\frac{1}{2}[4 \pm \sqrt{16-52}]
$$

Different complex roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r}
$$

Introduce $y(x)=x^{r}$ into Euler equation

$$
[r(r-1)-3 r+13] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)-3 r+13=0 .
$$

The solutions of the indicial equation $r^{2}-4 r+13=0$ are

$$
r_{ \pm}=\frac{1}{2}[4 \pm \sqrt{16-52}] \Rightarrow r_{ \pm}=\frac{1}{2}[4 \pm \sqrt{-36}]
$$

Different complex roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r}
$$

Introduce $y(x)=x^{r}$ into Euler equation

$$
[r(r-1)-3 r+13] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)-3 r+13=0 .
$$

The solutions of the indicial equation $r^{2}-4 r+13=0$ are

$$
r_{ \pm}=\frac{1}{2}[4 \pm \sqrt{16-52}] \Rightarrow r_{ \pm}=\frac{1}{2}[4 \pm \sqrt{-36}] \Rightarrow\left\{\begin{array}{l}
r_{+}=2+3 i \\
r_{-}=2-3 i .
\end{array}\right.
$$

Different complex roots.

Example

Find the general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Solution: We look for solutions of the form $y(x)=x^{r}$,

$$
x y^{\prime}(x)=r x^{r}, \quad x^{2} y^{\prime \prime}(x)=r(r-1) x^{r}
$$

Introduce $y(x)=x^{r}$ into Euler equation

$$
[r(r-1)-3 r+13] x^{r}=0 \quad \Leftrightarrow \quad r(r-1)-3 r+13=0 .
$$

The solutions of the indicial equation $r^{2}-4 r+13=0$ are

$$
r_{ \pm}=\frac{1}{2}[4 \pm \sqrt{16-52}] \Rightarrow r_{ \pm}=\frac{1}{2}[4 \pm \sqrt{-36}] \Rightarrow\left\{\begin{array}{l}
r_{+}=2+3 i \\
r_{-}=2-3 i
\end{array}\right.
$$

The general solution is $y(x)=c_{1}|x|^{(2+3 i)}+c_{2}|x|^{(2-3 i)}$.

Different complex roots.

Theorem (Real-valued fundamental solutions)

If $p_{0}, q_{0} \in \mathbb{R}$ satisfy that $\left[\left(p_{0}-1\right)^{2}-4 q_{0}\right]<0$, then the indicial polynomial $p(r)=r(r-1)+p_{0} r+q_{0}$ of the Euler equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y=0 \tag{4}
\end{equation*}
$$

has complex roots $r_{+}=\alpha+i \beta$ and $r_{-}=\alpha-i \beta$, where

$$
\alpha=-\frac{\left(p_{0}-1\right)}{2}, \quad \beta=\frac{1}{2} \sqrt{4 q_{0}-\left(p_{0}-1\right)^{2}} .
$$

A complex-valued fundamental set of solution to Eq. (4) is

$$
\tilde{y}_{1}(x)=|x|^{(\alpha+i \beta)}, \quad \tilde{y}_{2}(x)=|x|^{(\alpha-i \beta)} .
$$

A real-valued fundamental set of solutions to Eq. (4) is

$$
y_{1}(x)=|x|^{\alpha} \cos (\beta \ln |x|), \quad y_{2}(x)=|x|^{\alpha} \sin (\beta \ln |x|)
$$

Different complex roots.

Proof: Given $\tilde{y}_{1}=|x|^{(\alpha+i \beta)}$ and $\tilde{y}_{2}=|x|^{(\alpha-i \beta)}$,

Different complex roots.

Proof: Given $\tilde{y}_{1}=|x|^{(\alpha+i \beta)}$ and $\tilde{y}_{2}=|x|^{(\alpha-i \beta)}$, introduce

$$
y_{1}=\frac{1}{2}\left(\tilde{y}_{1}+\tilde{y}_{2}\right), \quad y_{1}=\frac{1}{2 i}\left(\tilde{y}_{1}-\tilde{y}_{2}\right) .
$$

Different complex roots.

Proof: Given $\tilde{y}_{1}=|x|^{(\alpha+i \beta)}$ and $\tilde{y}_{2}=|x|^{(\alpha-i \beta)}$, introduce

$$
y_{1}=\frac{1}{2}\left(\tilde{y}_{1}+\tilde{y}_{2}\right), \quad y_{1}=\frac{1}{2 i}\left(\tilde{y}_{1}-\tilde{y}_{2}\right) .
$$

Use another Euler equation to rewrite \tilde{y}_{1} and \tilde{y}_{2},

Different complex roots.

Proof: Given $\tilde{y}_{1}=|x|^{(\alpha+i \beta)}$ and $\tilde{y}_{2}=|x|^{(\alpha-i \beta)}$, introduce

$$
y_{1}=\frac{1}{2}\left(\tilde{y}_{1}+\tilde{y}_{2}\right), \quad y_{1}=\frac{1}{2 i}\left(\tilde{y}_{1}-\tilde{y}_{2}\right) .
$$

Use another Euler equation to rewrite \tilde{y}_{1} and \tilde{y}_{2},

$$
\tilde{y}_{1}=|x|^{(\alpha+i \beta)}
$$

Different complex roots.

Proof: Given $\tilde{y}_{1}=|x|^{(\alpha+i \beta)}$ and $\tilde{y}_{2}=|x|^{(\alpha-i \beta)}$, introduce

$$
y_{1}=\frac{1}{2}\left(\tilde{y}_{1}+\tilde{y}_{2}\right), \quad y_{1}=\frac{1}{2 i}\left(\tilde{y}_{1}-\tilde{y}_{2}\right) .
$$

Use another Euler equation to rewrite \tilde{y}_{1} and \tilde{y}_{2},

$$
\tilde{y}_{1}=|x|^{(\alpha+i \beta)}=|x|^{\alpha}|x|^{i \beta}
$$

Different complex roots.

Proof: Given $\tilde{y}_{1}=|x|^{(\alpha+i \beta)}$ and $\tilde{y}_{2}=|x|^{(\alpha-i \beta)}$, introduce

$$
y_{1}=\frac{1}{2}\left(\tilde{y}_{1}+\tilde{y}_{2}\right), \quad y_{1}=\frac{1}{2 i}\left(\tilde{y}_{1}-\tilde{y}_{2}\right) .
$$

Use another Euler equation to rewrite \tilde{y}_{1} and \tilde{y}_{2},

$$
\tilde{y}_{1}=|x|^{(\alpha+i \beta)}=|x|^{\alpha}|x|^{i \beta}=|x|^{\alpha} e^{\ln \left(|x|^{i \beta}\right)}
$$

Different complex roots.

Proof: Given $\tilde{y}_{1}=|x|^{(\alpha+i \beta)}$ and $\tilde{y}_{2}=|x|^{(\alpha-i \beta)}$, introduce

$$
y_{1}=\frac{1}{2}\left(\tilde{y}_{1}+\tilde{y}_{2}\right), \quad y_{1}=\frac{1}{2 i}\left(\tilde{y}_{1}-\tilde{y}_{2}\right) .
$$

Use another Euler equation to rewrite \tilde{y}_{1} and \tilde{y}_{2},

$$
\tilde{y}_{1}=|x|^{(\alpha+i \beta)}=|x|^{\alpha}|x|^{i \beta}=|x|^{\alpha} e^{\ln \left(|x|^{i \beta}\right)}=|x|^{\alpha} e^{i \beta \ln (|x|)} .
$$

Different complex roots.

Proof: Given $\tilde{y}_{1}=|x|^{(\alpha+i \beta)}$ and $\tilde{y}_{2}=|x|^{(\alpha-i \beta)}$, introduce

$$
y_{1}=\frac{1}{2}\left(\tilde{y}_{1}+\tilde{y}_{2}\right), \quad y_{1}=\frac{1}{2 i}\left(\tilde{y}_{1}-\tilde{y}_{2}\right)
$$

Use another Euler equation to rewrite \tilde{y}_{1} and \tilde{y}_{2},

$$
\begin{gathered}
\tilde{y}_{1}=|x|^{(\alpha+i \beta)}=|x|^{\alpha}|x|^{i \beta}=|x|^{\alpha} e^{\ln \left(|x|^{i \beta}\right)}=|x|^{\alpha} e^{i \beta \ln (|x|)} . \\
\tilde{y}_{1}=|x|^{\alpha}[\cos (\beta \ln |x|)+1 \sin (\beta \ln |x|)],
\end{gathered}
$$

Different complex roots.

Proof: Given $\tilde{y}_{1}=|x|^{(\alpha+i \beta)}$ and $\tilde{y}_{2}=|x|^{(\alpha-i \beta)}$, introduce

$$
y_{1}=\frac{1}{2}\left(\tilde{y}_{1}+\tilde{y}_{2}\right), \quad y_{1}=\frac{1}{2 i}\left(\tilde{y}_{1}-\tilde{y}_{2}\right)
$$

Use another Euler equation to rewrite \tilde{y}_{1} and \tilde{y}_{2},

$$
\begin{gathered}
\tilde{y}_{1}=|x|^{(\alpha+i \beta)}=|x|^{\alpha}|x|^{i \beta}=|x|^{\alpha} e^{\ln \left(|x|^{i \beta}\right)}=|x|^{\alpha} e^{i \beta \ln (|x|)} . \\
\tilde{y}_{1}=|x|^{\alpha}[\cos (\beta \ln |x|)+1 \sin (\beta \ln |x|)], \\
\tilde{y}_{2}=|x|^{\alpha}[\cos (\beta \ln |x|)-1 \sin (\beta \ln |x|)] .
\end{gathered}
$$

Different complex roots.

Proof: Given $\tilde{y}_{1}=|x|^{(\alpha+i \beta)}$ and $\tilde{y}_{2}=|x|^{(\alpha-i \beta)}$, introduce

$$
y_{1}=\frac{1}{2}\left(\tilde{y}_{1}+\tilde{y}_{2}\right), \quad y_{1}=\frac{1}{2 i}\left(\tilde{y}_{1}-\tilde{y}_{2}\right)
$$

Use another Euler equation to rewrite \tilde{y}_{1} and \tilde{y}_{2},

$$
\begin{gathered}
\tilde{y}_{1}=|x|^{(\alpha+i \beta)}=|x|^{\alpha}|x|^{i \beta}=|x|^{\alpha} e^{\ln \left(|x|^{i \beta}\right)}=|x|^{\alpha} e^{i \beta \ln (|x|)} . \\
\tilde{y}_{1}=|x|^{\alpha}[\cos (\beta \ln |x|)+1 \sin (\beta \ln |x|)], \\
\tilde{y}_{2}=|x|^{\alpha}[\cos (\beta \ln |x|)-1 \sin (\beta \ln |x|)] .
\end{gathered}
$$

We conclude that

$$
y_{1}(x)=|x|^{\alpha} \cos (\beta \ln |x|), \quad y_{2}(x)=|x|^{\alpha} \sin (\beta \ln |x|)
$$

Different complex roots.

Example

Find a real-valued general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Different complex roots.

Example

Find a real-valued general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Solution: The indicial equation is $r(r-1)-3 r+13=0$.

Different complex roots.

Example

Find a real-valued general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Solution: The indicial equation is $r(r-1)-3 r+13=0$.
The solutions of the indicial equations are

Different complex roots.

Example

Find a real-valued general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Solution: The indicial equation is $r(r-1)-3 r+13=0$.
The solutions of the indicial equations are

$$
r^{2}-4 r+13=0
$$

Different complex roots.

Example

Find a real-valued general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Solution: The indicial equation is $r(r-1)-3 r+13=0$.
The solutions of the indicial equations are

$$
r^{2}-4 r+13=0 \quad \Rightarrow \quad r_{+}=2+3 i, \quad r_{-}=2-3 i
$$

Different complex roots.

Example

Find a real-valued general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Solution: The indicial equation is $r(r-1)-3 r+13=0$.
The solutions of the indicial equations are

$$
r^{2}-4 r+13=0 \Rightarrow r_{+}=2+3 i, \quad r_{-}=2-3 i
$$

A complex-valued general solution is

$$
y(x)=\tilde{c}_{1}|x|^{(2+3 i)}+\tilde{c}_{2}|x|^{(2-3 i)} \quad \tilde{c}_{1}, \quad \tilde{c}_{2} \in \mathbb{C} .
$$

Different complex roots.

Example

Find a real-valued general solution of the Euler equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

Solution: The indicial equation is $r(r-1)-3 r+13=0$.
The solutions of the indicial equations are

$$
r^{2}-4 r+13=0 \quad \Rightarrow \quad r_{+}=2+3 i, \quad r_{-}=2-3 i
$$

A complex-valued general solution is

$$
y(x)=\tilde{c}_{1}|x|^{(2+3 i)}+\tilde{c}_{2}|x|^{(2-3 i)} \quad \tilde{c}_{1}, \quad \tilde{c}_{2} \in \mathbb{C} .
$$

A real-valued general solution is

$$
y(x)=c_{1}|x|^{2} \cos (3 \ln |x|)+c_{2}|x|^{2} \sin (3 \ln |x|), \quad c_{1}, \quad c_{2} \in \mathbb{R}
$$

