
Review for Exam 2.

I 6 or 7 problems.

I No multiple choice questions.

I No notes, no books, no calculators.

I Problems similar to homeworks.
I Exam covers:

I Variation of parameters (2.6).
I Undetermined coefficients (2.5).
I Constant coefficients, homogeneous, (2.2)-(2.4).
I Reduction order method, (2.4.2).
I Second order variable coefficients, (2.1).
I First order homogeneous (1.3.2).



Review for Exam 2.

Notation for webwork: Consider the equation:

y ′′ + a1 y ′ + a2 y = 0.

Let r+, r- be the roots of the characteristic polynomial.
I If r+ > r- real, then

I First fundamental solution: y1(t) = er+t .
I Second fundamental solution: y2(t) = er-t .

I If r± = α± iβ complex, then
I First fundamental solution: y1(t) = eαt cos(βt).
I Second fundamental solution: y2(t) = eαt sin(βt).

I If r+ = r- = r real, then
I First fundamental solution: y1(t) = ert .
I Second fundamental solution: y2(t) = t ert .
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Variation of parameters (2.6).

Example

Find a particular solution of the equation

x2 y ′′ − 6x y ′ + 10 y = 2x10,

knowing that y1 = x5 and y2 = x2 are solutions to the
homogeneous equation.

Solution: We first need to divide the equation by x2,

y ′′ − 6

x
y ′ +

10

x2
y = 2x8,

Then the source function is f (x) = 2x8. We now compute the
Wronskian of y1, y2,,

W =

∣∣∣∣y1 y2

y ′1 y ′2

∣∣∣∣ =

∣∣∣∣ x5 x2

5x4 2x

∣∣∣∣ = 2x6 − 5x6.

Hence W = −3x6.
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= − x2 2x8

(−3)x6
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2

3
x4 ⇒ u1 =

2

15
x5.

u′2 =
y1f

W
=

x52x8

(−3)x6
= −2

3
x7 ⇒ u2 = − 2

24
x8.

yp = u1y1 + u2y2 =
2

15
x5 x5 − 2

24
x8 x2 =

2

3
x10

(1

5
− 1

8

)
that is, yp =

2

3
x10

(8− 5

40

)
, hence, yp =

1

20
x10. C
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Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

y ′′ + 4y ′ + 4y = x−2 e−2x .

Solution: We find the solutions of the homogeneous equation,

r2 + 4r + 4 = 0 ⇒ r± =
1

2

[
−4±

√
16− 16

]
⇒ r± = −2.

Fundamental solutions of the homogeneous equations are

y1 = e−2x , y2 = x e−2x .

We now compute their Wronskian,

W =

∣∣∣∣y1 y2

y ′1 y ′2

∣∣∣∣ =

∣∣∣∣ e−2x x e−2x

−2e−2x (1− 2x) e−2x

∣∣∣∣ = (1− 2x) e−4x + 2x e−4x .

Hence W = e−4x .
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Review for Exam 2.

I 5 problems.

I No multiple choice questions.

I No notes, no books, no calculators.

I Problems similar to homeworks.
I Exam covers:

I Variation of parameters (2.6).
I Undetermined coefficients (2.5).
I Constant coefficients, homogeneous, (2.2)-(2.4).
I Reduction order method, (2.4.2).
I Second order variable coefficients, (2.1).
I First order homogeneous (1.3.2).



Undetermined coefficients (2.5).

Guessing Solution Table.

fi (t) (K , m, a, b, given.) ypi (t) (Guess) (k not given.)

Keat keat

Ktm kmtm + km−1t
m−1 + · · · + k0

K cos(bt) k1 cos(bt) + k2 sin(bt)

K sin(bt) k1 cos(bt) + k2 sin(bt)

Ktmeat eat(kmtm + · · · + k0)

Keat cos(bt) eat
ˆ
k1 cos(bt) + k2 sin(bt)

˜
KKeat sin(bt) eat

ˆ
k1 cos(bt) + k2 sin(bt)

˜
Ktm cos(bt)

`
kmtm + · · · + k0

´ˆ
a1 cos(bt) + a2 sin(bt)

˜
Ktm sin(bt)

`
kmtm + · · · + k0

´ˆ
a1 cos(bt) + a2 sin(bt)

˜



Undetermined coefficients (2.5).

Example

Find a particular solution to

y ′′ + 2y ′ − 2y = e−4it .

Using this solution find particular solutions to the equations

y ′′ + 2y ′ − 2y = cos(−4t), y ′′ + 2y ′ − 2y = sin(−4t).

Solution: Since the source is and exponential f (t) = e−4it , we
guess as particular solution the exponential yp(t) = k e−4it .
We now check whether yp is solution ot the homogeneous eq.:

r2 + 2r − 2 = 0 ⇒ r± =
1

2

[
−2±

√
4 + 8

]
⇒ Real roots.

Hence yp is not solution of the homogeneous equation.
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Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

y ′′ − 3y ′ − 4y = 2 sin(t).

Solution: We know that the general solution to homogeneous
equation is y(t) = c1e

4t + c2e
−t .

Following the table: Since f = 2 sin(t), then we guess

yp = k1 sin(t) + k2 cos(t).

This guess satisfies L(yp) 6= 0.

Compute: y ′p = k1 cos(t)− k2 sin(t), y ′′p = −k1 sin(t)− k2 cos(t).

L(yp) = [−k1 sin(t)− k2 cos(t)]− 3[k1 cos(t)− k2 sin(t)]

−4[k1 sin(t) + k2 cos(t)] = 2 sin(t),
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Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

y ′′ + 4y = 3 sin(2x) + e3x

Solution: Find the solutions of the homogeneous problem,

r2 + 4 = 0 ⇒ r± = ±2i .

y1 = cos(2x), y2 = sin(2x).

Start with the first source, f1(x) = 3 sin(2x).
The function ỹp1 = k1 sin(2x) + k2 cos(2x) is the wrong guess,
since it is solution of the homogeneous equation. We guess:

yp = x
[
k1 sin(2x) + k2 cos(2x)

]
.

y ′p =
[
k1 sin(2x) + k2 cos(2x)

]
+ 2x

[
k1 cos(2x)− k2 sin(2x)

]
.

y ′′p = 4
[
k1 cos(2x)− k2 sin(2x)

]
+ 4x

[
−k1 sin(2x)− k2 cos(2x)

]
.
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Undetermined coefficients (2.5).

Example

I For y ′′ − 3y ′ − 4y = 3e2t sin(t),

guess

yp(t) =
[
k1 sin(t) + k2 cos(t)

]
e2t .

I For y ′′ − 3y ′ − 4y = 2t2 e3t , guess

yp(t) =
(
k0 + k1t + k2t

2
)
e3t .

I For y ′′ − 3y ′ − 4y = 3t sin(t), guess

yp(t) = (1 + k1t)
[
k2 sin(t) + k3 cos(t)

]
.
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Review for Exam 2.

I 6 or 7 problems.

I No multiple choice questions.

I No notes, no books, no calculators.

I Problems similar to homeworks.
I Exam covers:

I Variation of parameters (2.6).
I Undetermined coefficients (2.5).
I Constant coefficients, homogeneous, (2.2)-(2.4).
I Reduction order method, (2.4.2).
I Second order variable coefficients, (2.1).
I First order homogeneous (1.3.2).



Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Express y2(t) = v(t) y1(t). The equation for v comes
from t2y ′′2 + 2ty ′2 − 2y2 = 0. We need to compute

y2 = v t, y ′2 = t v ′ + v , y ′′2 = t v ′′ + 2v ′.

So, the equation for v is given by

t2
(
t v ′′ + 2v ′

)
+ 2t

(
t v ′ + v

)
− 2t v = 0

t3 v ′′ + (2t2 + 2t2) v ′ + (2t − 2t) v = 0

t3 v ′′ + (4t2) v ′ = 0 ⇒ v ′′ +
4

t
v ′ = 0.



Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Express y2(t) = v(t) y1(t).

The equation for v comes
from t2y ′′2 + 2ty ′2 − 2y2 = 0. We need to compute

y2 = v t, y ′2 = t v ′ + v , y ′′2 = t v ′′ + 2v ′.

So, the equation for v is given by

t2
(
t v ′′ + 2v ′

)
+ 2t

(
t v ′ + v

)
− 2t v = 0

t3 v ′′ + (2t2 + 2t2) v ′ + (2t − 2t) v = 0

t3 v ′′ + (4t2) v ′ = 0 ⇒ v ′′ +
4

t
v ′ = 0.



Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Express y2(t) = v(t) y1(t). The equation for v comes
from t2y ′′2 + 2ty ′2 − 2y2 = 0.

We need to compute

y2 = v t, y ′2 = t v ′ + v , y ′′2 = t v ′′ + 2v ′.

So, the equation for v is given by

t2
(
t v ′′ + 2v ′

)
+ 2t

(
t v ′ + v

)
− 2t v = 0

t3 v ′′ + (2t2 + 2t2) v ′ + (2t − 2t) v = 0

t3 v ′′ + (4t2) v ′ = 0 ⇒ v ′′ +
4

t
v ′ = 0.



Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Express y2(t) = v(t) y1(t). The equation for v comes
from t2y ′′2 + 2ty ′2 − 2y2 = 0. We need to compute

y2 = v t,

y ′2 = t v ′ + v , y ′′2 = t v ′′ + 2v ′.

So, the equation for v is given by

t2
(
t v ′′ + 2v ′

)
+ 2t

(
t v ′ + v

)
− 2t v = 0

t3 v ′′ + (2t2 + 2t2) v ′ + (2t − 2t) v = 0

t3 v ′′ + (4t2) v ′ = 0 ⇒ v ′′ +
4

t
v ′ = 0.



Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Express y2(t) = v(t) y1(t). The equation for v comes
from t2y ′′2 + 2ty ′2 − 2y2 = 0. We need to compute

y2 = v t, y ′2 = t v ′ + v ,

y ′′2 = t v ′′ + 2v ′.

So, the equation for v is given by

t2
(
t v ′′ + 2v ′

)
+ 2t

(
t v ′ + v

)
− 2t v = 0

t3 v ′′ + (2t2 + 2t2) v ′ + (2t − 2t) v = 0

t3 v ′′ + (4t2) v ′ = 0 ⇒ v ′′ +
4

t
v ′ = 0.



Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Express y2(t) = v(t) y1(t). The equation for v comes
from t2y ′′2 + 2ty ′2 − 2y2 = 0. We need to compute

y2 = v t, y ′2 = t v ′ + v , y ′′2 = t v ′′ + 2v ′.

So, the equation for v is given by

t2
(
t v ′′ + 2v ′

)
+ 2t

(
t v ′ + v

)
− 2t v = 0

t3 v ′′ + (2t2 + 2t2) v ′ + (2t − 2t) v = 0

t3 v ′′ + (4t2) v ′ = 0 ⇒ v ′′ +
4

t
v ′ = 0.



Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Express y2(t) = v(t) y1(t). The equation for v comes
from t2y ′′2 + 2ty ′2 − 2y2 = 0. We need to compute

y2 = v t, y ′2 = t v ′ + v , y ′′2 = t v ′′ + 2v ′.

So, the equation for v is given by

t2
(
t v ′′ + 2v ′

)
+ 2t

(
t v ′ + v

)
− 2t v = 0

t3 v ′′ + (2t2 + 2t2) v ′ + (2t − 2t) v = 0

t3 v ′′ + (4t2) v ′ = 0 ⇒ v ′′ +
4

t
v ′ = 0.



Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Express y2(t) = v(t) y1(t). The equation for v comes
from t2y ′′2 + 2ty ′2 − 2y2 = 0. We need to compute

y2 = v t, y ′2 = t v ′ + v , y ′′2 = t v ′′ + 2v ′.

So, the equation for v is given by

t2
(
t v ′′ + 2v ′

)
+ 2t

(
t v ′ + v

)
− 2t v = 0

t3 v ′′ + (2t2 + 2t2) v ′ + (2t − 2t) v = 0

t3 v ′′ + (4t2) v ′ = 0 ⇒ v ′′ +
4

t
v ′ = 0.



Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Express y2(t) = v(t) y1(t). The equation for v comes
from t2y ′′2 + 2ty ′2 − 2y2 = 0. We need to compute

y2 = v t, y ′2 = t v ′ + v , y ′′2 = t v ′′ + 2v ′.

So, the equation for v is given by

t2
(
t v ′′ + 2v ′

)
+ 2t

(
t v ′ + v

)
− 2t v = 0

t3 v ′′ + (2t2 + 2t2) v ′ + (2t − 2t) v = 0

t3 v ′′ + (4t2) v ′ = 0

⇒ v ′′ +
4

t
v ′ = 0.



Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Express y2(t) = v(t) y1(t). The equation for v comes
from t2y ′′2 + 2ty ′2 − 2y2 = 0. We need to compute

y2 = v t, y ′2 = t v ′ + v , y ′′2 = t v ′′ + 2v ′.

So, the equation for v is given by

t2
(
t v ′′ + 2v ′

)
+ 2t

(
t v ′ + v

)
− 2t v = 0

t3 v ′′ + (2t2 + 2t2) v ′ + (2t − 2t) v = 0

t3 v ′′ + (4t2) v ′ = 0 ⇒ v ′′ +
4

t
v ′ = 0.



Reduction order method, (2.4.2).

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Recall: v ′′ +
4

t
v ′ = 0.

This is a first order equation for w = v ′, given by w ′ +
4

t
w = 0, so

w ′

w
= −4

t
⇒ ln(w) = −4 ln(t) + c0 ⇒ w(t) = c1t

−4, c1 ∈ R.

Integrating w we obtain v , that is, v = c2t
−3 + c3, with c2, c3 ∈ R.

Recalling that y2 = t v we then conclude that y2 = c2t
−2 + c3t.
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Review for Exam 2.

I 6 or 7 problems.

I No multiple choice questions.

I No notes, no books, no calculators.

I Problems similar to homeworks.
I Exam covers:

I Variation of parameters (2.6).
I Undetermined coefficients (2.5).
I Constant coefficients, homogeneous, (2.2)-(2.4).
I Reduction order method, (2.4.2).
I Second order variable coefficients, (2.1).
I First order homogeneous (1.3.2).



First order Homogeneous (1.3.2).

Example

Find all solutions y of the equation y ′ =
t2 + 3y2

2ty
.

Solution: The equation is homogeneous, since

y ′ =
t2 + 3y2

2ty

( 1

t2

)
( 1

t2

) ⇒ y ′ =
1 + 3

(y

t

)2

2
(y

t

) .

Therefore, we introduce the change of unknown v = y/t, so
y = t v and y ′ = v + t v ′. Hence

v + t v ′ =
1 + 3v2

2v
⇒ t v ′ =

1 + 3v2

2v
− v =

1 + 3v2 − 2v2

2v

We obtain the separable equation v ′ =
1

t

(1 + v2

2v

)
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√
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Mechanical and electrical oscillations (Sect. 2.7?)

I Review: On solutions of y ′′ + a1 y ′ + a0 y = 0.

I Application: Mechanical Oscillations.

I Application: The RLC electrical circuit.

Remark:
Different physical systems may have identical mathematical
descriptions.



Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Summary of solutions of the differential equation

y ′′ + a1y
′ + a0y = 0, a1, a2 ∈ R,

and characteristic roots r± = −a1

2
± 1

2

√
a2

1 − 4a0.

(1) Over damped systems: If a2
1 − 4a0 > 0, then,

y1(t) = er+t , y2(t) = er-t .

(2) Critically damped systems: If a2
1 − 4a0 = 0, then,

y1(t) = e−
a1
2

t , y2(t) = t e−
a1
2

t .

(3) Under damped systems: If a2
1 − 4a0 < 0, then

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt).

with α = −a1

2
, β =

1

2

√
4a0 − a2

1 . Not damped: If a1 = 0.
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Mechanical and electrical oscillations (Sect. 2.7?)

I Review: On solutions of y ′′ + a1 y ′ + a0 y = 0.

I Application: Mechanical Oscillations.

I Application: The RLC electrical circuit.



Application: Mechanical Oscillations.

Consider a spring attached to the
ceiling, having rest length l , with
an attached mass m.

I (l + ∆l) is called equilibrium
position of the spring loaded
with a mass m.

I The coordinate y measures
vertical deviations from the
equilibrium position.

Forces acting on the system:

I Weight: Fg = mg .

I Spring: Fs = −k(∆l + y). Hooke’s Law. (Small oscillations.)

I Damping: Fd(t) = −d y ′(t). Fluid Resistance.

Newton’s Law: m y ′′(t) = Fg + Fs(t) + Fd(t).
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Application: Mechanical Oscillations.

Recall: Fg = mg , Fs = −k(∆l + y), Fd(t) = −d y ′(t).

m y ′′(t) = Fg + Fs(t) + Fd(t).

That is, m y ′′(t) = mg − k(∆l + y(t))− d y ′(t).

At equilibrium, y = 0, y ′ = 0, then k ∆l = mg . Hence

m y ′′(t) = −k y(t)− d y ′(t)

m y ′′ + d y ′ + k y = 0.

To solve for the function y , we need the characteristic equation

m r2 + d r + k = 0 ⇒ r± =
1

2m

[
−d ±

√
d2 − 4mk

]
.
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Recall: m y ′′ + d y ′ + k y = 0, and r± =
1

2m
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−d ±

√
d2 − 4mk

]
.

Not damped oscillations: d = 0. No fluid friction.

r± = ±
√
− k

m
, ω0 =

√
k

m
, r± = ±iω0.

y(t) = c1 cos(ω0t) + c2 sin(ω0t).

Remarks:

I Fundamental Frequency: ω0; Period: T =
2π

ω0
.

I Equivalent expression: y(t) = A cos(ω0t − φ).

I Amplitude: A; Phase shift: φ.
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Application: Mechanical Oscillations.

Recall: Not damped oscillations:

y(t) = c1 cos(ω0t) + c2 sin(ω0t) ⇔ y(t) = A cos(ω0t − φ).

where ω0 =
√

k/m is the fundamental frequency, A is the
amplitude, and φ the initial phase shift of the oscillations.

(Recall that the oscillation period is T =
2π

ω0
.)

Proof: Recall the trigonometric identity:

A cos(ω0t − φ) = A cos(ω0t) cos(φ) + A sin(ω0t) sin(φ).

Therefore, comparing the first and last expressions above,

c1 = A cos(φ)

c2 = A sin(φ)

}
⇔


A =

√
c2

1 + c2
2

φ = arctan
(c2

c1

)
.
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Application: Mechanical Oscillations.

Damped Oscillations

Recall: m y ′′ + d y ′ + k y = 0, and r± =
1

2m

[
−d ±

√
d2 − 4mk

]
.

Rewrite: r± = − d

2m
±

√( d

2m

)2
− k

m
.

Introduce: ω0 =

√
k

m
, and ωd =

d

2m
. Hence

r± = −ωd ±
√

ω2
d − ω2

0.

Remark: We have three cases of damped oscillations:

(a) Over damped: ωd > ω0.

(b) Critically damped: ωd = ω0.

(c) Under damped: ωd < ω0.
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Application: Mechanical Oscillations.

Recall: m y ′′ + d y ′ + k y = 0, and r± = −ωd ±
√

ω2
d − ω2

0.

(a) Over damped: ωd > ω0.

Two distinct real roots:

y(t) = c1e
r+t + c2 er-t .

(b) Critically damped: ωd = ω0. Repeated real root r+ = r- = r̂ :

y(t) = (c1 + c2t) e r̂ t .

(c) Under damped: ωd < ω0. Complex roots:

y(t) =
[
c1 cos(βt) + c2 sin(βt)

]
e−ωd t

y(t) = A cos(βt − φ) e−ωd t

where r± = −ωd ± iβ, and β =
√

ω2
0 − ω2
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Application: Mechanical Oscillations.

Example

Find the movement of a 5Kg mass attached to a spring with
constant k = 5Kg/Secs2 moving in a medium with damping
constant d = 5Kg/Secs, with initial conditions y(0) =

√
3 and

y ′(0) = 0.

Solution: The equation is: my ′′ + dy ′ + ky = 0, with m = 5,
k = 5, d = 5. The characteristic roots are

r± = −ωd ±
√

ω2
d − ω2

0, ωd =
d

2m
=

1

2
, ω0 =

√
k

m
= 1.

r± = −1

2
±

√
1

4
− 1 = −1

2
± i

√
3

2
. Under damped oscillations.

y(t) = A cos
(√3

2
t − φ

)
e−t/2.
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Mechanical and electrical oscillations (Sect. 2.7?)

I Review: On solutions of y ′′ + a1 y ′ + a0 y = 0.

I Application: Mechanical Oscillations.

I Application: The RLC electrical circuit.



The RLC electrical circuit.

Consider an electric circuit with
resistance R, non-zero capacitor
C , and non-zero inductance L, as
in the figure. I (t) : electric current.

R C L

Kirchhoff’s Law: The electric current flowing in the circuit satisfies:

L I ′(t) + R I (t) +
1

C

∫ t

t0

I (s) ds = 0.

Derivate both sides above: L I ′′(t) + R I ′(t) +
1

C
I (t) = 0.

Divide by L: I ′′(t) + 2
( R

2L

)
I ′(t) +

1

LC
I (t) = 0.

Introduce α =
R

2L
and ω =

1√
LC

, then I ′′ + 2α I ′ + ω2 I = 0.
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The RLC electrical circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r2 + 2αr + ω2.
The roots are:

r± =
1

2

[
−2α±

√
4α2 − 4ω2

]
⇒ r± = −α±

√
α2 − ω2.

Case (a) R = 0. This implies α = 0, so r± = ±iω. Therefore,

I1(t) = cos(ωt), I2(t) = sin(ωt).

Remark: When the circuit has no resistance, the current oscillates
without dissipation.
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√
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C
⇔ R2

4L2
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1

LC
⇔ α2 < ω2.

Therefore, r± = −α± i
√

ω2 − α2. The fundamental solutions are

I1(t) = e−αt cos
(√

ω2 − α2 t
)
, I2(t) = e−αt sin

(√
ω2 − α2 t

)
.

I (t) : electric current.

R C L

I

t

e
− t

1

The resistance R damps
the current oscillations.
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The Euler equation (Sect. 3.2).

I We study the Euler Equation:
(x − x0)

2 y ′′ + p0 (x − x0) y ′ + q0 y = 0.

I Solutions to the Euler equation near x0.
I The roots of the indicial polynomial.

I Different real roots.
I Repeated roots.
I Different complex roots.



The Euler equation

Definition
Given real constants p0, q0, the Euler differential equation for the
unknown y with singular point at x0 ∈ R is given by

(x − x0)
2 y ′′ + p0 (x − x0) y ′ + q0 y = 0.

Remarks:

I The Euler equation has variable coefficients.

I Functions y(x) = erx are not solutions of the Euler equation.

I The point x0 ∈ R is a singular point of the equation.

I The particular case x0 = 0 is is given by

x2 y ′′ + p0 x y ′ + q0 y = 0.
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The Euler equation (Sect. 3.2).

I We study the Euler Equation:
(x − x0)

2 y ′′ + p0 (x − x0) y ′ + q0 y = 0.
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Solutions to the Euler equation near x0.

Summary of the main idea:

I The main idea to find solution to the constant coefficients
equation y ′′ + a1 y ′ + a0 y = 0 was to look for functions of the
form y(x) = erx .

The exponential cancels out from the
equation and we obtain an equation only for r without x ,(

r2 + a1 r + a0

)
erx = 0 ⇔

(
r2 + a1 r + a0

)
= 0. (1)

I In the case of the Euler equation x2 y ′′ + p0 x y ′ + q0 y = 0 the
exponential functions erx do not have the property given in
Eq. (1), since(

x2 r2 + p0 x r + q0

)
erx = 0 ⇔ x2 r2 + p0 x r + q0 = 0,

but the later equation still involves the variable x .
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Solutions to the Euler equation near x0.

Summary of the main idea: Look for solutions like y(x) = x r .

These function have the following property:

y ′(x) = r x r−1 ⇒ x y ′(x) = r x r ;

y ′′(x) = r(r − 1) x r−2 ⇒ x2 y ′′(x) = r(r − 1) x r .

Introduce y = x r into Euler’s equation x2 y ′′ + p0 x y ′ + q0 y = 0,
for x 6= 0 we obtain[

r(r − 1) + p0r + q0

]
x r = 0 ⇔ r(r − 1) + p0r + q0 = 0.

The last equation involves only r , not x .

This equation is called the indicial equation, and is also called the
Euler characteristic equation.
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Solutions to the Euler equation near x0.

Theorem (Euler equation, x0 = 0)

Given p0, q0, x0 ∈ R, consider the Euler equation

x2 y ′′ + p0 x y ′ + q0 y = 0. (2)

Let r+, r- be solutions of r(r − 1) + p0r + q0 = 0.

(a) If r+ 6= r-, then a general solution of Eq. (2) is

y(x) = c0|x |r+ + c1|x |r- , x 6= 0, c0, c1 ∈ R (or C).

(b) If r+ = r- = r̂ , then a real-valued general solution of Eq. (2) is

y(x) =
[
c0 + c1 ln |x |

]
|x |r̂ , x 6= 0, c0, c1 ∈ R.

Given x1 6= 0, y0, y1 ∈ R, there is a unique solution to the IVP

x2 y ′′ + p0 x y ′ + q0 y = 0, y(x1) = y0, y ′(x1) = y1.



Solutions to the Euler equation near x0.

Theorem (Euler equation, x0 6= 0)

Given p0, q0, x0 ∈ R, consider the Euler equation

(x − x0)
2 y ′′ + p0 (x − x0) y ′ + q0 y = 0. (3)

Let r+, r- be solutions of r(r − 1) + p0r + q0 = 0.

(a) If r+ 6= r-, then a general solution of Eq. (3) is

y(x) = c0|x − x0|r+ + c1|x − x0|r- , x 6= x0, c0, c1 ∈ R (or C).

(b) If r+ = r- = r̂ , then a real-valued general solution of Eq. (3) is

y(x) =
[
c0 + c1 ln |x − x0|

]
|x − x0|r̂ , x 6= x0, c0, c1 ∈ R.

Given x1 6= x0, y0, y1 ∈ R, there is a unique solution to the IVP

(x − x0)
2 y ′′ + p0 (x − x0) y ′ + q0 y = 0, y(x1) = y0, y ′(x1) = y1.



The Euler equation (Sect. 3.2).

I We study the Euler Equation:
(x − x0)

2 y ′′ + p0 (x − x0) y ′ + q0 y = 0.

I Solutions to the Euler equation near x0.
I The roots of the indicial polynomial.

I Different real roots.
I Repeated roots.
I Different complex roots.



Different real roots.

Example

Find the general solution of the Euler equation

x2 y ′′ + 4x y ′ + 2 y = 0.

Solution: We look for solutions of the form y(x) = x r ,

x y ′(x) = rx r , x2 y ′′(x) = r(r − 1) x r .

Introduce y(x) = x r into Euler equation,[
r(r − 1) + 4r + 2

]
x r = 0 ⇔ r(r − 1) + 4r + 2 = 0.

The solutions of r2 + 3r + 2 = 0 are given by

r± =
1

2

[
−3±

√
9− 8

]
⇒ r+ = −1 r− = −2.

The general solution is y(x) = c1 |x |−1 + c2 |x |−2. C
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The Euler equation (Sect. 3.2).

I We study the Euler Equation:
(x − x0)

2 y ′′ + p0 (x − x0) y ′ + q0 y = 0.
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The Euler equation (Sect. 3.2).

I We study the Euler Equation:
(x − x0)

2 y ′′ + p0 (x − x0) y ′ + q0 y = 0.
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√
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2
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4±

√
−36

]
⇒
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r+ = 2 + 3i

r− = 2− 3i .

The general solution is y(x) = c1 |x |(2+3i) + c2 |x |(2−3i). C
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Different complex roots.

Theorem (Real-valued fundamental solutions)

If p0, q0 ∈ R satisfy that
[
(p0 − 1)2 − 4q0

]
< 0, then the indicial

polynomial p(r) = r(r − 1) + p0r + q0 of the Euler equation

x2 y ′′ + p0x y ′ + q0 y = 0 (4)

has complex roots r+ = α + iβ and r- = α− iβ, where

α = −(p0 − 1)

2
, β =

1

2

√
4q0 − (p0 − 1)2.

A complex-valued fundamental set of solution to Eq. (4) is

ỹ1(x) = |x |(α+iβ), ỹ2(x) = |x |(α−iβ).

A real-valued fundamental set of solutions to Eq. (4) is

y1(x) = |x |α cos
(
β ln |x |

)
, y2(x) = |x |α sin

(
β ln |x |

)
.
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)
, y1 =

1
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ỹ1 − ỹ2

)
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ỹ1 = |x |α
[
cos

(
β ln |x |

)
+ 1 sin

(
β ln |x |

)]
,
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)
, y1 =

1

2i

(
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ỹ2 = |x |α
[
cos

(
β ln |x |

)
− 1 sin

(
β ln |x |

)]
.

We conclude that

y1(x) = |x |α cos
(
β ln |x |

)
, y2(x) = |x |α sin

(
β ln |x |

)
.



Different complex roots.
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ỹ1 − ỹ2
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Different complex roots.

Example

Find a real-valued general solution of the Euler equation

x2 y ′′ − 3x y ′ + 13 y = 0.

Solution: The indicial equation is r(r − 1)− 3r + 13 = 0.

The solutions of the indicial equations are

r2 − 4r + 13 = 0 ⇒ r+ = 2 + 3i , r− = 2− 3i .

A complex-valued general solution is

y(x) = c̃1 |x |(2+3i) + c̃2 |x |(2−3i) c̃1, c̃2 ∈ C.

A real-valued general solution is

y(x) = c1 |x |2 cos
(
3 ln |x |

)
+ c2 |x |2 sin

(
3 ln |x |

)
, c1, c2 ∈ R. C
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