Review for Exam 2.

6 or 7 problems.
No multiple choice questions.
No notes, no books, no calculators.

Problems similar to homeworks.
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Exam covers:

» Variation of parameters (2.6).

Undetermined coefficients (2.5).

Constant coefficients, homogeneous, (2.2)-(2.4).
Reduction order method, (2.4.2).

Second order variable coefficients, (2.1).

First order homogeneous (1.3.2).
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Review for Exam 2.

Notation for webwork: Consider the equation:
y'+ay +ay=0.

Let r., r. be the roots of the characteristic polynomial.
» If r, > r. real, then

» First fundamental solution: y;(t) = e™".
» Second fundamental solution: y,(t) = e"*.

» If r = a £ i3 complex, then

» First fundamental solution: y;(t) = e** cos(5t).
» Second fundamental solution: y,(t) = e®* sin(5t).

» If ., = r. = r real, then

» First fundamental solution: y;(t) = e".
» Second fundamental solution: y,(t) = te".



Review for Exam 2.

6 or 7 problems.
No multiple choice questions.
No notes, no books, no calculators.

Problems similar to homeworks.
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Exam covers:

» Variation of parameters (2.6).

Undetermined coefficients (2.5).

Constant coefficients, homogeneous, (2.2)-(2.4).
Reduction order method, (2.4.2).

Second order variable coefficients, (2.1).

First order homogeneous (1.3.2).
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Variation of parameters (2.6).

Example
Find a particular solution of the equation
x? y" —6xy +10y = 2x10,

2

knowing that y; = x° and y, = x? are solutions to the

homogeneous equation.



Variation of parameters (2.6).

Example
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knowing that y; = x° and y, = x

homogeneous equation.

Solution: We first need to divide the equation by x2,
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Variation of parameters (2.6).

Example
Find a particular solution of the equation
x? y" —6xy +10y = 2x10,

2

knowing that y; = x° and y, = x? are solutions to the

homogeneous equation.
Solution: We first need to divide the equation by x2,

1

6 , 10
YV'==y'+ S5y =28,
X X

Then the source function is f(x) = 2x2.



Variation of parameters (2.6).

Example
Find a particular solution of the equation

x? y" —6xy +10y = 2x10,

2

knowing that y; = x° and y, = x? are solutions to the

homogeneous equation.
Solution: We first need to divide the equation by x2,
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Then the source function is f(x) = 2x%. We now compute the

Wronskian of y, y,,,
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Example
Find a particular solution of the equation

x? y" —6xy +10y = 2x10,

2

knowing that y; = x° and y, = x? are solutions to the

homogeneous equation.
Solution: We first need to divide the equation by x2,
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Variation of parameters (2.6).

Example
Find a particular solution of the equation

x? y" —6xy +10y = 2x10,

2

knowing that y; = x° and y, = x? are solutions to the

homogeneous equation.
Solution: We first need to divide the equation by x2,

6 10

y”—fy'+f2y:2X8,
X X

Then the source function is f(x) = 2x%. We now compute the

Wronskian of y, y,,,

x> x?

5x* 2x

DA %)
oY

W = = = 2x% — 5x°,




Variation of parameters (2.6).

Example
Find a particular solution of the equation

x? y" —6xy +10y = 2x10,

2

knowing that y; = x° and y, = x? are solutions to the

homogeneous equation.
Solution: We first need to divide the equation by x2,

6 10

y”—fy'+f2y:2X8,
X X

Then the source function is f(x) = 2x%. We now compute the

Wronskian of y, y,,,

x> x?

5x* 2x

W= ,V1/ y2/ = 2x% — 5x°,
oy

Hence W = —3x°.



Variation of parameters (2.6).

Example
Find a particular solution of the equation
x2 y" —6xy +10y = 2x10,

2

knowing that y; = x> and y, = x? are solutions to the

homogeneous equation.

Solution: y, = x°, y, = x?, f=2x8 W = —3x°.
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Now we find the functions u; and ws,
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Example
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Variation of parameters (2.6).

Example
Find a particular solution of the equation

x2 y" —6xy +10y = 2x10,

2

knowing that y; = x> and y, = x? are solutions to the

homogeneous equation.
Solution: y, = x°, y, = x?, f=2x8 W = —3x°.
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Variation of parameters (2.6).

Example
Find a particular solution of the equation

x2 y" —6xy +10y = 2x10,

2

knowing that y; = x> and y, = x? are solutions to the

homogeneous equation.
Solution: y, = x°, y, = x?, f=2x8 W = —3x°.
Now we find the functions u; and ws,
f x?2x8 2 2
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Variation of parameters (2.6).

Example
Find a particular solution of the equation
x2 y" —6xy +10y = 2x10,

2

knowing that y; = x> and y, = x? are solutions to the

homogeneous equation.
Solution: y, = x°, y, = x?, f=2x8 W = —3x°.
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Variation of parameters (2.6).

Example
Find a particular solution of the equation
x2 y" —6xy +10y = 2x10,

2
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Variation of parameters (2.6).

Example
Find a particular solution of the equation

x2 y" —6xy +10y = 2x10,

2 are solutions to the

knowing that y; = x®> and y, = x
homogeneous equation.

Solution: y, = x°, y, = x?, f=2x8 W = —3x°.

Now we find the functions u; and ws,

2 8
, yof X< 2x 2 4 2 ¢
= —— = — = = —
BTTW T T (39X 3 AT
f 52x8 2 2
u; _= yl = X X = ——X7 = Uy = —— 8




Variation of parameters (2.6).

Example
Find a particular solution of the equation

x2 y" —6xy +10y = 2x10,

2 are solutions to the

knowing that y; = x®> and y, = x
homogeneous equation.

Solution: y, = x°, y, = x?, f=2x8 W = —3x°.

Now we find the functions u; and ws,

25,8
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Variation of parameters (2.6).

Example
Find a particular solution of the equation

x2 y" —6xy +10y = 2x10,

2 are solutions to the

knowing that y; = x®> and y, = x
homogeneous equation.

Solution: y, = x°, y, = x?, f=2x8 W = —3x°.

Now we find the functions u; and ws,

25,8
, yof X< 2x 2 4 2
= - = — = — = = —
TTW T T (3 3 AT
59,8
, wnf o x72x 2 4 2 g
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Variation of parameters (2.6).

Example
Find a particular solution of the equation

x2 y" —6xy +10y = 2x10,
knowing that y; = x5 and y, = x?
homogeneous equation.

are solutions to the

Solution: y, = x°, y, = x?, f=2x8 W = —3x°.

Now we find the functions u; and ws,

25,8

’ yof X< 2x 2 4 2 &
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55,8
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=== = =—— x5
“TwW (e 3 "=

2 2 2 1

yP:U1Y1+U2)/2:EX5X5—ﬂX8X2:§x10<§_,



Variation of parameters (2.6).

Example
Find a particular solution of the equation

x2 y" —6xy +10y = 2x10,

2 are solutions to the

knowing that y; = x®> and y, = x
homogeneous equation.

Solution: y, = x°, y, = x?, f=2x8 W = —3x°.

Now we find the functions u; and ws,
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Variation of parameters (2.6).

Example
Find a particular solution of the equation

x2 y" —6xy +10y = 2x10,

2 are solutions to the

knowing that y; = x®> and y, = x
homogeneous equation.

Solution: y, = x°, y, = x?, f=2x8 W = —3x°.

Now we find the functions u; and ws,
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Variation of parameters (2.6).

Example
Use the variation of parameters to find the general solution of

y'+4y + 4y = x2e X,



Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of
y// + 4y/ + 4y — X—2 ef2x‘

Solution: We find the solutions of the homogeneous equation,



Variation of parameters (2.6).

Example
Use the variation of parameters to find the general solution of

y// + 4y/ + 4y — X—2 ef2x‘
Solution: We find the solutions of the homogeneous equation,

rP+4r+4=0



Variation of parameters (2.6).

Example
Use the variation of parameters to find the general solution of

y// + 4y/ + 4y — X—2 ef2x‘
Solution: We find the solutions of the homogeneous equation,

1
PRidr4da=0 = rizi[_z;i 16 — 16]



Variation of parameters (2.6).

Example
Use the variation of parameters to find the general solution of

y// + 4y/ + 4y — X—2 ef2x‘
Solution: We find the solutions of the homogeneous equation,

1
rP+4r+4=0 = rizi[—4j:\/16—16] = rp=-2.



Variation of parameters (2.6).

Example
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Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of
y// + 4y/ + 4y — X—2 ef2x‘

Solution: We find the solutions of the homogeneous equation,

Prar+4=0 = rp= % [-4+£V16—-16] = ri=-2.

Fundamental solutions of the homogeneous equations are

We now compute their Wronskian,
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Variation of parameters (2.6).
Example
Use the variation of parameters to find the general solution of
v+ a4y + 4y = x"2e X,
Solution: We find the solutions of the homogeneous equation,

1
rP+4r+4=0 = rizi[—4j:\/16—16] = rp=-2.

Fundamental solutions of the homogeneous equations are

We now compute their Wronskian,
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Variation of parameters (2.6).
Example
Use the variation of parameters to find the general solution of
v+ a4y + 4y = x"2e X,
Solution: We find the solutions of the homogeneous equation,

1
rP+4r+4=0 = rizi[—4j:\/16—16] = rp=-2.

Fundamental solutions of the homogeneous equations are

We now compute their Wronskian,

672)( X ef2x

iy —26_2X (1 N 2X) e_2X = (1 — 2X) 674X + 2x ei4x.

W =
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Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

y// + 4y/ + 4y — X—2 ef2x‘
Solution: We find the solutions of the homogeneous equation,
Prar+4=0 = rp= % [-4+£V16—-16] = ri=-2.

Fundamental solutions of the homogeneous equations are

We now compute their Wronskian,

672)( X ef2x

nor2 26 (1-2x)e%| — (1—-2x)e ™ +2xe *.

i ¥

W:

Hence W = e **.
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Example

Use the variation of parameters to find the general solution of
y// +4y/ +4y = Xf2 ef2x.

Solution: y; = e %X, Vo = xe 2%, g = x2e X W =e ¥
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Example
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Example

Use the variation of parameters to find the general solution of
y// +4y/ + 4y = Xf2 ef2x.

Solution: y; = e %X, Vo = xe 2%, g = x2e X W =e ¥
Now we find the functions u; and ws,

, Vg xe X x?e—2x
u — —— = —
! w e—4x




Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of
y// +4y/ + 4y = Xf2 ef2x.

Solution: y; = e %X, Vo = xe 2%, g = x2e X W =e ¥
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Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

y// +4y/ +4y — Xf2 ef2x.

Solution: y;, = €72, y, =xe 2, g=x"2e"2, W =e*
Now we find the functions u; and ws,
Y- xe X x?e—2x 1 o
GETW T T e T T



Variation of parameters (2.6).
Example
Use the variation of parameters to find the general solution of
y// +4y/ + 4y = Xf2 ef2x.
Solution: y; = e 2%, y, =xe 2, g=x"2e" 2, W=e*
Now we find the functions u; and ws,

, Vg xe X x?e—2x 1
uy — — —= — e
! w e—4x X

= u=—In|x|.

1 NE
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Variation of parameters (2.6).
Example
Use the variation of parameters to find the general solution of
y'+ay +4y =x2e >

2x —2x

Solution: y;, = ™%, y, =xe %, g = x2e X W =e ¥

Now we find the functions u; and ws,
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Example
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Variation of parameters (2.6).
Example
Use the variation of parameters to find the general solution of
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Variation of parameters (2.6).
Example
Use the variation of parameters to find the general solution of
y'+ay +4y =x2e >

2x —2x

Solution: y;, = ™%, y, =xe %, g = x2e X W =e ¥

Now we find the functions u; and ws,
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Variation of parameters (2.6).
Example
Use the variation of parameters to find the general solution of
y'+ay +4y =x2e >

2x —2x

Solution: y;, = ™%, y, =xe %, g = x2e X W =e ¥

Now we find the functions u; and ws,
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Variation of parameters (2.6).

Example
Use the variation of parameters to find the general solution of
y// +4y/ + 4y = Xf2 ef2x.

Solution: y; = e 2%, y, =xe 2, g=x"2e" 2, W=e*

Now we find the functions u; and ws,

, Vg xe X x?e—2x 1
ulz—iz— 7 = —— = U1:—|n’X‘.
w e~ X
Y- e x72 e—2x 2 B
Uy =~ = —ax X = U=——.
w e X
_ 1 _
Yp=yi + Wy, = —In|x|e 2X—;xe 2 — _(1+1In|x|)e2x.

Since 7, = — In |x| e72¥ is solution,



Variation of parameters (2.6).
Example
Use the variation of parameters to find the general solution of
y'+ay +4y =x2e >

2x —2x

Solution: y;, = ™%, y, =xe %, g = x2e X W =e ¥

Now we find the functions u; and ws,

—2x ,,—2
g xe X xTce—2x 1
Ui:—W:— o—4x :_; = U1:—|n’X‘.
—2x ,,—2
;g e X Te-2x ., B
uz—W—T—X = u2——;.
1
Yo = Uy + thy, = —In|x| e — ;xefzx = —(1+In|x|) e %
Since 7, = —In |x| e72¥ is solution, y = (¢, + &x — In |x|) e . <



Review for Exam 2.

5 problems.
No multiple choice questions.
No notes, no books, no calculators.

Problems similar to homeworks.
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Exam covers:

» Variation of parameters (2.6).

Undetermined coefficients (2.5).

Constant coefficients, homogeneous, (2.2)-(2.4).
Reduction order method, (2.4.2).

Second order variable coefficients, (2.1).

First order homogeneous (1.3.2).

vV vy vy VvYyy



Undetermined coefficients (2.5).

Guessing Solution Table.

’ fi(t) (K, m, a, b, given.) H ¥p;i(t) (Guess) (k not given.)
Ke®* ke
Kt™ kmt™ + km—1t™ ' 4+ ko
K cos(bt) ki cos(bt) + ko sin(bt)
K sin(bt) ki cos(bt) + ko sin(bt)
Kt"e e (kmt™ + -+ - + ko)
Ke®* cos(bt) e [k cos(bt) + ky sin(bt)]
KKe® sin(bt) e [ ki cos(bt) + ky sin(bt)]
Kt™ cos(bt) (kmt™ + - - - + ko) [a1 cos(bt) + ap sin(bt)]
Kt™ sin(bt) (kmt™ + - + ko) [a1 cos(bt) + a2 sin(bt)]




Undetermined coefficients (2.5).

Example
Find a particular solution to
y// + 2y/ — 2y = e74it.
Using this solution find particular solutions to the equations

y" +2y" — 2y = cos(—4t), y" +2y' — 2y = sin(—4t).



Undetermined coefficients (2.5).

Example
Find a particular solution to
Yy 42y —2y = e,
Using this solution find particular solutions to the equations
y" + 2y — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).

Solution: Since the source is and exponential f(t) = e~



Undetermined coefficients (2.5).

Example
Find a particular solution to
Yy 42y —2y = e,
Using this solution find particular solutions to the equations
y" + 2y — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).

Solution: Since the source is and exponential f(t) = e~*, we
it

guess as particular solution the exponential y,(t) = k e *.



Undetermined coefficients (2.5).

Example
Find a particular solution to
Yy 42y —2y = e,
Using this solution find particular solutions to the equations
y" + 2y — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).

Solution: Since the source is and exponential f(t) = e~*, we
it

guess as particular solution the exponential y,(t) = k e *.
We now check whether y,, is solution ot the homogeneous eq.:



Undetermined coefficients (2.5).

Example
Find a particular solution to
Yy 42y —2y = e,
Using this solution find particular solutions to the equations
y" + 2y — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).

Solution: Since the source is and exponential f(t) = e~*, we
it

guess as particular solution the exponential y,(t) = k e *.
We now check whether y,, is solution ot the homogeneous eq.:

rP4+2r—2=0



Undetermined coefficients (2.5).

Example
Find a particular solution to
Yy 42y —2y = e,
Using this solution find particular solutions to the equations
y" + 2y — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).

Solution: Since the source is and exponential f(t) = e~*, we

guess as particular solution the exponential y,(t) = k e .
We now check whether y,, is solution ot the homogeneous eq.:

rP+2r-2=0 = r=-[-2£V4+8

N =



Undetermined coefficients (2.5).

Example
Find a particular solution to
Yy 42y —2y = e,
Using this solution find particular solutions to the equations
y" + 2y — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).

Solution: Since the source is and exponential f(t) = e~*, we

guess as particular solution the exponential y,(t) = k e .
We now check whether y,, is solution ot the homogeneous eq.:

rP4+2r—2=0 = re = [—Zi 448 = Real roots.

N =



Undetermined coefficients (2.5).

Example
Find a particular solution to
Yy 42y —2y = e,
Using this solution find particular solutions to the equations
y" + 2y — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).

Solution: Since the source is and exponential f(t) = e~*, we
it

guess as particular solution the exponential y,(t) = k e *.
We now check whether y,, is solution ot the homogeneous eq.:

rP4+2r—2=0 = re = [—Zi 448 = Real roots.

N =

Hence y, is not solution of the homogeneous equation.



Undetermined coefficients (2.5).

Example

Find a particular solution to
y// + 2y/ — 2y = e—4it.
Using this solution find particular solutions to the equations

y" +2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).



Undetermined coefficients (2.5).

Example
Find a particular solution to
Yy 42y —2y = e,
Using this solution find particular solutions to the equations
y" +2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).

Solution: Recall: y,(t) = ke %t



Undetermined coefficients (2.5).

Example
Find a particular solution to
Yy 42y —2y = e,
Using this solution find particular solutions to the equations
y" +2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).
Solution: Recall: y,(t) = ke %t

[(—40)? + 2(—4i) — 2 ke ™t = e~



Undetermined coefficients (2.5).

Example
Find a particular solution to
Yy 42y —2y = e,
Using this solution find particular solutions to the equations
y" +2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).
Solution: Recall: y,(t) = ke %t

[(—4i)? +2(—4i) — 2] ke ™t = ™" = (-16-8i—2)k=1



Undetermined coefficients (2.5).

Example
Find a particular solution to

Yy 42y —2y = e,
Using this solution find particular solutions to the equations
y" +2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).
Solution: Recall: y,(t) = ke %t
—4))2 4 2(—4i) = 2|ke ™t = ™Mt = (—16—8i — =
40)2 + 2(—4i) — 2| ke " 4t 16 —8i —2)k =1

1
18 +8i




Undetermined coefficients (2.5).

Example
Find a particular solution to

Yy 42y —2y = e,
Using this solution find particular solutions to the equations
y" +2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).
Solution: Recall: y,(t) = ke %t
—4))2 4 2(—4i) = 2|ke ™t = ™Mt = (—16—8i — =
40)2 + 2(—4i) — 2| ke " 4t 16 —8i —2)k =1

11 1
18+8i 2 (9+4i)




Undetermined coefficients (2.5).

Example
Find a particular solution to

Yy 42y —2y = e,
Using this solution find particular solutions to the equations
y" +2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).
Solution: Recall: y,(t) = ke %t
—4))2 4 2(—4i) = 2|ke ™t = ™Mt = (—16—8i — =
40)2 + 2(—4i) — 2| ke " 4t 16 —8i —2)k =1

11 1 (9-4)
18+8i 2 (9+4i)(9—4i)




Undetermined coefficients (2.5).

Example
Find a particular solution to
Yy 42y —2y = e,
Using this solution find particular solutions to the equations
y" +2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).

Solution: Recall: y,(t) = ke %t

[(—4i)? +2(—4i) — 2] ke ™t = ™" = (-16-8i—2)k=1

1 1 1 (9-4i) 1(9—4i)
18481 2(9+41)(9—4i) 2(92+42)




Undetermined coefficients (2.5).

Example
Find a particular solution to
Yy 42y —2y = e,
Using this solution find particular solutions to the equations
y" +2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).
Solution: Recall: y,(t) = ke %t

[(—4i)? +2(—4i) — 2] ke ™t = ™" = (-16-8i—2)k=1

11 1 (9-4) 1(9-4)
18+8  2(9+4i)(9—4) 2(9+4)
1 )
Hence, y,(t) = (9 — 4i)e ™.

- 2(92 4 42)



Undetermined coefficients (2.5).
Example

Find a particular solution to
y// + 2)// — 2y = e—4it.
Using this solution find particular solutions to the equations

y" +2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).



Undetermined coefficients (2.5).
Example
Find a particular solution to
y' 42y —2y = e,
Using this solution find particular solutions to the equations
y" +2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).
1

- — 4 —4it.
D) (9—4i)e

Solution: Recall: y,(t) =



Undetermined coefficients (2.5).
Example
Find a particular solution to
y// + 2)// _ 2y — e—4it.
Using this solution find particular solutions to the equations
y" +2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).
1
2(9%2 +42)
For the second part of the problem,

Solution: Recall: yp(t) = (9 — 4i) oAt



Undetermined coefficients (2.5).
Example
Find a particular solution to
y// + 2)// — 2y = e—4it.
Using this solution find particular solutions to the equations
y" +2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).
1
2(9%2 +42)
For the second part of the problem, we need to compute the real
and imaginary parts of or solution:

Solution: Recall: yp(t) = (9 — 4i) oAt



Undetermined coefficients (2.5).
Example
Find a particular solution to
y// + 2)// — 2y = e—4it.
Using this solution find particular solutions to the equations
y" +2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).
1
2(9%2 +42)
For the second part of the problem, we need to compute the real
and imaginary parts of or solution:

1
yp(t) = —m(

Solution: Recall: yp(t) = (9 — 4i) oAt

9 — 4i)[cos(4t) — isin(4t)]



Undetermined coefficients (2.5).
Example
Find a particular solution to
y// + 2)// — 2y = e—4it.
Using this solution find particular solutions to the equations
y" +2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).
1
2(9%2 +42)
For the second part of the problem, we need to compute the real
and imaginary parts of or solution:

1
yp(t) = —m(

Solution: Recall: y,(t) = (9 — 4i) oAt
9 — 4i)[cos(4t) — isin(4t)]

Vo, = T2 1 4 [9 cos(4t) — 4sin(4t)]



Undetermined coefficients (2.5).
Example
Find a particular solution to
y// + 2)// — 2y = e—4it.
Using this solution find particular solutions to the equations
y" +2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).
1
2(9%2 +42)
For the second part of the problem, we need to compute the real
and imaginary parts of or solution:

1
yp(t) = —m(

Solution: Recall: yp(t) = (9 — 4i) oAt

9 — 4i)[cos(4t) — isin(4t)]
Vo, = T2 1 4 [9 cos(4t) — 4sin(4t)]
1

Yo = 3o 1 47) [—4 cos(4t) — 9sin(4t)]



Undetermined coefficients (2.5).

Example
Find all the solutions to the inhomogeneous equation

y" —3y" — 4y = 2sin(t).



Undetermined coefficients (2.5).
Example
Find all the solutions to the inhomogeneous equation
y" —3y" — 4y = 2sin(t).

Solution: We know that the general solution to homogeneous

equation is y(t) = ce* + ce L.



Undetermined coefficients (2.5).
Example
Find all the solutions to the inhomogeneous equation
y" —3y" — 4y = 2sin(t).

Solution: We know that the general solution to homogeneous

equation is y(t) = ce* + ce L.

Following the table: Since f = 2sin(t),



Undetermined coefficients (2.5).
Example
Find all the solutions to the inhomogeneous equation
y" —3y" — 4y = 2sin(t).

Solution: We know that the general solution to homogeneous

equation is y(t) = ce* + ce L.

Following the table: Since f = 2sin(t), then we guess
Yp = ki sin(t) + ko cos(t).



Undetermined coefficients (2.5).

Example
Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 2sin(t).

Solution: We know that the general solution to homogeneous

equation is y(t) = ce* + ce L.

Following the table: Since f = 2sin(t), then we guess
Yp = ki sin(t) + ko cos(t).

This guess satisfies L(y,) # 0.



Undetermined coefficients (2.5).

Example
Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 2sin(t).

Solution: We know that the general solution to homogeneous
t

equation is y(t) = ce* + ce L.

Following the table: Since f = 2sin(t), then we guess
Yp = ki sin(t) + ko cos(t).

This guess satisfies L(y,) # 0.

Compute: y;, = k; cos(t) — kysin(t), y, = —kisin(t) — k, cos(t).



Undetermined coefficients (2.5).

Example
Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 2sin(t).

Solution: We know that the general solution to homogeneous
equation is y(t) = ce* + ce L.

Following the table: Since f = 2sin(t), then we guess
Yp = ki sin(t) + ko cos(t).
This guess satisfies L(y,) # 0.
Compute: y;, = k; cos(t) — kysin(t), y, = —kisin(t) — k, cos(t).
L(yp) = [—kisin(t) — k, cos(t)] — 3]k cos(t) — k,sin(t)]
—A4[k, sin(t) + k, cos(t)] = 2sin(t),



Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation
y" —3y' — 4y = 2sin(t).
Solution: Recall:
L(yp) = [—kisin(t) — k, cos(t)] — 3]k, cos(t) — k,sin(t)]
—A4[k, sin(t) + k, cos(t)] = 2sin(t),



Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

y" —3y' — 4y = 2sin(t).
Solution: Recall:

L(yp) = [—kisin(t) — k, cos(t)] — 3]k, cos(t) — k,sin(t)]
—A4[k, sin(t) + k, cos(t)] = 2sin(t),

(—5ky + 3k,) sin(t) + (—3k, — 5k,) cos(t) = 2sin(t).



Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

y" — 3y — 4y = 2sin(t).
Solution: Recall:
L(y,) = [~ ki sin(t) — ks cos(t)] — 3[k, cos(t) — ke sin(t)]
—4[k, sin(t) + k, cos(t)] = 2sin(t),
(—5k, + 3k,) sin(t) + (—3k, — 5k,) cos(t) = 2sin(t).

This equation holds for all t € R. In particular, at t = —, t = 0.

NS

Sk, + 3k, = 2,
—3k1 - 5k2 - 0,



Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

y" —3y' — 4y = 2sin(t).
Solution: Recall:

L(yp) = [—kisin(t) — k, cos(t)] — 3]k, cos(t) — k,sin(t)]
—A4[k, sin(t) + k, cos(t)] = 2sin(t),

(—5ky + 3k,) sin(t) + (—3k, — 5k,) cos(t) = 2sin(t).

This equation holds for all t € R. In particular, at t = g t=0.
5
_5k1 + 3k2 - 2, kl - 7ﬁ)
—3k1 - 5k2 - 0, k _ 3
= —



Undetermined coefficients (2.5).

Example
Find all the solutions to the inhomogeneous equation
y" =3y’ — 4y = 2sin(t).
3

5
lution: Recall: k; = —— ky = —.
Solution: Reca 1 17 and k, 17



Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation
y" =3y’ — 4y = 2sin(t).
5 3
Solution: Recall: k, = —— and k, = —.
olution: Recall: k, 7 k=2
So the particular solution to the inhomogeneous equation is

! [—5sin(t) + 3cos(t)].

yp(t) = 17



Undetermined coefficients (2.5).

Example
Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 2sin(t).

5 3
lution: Recall: k, = —— k, = —.
Solution: Reca 1 17 and k, 17

So the particular solution to the inhomogeneous equation is

! [—5sin(t) + 3cos(t)].

yp(t) = 17

The general solution is

ey 1 [—5sin(t) + 3cos(t)].

y(t) = ce* + et + 7



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + ¥



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + &>

Solution: Find the solutions of the homogeneous problem,



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + &>
Solution: Find the solutions of the homogeneous problem,
rP+4=0



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + &>
Solution: Find the solutions of the homogeneous problem,

P+4a=0 = r.==+2



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + &>
Solution: Find the solutions of the homogeneous problem,
P4+4=0 = r. =420
y, = cos(2x), y, = sin(2x).



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + &>
Solution: Find the solutions of the homogeneous problem,
rP+4=0 = r.==2]
y, = cos(2x), y, = sin(2x).

Start with the first source, fi(x) = 3sin(2x).



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + &>
Solution: Find the solutions of the homogeneous problem,
rP+4=0 = r.==2]
y, = cos(2x), y, = sin(2x).

Start with the first source, fi(x) = 3sin(2x).
The function y,, = k; sin(2x) + k, cos(2x) is the



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + &>
Solution: Find the solutions of the homogeneous problem,
rP+4=0 = r.==2]
y, = cos(2x), y, = sin(2x).

Start with the first source, fi(x) = 3sin(2x).
The function y,, = k; sin(2x) + k, cos(2x) is the wrong guess,



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + ¥
Solution: Find the solutions of the homogeneous problem,
rP+4=0 = r.==+2i
y, = cos(2x), y, = sin(2x).
Start with the first source, fi(x) = 3sin(2x).

The function y,, = k; sin(2x) + k, cos(2x) is the wrong guess,
since it is solution of the homogeneous equation.



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + ¥
Solution: Find the solutions of the homogeneous problem,
rP+4=0 = r.==+2i
y, = cos(2x), y, = sin(2x).
Start with the first source, fi(x) = 3sin(2x).

The function y,, = k; sin(2x) + k, cos(2x) is the wrong guess,
since it is solution of the homogeneous equation. We guess:

¥p = x [ ki sin(2x) + k;, cos(2x)].



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + ¥
Solution: Find the solutions of the homogeneous problem,
rP+4=0 = r.==+2i
y, = cos(2x), y, = sin(2x).
Start with the first source, fi(x) = 3sin(2x).

The function y,, = k; sin(2x) + k, cos(2x) is the wrong guess,
since it is solution of the homogeneous equation. We guess:

¥p = x [ ki sin(2x) + k;, cos(2x)].

y[’7 = [kl sin(2x) + k; cos(2x)] + 2x[k1 cos(2x) — k, sin(2x)].



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + &>
Solution: Find the solutions of the homogeneous problem,
rP+4=0 = r.==2]
y, = cos(2x), y, = sin(2x).

Start with the first source, fi(x) = 3sin(2x).
The function y,, = k; sin(2x) + k, cos(2x) is the wrong guess,
since it is solution of the homogeneous equation. We guess:

¥p = x [ ki sin(2x) + k;, cos(2x)].
y[’7 = [kl sin(2x) + k; cos(2x)] + 2x[k1 cos(2x) — k, sin(2x)].
vy = 4[ki cos(2x) — k,sin(2x)] + 4x[—k, sin(2x) — k, cos(2x)].



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .

Solution: Recall: y; = sin(2x), and y, = cos(2x).



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .
Solution: Recall: y; = sin(2x), and y, = cos(2x).

4[k; cos(2x) — kysin(2x)] + 4x[—k; sin(2x) — k, cos(2x)]+
4x [k, sin(2x) + k; cos(2x)] = 3sin(2x),



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .
Solution: Recall: y; = sin(2x), and y, = cos(2x).
4[k; cos(2x) — kysin(2x)] + 4x[—k; sin(2x) — k, cos(2x)]+
4x [k, sin(2x) + k; cos(2x)] = 3sin(2x),

Therefore, 4 [k, cos(2x) — k; sin(2x)] = 3sin(2x).



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .
Solution: Recall: y; = sin(2x), and y, = cos(2x).
4[k; cos(2x) — kysin(2x)] + 4x[—k; sin(2x) — k, cos(2x)]+
4x [k, sin(2x) + k; cos(2x)] = 3sin(2x),
Therefore, 4 [k, cos(2x) — k; sin(2x)] = 3sin(2x).

Evaluating at x =0 and x = 7/4



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .
Solution: Recall: y; = sin(2x), and y, = cos(2x).
4[k; cos(2x) — kysin(2x)] + 4x[—k; sin(2x) — k, cos(2x)]+
4x [k, sin(2x) + k; cos(2x)] = 3sin(2x),
Therefore, 4 [k, cos(2x) — k; sin(2x)] = 3sin(2x).

Evaluating at x =0 and x = 7 /4 we get

4k1 - 0, _4k2 - 3



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .
Solution: Recall: y; = sin(2x), and y, = cos(2x).
4[k; cos(2x) — kysin(2x)] + 4x[—k; sin(2x) — k, cos(2x)]+
4x [k, sin(2x) + k; cos(2x)] = 3sin(2x),
Therefore, 4 [k, cos(2x) — k; sin(2x)] = 3sin(2x).

Evaluating at x =0 and x = 7 /4 we get

4k1:0, _4k2:3 = k1:O7 k2:_§.



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .
Solution: Recall: y; = sin(2x), and y, = cos(2x).
4[k; cos(2x) — kysin(2x)] + 4x[—k; sin(2x) — k, cos(2x)]+
4x [k, sin(2x) + k; cos(2x)] = 3sin(2x),
Therefore, 4 [k, cos(2x) — k; sin(2x)] = 3sin(2x).

Evaluating at x =0 and x = 7 /4 we get

4k1:0, _4k2:3 = k1:O7 k2:_§.

3
Therefore, y, = ~2 x cos(2x).



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .

3
Solution: Recall: y,, = —Zxcos(2x).



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .

3
Solution: Recall: y,, = —Zxcos(2x).

We now compute y,, for f(x) = e3*.



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .

3
Solution: Recall: y,, = —Zxcos(2x).

We now compute y,, for f(x) = e3*.

We guess: y,, = k e3*. Then, Yo =9 e3,



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .

3
Solution: Recall: y,, = —Zxcos(2x).

We now compute y,, for f(x) = e3*.

We guess: y,, = k e3*. Then, Yo =9 e3,

(9 + 4 ke® = &3



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .

3
Solution: Recall: y,, = —Zxcos(2x).

We now compute y,, for f(x) = e3*.

We guess: y,, = k e3*. Then, Yo =9 e3,

1
9+4)ke> =¥ = k=_
(9 +4)ke e 13



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .

3
Solution: Recall: y,, = —Zxcos(2x).

We now compute y,, for f(x) = e3*.

We guess: y,, = k e3*. Then, Yo =9 e3,

1 1
4k3X: 3x k= — :73X.
(9+4)ke e = 3 T Ym=13¢



Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .

3
Solution: Recall: y,, = —Zxcos(2x).

We now compute y,, for f(x) = e3*.

We guess: y,, = k e3*. Then, Yo =9 e3,

1 1
4k3X: 3x k= — :73X.
(9+4)ke e = 3 T Ym=13¢

Therefore, the general solution is

_ 3 1 5,
y(x) = ¢ sin(2x) + <C2 2 X) cos(2x) + e e,



Undetermined coefficients (2.5).

Example

> For y" — 3y’ — 4y = 3e?tsin(t),



Undetermined coefficients (2.5).

Example

> For y" — 3y’ — 4y = 32 sin(t), guess

Yp(t) = [kusin(t) + ko cos(t)] e*.



Undetermined coefficients (2.5).

Example

» For y” — 3y’ — 4y = 3e?*sin(t), guess

Yp(t) = [kusin(t) + ko cos(t)] e*.

» For y" — 3y’ — 4y = 2t? €3,



Undetermined coefficients (2.5).

Example

» For y” — 3y’ — 4y = 3e?*sin(t), guess

Yp(t) = [kusin(t) + ko cos(t)] e*.

» For y" — 3y’ — 4y = 2t? &3, guess

yp(t) = (ko + kit + k2t2) et



Undetermined coefficients (2.5).

Example

» For y” — 3y’ — 4y = 3e?*sin(t), guess

Yp(t) = [kusin(t) + ko cos(t)] e*.

» For y" — 3y’ — 4y = 2t? &3, guess

yp(t) = (ko + kit + k2t2) et

» For y"” — 3y’ — 4y = 3t sin(t),



Undetermined coefficients (2.5).

Example

» For y” — 3y’ — 4y = 3e?*sin(t), guess

Yp(t) = [kusin(t) + ko cos(t)] e*.

» For y" — 3y’ — 4y = 2t? &3, guess

yp(t) = (ko + kit + k2t2) et

» For y"” — 3y’ — 4y = 3t sin(t), guess

yp(t) = (1 + kit) [kosin(t) + ks cos(t)].



Review for Exam 2.

6 or 7 problems.
No multiple choice questions.
No notes, no books, no calculators.

Problems similar to homeworks.

vV vy Vv VvVvyYy

Exam covers:

» Variation of parameters (2.6).

Undetermined coefficients (2.5).

Constant coefficients, homogeneous, (2.2)-(2.4).
Reduction order method, (2.4.2).

Second order variable coefficients, (2.1).

First order homogeneous (1.3.2).

vV vy vy VvYyy



Reduction order method, (2.4.2).

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,

knowing that y,(t) = t is a solution.
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Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

Solution: Express y,(t) = v(t) yi(t).
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from t2 )+ 2ty) — 2y, = 0.
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t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.
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Reduction order method, (2.4.2).

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

Solution: Express yo(t) = v(t) y2(t). The equation for v comes
from t2y! + 2ty! — 2y, = 0. We need to compute

Y, = Vi, y2:tv+v,
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Yo=Vvt, vi=tv +v, vl =tv"+2v.
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Reduction order method, (2.4.2).

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

Solution: Express yo(t) = v(t) y2(t). The equation for v comes
from t2y! + 2ty! — 2y, = 0. We need to compute

Yo=Vvt, vi=tv +v, vl =tv"+2v.
So, the equation for v is given by
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Reduction order method, (2.4.2).

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

Solution: Express yo(t) = v(t) y2(t). The equation for v comes
from t2y! + 2ty! — 2y, = 0. We need to compute

Yo=Vvt, vi=tv +v, vl =tv"+2v.

So, the equation for v is given by
t?(tv” +2v) +2t(tV +v) —2tv =0
B3V + (212 + 2t%) v/ + (2t — 2t)v =0

3V + (42)vV =0



Reduction order method, (2.4.2).

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

Solution: Express yo(t) = v(t) y2(t). The equation for v comes
from t2y! + 2ty! — 2y, = 0. We need to compute

Yo=Vvt, vi=tv +v, vl =tv"+2v.

So, the equation for v is given by
t?(tv” +2v) +2t(tV +v) —2tv =0
B3V + (212 + 2t%) v/ + (2t — 2t)v =0

4
BV @A)V =0 = V=0



Reduction order method, (2.4.2).

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y;(t) = t is a solution.

4
Solution: Recall: v + ?v’ =0.



Reduction order method, (2.4.2).

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y;(t) = t is a solution.
H " 4 /
Solution: Recall: v" + i =0.

This is a first order equation for w = v/,
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knowing that y;(t) = t is a solution.
H " 4 /
Solution: Recall: v" + i =0.

. . . 4
This is a first order equation for w = v/, given by w’ + ?W =0, so



Reduction order method, (2.4.2).

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y;(t) = t is a solution.

4
Solution: Recall: v + EV/ =0.
. . . 4
This is a first order equation for w = v/, given by w’ + ?W =0, so

w' 4
W 2% o In(w) = —4In(t
L () = —ahn() +



Reduction order method, (2.4.2).

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y;(t) = t is a solution.

4
Solution: Recall: v + EV/ =0.

. . . 4
This is a first order equation for w = v/, given by w’ + ?W =0, so

—_— = = In(W) == —4In(t) + Co = W(t) == Clt_4, Cl S R
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t2y" 4+ 2ty —2y =0,
knowing that y;(t) = t is a solution.

4
Solution: Recall: v + EV/ =0.
. . . 4
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Reduction order method, (2.4.2).
Example
Find a fundamental set of solutions to
t2y" 4+ 2ty —2y =0,
knowing that y;(t) = t is a solution.

4
Solution: Recall: v + EV/ =0.
. . . 4
This is a first order equation for w = v/, given by w’ + ?W =0, so

/
4
K:_; = In(w)=—4n(t)+ ¢ = w(t)=at™ ¢ R
w

Integrating w we obtain v, that is, v = ot 3 + ¢, with G, c € R,
Recalling that y, =t v



Reduction order method, (2.4.2).
Example
Find a fundamental set of solutions to
t2y" 4+ 2ty —2y =0,
knowing that y;(t) = t is a solution.

4
Solution: Recall: v + EV/ =0.
. . . 4
This is a first order equation for w = v/, given by w’ + ?W =0, so

/
4
K:_; = In(w)=—4n(t)+ ¢ = w(t)=at™ ¢ R
w

Integrating w we obtain v, that is, v = ot 3 + ¢, with G, c € R,
Recalling that y, = t v we then conclude that y, = Gt 2 + ct.



Reduction order method, (2.4.2).

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y;(t) = t is a solution.

4
Solution: Recall: v + EV/ =0.
. . . 4
This is a first order equation for w = v/, given by w’ + ?W =0, so

/
4
LA i In(w) = —4In(t) + ¢ = w(t)=cat ™ ¢ R,
w

Integrating w we obtain v, that is, v = ot 3 + ¢, with G, c € R,
Recalling that y, = t v we then conclude that y, = Gt 2 + ct.
Choosing ¢, = 1 and ¢; = 0 we obtain the fundamental solutions

1
yi(t) =t and y,(t) = 2 <



Review for Exam 2.

6 or 7 problems.
No multiple choice questions.
No notes, no books, no calculators.

Problems similar to homeworks.

vV vy Vv VvVvyYy

Exam covers:

» Variation of parameters (2.6).

Undetermined coefficients (2.5).

Constant coefficients, homogeneous, (2.2)-(2.4).
Reduction order method, (2.4.2).

Second order variable coefficients, (2.1).

First order homogeneous (1.3.2).
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First order Homogeneous (1.3.2).

Example
t2 4 3y?

Find all solutions y of the equation y’ =
ind all solutions y q y 2y



First order Homogeneous (1.3.2).
Example
t2 + 3y?

Find all solutions y of the equation y' =
2ty

Solution: The equation is homogeneous, since

1
- t2 + 3y? (ﬁ)

2ty 1
()



First order Homogeneous (1.3.2).

Example
t2 4 3y?

Find all solutions y of the equation y' =
2ty

Solution: The equation is homogeneous, since
2
1+3(%)
t

(%)

1
- t2 4 3y? (ﬁ)

2ty 1
()

= )y =




First order Homogeneous (1.3.2).
Example
t2 + 3y?

Find all solutions y of the equation y' =
2ty

Solution: The equation is homogeneous, since

, P43y (t}) 1+3(%)°
* (a) 2(%)

Therefore, we introduce the change of unknown v = y/t,

A

=



First order Homogeneous (1.3.2).
Example
t2 + 3y?

Find all solutions y of the equation y' =
2ty

Solution: The equation is homogeneous, since

2
_eese(a) L 1430
=—0 = = —
(?) t
Therefore, we introduce the change of unknown v = y/t, so
y=tvandy =v+tVv.




First order Homogeneous (1.3.2).

Example
t2 4 3y?

Find all solutions y of the equation y' =
2ty

Solution: The equation is homogeneous, since

2
_eese(a) L 1430
=—0 = = —
(?) t
Therefore, we introduce the change of unknown v = y/t, so
y=tvand y =v+tv. Hence

1+ 3v?
2v

v—i—tv’:



First order Homogeneous (1.3.2).
Example
t2 + 3y?

Find all solutions y of the equation y' =
2ty

Solution: The equation is homogeneous, since

2
_eese(a) L 1430
=—0 = = —
(?) t
Therefore, we introduce the change of unknown v = y/t, so
y=tvand y =v+tv. Hence

1+ 3v? Ly 1+ 3v?
vV =
2v 2v

v—i—tv’:



First order Homogeneous (1.3.2).
Example
t2 + 3y?

Find all solutions y of the equation y' =
2ty

Solution: The equation is homogeneous, since

1 y\2
r_ t - I t )
2 (1) (%)
t? t
Therefore, we introduce the change of unknown v = y/t, so

y=tvandy =v+tv'. Hence
1+ 3v? , 14302 1+3v2—2v?
= tV = e

2v 2v 2v

v—i—tv’:



First order Homogeneous (1.3.2).
Example
t2 + 3y?

Find all solutions y of the equation y' =
2ty

Solution: The equation is homogeneous, since
1 y\2
, 43y (%) 1+3(7)
2ty (i) 2({ )
t2 t

Therefore, we introduce the change of unknown v = y/t, so
y=tvandy =v+tv'. Hence

= y =

, 1+4+3v2 , 14302 1+3v2—2v?
v+tv = = tv = V=
2v 2v 2v
1/1+v2
We obtain the separable equation v/ = p ( —; Y >
"4



First order Homogeneous (1.3.2).

Example
t2 + 3y

Find all solutions y of the equation y' =
2ty

1 /14 v2
Solution: Recall: v/ = = ( tv )
t 2v



First order Homogeneous (1.3.2).

Example
. : . t2 + 3y
Find all solutions y of the equation y' = %
Yy

1 /14 v2
Solution: Recall: v/ = : ( J2r v ) We rewrite and integrate it,
v

v,

1
1+V2V Tt




First order Homogeneous (1.3.2).

Example
t2 + 3y

Find all solutions y of the equation y' =
2ty

1/1 2
Solution: Recall: v/ = - ( Tv

5 ) We rewrite and integrate it,
v

2v. , 1 v, 1
1+V2V t /1—|—V2V /t ta




First order Homogeneous (1.3.2).

Example
. . . t2 + 3y?
Find all solutions y of the equation y' = #
2ty
1 /14
Solution: Recall: v/ = : ( er v ) We rewrite and integrate it,
v

2v. , 1 v, 1
1+V2V t /1+V2V /t ta

The substitution v = 1+ v2(t) implies du = 2v(t) v/(t) dt,



First order Homogeneous (1.3.2).

Example
. . . t2 + 3y?
Find all solutions y of the equation y' = #
2ty
1 /14
Solution: Recall: v/ = : ( er v ) We rewrite and integrate it,
v

2v. , 1 v, 1
1+V2V t /1+V2V /t ta

The substitution u = 1+ v2(t) implies du = 2v(t) v/(t) dt, so

/du dt
u t



First order Homogeneous (1.3.2).
Example
t2 + 3y

Find all solutions y of the equation y' =
2ty

1+ v2
2v

2v. , 1 v, 1
1+V2V t /1+V2V /t ta

The substitution u = 1+ v2(t) implies du = 2v(t) v/(t) dt, so

) 1 ) . )
Solution: Recall: v/ = : ( ) We rewrite and integrate it,

/du 7+C0 = In(u) = In(t)+ o



First order Homogeneous (1.3.2).
Example
t2 + 3y

Find all solutions y of the equation y' =
2ty

1+ v2
2v

2v. , 1 v, 1
1+V2V t /1+V2V /t ta

The substitution u = 1+ v2(t) implies du = 2v(t) v/(t) dt, so

) 1 ) . )
Solution: Recall: v/ = : ( ) We rewrite and integrate it,

d
/u *+C0 = In(u)=ht)+c = u=-enbto



First order Homogeneous (1.3.2).
Example
t2 + 3y

Find all solutions y of the equation y' =
2ty

1+ v2
2v

2v. , 1 v, 1
1+V2V t /1+V2V /t ta

The substitution u = 1+ v2(t) implies du = 2v(t) v/(t) dt, so

) 1 ) . )
Solution: Recall: v/ = : ( ) We rewrite and integrate it,

d
/u *+C0 = In(u)=ht)+c = u=-enbto

But u = en(t) g



First order Homogeneous (1.3.2).
Example
t2 + 3y

Find all solutions y of the equation y' =
2ty

1+ v2
2v

2v. , 1 v, 1
1+V2V t /1+V2V /t ta

The substitution u = 1+ v2(t) implies du = 2v(t) v/(t) dt, so

) 1 ) . )
Solution: Recall: v/ = : ( ) We rewrite and integrate it,

d
/u *+C0 = In(u)=ht)+c = u=-enbto

But v = e'”(t)eCO, so denoting ¢; = €%, then u = cyt.



First order Homogeneous (1.3.2).
Example
t2 + 3y

Find all solutions y of the equation y' =
2ty

1+ v2
2v

2v. , 1 v, 1
1+V2V t /1+V2V /t ta

The substitution u = 1+ v2(t) implies du = 2v(t) v/(t) dt, so

) 1 ) . )
Solution: Recall: v/ = : ( ) We rewrite and integrate it,

d
/u *+C0 = In(u)=ht)+c = u=-enbto

But v = e'”(t)eCO, so denoting ¢; = €%, then u = ¢;t. Hence

1+V2261t



First order Homogeneous (1.3.2).
Example
t2 + 3y

Find all solutions y of the equation y' =
2ty

1+ v2
2v

2v. , 1 v, 1
1+V2V t /1+V2V /t ta

The substitution u = 1+ v2(t) implies du = 2v(t) v/(t) dt, so

) 1 ) . )
Solution: Recall: v/ = : ( ) We rewrite and integrate it,

d
/u *+C0 = In(u)=ht)+c = u=-enbto

But v = e'”(t)eCO, so denoting ¢; = €%, then u = ¢;t. Hence

2
1+V2261t = 1+<%) =it



First order Homogeneous (1.3.2).
Example
t2 + 3y

Find all solutions y of the equation y' =
2ty

1+ v2
2v

2v. , 1 v, 1
1+V2V t /1+V2V /t ta

The substitution u = 1+ v2(t) implies du = 2v(t) v/(t) dt, so

) 1 ) . )
Solution: Recall: v/ = : ( ) We rewrite and integrate it,

d
/u *+C0 = In(u)=ht)+c = u=-enbto

But v = e'”(t)eCO, so denoting ¢; = €%, then u = ¢;t. Hence

2
1+v2=ct = 1+(%) =at = y(t)=+tVat -1



Mechanical and electrical oscillations (Sect. 2.77)

» Review: On solutions of y” + a,y’ + a,y = 0.
» Application: Mechanical Oscillations.

» Application: The RLC electrical circuit.

Remark:
Different physical systems may have identical mathematical
descriptions.



Review: On solutions of y”" +a,y' +a,y =0.

Summary of solutions of the differential equation

y”+31}/+aoy:0a a, a €R,

_ a 1
and characteristic roots rp = —51 + 5 a2 — 4a,.



Review: On solutions of y”" +a,y' +a,y =0.

Summary of solutions of the differential equation
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_ a 1
and characteristic roots rp = —51 + 5 a2 — 4a,.

(1) Over damped systems: If 2> — 4a, > 0,



Review: On solutions of y”" +a,y' +a,y =0.

Summary of solutions of the differential equation

y”+31}/+aoy:0a a, a €R,
1

. a
and characteristic roots rp = —51 + 5 a2 — 4a,.

(1) Over damped systems: If a2 — 4a, > 0, then,

yi(t) = er+t, ya(t) = et



Review: On solutions of y”" +a,y' +a,y =0.

Summary of solutions of the differential equation
y'+ay 4+ ay =0, a;,a €R,
1

. a
and characteristic roots rp = —51 + 5 a2 — 4a,.

(1) Over damped systems: If a2 — 4a, > 0, then,
n(t) =e", y(t) = e

(2) Critically damped systems: If a? — 4a, = 0,



Review: On solutions of y”" +a,y' +a,y =0.

Summary of solutions of the differential equation
y'+ay 4+ ay =0, a;,a €R,
1

. a
and characteristic roots rp = —51 + 5 a2 — 4a,.

(1) Over damped systems: If a2 — 4a, > 0, then,
n(t) =e", y(t) = e
(2) Critically damped systems: If a> — 4a, = 0, then,

nt)=e 2t y()=te 2t



Review: On solutions of y”" +a,y' +a,y =0.

Summary of solutions of the differential equation

y”+31}/+aoy:0a a, a €R,

_ a 1
and characteristic roots rp = —51 + 5 a2 — 4a,.

(1) Over damped systems: If a2 — 4a, > 0, then,
n(t) =e", y(t) = e
(2) Critically damped systems: If a> — 4a, = 0, then,

nt)=e 2t y()=te 2t

(3) Under damped systems: If a> — 4a, < 0,



Review: On solutions of y”" +a,y' +a,y =0.

Summary of solutions of the differential equation
y'+ay 4+ ay =0, a;,a €R,
1

. a
and characteristic roots rp = —51 + 5 a2 — 4a,.

(1) Over damped systems: If a2 — 4a, > 0, then,
n(t)=e", () =e"".
(2) Critically damped systems: If a> — 4a, = 0, then,
nt)=e 2t y()=te 2t
(3) Under damped systems: If a> — 4a, < 0, then
yi(t) = e*f cos(3t), yo(t) = e*Fsin(Bt).

. a 1
with a = —51, 3= 5\/430—‘312.



Review: On solutions of y”" +a,y' +a,y =0.

Summary of solutions of the differential equation
y'+ay 4+ ay =0, a;,a €R,
1

. a
and characteristic roots rp = —51 + 5 a2 — 4a,.

(1) Over damped systems: If a2 — 4a, > 0, then,
n(t)=e", () =e"".
(2) Critically damped systems: If a> — 4a, = 0, then,
nt)=e 2t y()=te 2t
(3) Under damped systems: If a> — 4a, < 0, then
yi(t) = e*f cos(3t), yo(t) = e*Fsin(Bt).

1
with a = —%, 3= 5\/430 — a2. Not damped: If a, = 0.



Mechanical and electrical oscillations (Sect. 2.77)

» Review: On solutions of y” +a,y’ + a,y = 0.
» Application: Mechanical Oscillations.
» Application: The RLC electrical circuit.



Application: Mechanical Oscillations.

Consider a spring attached to the
ceiling, having rest length /, with

an attached mass m. S
» (I 4+ Al) is called equilibrium %
position of the spring loaded l
with a mass m. act 17 i
» The coordinate y measures - y

vertical deviations from the
equilibrium position.



Application: Mechanical Oscillations.

Consider a spring attached to the
ceiling, having rest length /, with

an attached mass m. P PP PR
» (I 4+ Al) is called equilibrium %
position of the spring loaded l
with a mass m. act 17 i
» The coordinate y measures - y

vertical deviations from the
equilibrium position.
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» Spring: Fs = —k(Al+ y). Hooke's Law. (Small oscillations.)
» Damping: F4(t) = —dy’(t). Fluid Resistance.



Application: Mechanical Oscillations.

Consider a spring attached to the
ceiling, having rest length /, with

an attached mass m. P PP PR
» (I 4+ Al) is called equilibrium %
position of the spring loaded l
with a mass m. act 17 i
» The coordinate y measures - y

vertical deviations from the
equilibrium position.
Forces acting on the system:
> Weight: F; = mg.
» Spring: Fs = —k(Al+ y). Hooke's Law. (Small oscillations.)
» Damping: F4(t) = —dy’(t). Fluid Resistance.

Newton's Law: my”(t) = Fg + Fs(t) + Fq4(t).
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y(t) = ¢ cos(wot) + G sin(wot) < y(t) = A cos(wot — ¢).

where wg = /k/m is the fundamental frequency, A is the

amplitude, and ¢ the initial phase shift of the oscillations.
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y'(t) = —\f Asin(\f t— gb) e /2 ;Acos<\f t— gb) e 12,
The initial conditions:
V3= y(0) = Acos(¢), 0=y'(0) = “f Asin(6) — 5 Acos(6).

tan(¢) = o= = o=<.
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Application: Mechanical Oscillations.

Example

Find the movement of a 5Kg mass attached to a spring with
constant k = 5Kg/Secs2 moving in a medium with damping
constant d = 5Kg/Secs, with initial conditions y(0) = v/3 and

y'(0) =0.
3
Solution: Recall: y(t) = Acos(\g t— <b> e /2. Hence,

y'(t) = —\f Asin(\f t— gb) e /2 ;Acos<\f t— gb) e 12,

The initial conditions:

V3= y(0) = Acos(s). 0= y'(0) = 3 Asin(6) - 1 Acos()
tan(qﬁ):\}g = ¢=%, = A=2.



Application: Mechanical Oscillations.

Example

Find the movement of a 5Kg mass attached to a spring with
constant k = 5Kg/Secs2 moving in a medium with damping
constant d = 5Kg/Secs, with initial conditions y(0) = v/3 and

y'(0) =0.
3
Solution: Recall: y(t) = Acos(\g t— <b> e /2. Hence,

y'(t) = —\f Asin(\f t— gb) e /2 ;Acos<\f t— gb) e 12,
The initial conditions:
V3 = y(0) = Acos(), 0= y/(0) = f Asin(6) — %Acos(qﬁ).

tan(¢) = \}§ = ¢= = A=2

We conclude: y(t) =2c¢ (



Mechanical and electrical oscillations (Sect. 2.77)

» Review: On solutions of y” +a,y’ + a,y = 0.
» Application: Mechanical Oscillations.
» Application: The RLC electrical circuit.



The RLC electrical circuit.

Consider an electric circuit with
resistance R, non-zero capacitor R c L
C, and non-zero inductance L, as -

in the figure. I (t) : electric current.
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C, and non-zero inductance L, as -

in the figure. I (t) : electric current.
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Derivate both sides above: L/1"(t)+ R1I'(t) + e I(t) = 0.
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The RLC electrical circuit.

Consider an electric circuit with
resistance R, non-zero capacitor R c L
C, and non-zero inductance L, as -

in the figure. I (t) : electric current.

Kirchhoff’s Law: The electric current flowing in the circuit satisfies:

LI'(t) + RI(t) C/

1
Derivate both sides above: L/1"(t)+ R1I'(t) + e (t)=0.

Divide by L: 1”(t) + ( ) ()+—/()—o

R
Introduce @« = — and w =

1
2L VILC'



The RLC electrical circuit.

Consider an electric circuit with
resistance R, non-zero capacitor R c L
C, and non-zero inductance L, as -

in the figure. I (t) : electric current.

Kirchhoff’s Law: The electric current flowing in the circuit satisfies:

LI'(t) + RI(t) C/

1
Derivate both sides above: L/1"(t)+ R1I'(t) + e (t)=0.

Divide by L: 1”(t) + ( ) ()+—/()—o

R 1
Introduce « = — and w = ——, then " +2al’ +w? 1 =0.

2L VLC



The RLC electrical circuit.

Example

Find real-valued fundamental solutions to I” + 2a I’ 4+ w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.
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The RLC electrical circuit.

Example
Find real-valued fundamental solutions to I” + 2a I’ 4+ w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r? + 2ar + w?.
The roots are:

ry = %[—204 + V4a? — 402



The RLC electrical circuit.

Example
Find real-valued fundamental solutions to I” + 2a I’ 4+ w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r? + 2ar + w?.
The roots are:
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The RLC electrical circuit.

Example
Find real-valued fundamental solutions to I” + 2a I’ 4+ w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r? + 2ar + w?.
The roots are:

ri:%[—2aj:\/W] = rp=-atVa?-uwi

Case (a) R=0.



The RLC electrical circuit.

Example
Find real-valued fundamental solutions to I” + 2a I’ 4+ w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r? + 2ar + w?.
The roots are:

ri:%[—2aj:\/W] = rp=-atVa?-uwi

Case (a) R =0. This implies a = 0,



The RLC electrical circuit.

Example
Find real-valued fundamental solutions to I” + 2a I’ 4+ w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r? + 2ar + w?.
The roots are:

ri:%[—2aj:\/W] = rp=-atVa?-uwi

Case (a) R=0. This implies & =0, so ry = fiw.



The RLC electrical circuit.

Example
Find real-valued fundamental solutions to I” + 2a I’ 4+ w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r? + 2ar + w?.
The roots are:

ri:%[—2aj:\/W] = rp=-atVa?-uwi

Case (a) R =0. This implies &« = 0, so ry = +iw. Therefore,
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The RLC electrical circuit.

Example
Find real-valued fundamental solutions to I” + 2a I’ 4+ w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r? + 2ar + w?.

The roots are:

ri:%[—2aj:\/W] = rp=-atVa?-uwi

Case (a) R =0. This implies &« = 0, so ry = +iw. Therefore,

I,(t) = cos(wt) L(t) = sin(wt).

)



The RLC electrical circuit.

Example

Find real-valued fundamental solutions to I” + 2a I’ 4+ w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r? + 2ar + w?.
The roots are:

ri:%[—2aj:\/W] = rp=-atVa?-uwi

Case (a) R =0. This implies &« = 0, so ry = +iw. Therefore,

I,(t) = cos(wt) L(t) = sin(wt).

)

Remark: When the circuit has no resistance, the current oscillates
without dissipation.



The RLC electrical circuit.

Example
Find real-valued fundamental solutions to I” 4+ 2a I’ + w? | = 0,
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The RLC electrical circuit.

Example

Find real-valued fundamental solutions to I” 4+ 2a I’ + w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: Recall: ry = —a £+ Va2 — w2,
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The RLC electrical circuit.

Example

Find real-valued fundamental solutions to I” 4+ 2a I’ + w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: Recall: ry = —a £+ Va2 — w2,

Case (b) R < \/4L/C. This implies

41 R?2 1
2 — —— —
RR<c < w2°1c



The RLC electrical circuit.

Example

Find real-valued fundamental solutions to I” 4+ 2a I’ + w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: Recall: ry = —a £+ Va2 — w2,

Case (b) R < \/4L/C. This implies

4L R? 1
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The RLC electrical circuit.

Example

Find real-valued fundamental solutions to I” 4+ 2a I’ + w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: Recall: ry = —a £+ Va2 — w2,

Case (b) R < \/4L/C. This implies

4L R? 1
R2<f <~ E<E <~ a2<w2.

Therefore, ry = —a £ ivw? — a?2.



The RLC electrical circuit.

Example
Find real-valued fundamental solutions to /" + 2a !’ + w? | = 0,

where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.
Solution: Recall: ry = —a £+ Va2 — w2,

Case (b) R < \/4L/C. This implies
4l R? 1

2 o 1= ~ _ * 2 2

R<C <:>4L2<LC<:>a<w.

Therefore, rr = —a £ ivw? — a?. The fundamental solutions are

h(t) = e cos(Vw? —a?t),



The RLC electrical circuit.

Example
Find real-valued fundamental solutions to /" + 2a !’ + w? | = 0,

where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.
Solution: Recall: ry = —a £+ Va2 — w2,

Case (b) R < \/4L/C. This implies
4l R? 1

2 - = ~ _ * 2 2

R<C ©4L2<LC<:>a<w.

Therefore, rr = —a £ ivw? — a?. The fundamental solutions are

L(t) =e * cos(Vw? —a?t), h(t)=e " sin(vVw?—a?t).



The RLC electrical circuit.

Example

Find real-valued fundamental solutions to I” 4+ 2a I’ + w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: Recall: ry = —a £+ Va2 — w2,

Case (b) R < \/4L/C. This implies
4l R? 1

2 - = ~ _ * 2 2

R<C ©4L2<LC<:>a<w.

Therefore, rr = —a £ ivw? — a?. The fundamental solutions are

h(e) = e % cos(Vi? — a?t),  (t) = e sin(v/? — ).

o

1 (t) : electric current.




The RLC electrical circuit.

Example

Find real-valued fundamental solutions to I” 4+ 2a I’ + w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: Recall: ry = —a £+ Va2 — w2,

Case (b) R < \/4L/C. This implies
4l R? 1

2 - = ~ _ * 2 2

R<C ©4L2<LC<:>a<w.

Therefore, rr = —a £ ivw? — a?. The fundamental solutions are

1 (t) : electric current.
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The RLC electrical circuit.

Example

Find real-valued fundamental solutions to I” 4+ 2a I’ + w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: Recall: ry = —a £+ Va2 — w2,

Case (b) R < \/4L/C. This implies
4l R? 1

2 o 1= ~ _ * 2 2

R<C <:>4L2<LC<:>a<w.

Therefore, rr = —a £ ivw? — a?. The fundamental solutions are

1 (t) : electric current.

vy 353 }\ et The resistance R damps
R c L IN A e
e — ‘ \/\/ ST the current oscillations.



The Euler equation (Sect. 3.2).

» We study the Euler Equation:

(x — Xo)2)/” + po (x —Xo)y/ +qy=0.
» Solutions to the Euler equation near x,.
» The roots of the indicial polynomial.

» Different real roots.
» Repeated roots.
» Different complex roots.



The Euler equation
Definition

Given real constants p,, qo, the Euler differential equation for the
unknown y with singular point at x, € R is given by

(X—XO)ZYII+P0(X—X0)YI+%y:0-
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The Euler equation

Definition
Given real constants p,, q,, the Euler differential equation for the
unknown y with singular point at x, € R is given by

(X—Xo)zy,/+Po(X—Xo)y/+QOy:0-

Remarks:
» The Euler equation has variable coefficients.
» Functions y(x) = €™ are not solutions of the Euler equation.
» The point x, € R is a singular point of the equation.

» The particular case x, = 0 is is given by

Xy +pxy +qy=0.



The Euler equation (Sect. 3.2).

» We study the Euler Equation:

(x — Xo)2)/” + po (x —Xo)y/ +qy=0.
» Solutions to the Euler equation near x,.
» The roots of the indicial polynomial.

» Different real roots.
» Repeated roots.
» Different complex roots.
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Summary of the main idea:

» The main idea to find solution to the constant coefficients
equation y” + a, y' 4+ a, y = 0 was to look for functions of the
form y(x) = e™.
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Solutions to the Euler equation near x,.

Summary of the main idea:

» The main idea to find solution to the constant coefficients
equation y” + a, y' 4+ a, y = 0 was to look for functions of the
form y(x) = e™. The exponential cancels out from the
equation and we obtain an equation only for r without x,
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Solutions to the Euler equation near x,.

Summary of the main idea:

» The main idea to find solution to the constant coefficients
equation y” + a, y' 4+ a, y = 0 was to look for functions of the
form y(x) = e™. The exponential cancels out from the
equation and we obtain an equation only for r without x,

(r2+alr+ao)e”<:0 & (r2+alr+ao):0. (1)

> In the case of the Euler equation x? y” + poxy' 4+ goy = 0 the
exponential functions e™ do not have the property given in
Eq. (1), since

(x2r2+p0xr+q0)e'X:0 & X°rP4pxr+qg =0,

but the later equation still involves the variable x.
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Summary of the main idea: Look for solutions like y(x) = x".
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Summary of the main idea: Look for solutions like y(x) = x".
These function have the following property:

y'(x)= rx™1 = xy'(x) = rx’;

Y'(x) = rlr = )52
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These function have the following property:
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Solutions to the Euler equation near x,.

Summary of the main idea: Look for solutions like y(x) = x".
These function have the following property:

Yx)=rxt = xy(x)=rx";
YV'(X)=r(r—=1)x"% = xy'"(x)=r(r-1)x".

2.1

Introduce y = x" into Euler’s equation x*y” + pyxy' + gy =0,



Solutions to the Euler equation near x,.

Summary of the main idea: Look for solutions like y(x) = x".
These function have the following property:
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Solutions to the Euler equation near x,.

Summary of the main idea: Look for solutions like y(x) = x".
These function have the following property:

Yx)=rx1 = xy(x)=rx;

YV'(X)=r(r—=1)x"% = xy'"(x)=r(r-1)x".

Introduce y = x" into Euler's equation x> y” + poxy’ + goy = 0,
for x # 0 we obtain

Hr—D+pral v =0 & r(r—1)+pr+a=0

The last equation involves only r, not x.

This equation is called the indicial equation, and is also called the
Euler characteristic equation.



Solutions to the Euler equation near x,.

Theorem (Euler equation, x, = 0)

Given py, qo, X, € R, consider the Euler equation
X2 y" + poxy' +aoy = 0. (2)
Let r., r. be solutions of r(r — 1) + p,r + g, = 0.
(a) If r. # r., then a general solution of Eq. (2) is
y(x) = c|x|™ + alx|™, x#0, ¢, ¢ €R (orC).
(b) If r. =r. =7, then a real-valued general solution of Eq. (2) is
y(x) = [co+ e In|x|] X", x#0, c, g eR.

Given x; # 0, y,, y1 € R, there is a unique solution to the IVP
Yt poxy +ay =0, y(x)=ye y(x)=y.



Solutions to the Euler equation near x,.

Theorem (Euler equation, x, # 0)

Given p,, qo, X, € R, consider the Euler equation
(x = x0)?y" + Po(x = x0) ¥’ + Goy = 0. (3)
Let r,, r- be solutions of r(r — 1) + p,r + g, = 0.
(a) Ifr. # r., then a general solution of Eq. (3) is
y(x) = colx — x| +ci|x — x|, x# x5, co ¢ ER (0orC).
(b) If r. =r. =7, then a real-valued general solution of Eq. (3) is

y(x) = |:Cg +¢ln|x — xo\} |x — x0|?, X # X9, Gy C; € R,

Given x; # X,, Yo, ¥1 € R, there is a unique solution to the IVP

(x = %)Y +Po(x—x) Y +qQy =0, y(x))=yo ¥ (x)=y.



The Euler equation (Sect. 3.2).

» We study the Euler Equation:

(x — Xo)2)/” + po (x —Xo)y/ +qy=0.
» Solutions to the Euler equation near x,.
» The roots of the indicial polynomial.

» Different real roots.
» Repeated roots.
» Different complex roots.
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x2y" +4xy' 42y =0.



Different real roots.

Example

Find the general solution of the Euler equation

x2y" +4xy' 42y =0.

Solution: We look for solutions of the form y(x) = x",



Different real roots.

Example

Find the general solution of the Euler equation

x2y" +4xy' 42y =0.

Solution: We look for solutions of the form y(x) = x",

xy'(x) = <",



Different real roots.

Example

Find the general solution of the Euler equation

x2y" +4xy' 42y =0.

Solution: We look for solutions of the form y(x) = x",

xy'(x) = <", x2y"(x) = r(r—1)x".



Different real roots.

Example

Find the general solution of the Euler equation

x2y" +4xy' 42y =0.

Solution: We look for solutions of the form y(x) = x",
xy'(x) = <", x2y"(x) = r(r—1)x".

Introduce y(x) = x" into Euler equation,



Different real roots.

Example
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Solution: We look for solutions of the form y(x) = x",
xy'(x) = <", x2y"(x) = r(r—1)x".
Introduce y(x) = x" into Euler equation,
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Different real roots.

Example

Find the general solution of the Euler equation

x2y" +4xy' 42y =0.

Solution: We look for solutions of the form y(x) = x",
xy'(x) = <", x2y"(x) = r(r—1)x".
Introduce y(x) = x" into Euler equation,

[r(r=1)+4r+2]x"=0 < r(r—1)+4r+2=0.



Different real roots.

Example

Find the general solution of the Euler equation

x2y" +4xy' 42y =0.

Solution: We look for solutions of the form y(x) = x",
xy'(x) = <", x2y"(x) = r(r—1)x".
Introduce y(x) = x" into Euler equation,
[r(r=1)+4r+2]x"=0 < r(r—1)+4r+2=0.

The solutions of r? + 3r +2 = 0 are given by



Different real roots.

Example

Find the general solution of the Euler equation

x2y" +4xy' +2y =0.

Solution: We look for solutions of the form y(x) = x",
xy'(x) = <", x2y"(x) = r(r —1)x"
Introduce y(x) = x" into Euler equation,
[r(r=1)+4r+2]x"=0 < r(r—1)+4r+2=0.

The solutions of r? + 3r +2 = 0 are given by

1
=[-3+v9-%8



Different real roots.

Example

Find the general solution of the Euler equation

x2y" +4xy' +2y =0.

Solution: We look for solutions of the form y(x) = x",
xy'(x) = <", x2y"(x) = r(r —1)x"
Introduce y(x) = x" into Euler equation,
[r(r=1)+4r+2]x"=0 < r(r—1)+4r+2=0.

The solutions of r? + 3r +2 = 0 are given by

:%[—31\/9—8 = rp=-1 r.=-2



Different real roots.

Example

Find the general solution of the Euler equation
x2y" +4xy' 42y =0.
Solution: We look for solutions of the form y(x) = x",
xy'(x) = <", x2y"(x) = r(r—1)x".
Introduce y(x) = x" into Euler equation,
[r(r=1)+4r+2]x"=0 < r(r—1)+4r+2=0.

The solutions of r? + 3r +2 = 0 are given by

ri:%[f3:|:\/9—8 = rp=-1 r=-2

The general solution is y(x) = ¢ |x|™* + ¢, |x| 2.



The Euler equation (Sect. 3.2).

» We study the Euler Equation:

(x — Xo)2)/” + po (x —Xo)y/ +qy=0.
» Solutions to the Euler equation near x,.
» The roots of the indicial polynomial.

» Different real roots.
> Repeated roots.
» Different complex roots.



Repeated roots.

Example
Find the general solution of x?y” —3xy’ +4y =0.
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Repeated roots.

Example

Find the general solution of x?y” —3xy’ +4y =0.
Solution: We look for solutions of the form y(x) = x",

xy'(x) = <",



Repeated roots.

Example

Find the general solution of x?y” —3xy’ +4y =0.
Solution: We look for solutions of the form y(x) = x",

xy'(x) = rx", x? y'(x)=r(r—1)x".



Repeated roots.

Example

Find the general solution of x?y” —3xy’ +4y =0.
Solution: We look for solutions of the form y(x) = x",

xy'(x) = rx", x? y'(x)=r(r—1)x".

Introduce y(x) = x" into Euler equation,



Repeated roots.

Example

Find the general solution of x?y” —3xy’ +4y =0.
Solution: We look for solutions of the form y(x) = x",

xy'(x) = rx", x2y"(x) =r(r—1)x".
Introduce y(x) = x" into Euler equation,

[r(r—1)=3r+4]x"=0



Repeated roots.

Example

Find the general solution of x?y” —3xy’ +4y =0.
Solution: We look for solutions of the form y(x) = x",

xy'(x) = rx", x2y"(x) =r(r—1)x".
Introduce y(x) = x" into Euler equation,

[r(r=1)=3r+4]x"=0 < r(r—1)—3r+4=0.



Repeated roots.

Example

Find the general solution of x?y” —3xy’ +4y =0.
Solution: We look for solutions of the form y(x) = x",

xy'(x) = rx", x2y"(x) =r(r—1)x".
Introduce y(x) = x" into Euler equation,
[r(r=1)=3r+4]x"=0 < r(r—1)—3r+4=0.

The solutions of r?> — 4r + 4 = 0 are given by



Repeated roots.

Example

Find the general solution of x?y” —3xy' 4+ 4y =0.

Solution: We look for solutions of the form y(x) = x",
xy'(x) = rx", x2y"(x) =r(r—1)x".

Introduce y(x) = x" into Euler equation,

[r(r=1)=3r+4]x"=0 < r(r—1)—3r+4=0.

The solutions of r?> — 4r + 4 = 0 are given by

1
i:§[4i 16 — 16



Repeated roots.

Example

Find the general solution of x?y” —3xy' 4+ 4y =0.

Solution: We look for solutions of the form y(x) = x",
xy'(x) = rx", x2y"(x) =r(r—1)x".

Introduce y(x) = x" into Euler equation,

[r(r=1)=3r+4]x"=0 < r(r—1)—3r+4=0.

The solutions of r?> — 4r + 4 = 0 are given by

1
i:§[4i 16—-16] = r=r_ =2



Repeated roots.

Example

Find the general solution of x?y” —3xy’ +4y =0.
Solution: We look for solutions of the form y(x) = x",

xy'(x) = rx", x? y'(x)=r(r—1)x".

Introduce y(x) = x" into Euler equation,

[r(r=1)=3r+4]x"=0 < r(r—1)—3r+4=0.

The solutions of r?> — 4r + 4 = 0 are given by

1
+=5[4+V16-16] = ri=r =2
Two linearly independent solutions are

yi(x) = x2, Vs :len(\x|).



Repeated roots

Example

Find the general solution of x?y” —3xy’ +4y =0.
Solution: We look for solutions of the form y(x) = x",

xy'(x) = rx", x2y"(x) =r(r—1)x".
Introduce y(x) = x" into Euler equation,
[r(r=1)=3r+4]x"=0 < r(r—1)—3r+4=0.

The solutions of r?> — 4r + 4 = 0 are given by

1
jE:§[4i 16—-16] = r=r_=2.
Two linearly independent solutions are
n)=x% v =x2In(|x)).

The general solution is y(x) = ¢; x* + ¢, x% In(|x|).



The Euler equation (Sect. 3.2).

» We study the Euler Equation:

(x — Xo)2)/” + po (x —Xo)y/ +qy=0.
» Solutions to the Euler equation near x,.
» The roots of the indicial polynomial.

» Different real roots.
» Repeated roots.
» Different complex roots.



Different complex roots.

Example
Find the general solution of the Euler equation

x*y" —3xy'+13y = 0.
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Different complex roots.

Example
Find the general solution of the Euler equation

x*y" —3xy'+13y = 0.

Solution: We look for solutions of the form y(x) = x",

xy'(x) = ",



Different complex roots.

Example
Find the general solution of the Euler equation

x*y" —3xy'+13y = 0.
Solution: We look for solutions of the form y(x) = x",

xy'(x) = ", x? y'(x)=r(r—1)x"



Different complex roots.

Example
Find the general solution of the Euler equation

x2y" —3xy' +13y =0.
Solution: We look for solutions of the form y(x) = x",
xy'(x) = ", x2y"(x) = r(r—1)x"

Introduce y(x) = x" into Euler equation



Different complex roots.

Example
Find the general solution of the Euler equation

x2y" —3xy' +13y =0.
Solution: We look for solutions of the form y(x) = x",

xy'(x) = ", x? y'(x)=r(r—1)x"

Introduce y(x) = x" into Euler equation

[r(r—1)—3r+13]x"=0



Different complex roots.

Example
Find the general solution of the Euler equation

x2y" —3xy' +13y =0.
Solution: We look for solutions of the form y(x) = x",

xy'(x) = ", x? y'(x)=r(r—1)x"

Introduce y(x) = x" into Euler equation

[r(r=1)-3r+13]x"=0 & r(r—1)—3r+13=0.



Different complex roots.

Example
Find the general solution of the Euler equation

x*y" —3xy'+13y = 0.
Solution: We look for solutions of the form y(x) = x",

xy'(x) = ", x? y'(x)=r(r—1)x"

Introduce y(x) = x" into Euler equation
[r(r=1)-3r+13]x"=0 & r(r—1)—3r+13=0.
The solutions of the indicial equation r?> —4r 4+ 13 = 0 are

1
ri:§[4:t 16 — 52



Different complex roots.

Example
Find the general solution of the Euler equation

x*y" —3xy'+13y = 0.
Solution: We look for solutions of the form y(x) = x",

xy'(x) = ", x? y'(x)=r(r—1)x"

Introduce y(x) = x" into Euler equation
[r(r=1)-3r+13]x"=0 & r(r—1)—3r+13=0.
The solutions of the indicial equation r?> —4r 4+ 13 = 0 are

1 1
ri:§[4:|: 16 — 52| = ri:§[4j: —36



Different complex roots.

Example
Find the general solution of the Euler equation

x2y" —3xy' +13y = 0.
Solution: We look for solutions of the form y(x) = x",
xy'(x) = ", x2y"(x) = r(r—1)x"
Introduce y(x) = x" into Euler equation
[r(r=1)-3r+13]x"=0 & r(r—1)—3r+13=0.
The solutions of the indicial equation r?> —4r 4+ 13 = 0 are

1 1 r+:2+3l'
— C[44+V16-52] = rL=-[4+/—36] =
e =5 e =3 {r:2—3i.



Different complex roots.

Example
Find the general solution of the Euler equation

x2y" —3xy' +13y =0.
Solution: We look for solutions of the form y(x) = x",
xy'(x) = ", x2y"(x) = r(r—1)x"
Introduce y(x) = x" into Euler equation
[r(r=1)-3r+13]x"=0 & r(r—1)—3r+13=0.
The solutions of the indicial equation r?> —4r 4+ 13 = 0 are

1 1 r+:2+3l'
— C[44+V16-52] = rL=-[4+/—36] =
e =5 e =3 {r:2—3i.

The general solution is y(x) = ¢, |x|(*3) + ¢, [x|(?=37),



Different complex roots.

Theorem (Real-valued fundamental solutions)
If po, qo € R satisfy that [(p, — 1)> — 4q,| < 0, then the indicial

polynomial p(r) = r(r — 1) + por + q, of the Euler equation
X2y" + poxy' + gy =0 (4)
has complex roots r, = a+ i3 and r. = o — i3, where

04:—(%2_1)7 ﬁ— 4G, — (po — 1)2.

A complex-valued fundamental set of solution to Eq. (4) is
7i0x) = X|OFD 0 gi(x) = x|,
A real-valued fundamental set of solutions to Eq. (4) is

yi(x) = \x\o‘cos(ﬁ In \x\), yo(x) = \x]o‘sin(ﬂ In ’XD



Different complex roots.

Proof: Given j = |x|(@") and §, = |x|(@=0),
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Different complex roots.

Proof: Given j = |x|(“*#) and §, = |x|(®=®)  introduce

1

}/1:§(~1+)72)7 )/125()71—}72)-

[y

Use another Euler equation to rewrite y and ¥,,

n= |X|(a+iﬂ)



Different complex roots.

Proof: Given j = |x|(“*#) and §, = |x|(®=®)  introduce

1

}/1:§(~1+)72)7 )/125()71—}72)-

[y

Use another Euler equation to rewrite y and ¥,,

$i = Ix|FO) = x| x|



Different complex roots.

Proof: Given j = |x|(“*#) and §, = |x|(®=®)  introduce

1

}/1:§(~1+)72)7 )/125()71—}72)-

[y

Use another Euler equation to rewrite y and ¥,,

h= |X|(a+iﬂ) = |x|* |x|’ﬂ = |x|* ALICSES!



Different complex roots.

Proof: Given j = |x|(“*#) and §, = |x|(®=®)  introduce

1

}/1:§(~1+)72)7 )/125()71—}72)-

[y

Use another Euler equation to rewrite y and ¥,,

7= |X|(a+iﬂ) = |x|* |X|iﬁ = |x|* eIn(|x|"5) = |x|* eBIn(Ix])



Different complex roots.

Proof: Given j = |x|(“*#) and §, = |x|(®=®)  introduce

1

}/1:§(~1+)72)7 )/125()71—)72)-

[y

Use another Euler equation to rewrite y and ¥,,

7= |X|(a+iﬂ) = |x|* |X|iﬁ = |x|* eIn(|x|"5) = |x|* eBIn(Ix])

71 = |x|*[cos(BIn|[x]) + 1sin(3In|x])],



Different complex roots.

Proof: Given j = |x|(“*#) and §, = |x|(®=®)  introduce

[y

" 1,0 .
Y1:§(1+Y2)7 )/125()/1—)/2)-

Use another Euler equation to rewrite y and ¥,,

7= |X|(a+iﬂ) = |x|* |X|iﬁ = |x|* eIn(|x|"5) = |x|* eBIn(Ix])

71 = |x|*[cos(BIn|[x]) + 1sin(3In|x])],
7> = |x|*[cos(BIn|x|) — Lsin(BIn|x])].



Different complex roots.

Proof: Given j = |x|(“*#) and §, = |x|(®=®)  introduce

[y

" 1,0 .
Y1:§(1+Y2)7 )/125()/1—)/2)-

Use another Euler equation to rewrite y and ¥,,

7= |X|(a+iﬂ) = |x|* |X|iﬁ = |x|* eIn(|x|"5) = |x|* eBIn(Ix])

$1 = [x|* [cos(BIn|x|) + Lsin(B1In |x])],
7> = |x|*[cos(BIn|x|) — Lsin(BIn|x])].
We conclude that
yi(x) = |x|* cos (8 In|x]), va(x) = |x|*sin(3 In|x|).



Different complex roots.

Example
Find a real-valued general solution of the Euler equation

x2y" —3xy' +13y = 0.
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Different complex roots.

Example
Find a real-valued general solution of the Euler equation

x2y" —3xy' +13y = 0.
Solution: The indicial equation is r(r —1) —3r 4+ 13 = 0.

The solutions of the indicial equations are



Different complex roots.

Example
Find a real-valued general solution of the Euler equation

x2y" —3xy' +13y = 0.
Solution: The indicial equation is r(r —1) —3r 4+ 13 = 0.

The solutions of the indicial equations are

rP—4r+13=0



Different complex roots.

Example
Find a real-valued general solution of the Euler equation

x2y" —3xy' +13y = 0.
Solution: The indicial equation is r(r —1) —3r 4+ 13 = 0.

The solutions of the indicial equations are

rP—4r+13=0 = r.=2+3i, r.=2-3i.



Different complex roots.

Example
Find a real-valued general solution of the Euler equation
x2y" —3xy' +13y = 0.
Solution: The indicial equation is r(r —1) —3r 4+ 13 = 0.
The solutions of the indicial equations are
r’—4r+13=0 = r,=2+3i, r.=2-3i
A complex-valued general solution is

|23/

y(x)=2¢& |x| (2+37) +C |x ¢, ¢ eC.



Different complex roots.

Example
Find a real-valued general solution of the Euler equation

x2y" —3xy' +13y = 0.
Solution: The indicial equation is r(r —1) —3r 4+ 13 = 0.

The solutions of the indicial equations are
r’—4r+13=0 = r,=2+3i, r.=2-3i
A complex-valued general solution is
y(x) =& x| 1 & |x3) g, g ec.

A real-valued general solution is

y(x) = a|x|?cos(3In|x]) + ¢ |x|?sin(3In|x]), @, & €R.

<



