Non-homogeneous equations (Sect. 2.5).

- We study: $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=b(t)$.
- Operator notation and preliminary results.
- Summary of the undetermined coefficients method.
- Using the method in few examples.
- The guessing solution table.

Operator notation and preliminary results.

Notation: Given functions p, q, denote

$$
L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y
$$

Operator notation and preliminary results.

Notation: Given functions p, q, denote

$$
L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y .
$$

Therefore, the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

can be written as

$$
L(y)=f
$$

Operator notation and preliminary results.

Notation: Given functions p, q, denote

$$
L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y
$$

Therefore, the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

can be written as

$$
L(y)=f
$$

The homogeneous equation can be written as

$$
L(y)=0 .
$$

Operator notation and preliminary results.

Notation: Given functions p, q, denote

$$
L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y
$$

Therefore, the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

can be written as

$$
L(y)=f .
$$

The homogeneous equation can be written as

$$
L(y)=0 .
$$

The function L acting on a function y is called an operator.

Operator notation and preliminary results.

Remark: The operator L is a linear function of y.

Operator notation and preliminary results.

Remark: The operator L is a linear function of y.
Theorem
For every continuously differentiable functions $y_{1}, y_{2}:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ and every $c_{1}, c_{2} \in \mathbb{R}$ holds that

$$
L\left(c_{1} y_{1}+c_{2} y_{2}\right)=c_{1} L\left(y_{1}\right)+c_{2} L\left(y_{2}\right) .
$$

Operator notation and preliminary results.

Remark: The operator L is a linear function of y.
Theorem
For every continuously differentiable functions $y_{1}, y_{2}:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ and every $c_{1}, c_{2} \in \mathbb{R}$ holds that

$$
L\left(c_{1} y_{1}+c_{2} y_{2}\right)=c_{1} L\left(y_{1}\right)+c_{2} L\left(y_{2}\right) .
$$

Proof:
$L\left(c_{1} y_{1}+c_{2} y_{2}\right)=\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime \prime}+p(t)\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime}+q(t)\left(c_{1} y_{1}+c_{2} y_{2}\right)$

Operator notation and preliminary results.

Remark: The operator L is a linear function of y.
Theorem
For every continuously differentiable functions $y_{1}, y_{2}:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ and every $c_{1}, c_{2} \in \mathbb{R}$ holds that

$$
L\left(c_{1} y_{1}+c_{2} y_{2}\right)=c_{1} L\left(y_{1}\right)+c_{2} L\left(y_{2}\right) .
$$

Proof:

$$
\begin{aligned}
& L\left(c_{1} y_{1}+c_{2} y_{2}\right)=\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime \prime}+p(t)\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime}+q(t)\left(c_{1} y_{1}+c_{2} y_{2}\right) \\
& \qquad \begin{aligned}
L\left(c_{1} y_{1}+c_{2} y_{2}\right) & =\left(c_{1} y_{1}^{\prime \prime}+p(t) c_{1} y_{1}^{\prime}+q(t) c_{1} y_{1}\right) \\
& +\left(c_{2} y_{2}^{\prime \prime}+p(t) c_{2} y_{2}^{\prime}+q(t) c_{2} y_{2}\right)
\end{aligned}
\end{aligned}
$$

Operator notation and preliminary results.

Remark: The operator L is a linear function of y.
Theorem
For every continuously differentiable functions $y_{1}, y_{2}:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ and every $c_{1}, c_{2} \in \mathbb{R}$ holds that

$$
L\left(c_{1} y_{1}+c_{2} y_{2}\right)=c_{1} L\left(y_{1}\right)+c_{2} L\left(y_{2}\right)
$$

Proof:

$$
\begin{gathered}
L\left(c_{1} y_{1}+c_{2} y_{2}\right)=\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime \prime}+p(t)\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime}+q(t)\left(c_{1} y_{1}+c_{2} y_{2}\right) \\
\qquad \begin{array}{c}
L\left(c_{1} y_{1}+c_{2} y_{2}\right)=\left(c_{1} y_{1}^{\prime \prime}+p(t) c_{1} y_{1}^{\prime}+q(t) c_{1} y_{1}\right) \\
+\left(c_{2} y_{2}^{\prime \prime}+p(t) c_{2} y_{2}^{\prime}+q(t) c_{2} y_{2}\right) \\
L\left(c_{1} y_{1}+c_{2} y_{2}\right)=c_{1} L\left(y_{1}\right)+c_{2} L\left(y_{2}\right) .
\end{array}
\end{gathered}
$$

Operator notation and preliminary results.

Theorem
Given functions p, q, f, let $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$. If the functions y_{1} and y_{2} are fundamental solutions of the homogeneous equation

$$
L(y)=0
$$

and y_{p} is any solution of the non-homogeneous equation

$$
\begin{equation*}
L\left(y_{p}\right)=f, \tag{1}
\end{equation*}
$$

then any other solution y of the non-homogeneous equation above is given by

$$
\begin{equation*}
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t) \tag{2}
\end{equation*}
$$

where $c_{1}, c_{2} \in \mathbb{R}$.

Operator notation and preliminary results.

Theorem
Given functions p, q, f, let $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$. If the functions y_{1} and y_{2} are fundamental solutions of the homogeneous equation

$$
L(y)=0,
$$

and y_{p} is any solution of the non-homogeneous equation

$$
\begin{equation*}
L\left(y_{p}\right)=f, \tag{1}
\end{equation*}
$$

then any other solution y of the non-homogeneous equation above is given by

$$
\begin{equation*}
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t) \tag{2}
\end{equation*}
$$

where $c_{1}, c_{2} \in \mathbb{R}$.
Notation: The expression for y in Eq. (2) is called the general solution of the non-homogeneous Eq. (1).

Operator notation and preliminary results.

Theorem
Given functions p, q, let $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$. If the function f can be written as $f(t)=f_{1}(t)+\cdots+f_{n}(t)$, with $n \geqslant 1$, and if there exist functions $y_{p_{1}}, \cdots, y_{p_{n}}$ such that

$$
L\left(y_{p_{i}}\right)=f_{i}, \quad i=1, \cdots, n
$$

then the function $y_{p}=y_{p_{1}}+\cdots+y_{p_{n}}$ satisfies the non-homogeneous equation

$$
L\left(y_{p}\right)=f
$$

Non-homogeneous equations (Sect. 2.5).

- We study: $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=b(t)$.
- Operator notation and preliminary results.
- Summary of the undetermined coefficients method.
- Using the method in few examples.
- The guessing solution table.

Summary of the undetermined coefficients method.

Problem: Given a constant coefficients linear operator $L(y)=y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y$, with $a_{1}, a_{2} \in \mathbb{R}$, find every solution of the non-homogeneous differential equation

$$
L(y)=f
$$

Summary of the undetermined coefficients method.

Problem: Given a constant coefficients linear operator $L(y)=y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y$, with $a_{1}, a_{2} \in \mathbb{R}$, find every solution of the non-homogeneous differential equation

$$
L(y)=f
$$

Remarks:

- The undetermined coefficients is a method to find solutions to linear, non-homogeneous, constant coefficients, differential equations.

Summary of the undetermined coefficients method.

Problem: Given a constant coefficients linear operator $L(y)=y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y$, with $a_{1}, a_{2} \in \mathbb{R}$, find every solution of the non-homogeneous differential equation

$$
L(y)=f .
$$

Remarks:

- The undetermined coefficients is a method to find solutions to linear, non-homogeneous, constant coefficients, differential equations.
- It consists in guessing the solution y_{p} of the non-homogeneous equation

$$
L\left(y_{p}\right)=f,
$$

for particularly simple source functions f.

Summary of the undetermined coefficients method.

Summary:

Summary of the undetermined coefficients method.

Summary:
(1) Find the general solution of the homogeneous equation $L\left(y_{h}\right)=0$.

Summary of the undetermined coefficients method.

Summary:

(1) Find the general solution of the homogeneous equation $L\left(y_{h}\right)=0$.
(2) If f has the form $f=f_{1}+\cdots+f_{n}$, with $n \geqslant 1$, then look for solutions $y_{p_{i}}$, with $i=1, \cdots, n$ to the equations

$$
L\left(y_{p_{i}}\right)=f_{i}
$$

Summary of the undetermined coefficients method.

Summary:

(1) Find the general solution of the homogeneous equation $L\left(y_{h}\right)=0$.
(2) If f has the form $f=f_{1}+\cdots+f_{n}$, with $n \geqslant 1$, then look for solutions $y_{p_{i}}$, with $i=1, \cdots, n$ to the equations

$$
L\left(y_{p_{i}}\right)=f_{i}
$$

Once the functions $y_{p_{i}}$ are found, then construct

$$
y_{p}=y_{p_{1}}+\cdots+y_{p_{n}}
$$

Summary of the undetermined coefficients method.

Summary:

(1) Find the general solution of the homogeneous equation $L\left(y_{h}\right)=0$.
(2) If f has the form $f=f_{1}+\cdots+f_{n}$, with $n \geqslant 1$, then look for solutions $y_{p_{i}}$, with $i=1, \cdots, n$ to the equations

$$
L\left(y_{p_{i}}\right)=f_{i} .
$$

Once the functions $y_{p_{i}}$ are found, then construct

$$
y_{p}=y_{p_{1}}+\cdots+y_{p_{n}}
$$

(3) Given the source functions f_{i}, guess the solutions functions $y_{p_{i}}$ following the Table below.

Summary of the undetermined coefficients method.

Summary (cont.):

$f_{i}(t) \quad(K, m, a, b$, given.)	$y_{p_{i}}(t) \quad$ (Guess) (k not given.)
$K e^{a t}$	$k e^{a t}$
$K t^{m}$	$k_{m} t^{m}+k_{m-1} t^{m-1}+\cdots+k_{0}$
$K \cos (b t)$	$k_{1} \cos (b t)+k_{2} \sin (b t)$
$K \sin (b t)$	$k_{1} \cos (b t)+k_{2} \sin (b t)$
$K t^{m} e^{a t}$	$e^{a t}\left(k_{m} t^{m}+\cdots+k_{0}\right)$
$K e^{a t} \cos (b t)$	$e^{a t}\left[k_{1} \cos (b t)+k_{2} \sin (b t)\right]$
$K K e^{a t} \sin (b t)$	$e^{a t}\left[k_{1} \cos (b t)+k_{2} \sin (b t)\right]$
$K t^{m} \cos (b t)$	$\left(k_{m} t^{m}+\cdots+k_{0}\right)\left[a_{1} \cos (b t)+a_{2} \sin (b t)\right]$
$K t^{m} \sin (b t)$	$\left(k_{m} t^{m}+\cdots+k_{0}\right)\left[a_{1} \cos (b t)+a_{2} \sin (b t)\right]$

Summary of the undetermined coefficients method.

Summary (cont.):
(4) If any guessed function $y_{p_{i}}$ satisfies the homogeneous equation $L\left(y_{p_{i}}\right)=0$, then change the guess to the function

$$
t^{s} y_{p_{i}}, \quad \text { with } \quad s \geqslant 1
$$

and s sufficiently large such that $L\left(t^{s} y_{p_{i}}\right) \neq 0$.

Summary of the undetermined coefficients method.

Summary (cont.):
(4) If any guessed function $y_{p_{i}}$ satisfies the homogeneous equation $L\left(y_{p_{i}}\right)=0$, then change the guess to the function

$$
t^{s} y_{p_{i}}, \quad \text { with } \quad s \geqslant 1
$$

and s sufficiently large such that $L\left(t^{s} y_{p_{i}}\right) \neq 0$.
(5) Impose the equation $L\left(y_{p_{i}}\right)=f_{i}$ to find the undetermined constants k_{1}, \cdots, k_{m}, for the appropriate m, given in the table above.

Summary of the undetermined coefficients method.

Summary (cont.):
(4) If any guessed function $y_{p_{i}}$ satisfies the homogeneous equation $L\left(y_{p_{i}}\right)=0$, then change the guess to the function

$$
t^{s} y_{p_{i}}, \quad \text { with } \quad s \geqslant 1
$$

and s sufficiently large such that $L\left(t^{s} y_{p_{i}}\right) \neq 0$.
(5) Impose the equation $L\left(y_{p_{i}}\right)=f_{i}$ to find the undetermined constants k_{1}, \cdots, k_{m}, for the appropriate m, given in the table above.
(6) The general solution to the original differential equation $L(y)=f$ is then given by

$$
y(t)=y_{h}(t)+y_{p_{1}}+\cdots+y_{p_{n}} .
$$

Non-homogeneous equations (Sect. 2.5).

- We study: $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=b(t)$.
- Operator notation and preliminary results.
- Summary of the undetermined coefficients method.
- Using the method in few examples.
- The guessing solution table.

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Notice: $L(y)=y^{\prime \prime}-3 y^{\prime}-4 y$ and $f(t)=3 e^{2 t}$.

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Notice: $L(y)=y^{\prime \prime}-3 y^{\prime}-4 y$ and $f(t)=3 e^{2 t}$.
(1) Find all solutions y_{h} to the homogeneous equation $L\left(y_{h}\right)=0$.

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Notice: $L(y)=y^{\prime \prime}-3 y^{\prime}-4 y$ and $f(t)=3 e^{2 t}$.
(1) Find all solutions y_{h} to the homogeneous equation $L\left(y_{h}\right)=0$.

The characteristic equation is

$$
r^{2}-3 r-4=0
$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Notice: $L(y)=y^{\prime \prime}-3 y^{\prime}-4 y$ and $f(t)=3 e^{2 t}$.
(1) Find all solutions y_{h} to the homogeneous equation $L\left(y_{h}\right)=0$.

The characteristic equation is

$$
r^{2}-3 r-4=0 \Rightarrow\left\{\begin{array}{l}
r_{1}=4 \\
r_{2}=-1
\end{array}\right.
$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Notice: $L(y)=y^{\prime \prime}-3 y^{\prime}-4 y$ and $f(t)=3 e^{2 t}$.
(1) Find all solutions y_{h} to the homogeneous equation $L\left(y_{h}\right)=0$.

The characteristic equation is

$$
\begin{gathered}
r^{2}-3 r-4=0 \Rightarrow\left\{\begin{array}{l}
r_{1}=4 \\
r_{2}=-1
\end{array}\right. \\
y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}
\end{gathered}
$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Notice: $L(y)=y^{\prime \prime}-3 y^{\prime}-4 y$ and $f(t)=3 e^{2 t}$.
(1) Find all solutions y_{h} to the homogeneous equation $L\left(y_{h}\right)=0$.

The characteristic equation is

$$
\begin{gathered}
r^{2}-3 r-4=0 \Rightarrow\left\{\begin{array}{l}
r_{1}=4 \\
r_{2}=-1
\end{array}\right. \\
y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}
\end{gathered}
$$

(2) Trivial in our case. The source function $f(t)=3 e^{2 t}$ cannot be simplified into a sum of simpler functions.

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Notice: $L(y)=y^{\prime \prime}-3 y^{\prime}-4 y$ and $f(t)=3 e^{2 t}$.
(1) Find all solutions y_{h} to the homogeneous equation $L\left(y_{h}\right)=0$.

The characteristic equation is

$$
\begin{gathered}
r^{2}-3 r-4=0 \Rightarrow\left\{\begin{array}{l}
r_{1}=4 \\
r_{2}=-1
\end{array}\right. \\
y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}
\end{gathered}
$$

(2) Trivial in our case. The source function $f(t)=3 e^{2 t}$ cannot be simplified into a sum of simpler functions.
(3) Table says: For $f(t)=3 e^{2 t}$ guess $y_{p}(t)=k e^{2 t}$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Recall: $y_{p}(t)=k e^{2 t}$. We need to find k.

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Recall: $y_{p}(t)=k e^{2 t}$. We need to find k.
(4) Trivial here, since $L\left(y_{p}\right) \neq 0$, we do not modify our guess.

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Recall: $y_{p}(t)=k e^{2 t}$. We need to find k.
(4) Trivial here, since $L\left(y_{p}\right) \neq 0$, we do not modify our guess.
(Recall: $L\left(y_{h}\right)=0$ iff $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.)

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Recall: $y_{p}(t)=k e^{2 t}$. We need to find k.
(4) Trivial here, since $L\left(y_{p}\right) \neq 0$, we do not modify our guess.
(Recall: $L\left(y_{h}\right)=0$ iff $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.)
(5) Introduce y_{p} into $L\left(y_{p}\right)=f$ and find k.

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Recall: $y_{p}(t)=k e^{2 t}$. We need to find k.
(4) Trivial here, since $L\left(y_{p}\right) \neq 0$, we do not modify our guess.
(Recall: $L\left(y_{h}\right)=0$ iff $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.)
(5) Introduce y_{p} into $L\left(y_{p}\right)=f$ and find k.

$$
\left(2^{2}-6-4\right) k e^{2 t}=3 e^{2 t}
$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Recall: $y_{p}(t)=k e^{2 t}$. We need to find k.
(4) Trivial here, since $L\left(y_{p}\right) \neq 0$, we do not modify our guess.
(Recall: $L\left(y_{h}\right)=0$ iff $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.)
(5) Introduce y_{p} into $L\left(y_{p}\right)=f$ and find k.

$$
\left(2^{2}-6-4\right) k e^{2 t}=3 e^{2 t} \quad \Rightarrow \quad-6 k=3
$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Recall: $y_{p}(t)=k e^{2 t}$. We need to find k.
(4) Trivial here, since $L\left(y_{p}\right) \neq 0$, we do not modify our guess.
(Recall: $L\left(y_{h}\right)=0$ iff $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.)
(5) Introduce y_{p} into $L\left(y_{p}\right)=f$ and find k.

$$
\left(2^{2}-6-4\right) k e^{2 t}=3 e^{2 t} \quad \Rightarrow \quad-6 k=3 \quad \Rightarrow \quad k=-\frac{1}{2} .
$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Recall: $y_{p}(t)=k e^{2 t}$. We need to find k.
(4) Trivial here, since $L\left(y_{p}\right) \neq 0$, we do not modify our guess.
(Recall: $L\left(y_{h}\right)=0$ iff $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.)
(5) Introduce y_{p} into $L\left(y_{p}\right)=f$ and find k.

$$
\left(2^{2}-6-4\right) k e^{2 t}=3 e^{2 t} \quad \Rightarrow \quad-6 k=3 \quad \Rightarrow \quad k=-\frac{1}{2} .
$$

We have obtained that $y_{p}(t)=-\frac{1}{2} e^{2 t}$.

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

Solution: Recall: $y_{p}(t)=k e^{2 t}$. We need to find k.
(4) Trivial here, since $L\left(y_{p}\right) \neq 0$, we do not modify our guess.
(Recall: $L\left(y_{h}\right)=0$ iff $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.)
(5) Introduce y_{p} into $L\left(y_{p}\right)=f$ and find k.

$$
\left(2^{2}-6-4\right) k e^{2 t}=3 e^{2 t} \quad \Rightarrow \quad-6 k=3 \quad \Rightarrow \quad k=-\frac{1}{2} .
$$

We have obtained that $y_{p}(t)=-\frac{1}{2} e^{2 t}$.
(6) The general solution to the inhomogeneous equation is

$$
y(t)=c_{1} e^{4 t}+c_{2} e^{-t}-\frac{1}{2} e^{2 t}
$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{4 t}
$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{4 t}
$$

Solution: We know that the general solution to homogeneous equation is $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{4 t}
$$

Solution: We know that the general solution to homogeneous equation is $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.
Following the table we guess y_{p} as $y_{p}=k e^{4 t}$.

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{4 t}
$$

Solution: We know that the general solution to homogeneous equation is $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.
Following the table we guess y_{p} as $y_{p}=k e^{4 t}$.
However, this guess satisfies $L\left(y_{p}\right)=0$.

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{4 t}
$$

Solution: We know that the general solution to homogeneous equation is $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.
Following the table we guess y_{p} as $y_{p}=k e^{4 t}$.
However, this guess satisfies $L\left(y_{p}\right)=0$.
So we modify the guess to $y_{p}=k t e^{4 t}$.

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{4 t}
$$

Solution: We know that the general solution to homogeneous equation is $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.
Following the table we guess y_{p} as $y_{p}=k e^{4 t}$.
However, this guess satisfies $L\left(y_{p}\right)=0$.
So we modify the guess to $y_{p}=k t e^{4 t}$.
Introduce the guess into $L\left(y_{p}\right)=f$.

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{4 t}
$$

Solution: We know that the general solution to homogeneous equation is $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.
Following the table we guess y_{p} as $y_{p}=k e^{4 t}$.
However, this guess satisfies $L\left(y_{p}\right)=0$.
So we modify the guess to $y_{p}=k t e^{4 t}$.
Introduce the guess into $L\left(y_{p}\right)=f$. We need to compute

$$
y_{p}^{\prime}=k e^{4 t}+4 k t e^{4 t}, \quad y_{p}^{\prime \prime}=8 k e^{4 t}+16 k t e^{4 t}
$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{4 t}
$$

Solution: Recall:

$$
y_{p}=k t e^{4 t}, \quad y_{p}^{\prime}=k e^{4 t}+4 k t e^{4 t}, \quad y_{p}^{\prime \prime}=8 k e^{4 t}+16 k t e^{4 t}
$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{4 t}
$$

Solution: Recall:

$$
\begin{gathered}
y_{p}=k t e^{4 t}, \quad y_{p}^{\prime}=k e^{4 t}+4 k t e^{4 t}, \quad y_{p}^{\prime \prime}=8 k e^{4 t}+16 k t e^{4 t} . \\
{[(8 k+16 k t)-3(k+4 k t)-4 k t] e^{4 t}=3 e^{4 t} .}
\end{gathered}
$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{4 t}
$$

Solution: Recall:

$$
\begin{gathered}
y_{p}=k t e^{4 t}, \quad y_{p}^{\prime}=k e^{4 t}+4 k t e^{4 t}, \quad y_{p}^{\prime \prime}=8 k e^{4 t}+16 k t e^{4 t} . \\
{[(8 k+16 k t)-3(k+4 k t)-4 k t] e^{4 t}=3 e^{4 t} .} \\
{[(8+16 t)-3(1+4 t)-4 t] k=3}
\end{gathered}
$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{4 t}
$$

Solution: Recall:

$$
\begin{gathered}
y_{p}=k t e^{4 t}, \quad y_{p}^{\prime}=k e^{4 t}+4 k t e^{4 t}, \quad y_{p}^{\prime \prime}=8 k e^{4 t}+16 k t e^{4 t} . \\
{[(8 k+16 k t)-3(k+4 k t)-4 k t] e^{4 t}=3 e^{4 t} .} \\
{[(8+16 t)-3(1+4 t)-4 t] k=3 \Rightarrow \quad[5+(16-12-4) t] k=3}
\end{gathered}
$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{4 t}
$$

Solution: Recall:

$$
\begin{gathered}
y_{p}=k t e^{4 t}, \quad y_{p}^{\prime}=k e^{4 t}+4 k t e^{4 t}, \quad y_{p}^{\prime \prime}=8 k e^{4 t}+16 k t e^{4 t} . \\
{[(8 k+16 k t)-3(k+4 k t)-4 k t] e^{4 t}=3 e^{4 t} .} \\
{[(8+16 t)-3(1+4 t)-4 t] k=3 \Rightarrow \quad[5+(16-12-4) t] k=3}
\end{gathered}
$$

We obtain that $k=\frac{3}{5}$.

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{4 t}
$$

Solution: Recall:

$$
\begin{gathered}
y_{p}=k t e^{4 t}, \quad y_{p}^{\prime}=k e^{4 t}+4 k t e^{4 t}, \quad y_{p}^{\prime \prime}=8 k e^{4 t}+16 k t e^{4 t} . \\
{[(8 k+16 k t)-3(k+4 k t)-4 k t] e^{4 t}=3 e^{4 t} .} \\
{[(8+16 t)-3(1+4 t)-4 t] k=3 \Rightarrow[5+(16-12-4) t] k=3}
\end{gathered}
$$

We obtain that $k=\frac{3}{5}$. Therefore, $y_{p}(t)=\frac{3}{5} t e^{4 t}$,

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{4 t}
$$

Solution: Recall:

$$
\begin{gathered}
y_{p}=k t e^{4 t}, \quad y_{p}^{\prime}=k e^{4 t}+4 k t e^{4 t}, \quad y_{p}^{\prime \prime}=8 k e^{4 t}+16 k t e^{4 t} . \\
{[(8 k+16 k t)-3(k+4 k t)-4 k t] e^{4 t}=3 e^{4 t} .} \\
{[(8+16 t)-3(1+4 t)-4 t] k=3 \Rightarrow[5+(16-12-4) t] k=3}
\end{gathered}
$$

We obtain that $k=\frac{3}{5}$. Therefore, $y_{p}(t)=\frac{3}{5} t e^{4 t}$, and

$$
y(t)=c_{1} e^{4 t}+c_{2} e^{-t}+\frac{3}{5} t e^{4 t}
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.

Following the table: Since $f=2 \sin (t)$,

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.

Following the table: Since $f=2 \sin (t)$, then we guess

$$
y_{p}=k_{1} \sin (t)+k_{2} \cos (t)
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.

Following the table: Since $f=2 \sin (t)$, then we guess

$$
y_{p}=k_{1} \sin (t)+k_{2} \cos (t)
$$

This guess satisfies $L\left(y_{p}\right) \neq 0$.

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.

Following the table: Since $f=2 \sin (t)$, then we guess

$$
y_{p}=k_{1} \sin (t)+k_{2} \cos (t)
$$

This guess satisfies $L\left(y_{p}\right) \neq 0$.
Compute: $y_{p}^{\prime}=k_{1} \cos (t)-k_{2} \sin (t), y_{p}^{\prime \prime}=-k_{1} \sin (t)-k_{2} \cos (t)$.

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.

Following the table: Since $f=2 \sin (t)$, then we guess

$$
y_{p}=k_{1} \sin (t)+k_{2} \cos (t)
$$

This guess satisfies $L\left(y_{p}\right) \neq 0$.
Compute: $y_{p}^{\prime}=k_{1} \cos (t)-k_{2} \sin (t), y_{p}^{\prime \prime}=-k_{1} \sin (t)-k_{2} \cos (t)$.

$$
\begin{gathered}
L\left(y_{p}\right)=\left[-k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
-4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t)
\end{gathered}
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall:

$$
\begin{aligned}
L\left(y_{p}\right)=[& \left.-k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
& -4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t)
\end{aligned}
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall:

$$
\begin{aligned}
& L\left(y_{p}\right)=\left[-k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
& \quad-4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t) \\
& \left(-5 k_{1}+3 k_{2}\right) \sin (t)+\left(-3 k_{1}-5 k_{2}\right) \cos (t)=2 \sin (t)
\end{aligned}
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall:

$$
\begin{aligned}
& L\left(y_{p}\right)=[\left.-k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
&-4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t) \\
&\left(-5 k_{1}+3 k_{2}\right) \sin (t)+\left(-3 k_{1}-5 k_{2}\right) \cos (t)=2 \sin (t)
\end{aligned}
$$

This equation holds for all $t \in \mathbb{R}$. In particular, at $t=\frac{\pi}{2}, t=0$.

$$
\begin{aligned}
& -5 k_{1}+3 k_{2}=2 \\
& -3 k_{1}-5 k_{2}=0,
\end{aligned}
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall:

$$
\begin{aligned}
& L\left(y_{p}\right)=[\left.-k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
&-4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t) \\
&\left(-5 k_{1}+3 k_{2}\right) \sin (t)+\left(-3 k_{1}-5 k_{2}\right) \cos (t)=2 \sin (t)
\end{aligned}
$$

This equation holds for all $t \in \mathbb{R}$. In particular, at $t=\frac{\pi}{2}, t=0$.

$$
\left.\begin{array}{l}
-5 k_{1}+3 k_{2}=2, \\
-3 k_{1}-5 k_{2}=0,
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
k_{1}=-\frac{5}{17} \\
k_{2}=\frac{3}{17}
\end{array}\right.
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall: $k_{1}=-\frac{5}{17}$ and $k_{2}=\frac{3}{17}$.

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall: $k_{1}=-\frac{5}{17}$ and $k_{2}=\frac{3}{17}$.
So the particular solution to the inhomogeneous equation is

$$
y_{p}(t)=\frac{1}{17}[-5 \sin (t)+3 \cos (t)]
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall: $k_{1}=-\frac{5}{17}$ and $k_{2}=\frac{3}{17}$.
So the particular solution to the inhomogeneous equation is

$$
y_{p}(t)=\frac{1}{17}[-5 \sin (t)+3 \cos (t)]
$$

The general solution is

$$
y(t)=c_{1} e^{4 t}+c_{2} e^{-t}+\frac{1}{17}[-5 \sin (t)+3 \cos (t)] .
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}+2 \sin (t)
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}+2 \sin (t)
$$

Solution: We know that the general solution y is given by

$$
y(t)=y_{h}(t)+y_{p_{1}}(t)+y_{p_{2}}(t)
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}+2 \sin (t)
$$

Solution: We know that the general solution y is given by

$$
y(t)=y_{h}(t)+y_{p_{1}}(t)+y_{p_{2}}(t)
$$

where $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{2 t}$,

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}+2 \sin (t)
$$

Solution: We know that the general solution y is given by

$$
y(t)=y_{h}(t)+y_{p_{1}}(t)+y_{p_{2}}(t)
$$

where $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{2 t}, L\left(y_{p_{1}}\right)=3 e^{2 t}$,

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}+2 \sin (t)
$$

Solution: We know that the general solution y is given by

$$
y(t)=y_{h}(t)+y_{p_{1}}(t)+y_{p_{2}}(t)
$$

where $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{2 t}, L\left(y_{p_{1}}\right)=3 e^{2 t}$, and $L\left(y_{p_{2}}\right)=2 \sin (t)$.

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}+2 \sin (t)
$$

Solution: We know that the general solution y is given by

$$
y(t)=y_{h}(t)+y_{p_{1}}(t)+y_{p_{2}}(t)
$$

where $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{2 t}, L\left(y_{p_{1}}\right)=3 e^{2 t}$, and $L\left(y_{p_{2}}\right)=2 \sin (t)$. We have just found out that

$$
y_{p}(t)=-\frac{1}{2} e^{2 t}, \quad y_{p_{2}}(t)=\frac{1}{17}[-5 \sin (t)+3 \cos (t)]
$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}+2 \sin (t)
$$

Solution: We know that the general solution y is given by

$$
y(t)=y_{h}(t)+y_{p_{1}}(t)+y_{p_{2}}(t)
$$

where $y_{h}(t)=c_{1} e^{4 t}+c_{2} e^{2 t}, L\left(y_{p_{1}}\right)=3 e^{2 t}$, and $L\left(y_{p_{2}}\right)=2 \sin (t)$.
We have just found out that

$$
y_{p}(t)=-\frac{1}{2} e^{2 t}, \quad y_{p_{2}}(t)=\frac{1}{17}[-5 \sin (t)+3 \cos (t)]
$$

We conclude that

$$
y(t)=c_{1} e^{4 t}+c_{2} e^{2 t}-\frac{1}{2} e^{2 t}+\frac{1}{17}[-5 \sin (t)+3 \cos (t)] .
$$

Using the method in few examples.

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$,

Using the method in few examples.

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t} .
$$

Using the method in few examples.

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=2 t^{2} e^{3 t}$,

Using the method in few examples.

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=2 t^{2} e^{3 t}$, guess

$$
y_{p}(t)=\left(k_{0}+k_{1} t+k_{2} t^{2}\right) e^{3 t} .
$$

Using the method in few examples.

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=2 t^{2} e^{3 t}$, guess

$$
y_{p}(t)=\left(k_{0}+k_{1} t+k_{2} t^{2}\right) e^{3 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 t \sin (t)$,

Using the method in few examples.

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=2 t^{2} e^{3 t}$, guess

$$
y_{p}(t)=\left(k_{0}+k_{1} t+k_{2} t^{2}\right) e^{3 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 t \sin (t)$, guess

$$
y_{p}(t)=\left(1+k_{1} t\right)\left[k_{2} \sin (t)+k_{3} \cos (t)\right] .
$$

Non-homogeneous equations (Sect. 2.5).

- We study: $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=b(t)$.
- Operator notation and preliminary results.
- Summary of the undetermined coefficients method.
- Using the method in few examples.
- The guessing solution table.

The guessing solution table.

Guessing Solution Table.

$f_{i}(t) \quad(K, m, a, b$, given.)	$y_{p_{i}}(t) \quad$ (Guess) (k not given.)
$K e^{a t}$	$k e^{a t}$
$K t^{m}$	$k_{m} t^{m}+k_{m-1} t^{m-1}+\cdots+k_{0}$
$K \cos (b t)$	$k_{1} \cos (b t)+k_{2} \sin (b t)$
$K \sin (b t)$	$k_{1} \cos (b t)+k_{2} \sin (b t)$
$K t^{m} e^{a t}$	$e^{a t}\left(k_{m} t^{m}+\cdots+k_{0}\right)$
$K e^{a t} \cos (b t)$	$e^{a t}\left[k_{1} \cos (b t)+k_{2} \sin (b t)\right]$
$K K e^{a t} \sin (b t)$	$e^{a t}\left[k_{1} \cos (b t)+k_{2} \sin (b t)\right]$
$K t^{m} \cos (b t)$	$\left(k_{m} t^{m}+\cdots+k_{0}\right)\left[a_{1} \cos (b t)+a_{2} \sin (b t)\right]$
$K t^{m} \sin (b t)$	$\left(k_{m} t^{m}+\cdots+k_{0}\right)\left[a_{1} \cos (b t)+a_{2} \sin (b t)\right]$

Non-homogeneous equations (Sect. 2.6).

- We study: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$.
- Method of variation of parameters.
- Using the method in an example.
- The proof of the variation of parameter method.
- Using the method in another example.

Method of variation of parameters.

Remarks:

- This is a general method to find solutions to equations having variable coefficients and non-homogeneous with a continuous but otherwise arbitrary source function,

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

Method of variation of parameters.

Remarks:

- This is a general method to find solutions to equations having variable coefficients and non-homogeneous with a continuous but otherwise arbitrary source function,

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

- The variation of parameter method can be applied to more general equations than the undetermined coefficients method.

Method of variation of parameters.

Remarks:

- This is a general method to find solutions to equations having variable coefficients and non-homogeneous with a continuous but otherwise arbitrary source function,

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

- The variation of parameter method can be applied to more general equations than the undetermined coefficients method.
- The variation of parameter method usually takes more time to implement than the simpler method of undetermined coefficients.

Method of variation of parameters.

Theorem (Variation of parameters)
Let $p, q, f:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ be continuous functions, then let functions $y_{1}, y_{2}:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ be linearly independent solutions to the homogeneous equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

and let the function $W_{y_{1} y_{2}}$ be the Wronskian of solutions y_{1} and y_{2}. If the functions u_{1} and u_{2} are defined by

$$
u_{1}(t)=\int-\frac{y_{2}(t) f(t)}{W_{y_{1} y_{2}}(t)} d t, \quad u_{2}(t)=\int \frac{y_{1}(t) f(t)}{W_{y_{1} y_{2}}(t)} d t
$$

then a particular solution y_{p} to the non-homogeneous differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$ is given by

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}
$$

Non-homogeneous equations (Sect. 2.6).

- We study: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$.
- Method of variation of parameters.
- Using the method in an example.
- The proof of the variation of parameter method.
- Using the method in another example.

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution:
First: Find fundamental solutions to the homogeneous equation.

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution:
First: Find fundamental solutions to the homogeneous equation. The characteristic equation is

$$
r^{2}-5 r+6=0
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution:
First: Find fundamental solutions to the homogeneous equation. The characteristic equation is

$$
r^{2}-5 r+6=0 \quad \Rightarrow \quad r=\frac{1}{2}(5 \pm \sqrt{25-24})
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution:
First: Find fundamental solutions to the homogeneous equation.
The characteristic equation is

$$
r^{2}-5 r+6=0 \Rightarrow r=\frac{1}{2}(5 \pm \sqrt{25-24}) \quad \Rightarrow \quad\left\{\begin{array}{l}
r_{1}=3 \\
r_{2}=2
\end{array}\right.
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution:
First: Find fundamental solutions to the homogeneous equation.
The characteristic equation is

$$
r^{2}-5 r+6=0 \quad \Rightarrow \quad r=\frac{1}{2}(5 \pm \sqrt{25-24}) \quad \Rightarrow \quad\left\{\begin{array}{l}
r_{1}=3 \\
r_{2}=2
\end{array}\right.
$$

Hence, $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{2 t}$.

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution:
First: Find fundamental solutions to the homogeneous equation.
The characteristic equation is

$$
r^{2}-5 r+6=0 \Rightarrow r=\frac{1}{2}(5 \pm \sqrt{25-24}) \quad \Rightarrow \quad\left\{\begin{array}{l}
r_{1}=3 \\
r_{2}=2
\end{array}\right.
$$

Hence, $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{2 t}$. Compute their Wronskian,

$$
W_{y_{1} y_{2}}(t)=\left(e^{3 t}\right)\left(2 e^{2 t}\right)-\left(3 e^{3 t}\right)\left(e^{2 t}\right)
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution:
First: Find fundamental solutions to the homogeneous equation.
The characteristic equation is

$$
r^{2}-5 r+6=0 \Rightarrow r=\frac{1}{2}(5 \pm \sqrt{25-24}) \quad \Rightarrow \quad\left\{\begin{array}{l}
r_{1}=3 \\
r_{2}=2
\end{array}\right.
$$

Hence, $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{2 t}$. Compute their Wronskian,

$$
W_{y_{1} y_{2}}(t)=\left(e^{3 t}\right)\left(2 e^{2 t}\right)-\left(3 e^{3 t}\right)\left(e^{2 t}\right) \quad \Rightarrow \quad W_{y_{1} y_{2}}(t)=-e^{5 t}
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution:
First: Find fundamental solutions to the homogeneous equation.
The characteristic equation is

$$
r^{2}-5 r+6=0 \quad \Rightarrow \quad r=\frac{1}{2}(5 \pm \sqrt{25-24}) \quad \Rightarrow \quad\left\{\begin{array}{l}
r_{1}=3 \\
r_{2}=2
\end{array}\right.
$$

Hence, $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{2 t}$. Compute their Wronskian,

$$
W_{y_{1} y_{2}}(t)=\left(e^{3 t}\right)\left(2 e^{2 t}\right)-\left(3 e^{3 t}\right)\left(e^{2 t}\right) \quad \Rightarrow \quad W_{y_{1} y_{2}}(t)=-e^{5 t}
$$

Second: We compute the functions u_{1} and u_{2}.

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution:
First: Find fundamental solutions to the homogeneous equation.
The characteristic equation is

$$
r^{2}-5 r+6=0 \quad \Rightarrow \quad r=\frac{1}{2}(5 \pm \sqrt{25-24}) \quad \Rightarrow \quad\left\{\begin{array}{l}
r_{1}=3 \\
r_{2}=2
\end{array}\right.
$$

Hence, $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{2 t}$. Compute their Wronskian,

$$
W_{y_{1} y_{2}}(t)=\left(e^{3 t}\right)\left(2 e^{2 t}\right)-\left(3 e^{3 t}\right)\left(e^{2 t}\right) \quad \Rightarrow \quad W_{y_{1} y_{2}}(t)=-e^{5 t}
$$

Second: We compute the functions u_{1} and u_{2}. By definition,

$$
u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}}, \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}}
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution: Recall: $y_{1}(t)=e^{3 t}, y_{2}(t)=e^{2 t}, W_{y_{1} y_{2}}(t)=-e^{5 t}$, and

$$
u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}}, \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}}
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution: Recall: $y_{1}(t)=e^{3 t}, y_{2}(t)=e^{2 t}, W_{y_{1} y_{2}}(t)=-e^{5 t}$, and

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}}, \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}} . \\
& u_{1}^{\prime}=-e^{2 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right)
\end{aligned}
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution: Recall: $y_{1}(t)=e^{3 t}, y_{2}(t)=e^{2 t}, W_{y_{1} y_{2}}(t)=-e^{5 t}$, and

$$
\begin{array}{r}
u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}}, \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}} \\
u_{1}^{\prime}=-e^{2 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right) \Rightarrow \quad u_{1}^{\prime}=2 e^{-2 t}
\end{array}
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution: Recall: $y_{1}(t)=e^{3 t}, y_{2}(t)=e^{2 t}, W_{y_{1} y_{2}}(t)=-e^{5 t}$, and

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}}, \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}} \\
u_{1}^{\prime}=-e^{2 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right) \quad \Rightarrow \quad u_{1}^{\prime}=2 e^{-2 t} \quad \Rightarrow \quad u_{1}=-e^{-2 t},
\end{gathered}
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution: Recall: $y_{1}(t)=e^{3 t}, y_{2}(t)=e^{2 t}, W_{y_{1} y_{2}}(t)=-e^{5 t}$, and

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}}, \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}} \\
& u_{1}^{\prime}=-e^{2 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right) \quad \Rightarrow \quad u_{1}^{\prime}=2 e^{-2 t} \quad \Rightarrow \quad u_{1}=-e^{-2 t}, \\
& u_{2}^{\prime}=e^{3 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right)
\end{aligned}
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution: Recall: $y_{1}(t)=e^{3 t}, y_{2}(t)=e^{2 t}, W_{y_{1} y_{2}}(t)=-e^{5 t}$, and

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}}, \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}} \\
u_{1}^{\prime}=-e^{2 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right) \quad \Rightarrow \quad u_{1}^{\prime}=2 e^{-2 t} \quad \Rightarrow \quad u_{1}=-e^{-2 t}, \\
u_{2}^{\prime}=e^{3 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right) \quad \Rightarrow \quad u_{2}^{\prime}=-2 e^{-t}
\end{gathered}
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution: Recall: $y_{1}(t)=e^{3 t}, y_{2}(t)=e^{2 t}, W_{y_{1} y_{2}}(t)=-e^{5 t}$, and

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}}, \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}} \\
u_{1}^{\prime}=-e^{2 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right) \quad \Rightarrow \quad u_{1}^{\prime}=2 e^{-2 t} \quad \Rightarrow \quad u_{1}=-e^{-2 t}, \\
u_{2}^{\prime}=e^{3 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right) \quad \Rightarrow \quad u_{2}^{\prime}=-2 e^{-t} \quad \Rightarrow \quad u_{2}=2 e^{-t} .
\end{gathered}
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution: Recall: $y_{1}(t)=e^{3 t}, y_{2}(t)=e^{2 t}, W_{y_{1} y_{2}}(t)=-e^{5 t}$, and

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}}, \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}} . \\
u_{1}^{\prime}=-e^{2 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right) \quad \Rightarrow \quad u_{1}^{\prime}=2 e^{-2 t} \quad \Rightarrow \quad u_{1}=-e^{-2 t}, \\
u_{2}^{\prime}=e^{3 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right) \quad \Rightarrow \quad u_{2}^{\prime}=-2 e^{-t} \quad \Rightarrow \quad u_{2}=2 e^{-t} .
\end{gathered}
$$

Third: The particular solution is

$$
y_{p}=\left(-e^{-2 t}\right)\left(e^{3 t}\right)+\left(2 e^{-t}\right)\left(e^{2 t}\right)
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution: Recall: $y_{1}(t)=e^{3 t}, y_{2}(t)=e^{2 t}, W_{y_{1} y_{2}}(t)=-e^{5 t}$, and

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}}, \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}} . \\
u_{1}^{\prime}=-e^{2 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right) \quad \Rightarrow \quad u_{1}^{\prime}=2 e^{-2 t} \quad \Rightarrow \quad u_{1}=-e^{-2 t}, \\
u_{2}^{\prime}=e^{3 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right) \quad \Rightarrow \quad u_{2}^{\prime}=-2 e^{-t} \quad \Rightarrow \quad u_{2}=2 e^{-t} .
\end{gathered}
$$

Third: The particular solution is

$$
y_{p}=\left(-e^{-2 t}\right)\left(e^{3 t}\right)+\left(2 e^{-t}\right)\left(e^{2 t}\right) \quad \Rightarrow \quad y_{p}=e^{t}
$$

Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution: Recall: $y_{1}(t)=e^{3 t}, y_{2}(t)=e^{2 t}, W_{y_{1} y_{2}}(t)=-e^{5 t}$, and

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}}, \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}} . \\
u_{1}^{\prime}=-e^{2 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right) \quad \Rightarrow \quad u_{1}^{\prime}=2 e^{-2 t} \quad \Rightarrow \quad u_{1}=-e^{-2 t} \\
u_{2}^{\prime}=e^{3 t}\left(2 e^{t}\right)\left(-e^{-5 t}\right) \quad \Rightarrow \quad u_{2}^{\prime}=-2 e^{-t} \quad \Rightarrow \quad u_{2}=2 e^{-t} .
\end{gathered}
$$

Third: The particular solution is

$$
y_{p}=\left(-e^{-2 t}\right)\left(e^{3 t}\right)+\left(2 e^{-t}\right)\left(e^{2 t}\right) \quad \Rightarrow \quad y_{p}=e^{t}
$$

The general solution is $y(t)=c_{1} e^{3 t}+c_{2} e^{2 t}+e^{t}, c_{1}, c_{2} \in \mathbb{R}$.

Non-homogeneous equations (Sect. 2.6).

- We study: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$.
- Method of variation of parameters.
- Using the method in an example.
- The proof of the variation of parameter method.
- Using the method in another example.

The proof of the variation of parameter method.

Proof: Denote $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$.

The proof of the variation of parameter method.

Proof: Denote $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$.
We need to find y_{p} solution of $L\left(y_{p}\right)=f$.

The proof of the variation of parameter method.

Proof: Denote $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$.
We need to find y_{p} solution of $L\left(y_{p}\right)=f$.
We know y_{1} and y_{2} solutions of $L\left(y_{1}\right)=0$ and $L\left(y_{2}\right)=0$.

The proof of the variation of parameter method.

Proof: Denote $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$.
We need to find y_{p} solution of $L\left(y_{p}\right)=f$.
We know y_{1} and y_{2} solutions of $L\left(y_{1}\right)=0$ and $L\left(y_{2}\right)=0$.
Idea: The reduction of order method:

The proof of the variation of parameter method.

Proof: Denote $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$.
We need to find y_{p} solution of $L\left(y_{p}\right)=f$.
We know y_{1} and y_{2} solutions of $L\left(y_{1}\right)=0$ and $L\left(y_{2}\right)=0$.
Idea: The reduction of order method: Find y_{2} proposing $y_{2}=u y_{1}$.

The proof of the variation of parameter method.

Proof: Denote $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$.
We need to find y_{p} solution of $L\left(y_{p}\right)=f$.
We know y_{1} and y_{2} solutions of $L\left(y_{1}\right)=0$ and $L\left(y_{2}\right)=0$.
Idea: The reduction of order method: Find y_{2} proposing $y_{2}=u y_{1}$.
First idea: Propose that y_{p} is given by $y_{p}=u_{1} y_{1}+u_{2} y_{2}$.

The proof of the variation of parameter method.

Proof: Denote $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$.
We need to find y_{p} solution of $L\left(y_{p}\right)=f$.
We know y_{1} and y_{2} solutions of $L\left(y_{1}\right)=0$ and $L\left(y_{2}\right)=0$.
Idea: The reduction of order method: Find y_{2} proposing $y_{2}=u y_{1}$.
First idea: Propose that y_{p} is given by $y_{p}=u_{1} y_{1}+u_{2} y_{2}$.
We hope that the equation for u_{1} and u_{2} will be simpler than the original equation for y_{p},

The proof of the variation of parameter method.

Proof: Denote $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$.
We need to find y_{p} solution of $L\left(y_{p}\right)=f$.
We know y_{1} and y_{2} solutions of $L\left(y_{1}\right)=0$ and $L\left(y_{2}\right)=0$.
Idea: The reduction of order method: Find y_{2} proposing $y_{2}=u y_{1}$.
First idea: Propose that y_{p} is given by $y_{p}=u_{1} y_{1}+u_{2} y_{2}$.
We hope that the equation for u_{1} and u_{2} will be simpler than the original equation for y_{p}, since y_{1} and y_{2} are solutions to the homogeneous equation.

The proof of the variation of parameter method.

Proof: Denote $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$.
We need to find y_{p} solution of $L\left(y_{p}\right)=f$.
We know y_{1} and y_{2} solutions of $L\left(y_{1}\right)=0$ and $L\left(y_{2}\right)=0$.
Idea: The reduction of order method: Find y_{2} proposing $y_{2}=u y_{1}$.
First idea: Propose that y_{p} is given by $y_{p}=u_{1} y_{1}+u_{2} y_{2}$.
We hope that the equation for u_{1} and u_{2} will be simpler than the original equation for y_{p}, since y_{1} and y_{2} are solutions to the homogeneous equation. Compute:

$$
y_{p}^{\prime}=u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime},
$$

The proof of the variation of parameter method.

Proof: Denote $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$.
We need to find y_{p} solution of $L\left(y_{p}\right)=f$.
We know y_{1} and y_{2} solutions of $L\left(y_{1}\right)=0$ and $L\left(y_{2}\right)=0$.
Idea: The reduction of order method: Find y_{2} proposing $y_{2}=u y_{1}$.
First idea: Propose that y_{p} is given by $y_{p}=u_{1} y_{1}+u_{2} y_{2}$.
We hope that the equation for u_{1} and u_{2} will be simpler than the original equation for y_{p}, since y_{1} and y_{2} are solutions to the homogeneous equation. Compute:

$$
\begin{gathered}
y_{p}^{\prime}=u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime}, \\
y_{p}^{\prime \prime}=u_{1}^{\prime \prime} y_{1}+2 u_{1}^{\prime} y_{1}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2}^{\prime \prime} y_{2}+2 u_{2}^{\prime} y_{2}^{\prime}+u_{2} y_{2}^{\prime \prime} .
\end{gathered}
$$

The proof of the variation of parameter method.

Proof: Then $L\left(y_{p}\right)=f$ is given by

$$
\begin{gathered}
{\left[u_{1}^{\prime \prime} y_{1}+2 u_{1}^{\prime} y_{1}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2}^{\prime \prime} y_{2}+2 u_{2}^{\prime} y_{2}^{\prime}+u_{2} y_{2}^{\prime \prime}\right]} \\
p(t)\left[u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime}\right]+q(t)\left[u_{1} y_{1}+u_{2} y_{2}\right]=f(t) .
\end{gathered}
$$

The proof of the variation of parameter method.

Proof: Then $L\left(y_{p}\right)=f$ is given by

$$
\begin{gathered}
{\left[u_{1}^{\prime \prime} y_{1}+2 u_{1}^{\prime} y_{1}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2}^{\prime \prime} y_{2}+2 u_{2}^{\prime} y_{2}^{\prime}+u_{2} y_{2}^{\prime \prime}\right]} \\
p(t)\left[u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime}\right]+q(t)\left[u_{1} y_{1}+u_{2} y_{2}\right]=f(t) . \\
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+p\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right) \\
+u_{1}\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right)+u_{2}\left(y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}\right)=f
\end{gathered}
$$

The proof of the variation of parameter method.

Proof: Then $L\left(y_{p}\right)=f$ is given by

$$
\begin{gathered}
{\left[u_{1}^{\prime \prime} y_{1}+2 u_{1}^{\prime} y_{1}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2}^{\prime \prime} y_{2}+2 u_{2}^{\prime} y_{2}^{\prime}+u_{2} y_{2}^{\prime \prime}\right]} \\
p(t)\left[u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime}\right]+q(t)\left[u_{1} y_{1}+u_{2} y_{2}\right]=f(t) . \\
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+p\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right) \\
+u_{1}\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right)+u_{2}\left(y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}\right)=f
\end{gathered}
$$

Recall: $y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}=0$ and $y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}=0$.

The proof of the variation of parameter method.

Proof: Then $L\left(y_{p}\right)=f$ is given by

$$
\begin{gathered}
{\left[u_{1}^{\prime \prime} y_{1}+2 u_{1}^{\prime} y_{1}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2}^{\prime \prime} y_{2}+2 u_{2}^{\prime} y_{2}^{\prime}+u_{2} y_{2}^{\prime \prime}\right]} \\
p(t)\left[u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime}\right]+q(t)\left[u_{1} y_{1}+u_{2} y_{2}\right]=f(t) . \\
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+p\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right) \\
+u_{1}\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right)+u_{2}\left(y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}\right)=f
\end{gathered}
$$

Recall: $y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}=0$ and $y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}=0$. Hence,

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)+p\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)=f
$$

The proof of the variation of parameter method.

Proof: Then $L\left(y_{p}\right)=f$ is given by

$$
\begin{gathered}
{\left[u_{1}^{\prime \prime} y_{1}+2 u_{1}^{\prime} y_{1}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2}^{\prime \prime} y_{2}+2 u_{2}^{\prime} y_{2}^{\prime}+u_{2} y_{2}^{\prime \prime}\right]} \\
p(t)\left[u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime}\right]+q(t)\left[u_{1} y_{1}+u_{2} y_{2}\right]=f(t) . \\
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+p\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right) \\
+u_{1}\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right)+u_{2}\left(y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}\right)=f
\end{gathered}
$$

Recall: $y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}=0$ and $y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}=0$. Hence,

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)+p\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)=f
$$

Second idea: Look for u_{1} and u_{2} that satisfy the extra equation

$$
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 .
$$

The proof of the variation of parameter method.
Proof: Recall: $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ and

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)+p\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)=f
$$

The proof of the variation of parameter method.

Proof: Recall: $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ and

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)+p\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)=f .
$$

These two equations imply that $L\left(y_{p}\right)=f$ is

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=f .
$$

The proof of the variation of parameter method.

Proof: Recall: $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ and

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)+p\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)=f .
$$

These two equations imply that $L\left(y_{p}\right)=f$ is

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=f .
$$

From $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ we get $\left[u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right]^{\prime}=0$,

The proof of the variation of parameter method.

Proof: Recall: $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ and

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)+p\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)=f .
$$

These two equations imply that $L\left(y_{p}\right)=f$ is

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=f .
$$

From $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ we get $\left[u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right]^{\prime}=0$, that is

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=0 .
$$

The proof of the variation of parameter method.

Proof: Recall: $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ and

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)+p\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)=f .
$$

These two equations imply that $L\left(y_{p}\right)=f$ is

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=f .
$$

From $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ we get $\left[u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right]^{\prime}=0$, that is

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=0
$$

This information in $L\left(y_{p}\right)=f$ implies

$$
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f .
$$

The proof of the variation of parameter method.

Proof: Recall: $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ and

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)+p\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)=f .
$$

These two equations imply that $L\left(y_{p}\right)=f$ is

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+2\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=f .
$$

From $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ we get $\left[u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right]^{\prime}=0$, that is

$$
u_{1}^{\prime \prime} y_{1}+u_{2}^{\prime \prime} y_{2}+\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=0
$$

This information in $L\left(y_{p}\right)=f$ implies

$$
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f .
$$

Summary: If u_{1} and u_{2} satisfy $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ and $u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f$, then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.

The proof of the variation of parameter method.

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.

The proof of the variation of parameter method.

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.

The equations above are simple to solve for u_{1} and u_{2},

The proof of the variation of parameter method.

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.

The equations above are simple to solve for u_{1} and u_{2},
$u_{2}^{\prime}=-\frac{y_{1}}{y_{2}} u_{1}^{\prime}$

The proof of the variation of parameter method.

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.

The equations above are simple to solve for u_{1} and u_{2},

$$
u_{2}^{\prime}=-\frac{y_{1}}{y_{2}} u_{1}^{\prime} \Rightarrow u_{1}^{\prime} y_{1}^{\prime}-\frac{y_{1} y_{2}^{\prime}}{y_{2}} u_{1}^{\prime}=f
$$

The proof of the variation of parameter method.

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.

The equations above are simple to solve for u_{1} and u_{2},

$$
u_{2}^{\prime}=-\frac{y_{1}}{y_{2}} u_{1}^{\prime} \quad \Rightarrow \quad u_{1}^{\prime} y_{1}^{\prime}-\frac{y_{1} y_{2}^{\prime}}{y_{2}} u_{1}^{\prime}=f \quad \Rightarrow \quad u_{1}^{\prime}\left(\frac{y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}}{y_{2}}\right)=f .
$$

The proof of the variation of parameter method.

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.

The equations above are simple to solve for u_{1} and u_{2},
$u_{2}^{\prime}=-\frac{y_{1}}{y_{2}} u_{1}^{\prime} \Rightarrow u_{1}^{\prime} y_{1}^{\prime}-\frac{y_{1} y_{2}^{\prime}}{y_{2}} u_{1}^{\prime}=f \quad \Rightarrow \quad u_{1}^{\prime}\left(\frac{y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}}{y_{2}}\right)=f$.
Since $W_{y_{1} y_{2}}=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$, then

The proof of the variation of parameter method.

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.

The equations above are simple to solve for u_{1} and u_{2},
$u_{2}^{\prime}=-\frac{y_{1}}{y_{2}} u_{1}^{\prime} \quad \Rightarrow \quad u_{1}^{\prime} y_{1}^{\prime}-\frac{y_{1} y_{2}^{\prime}}{y_{2}} u_{1}^{\prime}=f \quad \Rightarrow \quad u_{1}^{\prime}\left(\frac{y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}}{y_{2}}\right)=f$.
Since $W_{y_{1} y_{2}}=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$, then $u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}}$

The proof of the variation of parameter method.

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.

The equations above are simple to solve for u_{1} and u_{2},
$u_{2}^{\prime}=-\frac{y_{1}}{y_{2}} u_{1}^{\prime} \quad \Rightarrow \quad u_{1}^{\prime} y_{1}^{\prime}-\frac{y_{1} y_{2}^{\prime}}{y_{2}} u_{1}^{\prime}=f \quad \Rightarrow \quad u_{1}^{\prime}\left(\frac{y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}}{y_{2}}\right)=f$.
Since $W_{y_{1} y_{2}}=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$, then $u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}} \quad \Rightarrow \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}}$.

The proof of the variation of parameter method.

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.

The equations above are simple to solve for u_{1} and u_{2},
$u_{2}^{\prime}=-\frac{y_{1}}{y_{2}} u_{1}^{\prime} \quad \Rightarrow \quad u_{1}^{\prime} y_{1}^{\prime}-\frac{y_{1} y_{2}^{\prime}}{y_{2}} u_{1}^{\prime}=f \quad \Rightarrow \quad u_{1}^{\prime}\left(\frac{y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}}{y_{2}}\right)=f$.
Since $W_{y_{1} y_{2}}=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$, then $u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}} \quad \Rightarrow \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}}$. Integrating in the variable t we obtain

$$
u_{1}(t)=\int-\frac{y_{2}(t) f(t)}{W_{y_{1} y_{2}}(t)} d t, \quad u_{2}(t)=\int \frac{y_{1}(t) f(t)}{W_{y_{1} y_{2}}(t)} d t
$$

This establishes the Theorem.

Non-homogeneous equations (Sect. 2.6).

- We study: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$.
- Method of variation of parameters.
- Using the method in an example.
- The proof of the variation of parameter method.
- Using the method in another example.

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: First, write the equation in the form of the Theorem.

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^{2},

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^{2},

$$
y^{\prime \prime}-\frac{2}{t^{2}} y=3-\frac{1}{t^{2}}
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^{2},

$$
y^{\prime \prime}-\frac{2}{t^{2}} y=3-\frac{1}{t^{2}} \quad \Rightarrow \quad f(t)=3-\frac{1}{t^{2}}
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^{2},

$$
y^{\prime \prime}-\frac{2}{t^{2}} y=3-\frac{1}{t^{2}} \quad \Rightarrow \quad f(t)=3-\frac{1}{t^{2}}
$$

We know that $y_{1}=t^{2}$ and $y_{2}=1 / t$.

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^{2},

$$
y^{\prime \prime}-\frac{2}{t^{2}} y=3-\frac{1}{t^{2}} \quad \Rightarrow \quad f(t)=3-\frac{1}{t^{2}}
$$

We know that $y_{1}=t^{2}$ and $y_{2}=1 / t$. Their Wronskian is

$$
W_{y_{1} y_{2}}(t)=\left(t^{2}\right)\left(\frac{-1}{t^{2}}\right)-(2 t)\left(\frac{1}{t}\right)
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^{2},

$$
y^{\prime \prime}-\frac{2}{t^{2}} y=3-\frac{1}{t^{2}} \quad \Rightarrow \quad f(t)=3-\frac{1}{t^{2}}
$$

We know that $y_{1}=t^{2}$ and $y_{2}=1 / t$. Their Wronskian is

$$
W_{y_{1} y_{2}}(t)=\left(t^{2}\right)\left(\frac{-1}{t^{2}}\right)-(2 t)\left(\frac{1}{t}\right) \quad \Rightarrow \quad W_{y_{1} y_{2}}(t)=-3 .
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: $y_{1}=t^{2}, \quad y_{2}=1 / t, \quad f(t)=3-\frac{1}{t^{2}}, W_{y_{1} y_{2}}(t)=-3$.

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: $y_{1}=t^{2}, \quad y_{2}=1 / t, \quad f(t)=3-\frac{1}{t^{2}}, W_{y_{1} y_{2}}(t)=-3$.
We now compute y_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{1}{t}\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: $y_{1}=t^{2}, \quad y_{2}=1 / t, \quad f(t)=3-\frac{1}{t^{2}}, W_{y_{1} y_{2}}(t)=-3$.
We now compute y_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{1}{t}\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}=\frac{1}{t}-\frac{1}{3} t^{-3}
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: $y_{1}=t^{2}, \quad y_{2}=1 / t, \quad f(t)=3-\frac{1}{t^{2}}, W_{y_{1} y_{2}}(t)=-3$.
We now compute y_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{1}{t}\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}=\frac{1}{t}-\frac{1}{3} t^{-3} \quad \Rightarrow \quad u_{1}=\ln (t)+\frac{1}{6} t^{-2}
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: $y_{1}=t^{2}, \quad y_{2}=1 / t, \quad f(t)=3-\frac{1}{t^{2}}, W_{y_{1} y_{2}}(t)=-3$.
We now compute y_{1} and u_{2},

$$
\begin{aligned}
u_{1}^{\prime} & =-\frac{1}{t}\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}=\frac{1}{t}-\frac{1}{3} t^{-3} \Rightarrow u_{1}=\ln (t)+\frac{1}{6} t^{-2} \\
u_{2}^{\prime} & =\left(t^{2}\right)\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}
\end{aligned}
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: $y_{1}=t^{2}, \quad y_{2}=1 / t, \quad f(t)=3-\frac{1}{t^{2}}, W_{y_{1} y_{2}}(t)=-3$.
We now compute y_{1} and u_{2},

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{1}{t}\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}=\frac{1}{t}-\frac{1}{3} t^{-3} \Rightarrow u_{1}=\ln (t)+\frac{1}{6} t^{-2} \\
& u_{2}^{\prime}=\left(t^{2}\right)\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}=-t^{2}+\frac{1}{3}
\end{aligned}
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: $y_{1}=t^{2}, \quad y_{2}=1 / t, \quad f(t)=3-\frac{1}{t^{2}}, W_{y_{1} y_{2}}(t)=-3$.
We now compute y_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{1}{t}\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}=\frac{1}{t}-\frac{1}{3} t^{-3} \quad \Rightarrow \quad u_{1}=\ln (t)+\frac{1}{6} t^{-2} \\
u_{2}^{\prime}=\left(t^{2}\right)\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}=-t^{2}+\frac{1}{3} \quad \Rightarrow \quad u_{2}=-\frac{1}{3} t^{3}+\frac{1}{3} t
\end{gathered}
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: The particular solution $\tilde{y}_{p}=u_{1} y_{1}+u_{2} y_{2}$ is

$$
\tilde{y}_{p}=\left[\ln (t)+\frac{1}{6} t^{-2}\right]\left(t^{2}\right)+\frac{1}{3}\left(-t^{3}+t\right)\left(t^{-1}\right)
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: The particular solution $\tilde{y}_{p}=u_{1} y_{1}+u_{2} y_{2}$ is

$$
\begin{aligned}
& \tilde{y}_{p}=\left[\ln (t)+\frac{1}{6} t^{-2}\right]\left(t^{2}\right)+\frac{1}{3}\left(-t^{3}+t\right)\left(t^{-1}\right) \\
& \tilde{y}_{p}=t^{2} \ln (t)+\frac{1}{6}-\frac{1}{3} t^{2}+\frac{1}{3}
\end{aligned}
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: The particular solution $\tilde{y}_{p}=u_{1} y_{1}+u_{2} y_{2}$ is

$$
\begin{gathered}
\tilde{y}_{p}=\left[\ln (t)+\frac{1}{6} t^{-2}\right]\left(t^{2}\right)+\frac{1}{3}\left(-t^{3}+t\right)\left(t^{-1}\right) \\
\tilde{y}_{p}=t^{2} \ln (t)+\frac{1}{6}-\frac{1}{3} t^{2}+\frac{1}{3}=t^{2} \ln (t)+\frac{1}{2}-\frac{1}{3} t^{2}
\end{gathered}
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: The particular solution $\tilde{y}_{p}=u_{1} y_{1}+u_{2} y_{2}$ is

$$
\begin{gathered}
\tilde{y}_{p}=\left[\ln (t)+\frac{1}{6} t^{-2}\right]\left(t^{2}\right)+\frac{1}{3}\left(-t^{3}+t\right)\left(t^{-1}\right) \\
\tilde{y}_{p}=t^{2} \ln (t)+\frac{1}{6}-\frac{1}{3} t^{2}+\frac{1}{3}=t^{2} \ln (t)+\frac{1}{2}-\frac{1}{3} t^{2} \\
\tilde{y}_{p}=t^{2} \ln (t)+\frac{1}{2}-\frac{1}{3} y_{1}(t)
\end{gathered}
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: The particular solution $\tilde{y}_{p}=u_{1} y_{1}+u_{2} y_{2}$ is

$$
\begin{gathered}
\tilde{y}_{p}=\left[\ln (t)+\frac{1}{6} t^{-2}\right]\left(t^{2}\right)+\frac{1}{3}\left(-t^{3}+t\right)\left(t^{-1}\right) \\
\tilde{y}_{p}=t^{2} \ln (t)+\frac{1}{6}-\frac{1}{3} t^{2}+\frac{1}{3}=t^{2} \ln (t)+\frac{1}{2}-\frac{1}{3} t^{2} \\
\tilde{y}_{p}=t^{2} \ln (t)+\frac{1}{2}-\frac{1}{3} y_{1}(t)
\end{gathered}
$$

A simpler expression is $y_{p}=t^{2} \ln (t)+\frac{1}{2}$.

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: If we do not remember the formulas for u_{1}, u_{2}, we can always solve the system

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f .
\end{aligned}
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: If we do not remember the formulas for u_{1}, u_{2}, we can always solve the system

$$
\begin{gathered}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f . \\
t^{2} u_{1}^{\prime}+u_{2}^{\prime} \frac{1}{t}=0, \quad 2 t u_{1}^{\prime}+u_{2}^{\prime} \frac{(-1)}{t^{2}}=3-\frac{1}{t^{2}} .
\end{gathered}
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: If we do not remember the formulas for u_{1}, u_{2}, we can always solve the system

$$
\begin{gathered}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f . \\
t^{2} u_{1}^{\prime}+u_{2}^{\prime} \frac{1}{t}=0, \quad 2 t u_{1}^{\prime}+u_{2}^{\prime} \frac{(-1)}{t^{2}}=3-\frac{1}{t^{2}} . \\
u_{2}^{\prime}=-t^{3} u_{1}^{\prime}
\end{gathered}
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: If we do not remember the formulas for u_{1}, u_{2}, we can always solve the system

$$
\begin{gathered}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f . \\
t^{2} u_{1}^{\prime}+u_{2}^{\prime} \frac{1}{t}=0, \quad 2 t u_{1}^{\prime}+u_{2}^{\prime} \frac{(-1)}{t^{2}}=3-\frac{1}{t^{2}} \\
u_{2}^{\prime}=-t^{3} u_{1}^{\prime} \Rightarrow 2 t u_{1}^{\prime}+t u_{1}^{\prime}=3-\frac{1}{t^{2}}
\end{gathered}
$$

Using the method in another example.

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: If we do not remember the formulas for u_{1}, u_{2}, we can always solve the system

$$
\begin{gathered}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f . \\
t^{2} u_{1}^{\prime}+u_{2}^{\prime} \frac{1}{t}=0, \quad 2 t u_{1}^{\prime}+u_{2}^{\prime} \frac{(-1)}{t^{2}}=3-\frac{1}{t^{2}} . \\
u_{2}^{\prime}=-t^{3} u_{1}^{\prime} \Rightarrow 2 t u_{1}^{\prime}+t u_{1}^{\prime}=3-\frac{1}{t^{2}} \Rightarrow\left\{\begin{array}{l}
u_{1}^{\prime}=\frac{1}{t}-\frac{1}{3 t^{3}} \\
u_{2}^{\prime}=-t^{2}+\frac{1}{3} .
\end{array}\right.
\end{gathered}
$$

Review for Exam 2.

- 6 or 7 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Variation of parameters (2.6).
- Undetermined coefficients (2.5).
- Constant coefficients, homogeneous, (2.2)-(2.4).
- Reduction order method, (2.4.2).
- Second order variable coefficients, (2.1).
- First order homogeneous (1.3.2).

Review for Exam 2.

- 5 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Variation of parameters (2.6).
- Undetermined coefficients (2.5).
- Constant coefficients, homogeneous, (2.2)-(2.4).
- Reduction order method, (2.4.2).
- Second order variable coefficients, (2.1).
- First order homogeneous (1.3.2).

Variation of parameters (2.6).

Theorem (Variation of parameters)

Let $p, q, f:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ be continuous functions, then let functions $y_{1}, y_{2}:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ be linearly independent solutions to the homogeneous equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

and let the function $W_{y_{1} y_{2}}$ be the Wronskian of solutions y_{1} and y_{2}. If the functions u_{1} and u_{2} are defined by

$$
u_{1}(t)=\int-\frac{y_{2}(t) f(t)}{W_{y_{1} y_{2}}(t)} d t, \quad u_{2}(t)=\int \frac{y_{1}(t) f(t)}{W_{y_{1} y_{2}}(t)} d t
$$

then a particular solution y_{p} to the non-homogeneous differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$ is given by

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}
$$

Variation of parameters (2.6).

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.

Variation of parameters (2.6).

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.

The equations above are simple to solve for u_{1} and u_{2},

Variation of parameters (2.6).

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.
The equations above are simple to solve for u_{1} and u_{2},

$$
u_{2}^{\prime}=-\frac{y_{1}}{y_{2}} u_{1}^{\prime}
$$

Variation of parameters (2.6).

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.
The equations above are simple to solve for u_{1} and u_{2},
$u_{2}^{\prime}=-\frac{y_{1}}{y_{2}} u_{1}^{\prime} \Rightarrow u_{1}^{\prime} y_{1}^{\prime}-\frac{y_{1} y_{2}^{\prime}}{y_{2}} u_{1}^{\prime}=f$

Variation of parameters (2.6).

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.
The equations above are simple to solve for u_{1} and u_{2},

$$
u_{2}^{\prime}=-\frac{y_{1}}{y_{2}} u_{1}^{\prime} \Rightarrow u_{1}^{\prime} y_{1}^{\prime}-\frac{y_{1} y_{2}^{\prime}}{y_{2}} u_{1}^{\prime}=f \quad \Rightarrow \quad u_{1}^{\prime}\left(\frac{y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}}{y_{2}}\right)=f .
$$

Variation of parameters (2.6).

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.
The equations above are simple to solve for u_{1} and u_{2},
$u_{2}^{\prime}=-\frac{y_{1}}{y_{2}} u_{1}^{\prime} \Rightarrow u_{1}^{\prime} y_{1}^{\prime}-\frac{y_{1} y_{2}^{\prime}}{y_{2}} u_{1}^{\prime}=f \quad \Rightarrow \quad u_{1}^{\prime}\left(\frac{\left.y_{y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}}^{y_{2}}\right)=f . ~ . ~ . ~ . ~}{\text { r }}\right.$
Since $W_{y_{1} y_{2}}=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$, then

Variation of parameters (2.6).

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.
The equations above are simple to solve for u_{1} and u_{2},
$u_{2}^{\prime}=-\frac{y_{1}}{y_{2}} u_{1}^{\prime} \Rightarrow u_{1}^{\prime} y_{1}^{\prime}-\frac{y_{1} y_{2}^{\prime}}{y_{2}} u_{1}^{\prime}=f \quad \Rightarrow \quad u_{1}^{\prime}\left(\frac{\left.y_{y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}}^{y_{2}}\right)=f . ~ . ~ . ~}{\text { ren }}\right.$
Since $W_{y_{1} y_{2}}=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$, then $u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}}$

Variation of parameters (2.6).

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.
The equations above are simple to solve for u_{1} and u_{2},
$u_{2}^{\prime}=-\frac{y_{1}}{y_{2}} u_{1}^{\prime} \Rightarrow u_{1}^{\prime} y_{1}^{\prime}-\frac{y_{1} y_{2}^{\prime}}{y_{2}} u_{1}^{\prime}=f \quad \Rightarrow \quad u_{1}^{\prime}\left(\frac{\left.y_{y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}}^{y_{2}}\right)=f . ~ . ~ . ~}{\text { and }}\right.$
Since $W_{y_{1} y_{2}}=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$, then $u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}} \quad \Rightarrow \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}}$.

Variation of parameters (2.6).

Proof: Summary: If u_{1} and u_{2} satisfy $\left\{\begin{array}{l}u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \\ u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f,\end{array}\right\}$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ satisfies $L\left(y_{p}\right)=f$.
The equations above are simple to solve for u_{1} and u_{2},
$u_{2}^{\prime}=-\frac{y_{1}}{y_{2}} u_{1}^{\prime} \Rightarrow u_{1}^{\prime} y_{1}^{\prime}-\frac{y_{1} y_{2}^{\prime}}{y_{2}} u_{1}^{\prime}=f \quad \Rightarrow \quad u_{1}^{\prime}\left(\frac{\left.y_{y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}}^{y_{2}}\right)=f . ~ . ~ . ~}{\text { ren }}\right.$
Since $W_{y_{1} y_{2}}=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$, then $u_{1}^{\prime}=-\frac{y_{2} f}{W_{y_{1} y_{2}}} \quad \Rightarrow \quad u_{2}^{\prime}=\frac{y_{1} f}{W_{y_{1} y_{2}}}$. Integrating in the variable t we obtain

$$
u_{1}(t)=\int-\frac{y_{2}(t) f(t)}{W_{y_{1} y_{2}}(t)} d t, \quad u_{2}(t)=\int \frac{y_{1}(t) f(t)}{W_{y_{1} y_{2}}(t)} d t,
$$

This establishes the Theorem.

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: First, write the equation in the form of the Theorem.

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^{2},

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^{2},

$$
y^{\prime \prime}-\frac{2}{t^{2}} y=3-\frac{1}{t^{2}}
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^{2},

$$
y^{\prime \prime}-\frac{2}{t^{2}} y=3-\frac{1}{t^{2}} \Rightarrow f(t)=3-\frac{1}{t^{2}}
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^{2},

$$
y^{\prime \prime}-\frac{2}{t^{2}} y=3-\frac{1}{t^{2}} \Rightarrow f(t)=3-\frac{1}{t^{2}}
$$

We know that $y_{1}=t^{2}$ and $y_{2}=1 / t$.

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^{2},

$$
y^{\prime \prime}-\frac{2}{t^{2}} y=3-\frac{1}{t^{2}} \Rightarrow f(t)=3-\frac{1}{t^{2}}
$$

We know that $y_{1}=t^{2}$ and $y_{2}=1 / t$. Their Wronskian is

$$
W_{y_{1} y_{2}}(t)=\left(t^{2}\right)\left(\frac{-1}{t^{2}}\right)-(2 t)\left(\frac{1}{t}\right)
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^{2},

$$
y^{\prime \prime}-\frac{2}{t^{2}} y=3-\frac{1}{t^{2}} \quad \Rightarrow \quad f(t)=3-\frac{1}{t^{2}}
$$

We know that $y_{1}=t^{2}$ and $y_{2}=1 / t$. Their Wronskian is

$$
W_{y_{1} y_{2}}(t)=\left(t^{2}\right)\left(\frac{-1}{t^{2}}\right)-(2 t)\left(\frac{1}{t}\right) \quad \Rightarrow \quad W_{y_{1} y_{2}}(t)=-3 .
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: $y_{1}=t^{2}, \quad y_{2}=1 / t, \quad f(t)=3-\frac{1}{t^{2}}, W_{y_{1} y_{2}}(t)=-3$.

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.
Solution: $y_{1}=t^{2}, \quad y_{2}=1 / t, \quad f(t)=3-\frac{1}{t^{2}}, W_{y_{1} y_{2}}(t)=-3$.
We now compute y_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{1}{t}\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.
Solution: $y_{1}=t^{2}, \quad y_{2}=1 / t, \quad f(t)=3-\frac{1}{t^{2}}, W_{y_{1} y_{2}}(t)=-3$.
We now compute y_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{1}{t}\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}=\frac{1}{t}-\frac{1}{3} t^{-3}
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.
Solution: $y_{1}=t^{2}, \quad y_{2}=1 / t, \quad f(t)=3-\frac{1}{t^{2}}, W_{y_{1} y_{2}}(t)=-3$.
We now compute y_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{1}{t}\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}=\frac{1}{t}-\frac{1}{3} t^{-3} \quad \Rightarrow \quad u_{1}=\ln (t)+\frac{1}{6} t^{-2}
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.
Solution: $y_{1}=t^{2}, \quad y_{2}=1 / t, \quad f(t)=3-\frac{1}{t^{2}}, W_{y_{1} y_{2}}(t)=-3$.
We now compute y_{1} and u_{2},

$$
\begin{aligned}
u_{1}^{\prime} & =-\frac{1}{t}\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}=\frac{1}{t}-\frac{1}{3} t^{-3} \Rightarrow u_{1}=\ln (t)+\frac{1}{6} t^{-2} \\
u_{2}^{\prime} & =\left(t^{2}\right)\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}
\end{aligned}
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.
Solution: $y_{1}=t^{2}, \quad y_{2}=1 / t, \quad f(t)=3-\frac{1}{t^{2}}, W_{y_{1} y_{2}}(t)=-3$.
We now compute y_{1} and u_{2},

$$
\begin{aligned}
u_{1}^{\prime} & =-\frac{1}{t}\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}=\frac{1}{t}-\frac{1}{3} t^{-3} \Rightarrow u_{1}=\ln (t)+\frac{1}{6} t^{-2} \\
u_{2}^{\prime} & =\left(t^{2}\right)\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}=-t^{2}+\frac{1}{3}
\end{aligned}
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.
Solution: $y_{1}=t^{2}, \quad y_{2}=1 / t, \quad f(t)=3-\frac{1}{t^{2}}, W_{y_{1} y_{2}}(t)=-3$.
We now compute y_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{1}{t}\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}=\frac{1}{t}-\frac{1}{3} t^{-3} \quad \Rightarrow \quad u_{1}=\ln (t)+\frac{1}{6} t^{-2} \\
u_{2}^{\prime}=\left(t^{2}\right)\left(3-\frac{1}{t^{2}}\right) \frac{1}{-3}=-t^{2}+\frac{1}{3} \quad \Rightarrow \quad u_{2}=-\frac{1}{3} t^{3}+\frac{1}{3} t
\end{gathered}
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: The particular solution $\tilde{y}_{p}=u_{1} y_{1}+u_{2} y_{2}$ is

$$
\tilde{y}_{p}=\left[\ln (t)+\frac{1}{6} t^{-2}\right]\left(t^{2}\right)+\frac{1}{3}\left(-t^{3}+t\right)\left(t^{-1}\right)
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: The particular solution $\tilde{y}_{p}=u_{1} y_{1}+u_{2} y_{2}$ is

$$
\begin{aligned}
& \quad \tilde{y}_{p}=\left[\ln (t)+\frac{1}{6} t^{-2}\right]\left(t^{2}\right)+\frac{1}{3}\left(-t^{3}+t\right)\left(t^{-1}\right) \\
& \tilde{y}_{p}=t^{2} \ln (t)+\frac{1}{6}-\frac{1}{3} t^{2}+\frac{1}{3}
\end{aligned}
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: The particular solution $\tilde{y}_{p}=u_{1} y_{1}+u_{2} y_{2}$ is

$$
\begin{gathered}
\tilde{y}_{p}=\left[\ln (t)+\frac{1}{6} t^{-2}\right]\left(t^{2}\right)+\frac{1}{3}\left(-t^{3}+t\right)\left(t^{-1}\right) \\
\tilde{y}_{p}=t^{2} \ln (t)+\frac{1}{6}-\frac{1}{3} t^{2}+\frac{1}{3}=t^{2} \ln (t)+\frac{1}{2}-\frac{1}{3} t^{2}
\end{gathered}
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: The particular solution $\tilde{y}_{p}=u_{1} y_{1}+u_{2} y_{2}$ is

$$
\begin{gathered}
\tilde{y}_{p}=\left[\ln (t)+\frac{1}{6} t^{-2}\right]\left(t^{2}\right)+\frac{1}{3}\left(-t^{3}+t\right)\left(t^{-1}\right) \\
\tilde{y}_{p}=t^{2} \ln (t)+\frac{1}{6}-\frac{1}{3} t^{2}+\frac{1}{3}=t^{2} \ln (t)+\frac{1}{2}-\frac{1}{3} t^{2} \\
\tilde{y}_{p}=t^{2} \ln (t)+\frac{1}{2}-\frac{1}{3} y_{1}(t)
\end{gathered}
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: The particular solution $\tilde{y}_{p}=u_{1} y_{1}+u_{2} y_{2}$ is

$$
\begin{gathered}
\tilde{y}_{p}=\left[\ln (t)+\frac{1}{6} t^{-2}\right]\left(t^{2}\right)+\frac{1}{3}\left(-t^{3}+t\right)\left(t^{-1}\right) \\
\tilde{y}_{p}=t^{2} \ln (t)+\frac{1}{6}-\frac{1}{3} t^{2}+\frac{1}{3}=t^{2} \ln (t)+\frac{1}{2}-\frac{1}{3} t^{2} \\
\tilde{y}_{p}=t^{2} \ln (t)+\frac{1}{2}-\frac{1}{3} y_{1}(t) .
\end{gathered}
$$

A simpler expression is $y_{p}=t^{2} \ln (t)+\frac{1}{2}$.

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: If we do not remember the formulas for u_{1}, u_{2}, we can always solve the system

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f .
\end{aligned}
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: If we do not remember the formulas for u_{1}, u_{2}, we can always solve the system

$$
\begin{gathered}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f \\
t^{2} u_{1}^{\prime}+u_{2}^{\prime} \frac{1}{t}=0, \quad 2 t u_{1}^{\prime}+u_{2}^{\prime} \frac{(-1)}{t^{2}}=3-\frac{1}{t^{2}}
\end{gathered}
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: If we do not remember the formulas for u_{1}, u_{2}, we can always solve the system

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f . \\
& t^{2} u_{1}^{\prime}+u_{2}^{\prime} \frac{1}{t}=0, \quad 2 t u_{1}^{\prime}+u_{2}^{\prime} \frac{(-1)}{t^{2}}=3-\frac{1}{t^{2}} . \\
& u_{2}^{\prime}=-t^{3} u_{1}^{\prime}
\end{aligned}
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: If we do not remember the formulas for u_{1}, u_{2}, we can always solve the system

$$
\begin{gathered}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f . \\
t^{2} u_{1}^{\prime}+u_{2}^{\prime} \frac{1}{t}=0, \quad 2 t u_{1}^{\prime}+u_{2}^{\prime} \frac{(-1)}{t^{2}}=3-\frac{1}{t^{2}} . \\
u_{2}^{\prime}=-t^{3} u_{1}^{\prime} \Rightarrow 2 t u_{1}^{\prime}+t u_{1}^{\prime}=3-\frac{1}{t^{2}}
\end{gathered}
$$

Variation of parameters (2.6).

Example

Find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

knowing that the functions $y_{1}=t^{2}$ and $y_{2}=1 / t$ are solutions to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$.

Solution: If we do not remember the formulas for u_{1}, u_{2}, we can always solve the system

$$
\begin{gathered}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f . \\
t^{2} u_{1}^{\prime}+u_{2}^{\prime} \frac{1}{t}=0, \quad 2 t u_{1}^{\prime}+u_{2}^{\prime} \frac{(-1)}{t^{2}}=3-\frac{1}{t^{2}} . \\
u_{2}^{\prime}=-t^{3} u_{1}^{\prime} \Rightarrow 2 t u_{1}^{\prime}+t u_{1}^{\prime}=3-\frac{1}{t^{2}} \Rightarrow\left\{\begin{array}{l}
u_{1}^{\prime}=\frac{1}{t}-\frac{1}{3 t^{3}} \\
u_{2}^{\prime}=-t^{2}+\frac{1}{3} .
\end{array}\right.
\end{gathered}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: We find the solutions of the homogeneous equation,

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}]
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,
$r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2$.
Fundamental solutions of the homogeneous equations are

$$
y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x} .
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2
$$

Fundamental solutions of the homogeneous equations are

$$
y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}
$$

We now compute their Wronskian,

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2
$$

Fundamental solutions of the homogeneous equations are

$$
y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}
$$

We now compute their Wronskian,

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-2 x} & x e^{-2 x} \\
-2 e^{-2 x} & (1-2 x) e^{-2 x}
\end{array}\right|
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2
$$

Fundamental solutions of the homogeneous equations are

$$
y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x} .
$$

We now compute their Wronskian,

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-2 x} & x e^{-2 x} \\
-2 e^{-2 x} & (1-2 x) e^{-2 x}
\end{array}\right|=(1-2 x) e^{-4 x}+2 x e^{-4 x} .
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: We find the solutions of the homogeneous equation,

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}[-4 \pm \sqrt{16-16}] \quad \Rightarrow \quad r_{ \pm}=-2
$$

Fundamental solutions of the homogeneous equations are

$$
y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x} .
$$

We now compute their Wronskian,

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-2 x} & x e^{-2 x} \\
-2 e^{-2 x} & (1-2 x) e^{-2 x}
\end{array}\right|=(1-2 x) e^{-4 x}+2 x e^{-4 x} .
$$

Hence $W=e^{-4 x}$.

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \quad \Rightarrow \quad u_{1}=-\ln |x| .
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \Rightarrow u_{1}=-\ln |x| . \\
& u_{2}^{\prime}=\frac{y_{1} g}{W}
\end{aligned}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \quad \Rightarrow \quad u_{1}=-\ln |x| . \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}
\end{gathered}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \Rightarrow u_{1}=-\ln |x| . \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2}
\end{gathered}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \quad \Rightarrow \quad u_{1}=-\ln |x| . \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \quad \Rightarrow \quad u_{2}=-\frac{1}{x} .
\end{gathered}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \quad \Rightarrow \quad u_{1}=-\ln |x| . \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \quad \Rightarrow \quad u_{2}=-\frac{1}{x} .
\end{gathered}
$$

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \quad \Rightarrow \quad u_{1}=-\ln |x| . \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \quad \Rightarrow \quad u_{2}=-\frac{1}{x} . \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\ln |x| e^{-2 x}-\frac{1}{x} x e^{-2 x}
\end{gathered}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} .
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \Rightarrow u_{1}=-\ln |x| \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \Rightarrow u_{2}=-\frac{1}{x} \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\ln |x| e^{-2 x}-\frac{1}{x} x e^{-2 x}=-(1+\ln |x|) e^{-2 x} .
\end{gathered}
$$

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \Rightarrow u_{1}=-\ln |x| \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \Rightarrow u_{2}=-\frac{1}{x} \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\ln |x| e^{-2 x}-\frac{1}{x} x e^{-2 x}=-(1+\ln |x|) e^{-2 x} .
\end{gathered}
$$

Since $\tilde{y}_{P}=-\ln |x| e^{-2 x}$ is solution,

Variation of parameters (2.6).

Example

Use the variation of parameters to find the general solution of

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Solution: $y_{1}=e^{-2 x}, \quad y_{2}=x e^{-2 x}, \quad g=x^{-2} e^{-2 x}, \quad W=e^{-4 x}$.
Now we find the functions u_{1} and u_{2},

$$
\begin{gathered}
u_{1}^{\prime}=-\frac{y_{2} g}{W}=-\frac{x e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=-\frac{1}{x} \Rightarrow u_{1}=-\ln |x| \\
u_{2}^{\prime}=\frac{y_{1} g}{W}=\frac{e^{-2 x} x^{-2} e-2 x}{e^{-4 x}}=x^{-2} \Rightarrow u_{2}=-\frac{1}{x} \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\ln |x| e^{-2 x}-\frac{1}{x} x e^{-2 x}=-(1+\ln |x|) e^{-2 x} .
\end{gathered}
$$

Since $\tilde{y}_{p}=-\ln |x| e^{-2 x}$ is solution, $y=\left(c_{1}+c_{2} x-\ln |x|\right) e^{-2 x} . \triangleleft$

Review for Exam 2.

- 5 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
- Variation of parameters (2.6).
- Undetermined coefficients (2.5).
- Constant coefficients, homogeneous, (2.2)-(2.4).
- Reduction order method, (2.4.2).
- Second order variable coefficients, (2.1).
- First order homogeneous (1.3.2).

Undetermined coefficients (2.5).

Guessing Solution Table.

$f_{i}(t) \quad(K, m, a, b$, given. $)$	$y_{p_{i}}(t) \quad$ (Guess) (k not given.)
$K e^{a t}$	$k e^{a t}$
$K t^{m}$	$k_{m} t^{m}+k_{m-1} t^{m-1}+\cdots+k_{0}$
$K \cos (b t)$	$k_{1} \cos (b t)+k_{2} \sin (b t)$
$K \sin (b t)$	$k_{1} \cos (b t)+k_{2} \sin (b t)$
$K t^{m} e^{a t}$	$e^{a t}\left(k_{m} t^{m}+\cdots+k_{0}\right)$
$K e^{a t} \cos (b t)$	$e^{a t}\left[k_{1} \cos (b t)+k_{2} \sin (b t)\right]$
$K K e^{a t} \sin (b t)$	$e^{a t}\left[k_{1} \cos (b t)+k_{2} \sin (b t)\right]$
$K t^{m} \cos (b t)$	$\left(k_{m} t^{m}+\cdots+k_{0}\right)\left[a_{1} \cos (b t)+a_{2} \sin (b t)\right]$
$K t^{m} \sin (b t)$	$\left(k_{m} t^{m}+\cdots+k_{0}\right)\left[a_{1} \cos (b t)+a_{2} \sin (b t)\right]$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.
Following the table: Since $f=2 \sin (t)$,

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.

Following the table: Since $f=2 \sin (t)$, then we guess

$$
y_{p}=k_{1} \sin (t)+k_{2} \cos (t)
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.
Following the table: Since $f=2 \sin (t)$, then we guess

$$
y_{p}=k_{1} \sin (t)+k_{2} \cos (t)
$$

This guess satisfies $L\left(y_{p}\right) \neq 0$.

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.

Following the table: Since $f=2 \sin (t)$, then we guess

$$
y_{p}=k_{1} \sin (t)+k_{2} \cos (t)
$$

This guess satisfies $L\left(y_{p}\right) \neq 0$.
Compute: $y_{p}^{\prime}=k_{1} \cos (t)-k_{2} \sin (t), y_{p}^{\prime \prime}=-k_{1} \sin (t)-k_{2} \cos (t)$.

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: We know that the general solution to homogeneous equation is $y(t)=c_{1} e^{4 t}+c_{2} e^{-t}$.
Following the table: Since $f=2 \sin (t)$, then we guess

$$
y_{p}=k_{1} \sin (t)+k_{2} \cos (t)
$$

This guess satisfies $L\left(y_{p}\right) \neq 0$.
Compute: $y_{p}^{\prime}=k_{1} \cos (t)-k_{2} \sin (t), y_{p}^{\prime \prime}=-k_{1} \sin (t)-k_{2} \cos (t)$.

$$
\begin{gathered}
L\left(y_{p}\right)=\left[-k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
-4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t)
\end{gathered}
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall:

$$
\begin{aligned}
L\left(y_{p}\right)=[& \left.-k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
& -4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t)
\end{aligned}
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall:

$$
\begin{aligned}
& L\left(y_{p}\right)=[\left.-k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
&-4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t) \\
&\left(-5 k_{1}+3 k_{2}\right) \sin (t)+\left(-3 k_{1}-5 k_{2}\right) \cos (t)=2 \sin (t)
\end{aligned}
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall:

$$
\begin{aligned}
& L\left(y_{p}\right)=[-\left.k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
&-4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t) \\
&\left(-5 k_{1}+3 k_{2}\right) \sin (t)+\left(-3 k_{1}-5 k_{2}\right) \cos (t)=2 \sin (t)
\end{aligned}
$$

This equation holds for all $t \in \mathbb{R}$. In particular, at $t=\frac{\pi}{2}, t=0$.

$$
\begin{aligned}
& -5 k_{1}+3 k_{2}=2, \\
& -3 k_{1}-5 k_{2}=0,
\end{aligned}
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall:

$$
\begin{aligned}
& L\left(y_{p}\right)=\left[-k_{1} \sin (t)-k_{2} \cos (t)\right]-3\left[k_{1} \cos (t)-k_{2} \sin (t)\right] \\
& \quad-4\left[k_{1} \sin (t)+k_{2} \cos (t)\right]=2 \sin (t) \\
& \left(-5 k_{1}+3 k_{2}\right) \sin (t)+\left(-3 k_{1}-5 k_{2}\right) \cos (t)=2 \sin (t)
\end{aligned}
$$

This equation holds for all $t \in \mathbb{R}$. In particular, at $t=\frac{\pi}{2}, t=0$.

$$
\left.\begin{array}{l}
-5 k_{1}+3 k_{2}=2, \\
-3 k_{1}-5 k_{2}=0,
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
k_{1}=-\frac{5}{17} \\
k_{2}=\frac{3}{17}
\end{array}\right.
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall: $k_{1}=-\frac{5}{17}$ and $k_{2}=\frac{3}{17}$.

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall: $k_{1}=-\frac{5}{17}$ and $k_{2}=\frac{3}{17}$.
So the particular solution to the inhomogeneous equation is

$$
y_{p}(t)=\frac{1}{17}[-5 \sin (t)+3 \cos (t)]
$$

Undetermined coefficients (2.5).

Example

Find all the solutions to the inhomogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t)
$$

Solution: Recall: $k_{1}=-\frac{5}{17}$ and $k_{2}=\frac{3}{17}$.
So the particular solution to the inhomogeneous equation is

$$
y_{p}(t)=\frac{1}{17}[-5 \sin (t)+3 \cos (t)]
$$

The general solution is

$$
y(t)=c_{1} e^{4 t}+c_{2} e^{-t}+\frac{1}{17}[-5 \sin (t)+3 \cos (t)]
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
r^{2}+4=0
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Start with the first source, $f_{1}(x)=3 \sin (2 x)$.

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Start with the first source, $f_{1}(x)=3 \sin (2 x)$.
The function $\tilde{y}_{p_{1}}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Start with the first source, $f_{1}(x)=3 \sin (2 x)$.
The function $\tilde{y}_{p_{1}}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the wrong guess,

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Start with the first source, $f_{1}(x)=3 \sin (2 x)$.
The function $\tilde{y}_{p_{1}}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the wrong guess, since it is solution of the homogeneous equation.

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Start with the first source, $f_{1}(x)=3 \sin (2 x)$.
The function $\tilde{y}_{p_{1}}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the wrong guess, since it is solution of the homogeneous equation. We guess:

$$
y_{p}=x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right] .
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Start with the first source, $f_{1}(x)=3 \sin (2 x)$.
The function $\tilde{y}_{p_{1}}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the wrong guess, since it is solution of the homogeneous equation. We guess:

$$
\begin{gathered}
y_{p}=x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right] \\
y_{p}^{\prime}=\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]+2 x\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]
\end{gathered}
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Find the solutions of the homogeneous problem,

$$
\begin{aligned}
& r^{2}+4=0 \quad \Rightarrow \quad r_{ \pm}= \pm 2 i \\
& y_{1}=\cos (2 x), \quad y_{2}=\sin (2 x)
\end{aligned}
$$

Start with the first source, $f_{1}(x)=3 \sin (2 x)$.
The function $\tilde{y}_{p_{1}}=k_{1} \sin (2 x)+k_{2} \cos (2 x)$ is the wrong guess, since it is solution of the homogeneous equation. We guess:

$$
\begin{gathered}
y_{p}=x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right] \\
y_{p}^{\prime}=\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]+2 x\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right] . \\
y_{p}^{\prime \prime}=4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right] .
\end{gathered}
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.
Evaluating at $x=0$ and $x=\pi / 4$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.
Evaluating at $x=0$ and $x=\pi / 4$ we get

$$
4 k_{1}=0, \quad-4 k_{2}=3
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.
Evaluating at $x=0$ and $x=\pi / 4$ we get

$$
4 k_{1}=0, \quad-4 k_{2}=3 \quad \Rightarrow \quad k_{1}=0, \quad k_{2}=-\frac{3}{4} .
$$

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $y_{1}=\sin (2 x)$, and $y_{2}=\cos (2 x)$.

$$
\begin{gathered}
4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]+4 x\left[-k_{1} \sin (2 x)-k_{2} \cos (2 x)\right]+ \\
4 x\left[k_{1} \sin (2 x)+k_{2} \cos (2 x)\right]=3 \sin (2 x),
\end{gathered}
$$

Therefore, $4\left[k_{1} \cos (2 x)-k_{2} \sin (2 x)\right]=3 \sin (2 x)$.
Evaluating at $x=0$ and $x=\pi / 4$ we get

$$
4 k_{1}=0, \quad-4 k_{2}=3 \quad \Rightarrow \quad k_{1}=0, \quad k_{2}=-\frac{3}{4}
$$

Therefore, $y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.

Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $\quad y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.

Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $\quad y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.
We now compute $y_{p_{2}}$ for $f_{2}(x)=e^{3 x}$.

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $\quad y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.
We now compute $y_{p_{2}}$ for $f_{2}(x)=e^{3 x}$.
We guess: $y_{p_{2}}=k e^{3 x}$. Then, $y_{p_{2}}^{\prime \prime}=9 e^{3 x}$,

Undetermined coefficients (2.5)

Example

Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $\quad y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.
We now compute $y_{p_{2}}$ for $f_{2}(x)=e^{3 x}$.
We guess: $y_{p_{2}}=k e^{3 x}$. Then, $y_{p_{2}}^{\prime \prime}=9 e^{3 x}$,

$$
(9+4) k e^{3 x}=e^{3 x}
$$

Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $\quad y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.
We now compute $y_{p_{2}}$ for $f_{2}(x)=e^{3 x}$.
We guess: $y_{p_{2}}=k e^{3 x}$. Then, $y_{p_{2}}^{\prime \prime}=9 e^{3 x}$,

$$
(9+4) k e^{3 x}=e^{3 x} \quad \Rightarrow \quad k=\frac{1}{13}
$$

Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $\quad y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.
We now compute $y_{p_{2}}$ for $f_{2}(x)=e^{3 x}$.
We guess: $y_{p_{2}}=k e^{3 x}$. Then, $y_{p_{2}}^{\prime \prime}=9 e^{3 x}$,

$$
(9+4) k e^{3 x}=e^{3 x} \Rightarrow k=\frac{1}{13} \quad \Rightarrow \quad y_{p_{2}}=\frac{1}{13} e^{3 x}
$$

Undetermined coefficients (2.5)

Example
Use the undetermined coefficients to find the general solution of

$$
y^{\prime \prime}+4 y=3 \sin (2 x)+e^{3 x}
$$

Solution: Recall: $\quad y_{p_{1}}=-\frac{3}{4} x \cos (2 x)$.
We now compute $y_{p_{2}}$ for $f_{2}(x)=e^{3 x}$.
We guess: $y_{p_{2}}=k e^{3 x}$. Then, $y_{p_{2}}^{\prime \prime}=9 e^{3 x}$,

$$
(9+4) k e^{3 x}=e^{3 x} \quad \Rightarrow \quad k=\frac{1}{13} \quad \Rightarrow \quad y_{p_{2}}=\frac{1}{13} e^{3 x} .
$$

Therefore, the general solution is

$$
y(x)=c_{1} \sin (2 x)+\left(c_{2}-\frac{3}{4} x\right) \cos (2 x)+\frac{1}{13} e^{3 x}
$$

Undetermined coefficients (2.5).

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$,

Undetermined coefficients (2.5).

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t} .
$$

Undetermined coefficients (2.5).

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=2 t^{2} e^{3 t}$,

Undetermined coefficients (2.5).

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=2 t^{2} e^{3 t}$, guess

$$
y_{p}(t)=\left(k_{0}+k_{1} t+k_{2} t^{2}\right) e^{3 t} .
$$

Undetermined coefficients (2.5).

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=2 t^{2} e^{3 t}$, guess

$$
y_{p}(t)=\left(k_{0}+k_{1} t+k_{2} t^{2}\right) e^{3 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 t \sin (t)$,

Undetermined coefficients (2.5).

Example

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t} \sin (t)$, guess

$$
y_{p}(t)=\left[k_{1} \sin (t)+k_{2} \cos (t)\right] e^{2 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=2 t^{2} e^{3 t}$, guess

$$
y_{p}(t)=\left(k_{0}+k_{1} t+k_{2} t^{2}\right) e^{3 t} .
$$

- For $y^{\prime \prime}-3 y^{\prime}-4 y=3 t \sin (t)$, guess

$$
y_{p}(t)=\left(1+k_{1} t\right)\left[k_{2} \sin (t)+k_{3} \cos (t)\right] .
$$

