Variable coefficients second order linear ODE (Sect. 2.1).

- Second order linear ODE.
- Superposition property.
- Existence and uniqueness of solutions.
- Linearly dependent and independent functions.
- ▶ The Wronskian of two functions.
- General and fundamental solutions.
- ▶ Abel's theorem on the Wronskian.
- Special Second order nonlinear equations.

Definition

Given functions a_1 , a_0 , $b: \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1(t) y' + a_0(t) y = b(t)$$
 (1)

is called a *second order linear* differential equation with *variable coefficients*.

Definition

Given functions a_1 , a_0 , $b: \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1(t) y' + a_0(t) y = b(t)$$
 (1)

is called a second order linear differential equation with variable coefficients. The equation in (1) is called homogeneous iff for all $t \in \mathbb{R}$ holds

$$b(t) = 0.$$

Definition

Given functions a_1 , a_0 , $b: \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1(t) y' + a_0(t) y = b(t)$$
 (1)

is called a *second order linear* differential equation with *variable coefficients*. The equation in (1) is called *homogeneous* iff for all $t \in \mathbb{R}$ holds

$$b(t)=0.$$

The equation in (1) is called of *constant coefficients* iff a_1 , a_0 , and b are constants.

Definition

Given functions a_1 , a_0 , $b: \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1(t) y' + a_0(t) y = b(t)$$
 (1)

is called a *second order linear* differential equation with *variable coefficients*. The equation in (1) is called *homogeneous* iff for all $t \in \mathbb{R}$ holds

$$b(t)=0.$$

The equation in (1) is called of *constant coefficients* iff a_1 , a_0 , and b are constants.

Remark: The notion of an homogeneous equation presented here is not the same as the notion presented in the previous chapter.

Example

(a) A second order, linear, homogeneous, constant coefficients equation is y'' + 5y' + 6 = 0.

Example

(a) A second order, linear, homogeneous, constant coefficients equation is v'' + 5v' + 6 = 0.

(b) A second order order, linear, constant coefficients, non-homogeneous equation is

$$y'' - 3y' + y = 1.$$

Example

- (a) A second order, linear, homogeneous, constant coefficients equation is y'' + 5y' + 6 = 0.
- (b) A second order order, linear, constant coefficients, non-homogeneous equation is

$$y'' - 3y' + y = 1.$$

(c) A second order, linear, non-homogeneous, variable coefficients equation is $y'' + 2t y' - \ln(t) y = e^{3t}.$

Example

(a) A second order, linear, homogeneous, constant coefficients equation is y'' + 5y' + 6 = 0.

(b) A second order order, linear, constant coefficients, non-homogeneous equation is

$$y'' - 3y' + y = 1.$$

- (c) A second order, linear, non-homogeneous, variable coefficients equation is $y'' + 2t y' \ln(t) y = e^{3t}.$
- (d) Newton's second law of motion (ma = f) for point particles of mass m moving in one space dimension under a force $f: \mathbb{R} \to \mathbb{R}$ is given by

$$m y''(t) = f(t).$$

Variable coefficients second order linear ODE (Sect. 2.1).

- Second order linear ODE.
- Superposition property.
- Existence and uniqueness of solutions.
- Linearly dependent and independent functions.
- ▶ The Wronskian of two functions.
- General and fundamental solutions.
- ▶ Abel's theorem on the Wronskian.
- Special Second order nonlinear equations.

Theorem

If the functions y_1 and y_2 are solutions to the homogeneous linear equation

$$y'' + a_1(t) y' + a_0(t) y = 0, (2)$$

then the linear combination $c_1y_1(t) + c_2y_2(t)$ is also a solution for any constants c_1 , $c_2 \in \mathbb{R}$.

Theorem

If the functions y_1 and y_2 are solutions to the homogeneous linear equation

$$y'' + a_1(t) y' + a_0(t) y = 0, (2)$$

then the linear combination $c_1y_1(t) + c_2y_2(t)$ is also a solution for any constants $c_1, c_2 \in \mathbb{R}$.

Proof: Verify that the function $y = c_1y_1 + c_2y_2$ satisfies Eq. (2) for every constants c_1 , c_2 ,

Theorem

If the functions y_1 and y_2 are solutions to the homogeneous linear equation

$$y'' + a_1(t) y' + a_0(t) y = 0, (2)$$

then the linear combination $c_1y_1(t) + c_2y_2(t)$ is also a solution for any constants c_1 , $c_2 \in \mathbb{R}$.

Proof: Verify that the function $y = c_1y_1 + c_2y_2$ satisfies Eq. (2) for every constants c_1 , c_2 , that is,

$$(c_1y_1+c_2y_2)''+a_1(t)(c_1y_1+c_2y_2)'+a_0(t)(c_1y_1+c_2y_2)$$

Theorem

If the functions y_1 and y_2 are solutions to the homogeneous linear equation

$$y'' + a_1(t) y' + a_0(t) y = 0, (2)$$

then the linear combination $c_1y_1(t) + c_2y_2(t)$ is also a solution for any constants $c_1, c_2 \in \mathbb{R}$.

Proof: Verify that the function $y = c_1y_1 + c_2y_2$ satisfies Eq. (2) for every constants c_1 , c_2 , that is,

$$(c_1y_1 + c_2y_2)'' + a_1(t)(c_1y_1 + c_2y_2)' + a_0(t)(c_1y_1 + c_2y_2)$$

= $(c_1y_1'' + c_2y_2'') + a_1(t)(c_1y_1' + c_2y_2') + a_0(t)(c_1y_1 + c_2y_2)$

Theorem

If the functions y_1 and y_2 are solutions to the homogeneous linear equation

$$y'' + a_1(t) y' + a_0(t) y = 0, (2)$$

then the linear combination $c_1y_1(t) + c_2y_2(t)$ is also a solution for any constants $c_1, c_2 \in \mathbb{R}$.

Proof: Verify that the function $y = c_1y_1 + c_2y_2$ satisfies Eq. (2) for every constants c_1 , c_2 , that is,

$$(c_1y_1 + c_2y_2)'' + a_1(t)(c_1y_1 + c_2y_2)' + a_0(t)(c_1y_1 + c_2y_2)$$

$$= (c_1y_1'' + c_2y_2'') + a_1(t)(c_1y_1' + c_2y_2') + a_0(t)(c_1y_1 + c_2y_2)$$

$$= c_1[y_1'' + a_1(t)y_1' + a_0(t)y_1] + c_2[y_2'' + a_1(t)y_2' + a_0(t)y_2] = 0.$$

Variable coefficients second order linear ODE (Sect. 2.1).

- Second order linear ODE.
- Superposition property.
- ► Existence and uniqueness of solutions.
- Linearly dependent and independent functions.
- ▶ The Wronskian of two functions.
- General and fundamental solutions.
- ▶ Abel's theorem on the Wronskian.
- Special Second order nonlinear equations.

Theorem (Variable coefficients)

If the functions $a, b: (t_1, t_2) \to \mathbb{R}$ are continuous, the constants $t_0 \in (t_1, t_2)$ and $y_0, y_1 \in \mathbb{R}$, then there exists a unique solution $y: (t_1, t_2) \to \mathbb{R}$ to the initial value problem

$$y'' + a_1(t) y' + a_0(t) y = b(t), \qquad y(t_0) = y_0, \qquad y'(t_0) = y_1.$$

Theorem (Variable coefficients)

If the functions $a, b: (t_1, t_2) \to \mathbb{R}$ are continuous, the constants $t_0 \in (t_1, t_2)$ and $y_0, y_1 \in \mathbb{R}$, then there exists a unique solution $y: (t_1, t_2) \to \mathbb{R}$ to the initial value problem

$$y'' + a_1(t) y' + a_0(t) y = b(t), y(t_0) = y_0, y'(t_0) = y_1.$$

Remarks:

Unlike the first order linear ODE where we have an explicit expression for the solution, there is no explicit expression for the solution of second order linear ODE.

Theorem (Variable coefficients)

If the functions $a, b: (t_1, t_2) \to \mathbb{R}$ are continuous, the constants $t_0 \in (t_1, t_2)$ and $y_0, y_1 \in \mathbb{R}$, then there exists a unique solution $y: (t_1, t_2) \to \mathbb{R}$ to the initial value problem

$$y'' + a_1(t) y' + a_0(t) y = b(t),$$
 $y(t_0) = y_0,$ $y'(t_0) = y_1.$

Remarks:

- Unlike the first order linear ODE where we have an explicit expression for the solution, there is no explicit expression for the solution of second order linear ODE.
- ► Two integrations must be done to find solutions to second order linear. Therefore, initial value problems with two initial conditions can have a unique solution.

Example

Find the longest interval $I \in \mathbb{R}$ such that there exists a unique solution to the initial value problem

$$(t-1)y''-3ty'+4y=t(t-1), y(-2)=2, y'(-2)=1.$$

Example

Find the longest interval $I \in \mathbb{R}$ such that there exists a unique solution to the initial value problem

$$(t-1)y''-3ty'+4y=t(t-1), y(-2)=2, y'(-2)=1.$$

Solution: We first write the equation above in the form given in the Theorem above,

Example

Find the longest interval $I \in \mathbb{R}$ such that there exists a unique solution to the initial value problem

$$(t-1)y''-3ty'+4y=t(t-1), y(-2)=2, y'(-2)=1.$$

Solution: We first write the equation above in the form given in the Theorem above,

$$y'' - \frac{3t}{t-1}y' + \frac{4}{t-1}y = t.$$

Example

Find the longest interval $I \in \mathbb{R}$ such that there exists a unique solution to the initial value problem

$$(t-1)y''-3ty'+4y=t(t-1), y(-2)=2, y'(-2)=1.$$

Solution: We first write the equation above in the form given in the Theorem above,

$$y'' - \frac{3t}{t-1}y' + \frac{4}{t-1}y = t.$$

The intervals where the hypotheses in the Theorem above are satisfied, that is, where the equation coefficients are continuous, are $I_1=(-\infty,1)$ and $I_2=(1,\infty)$.

Example

Find the longest interval $I \in \mathbb{R}$ such that there exists a unique solution to the initial value problem

$$(t-1)y''-3ty'+4y=t(t-1), y(-2)=2, y'(-2)=1.$$

Solution: We first write the equation above in the form given in the Theorem above,

$$y'' - \frac{3t}{t-1}y' + \frac{4}{t-1}y = t.$$

The intervals where the hypotheses in the Theorem above are satisfied, that is, where the equation coefficients are continuous, are $I_1=(-\infty,1)$ and $I_2=(1,\infty)$. Since the initial condition belongs to I_1 , the solution domain is

$$I_1=(-\infty,1).$$

Remarks:

Every solution of the first order linear equation

$$y' + a(t)y = 0$$

is given by

Remarks:

Every solution of the first order linear equation

$$y' + a(t)y = 0$$

is given by $y(t) = c e^{-A(t)}$,

Remarks:

Every solution of the first order linear equation

$$y' + a(t)y = 0$$

is given by
$$y(t) = c e^{-A(t)}$$
, with $A(t) = \int a(t) dt$.

Remarks:

Every solution of the first order linear equation

$$y' + a(t)y = 0$$

is given by
$$y(t) = c e^{-A(t)}$$
, with $A(t) = \int a(t) dt$.

All solutions above are proportional to each other:

$$y_1(t)=c_1\,e^{-A(t)},$$

Remarks:

Every solution of the first order linear equation

$$y' + a(t)y = 0$$

is given by
$$y(t) = c e^{-A(t)}$$
, with $A(t) = \int a(t) dt$.

All solutions above are proportional to each other:

$$y_1(t) = c_1 e^{-A(t)}, \quad y_2(t) = c_2 e^{-A(t)}$$

Remarks:

Every solution of the first order linear equation

$$y' + a(t)y = 0$$

is given by $y(t) = c e^{-A(t)}$, with $A(t) = \int a(t) dt$.

All solutions above are proportional to each other:

$$y_1(t) = c_1 e^{-A(t)}, \quad y_2(t) = c_2 e^{-A(t)} \implies y_1(t) = \frac{c_1}{c_2} y_2(t)$$

Remarks:

Every solution of the first order linear equation

$$y' + a(t)y = 0$$

is given by $y(t) = c e^{-A(t)}$, with $A(t) = \int a(t) dt$.

All solutions above are proportional to each other:

$$y_1(t) = c_1 e^{-A(t)}, \quad y_2(t) = c_2 e^{-A(t)} \implies y_1(t) = \frac{c_1}{c_2} y_2(t)$$

Remark: The above statement is *not true* for solutions of second order, linear, homogeneous equations, $y'' + a_1(t)y' + a_0(t)y = 0$.

Remarks:

Every solution of the first order linear equation

$$y' + a(t) y = 0$$

is given by
$$y(t) = c e^{-A(t)}$$
, with $A(t) = \int a(t) dt$.

All solutions above are proportional to each other:

$$y_1(t) = c_1 e^{-A(t)}, \quad y_2(t) = c_2 e^{-A(t)} \implies y_1(t) = \frac{c_1}{c_2} y_2(t)$$

Remark: The above statement is *not true* for solutions of second order, linear, homogeneous equations, $y'' + a_1(t)y' + a_0(t)y = 0$. Before we prove this statement we need few definitions:

Proportional functions (linearly dependent).

Remarks:

Every solution of the first order linear equation

$$y' + a(t)y = 0$$

is given by
$$y(t) = c e^{-A(t)}$$
, with $A(t) = \int a(t) dt$.

All solutions above are proportional to each other:

$$y_1(t) = c_1 e^{-A(t)}, \quad y_2(t) = c_2 e^{-A(t)} \implies y_1(t) = \frac{c_1}{c_2} y_2(t)$$

Remark: The above statement is *not true* for solutions of second order, linear, homogeneous equations, $y'' + a_1(t)y' + a_0(t)y = 0$. Before we prove this statement we need few definitions:

- Proportional functions (linearly dependent).
- Wronskian of two functions.

Variable coefficients second order linear ODE (Sect. 2.1).

- Second order linear ODE.
- Superposition property.
- Existence and uniqueness of solutions.
- ► Linearly dependent and independent functions.
- ▶ The Wronskian of two functions.
- General and fundamental solutions.
- ▶ Abel's theorem on the Wronskian.
- Special Second order nonlinear equations.

Linearly dependent and independent functions.

Definition

Two continuous functions y_1 , $y_2:(t_1,t_2)\subset\mathbb{R}\to\mathbb{R}$ are called *linearly dependent, (ld),* on the interval (t_1,t_2) iff there exists a constant c such that for all $t\in I$ holds

$$y_1(t)=c\,y_2(t).$$

The two functions are called *linearly independent*, (*li*), on the interval (t_1, t_2) iff they are not linearly dependent.

Linearly dependent and independent functions.

Definition

Two continuous functions y_1 , $y_2:(t_1,t_2)\subset\mathbb{R}\to\mathbb{R}$ are called *linearly dependent, (ld),* on the interval (t_1,t_2) iff there exists a constant c such that for all $t\in I$ holds

$$y_1(t)=c\,y_2(t).$$

The two functions are called *linearly independent*, (*li*), on the interval (t_1, t_2) iff they are not linearly dependent.

Remarks:

▶ y_1 , $y_2:(t_1,t_2)\to\mathbb{R}$ are ld \Leftrightarrow there exist constants c_1 , c_2 , not both zero, such that c_1 $y_1(t)+c_2$ $y_2(t)=0$ for all $t\in(t_1,t_2)$.

Definition

Two continuous functions y_1 , $y_2:(t_1,t_2)\subset\mathbb{R}\to\mathbb{R}$ are called *linearly dependent, (ld),* on the interval (t_1,t_2) iff there exists a constant c such that for all $t\in I$ holds

$$y_1(t)=c\,y_2(t).$$

The two functions are called *linearly independent*, (*li*), on the interval (t_1, t_2) iff they are not linearly dependent.

Remarks:

- ▶ y_1 , $y_2:(t_1,t_2)\to\mathbb{R}$ are ld \Leftrightarrow there exist constants c_1 , c_2 , not both zero, such that c_1 $y_1(t)+c_2$ $y_2(t)=0$ for all $t\in(t_1,t_2)$.
- ▶ y_1 , y_2 : $(t_1, t_2) \rightarrow \mathbb{R}$ are li \Leftrightarrow the only constants c_1 , c_2 , solutions of $c_1 y_1(t) + c_2 y_2(t) = 0$ for all $t \in (t_1, t_2)$ are $c_1 = c_2 = 0$.

Example

- (a) Show that $y_1(t) = \sin(t)$, $y_2(t) = 2\sin(t)$ are Id.
- (b) Show that $y_1(t) = \sin(t)$, $y_2(t) = t\sin(t)$ are li.

Example

- (a) Show that $y_1(t) = \sin(t)$, $y_2(t) = 2\sin(t)$ are Id.
- (b) Show that $y_1(t) = \sin(t)$, $y_2(t) = t\sin(t)$ are li.

Solution:

Case (a): Trivial. $y_2 = 2y_1$.

Example

- (a) Show that $y_1(t) = \sin(t)$, $y_2(t) = 2\sin(t)$ are Id.
- (b) Show that $y_1(t) = \sin(t)$, $y_2(t) = t\sin(t)$ are li.

Solution:

Case (a): Trivial. $y_2 = 2y_1$.

Case (b): Find constants c_1 , c_2 such that for all $t \in \mathbb{R}$ holds $c_1 \sin(t) + c_2 t \sin(t) = 0$

Example

- (a) Show that $y_1(t) = \sin(t)$, $y_2(t) = 2\sin(t)$ are Id.
- (b) Show that $y_1(t) = \sin(t)$, $y_2(t) = t\sin(t)$ are li.

Solution:

Case (a): Trivial. $y_2 = 2y_1$.

Case (b): Find constants c_1 , c_2 such that for all $t \in \mathbb{R}$ holds $c_1 \sin(t) + c_2 t \sin(t) = 0 \quad \Leftrightarrow \quad (c_1 + c_2 t) \sin(t) = 0.$

Example

- (a) Show that $y_1(t) = \sin(t)$, $y_2(t) = 2\sin(t)$ are Id.
- (b) Show that $y_1(t) = \sin(t)$, $y_2(t) = t\sin(t)$ are li.

Solution:

Case (a): Trivial. $y_2 = 2y_1$.

Case (b): Find constants c_1 , c_2 such that for all $t \in \mathbb{R}$ holds $c_1 \sin(t) + c_2 t \sin(t) = 0 \iff (c_1 + c_2 t) \sin(t) = 0.$

Example

- (a) Show that $y_1(t) = \sin(t)$, $y_2(t) = 2\sin(t)$ are Id.
- (b) Show that $y_1(t) = \sin(t)$, $y_2(t) = t\sin(t)$ are li.

Solution:

Case (a): Trivial. $y_2 = 2y_1$.

Case (b): Find constants c_1 , c_2 such that for all $t \in \mathbb{R}$ holds $c_1 \sin(t) + c_2 t \sin(t) = 0 \iff (c_1 + c_2 t) \sin(t) = 0.$

$$c_1+\frac{\pi}{2}\,c_2=0,$$

Example

- (a) Show that $y_1(t) = \sin(t)$, $y_2(t) = 2\sin(t)$ are Id.
- (b) Show that $y_1(t) = \sin(t)$, $y_2(t) = t\sin(t)$ are li.

Solution:

Case (a): Trivial. $y_2 = 2y_1$.

Case (b): Find constants c_1 , c_2 such that for all $t \in \mathbb{R}$ holds $c_1 \sin(t) + c_2 t \sin(t) = 0 \quad \Leftrightarrow \quad (c_1 + c_2 t) \sin(t) = 0.$

$$c_1 + \frac{\pi}{2} c_2 = 0, \quad c_1 + \frac{3\pi}{2} c_2 = 0$$

Example

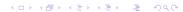
- (a) Show that $y_1(t) = \sin(t)$, $y_2(t) = 2\sin(t)$ are Id.
- (b) Show that $y_1(t) = \sin(t)$, $y_2(t) = t\sin(t)$ are li.

Solution:

Case (a): Trivial. $y_2 = 2y_1$.

Case (b): Find constants c_1 , c_2 such that for all $t \in \mathbb{R}$ holds $c_1 \sin(t) + c_2 t \sin(t) = 0 \iff (c_1 + c_2 t) \sin(t) = 0.$

$$c_1 + \frac{\pi}{2} c_2 = 0, \quad c_1 + \frac{3\pi}{2} c_2 = 0 \quad \Rightarrow \quad c_1 = 0, \quad c_2 = 0.$$



Example

- (a) Show that $y_1(t) = \sin(t)$, $y_2(t) = 2\sin(t)$ are Id.
- (b) Show that $y_1(t) = \sin(t)$, $y_2(t) = t\sin(t)$ are li.

Solution:

Case (a): Trivial. $y_2 = 2y_1$.

Case (b): Find constants c_1 , c_2 such that for all $t \in \mathbb{R}$ holds $c_1 \sin(t) + c_2 t \sin(t) = 0 \iff (c_1 + c_2 t) \sin(t) = 0.$

Evaluating at $t = \pi/2$ and $t = 3\pi/2$ we obtain

$$c_1 + \frac{\pi}{2} c_2 = 0$$
, $c_1 + \frac{3\pi}{2} c_2 = 0$ \Rightarrow $c_1 = 0$, $c_2 = 0$.

We conclude: The functions y_1 and y_2 are li.

Variable coefficients second order linear ODE (Sect. 2.1).

- Second order linear ODE.
- Superposition property.
- Existence and uniqueness of solutions.
- Linearly dependent and independent functions.
- ► The Wronskian of two functions.
- General and fundamental solutions.
- ▶ Abel's theorem on the Wronskian.
- Special Second order nonlinear equations.

Remark: The Wronskian is a function that determines whether two functions are ld or li.

Remark: The Wronskian is a function that determines whether two functions are ld or li.

Definition

The *Wronskian* of functions y_1 , $y_2:(t_1,t_2)\to\mathbb{R}$ is the function

$$W_{y_1y_2}(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t).$$

Remark: The Wronskian is a function that determines whether two functions are ld or li.

Definition

The *Wronskian* of functions y_1 , $y_2:(t_1,t_2)\to\mathbb{R}$ is the function

$$W_{y_1y_2}(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t).$$

Remark:

$$\blacktriangleright \text{ If } A(t) = \begin{bmatrix} y_1 & y_2 \\ y_1' & y_2' \end{bmatrix},$$

Remark: The Wronskian is a function that determines whether two functions are ld or li.

Definition

The *Wronskian* of functions y_1 , $y_2:(t_1,t_2)\to\mathbb{R}$ is the function

$$W_{y_1y_2}(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t).$$

Remark:

▶ If
$$A(t) = \begin{bmatrix} y_1 & y_2 \\ y_1' & y_2' \end{bmatrix}$$
, then $W_{y_1y_2}(t) = \det(A(t))$.

Remark: The Wronskian is a function that determines whether two functions are ld or li.

Definition

The *Wronskian* of functions y_1 , $y_2:(t_1,t_2)\to\mathbb{R}$ is the function

$$W_{y_1y_2}(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t).$$

Remark:

▶ If
$$A(t) = \begin{bmatrix} y_1 & y_2 \\ y_1' & y_2' \end{bmatrix}$$
, then $W_{y_1y_2}(t) = \det(A(t))$.

► An alternative notation is: $W_{y_1y_2} = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}$.

Example

Find the Wronskian of the functions:

(a)
$$y_1(t) = \sin(t)$$
 and $y_2(t) = 2\sin(t)$. (Id)

(b)
$$y_1(t) = \sin(t)$$
 and $y_2(t) = t\sin(t)$. (li)

Example

Find the Wronskian of the functions:

(a)
$$y_1(t) = \sin(t)$$
 and $y_2(t) = 2\sin(t)$. (Id)

(b)
$$y_1(t) = \sin(t)$$
 and $y_2(t) = t\sin(t)$. (li)

Case (a):
$$W_{y_1y_2} = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}$$

Example

Find the Wronskian of the functions:

(a)
$$y_1(t) = \sin(t)$$
 and $y_2(t) = 2\sin(t)$. (Id)

(b)
$$y_1(t) = \sin(t)$$
 and $y_2(t) = t\sin(t)$. (li)

Case (a):
$$W_{y_1y_2} = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} \sin(t) & 2\sin(t) \\ \cos(t) & 2\cos(t) \end{vmatrix}$$
.

Example

Find the Wronskian of the functions:

(a)
$$y_1(t) = \sin(t)$$
 and $y_2(t) = 2\sin(t)$. (Id)

(b)
$$y_1(t) = \sin(t)$$
 and $y_2(t) = t\sin(t)$. (li)

Case (a):
$$W_{y_1y_2} = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} \sin(t) & 2\sin(t) \\ \cos(t) & 2\cos(t) \end{vmatrix}$$
. Therefore,

$$W_{y_1y_2}(t) = \sin(t)2\cos(t) - \cos(t)2\sin(t)$$

Example

Find the Wronskian of the functions:

(a)
$$y_1(t) = \sin(t)$$
 and $y_2(t) = 2\sin(t)$. (Id)

(b)
$$y_1(t) = \sin(t)$$
 and $y_2(t) = t\sin(t)$. (li)

Case (a):
$$W_{y_1y_2} = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} \sin(t) & 2\sin(t) \\ \cos(t) & 2\cos(t) \end{vmatrix}$$
. Therefore,

$$W_{y_1y_2}(t) = \sin(t)2\cos(t) - \cos(t)2\sin(t) \quad \Rightarrow \quad W_{y_1y_2}(t) = 0.$$

Example

Find the Wronskian of the functions:

(a)
$$y_1(t) = \sin(t)$$
 and $y_2(t) = 2\sin(t)$. (Id)

(b)
$$y_1(t) = \sin(t)$$
 and $y_2(t) = t\sin(t)$. (li)

Case (a):
$$W_{y_1y_2} = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} \sin(t) & 2\sin(t) \\ \cos(t) & 2\cos(t) \end{vmatrix}$$
. Therefore,

$$W_{y_1y_2}(t) = \sin(t)2\cos(t) - \cos(t)2\sin(t) \quad \Rightarrow \quad W_{y_1y_2}(t) = 0.$$

Case (b):
$$W_{y_1y_2} = \begin{vmatrix} \sin(t) & t\sin(t) \\ \cos(t) & \sin(t) + t\cos(t) \end{vmatrix}$$
.

Example

Find the Wronskian of the functions:

(a)
$$y_1(t) = \sin(t)$$
 and $y_2(t) = 2\sin(t)$. (ld)

(b)
$$y_1(t) = \sin(t)$$
 and $y_2(t) = t\sin(t)$. (li)

Case (a):
$$W_{y_1y_2} = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} \sin(t) & 2\sin(t) \\ \cos(t) & 2\cos(t) \end{vmatrix}$$
. Therefore,

$$W_{y_1y_2}(t) = \sin(t)2\cos(t) - \cos(t)2\sin(t) \quad \Rightarrow \quad W_{y_1y_2}(t) = 0.$$

Case (b):
$$W_{y_1y_2} = \begin{vmatrix} \sin(t) & t\sin(t) \\ \cos(t) & \sin(t) + t\cos(t) \end{vmatrix}$$
. Therefore,

$$W_{y_1y_2}(t) = \sin(t) \left[\sin(t) + t \cos(t) \right] - \cos(t)t \sin(t).$$

Example

Find the Wronskian of the functions:

(a)
$$y_1(t) = \sin(t)$$
 and $y_2(t) = 2\sin(t)$. (Id)

(b)
$$y_1(t) = \sin(t)$$
 and $y_2(t) = t\sin(t)$. (li)

Case (a):
$$W_{y_1y_2} = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} \sin(t) & 2\sin(t) \\ \cos(t) & 2\cos(t) \end{vmatrix}$$
. Therefore,

$$W_{y_1y_2}(t) = \sin(t)2\cos(t) - \cos(t)2\sin(t) \quad \Rightarrow \quad W_{y_1y_2}(t) = 0.$$

Case (b):
$$W_{y_1y_2} = \begin{vmatrix} \sin(t) & t\sin(t) \\ \cos(t) & \sin(t) + t\cos(t) \end{vmatrix}$$
. Therefore,

$$W_{\nu_1\nu_2}(t) = \sin(t)[\sin(t) + t\cos(t)] - \cos(t)t\sin(t).$$

We obtain
$$W_{y_1y_2}(t) = \sin^2(t)$$
.

Remark: The Wronskian determines whether two functions are linearly dependent or independent.

Remark: The Wronskian determines whether two functions are linearly dependent or independent.

Theorem (Wronskian and linearly dependence)

The continuously differentiable functions y_1 , $y_2:(t_1,t_2)\to\mathbb{R}$ are linearly dependent iff $W_{y_1y_2}(t)=0$ for all $t\in(t_1,t_2)$.

Remark: The Wronskian determines whether two functions are linearly dependent or independent.

Theorem (Wronskian and linearly dependence)

The continuously differentiable functions y_1 , $y_2:(t_1,t_2)\to\mathbb{R}$ are linearly dependent iff $W_{y_1y_2}(t)=0$ for all $t\in(t_1,t_2)$.

Remark: Importance of the Wronskian:

► Sometimes it is not simple to decide whether two functions are proportional to each other.

Remark: The Wronskian determines whether two functions are linearly dependent or independent.

Theorem (Wronskian and linearly dependence)

The continuously differentiable functions y_1 , $y_2:(t_1,t_2)\to\mathbb{R}$ are linearly dependent iff $W_{y_1y_2}(t)=0$ for all $t\in(t_1,t_2)$.

Remark: Importance of the Wronskian:

- ► Sometimes it is not simple to decide whether two functions are proportional to each other.
- ► The Wronskian is useful to study properties of solutions to ODE without having the explicit expressions of these solutions. (See Abel's Theorem later on.)

Example

Show whether the following two functions form a l.d. or l.i. set:

$$y_1(t) = \cos(2t) - 2\cos^2(t), \qquad y_2(t) = \cos(2t) + 2\sin^2(t).$$

Example

Show whether the following two functions form a l.d. or l.i. set:

$$y_1(t) = \cos(2t) - 2\cos^2(t), \qquad y_2(t) = \cos(2t) + 2\sin^2(t).$$

$$W_{y_1y_2}(t) = y_1 y_2' - y_1' y_2.$$

Example

Show whether the following two functions form a l.d. or l.i. set:

$$y_1(t) = \cos(2t) - 2\cos^2(t), \qquad y_2(t) = \cos(2t) + 2\sin^2(t).$$

$$W_{y_1y_2}(t) = y_1 y_2' - y_1' y_2.$$

$$W_{y_1y_2}(t) = \left[\cos(2t) - 2\cos^2(t)\right] \left[-2\sin(2t) + 4\sin(t)\cos(t)\right] \\ - \left[-2\sin(2t) + 4\sin(t)\cos(t)\right] \left[\cos(2t) + 2\sin^2(t)\right].$$

Example

Show whether the following two functions form a l.d. or l.i. set:

$$y_1(t) = \cos(2t) - 2\cos^2(t), \qquad y_2(t) = \cos(2t) + 2\sin^2(t).$$

$$W_{y_1y_2}(t) = y_1 y_2' - y_1' y_2.$$

$$W_{y_1y_2}(t) = \left[\cos(2t) - 2\cos^2(t)\right] \left[-2\sin(2t) + 4\sin(t)\cos(t)\right] - \left[-2\sin(2t) + 4\sin(t)\cos(t)\right] \left[\cos(2t) + 2\sin^2(t)\right].$$

$$\sin(2t) = 2\sin(t)\cos(t)$$

Example

Show whether the following two functions form a l.d. or l.i. set:

$$y_1(t) = \cos(2t) - 2\cos^2(t), \qquad y_2(t) = \cos(2t) + 2\sin^2(t).$$

$$W_{y_1y_2}(t) = y_1 y_2' - y_1' y_2.$$

$$W_{y_1y_2}(t) = \left[\cos(2t) - 2\cos^2(t)\right] \left[-2\sin(2t) + 4\sin(t)\cos(t)\right] - \left[-2\sin(2t) + 4\sin(t)\cos(t)\right] \left[\cos(2t) + 2\sin^2(t)\right].$$

$$\sin(2t) = 2\sin(t)\cos(t) \Rightarrow \left[-2\sin(2t) + 4\sin(t)\cos(t)\right] = 0.$$

Example

Show whether the following two functions form a l.d. or l.i. set:

$$y_1(t) = \cos(2t) - 2\cos^2(t), \qquad y_2(t) = \cos(2t) + 2\sin^2(t).$$

Solution: Compute their Wronskian:

$$W_{y_1y_2}(t) = y_1 y_2' - y_1' y_2.$$

$$W_{y_1y_2}(t) = \left[\cos(2t) - 2\cos^2(t)\right] \left[-2\sin(2t) + 4\sin(t)\cos(t)\right] - \left[-2\sin(2t) + 4\sin(t)\cos(t)\right] \left[\cos(2t) + 2\sin^2(t)\right].$$

$$\sin(2t) = 2\sin(t)\cos(t) \Rightarrow \left[-2\sin(2t) + 4\sin(t)\cos(t)\right] = 0.$$

We conclude $W_{y_1y_2}(t) = 0$, so the functions y_1 and y_2 are Id. \triangleleft

Variable coefficients second order linear ODE (Sect. 2.1).

- Second order linear ODE.
- Superposition property.
- Existence and uniqueness of solutions.
- Linearly dependent and independent functions.
- ▶ The Wronskian of two functions.
- General and fundamental solutions.
- ▶ Abel's theorem on the Wronskian.
- Special Second order nonlinear equations.

General and fundamental solutions.

Theorem

If a_1 , $a_0:(t_1,t_2)\to\mathbb{R}$ are continuous, then the functions $y_1,y_2:(t_1,t_2)\to\mathbb{R}$ solutions of the initial value problems

$$y_1'' + a_1(t) y_1' + a_0(t) y_1 = 0,$$
 $y_1(0) = 1,$ $y_1'(0) = 0,$ $y_2'' + a_1(t) y_2' + a_0(t) y_2 = 0,$ $y_2(0) = 0,$ $y_2'(0) = 1,$

are linearly independent.

Theorem

If a_1 , $a_0:(t_1,t_2)\to\mathbb{R}$ are continuous, then the functions $y_1,y_2:(t_1,t_2)\to\mathbb{R}$ solutions of the initial value problems

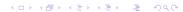
$$y_1'' + a_1(t) y_1' + a_0(t) y_1 = 0,$$
 $y_1(0) = 1,$ $y_1'(0) = 0,$ $y_2'' + a_1(t) y_2' + a_0(t) y_2 = 0,$ $y_2(0) = 0,$ $y_2'(0) = 1,$

are linearly independent.

Remarks:

▶ Every linear combination $y(t) = c_1 y_1(t) + c_2 y_2(t)$, is also a solution of the differential equation

$$y'' + a_1(t) y' + a_0(t) y = 0,$$



Theorem

If a_1 , $a_0:(t_1,t_2)\to\mathbb{R}$ are continuous, then the functions $y_1,y_2:(t_1,t_2)\to\mathbb{R}$ solutions of the initial value problems

$$y_1'' + a_1(t) y_1' + a_0(t) y_1 = 0,$$
 $y_1(0) = 1,$ $y_1'(0) = 0,$ $y_2'' + a_1(t) y_2' + a_0(t) y_2 = 0,$ $y_2(0) = 0,$ $y_2'(0) = 1,$

are linearly independent.

Remarks:

▶ Every linear combination $y(t) = c_1 y_1(t) + c_2 y_2(t)$, is also a solution of the differential equation

$$y'' + a_1(t) y' + a_0(t) y = 0,$$

▶ Conversely, every solution y of the equation above can be written as a linear combination of the solutions y_1 , y_2 .

Remark: The results above justify the following definitions.

Remark: The results above justify the following definitions.

Definition

Two solutions y_1 , y_2 of the homogeneous equation

$$y'' + a_1(t)y' + a_0(t)y = 0, (3)$$

are called *fundamental solutions* iff the functions y_1 , y_2 are linearly independent, that is, iff $W_{y_1y_2} \neq 0$.

Remark: The results above justify the following definitions.

Definition

Two solutions y_1 , y_2 of the homogeneous equation

$$y'' + a_1(t)y' + a_0(t)y = 0, (3)$$

are called *fundamental solutions* iff the functions y_1 , y_2 are linearly independent, that is, iff $W_{y_1y_2} \neq 0$.

Definition

Given any two fundamental solutions y_1 , y_2 , and arbitrary constants c_1 , c_2 , the function

$$y(t) = c_1 y_1(t) + c_2 y_2(t)$$

is called the general solution of Eq. (3).

Example

Show that $y_1=\sqrt{t}$ and $y_2=1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

Example

Show that $y_1=\sqrt{t}$ and $y_2=1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

$$y_1=t^{1/2},$$

Example

Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

$$y_1 = t^{1/2}, \quad y_1' = \frac{1}{2} t^{-1/2},$$

Example

Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

$$y_1 = t^{1/2}, \quad y_1' = \frac{1}{2} t^{-1/2}, \quad y_1'' = -\frac{1}{4} t^{-3/2},$$

Example

Show that $y_1=\sqrt{t}$ and $y_2=1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

$$y_1 = t^{1/2}, \quad y_1' = \frac{1}{2} t^{-1/2}, \quad y_1'' = -\frac{1}{4} t^{-3/2},$$

$$2t^2\left(-\frac{1}{4}\,t^{-\frac{3}{2}}\right) + 3t\left(\frac{1}{2}t^{-\frac{1}{2}}\right) - t^{\frac{1}{2}}$$

Example

Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

$$y_1 = t^{1/2}, \quad y_1' = \frac{1}{2} t^{-1/2}, \quad y_1'' = -\frac{1}{4} t^{-3/2},$$

$$2t^{2}\left(-\frac{1}{4}t^{-\frac{3}{2}}\right)+3t\left(\frac{1}{2}t^{-\frac{1}{2}}\right)-t^{\frac{1}{2}}=-\frac{1}{2}t^{\frac{1}{2}}+\frac{3}{2}t^{\frac{1}{2}}-t^{\frac{1}{2}}=0.$$

Example

Show that $y_1=\sqrt{t}$ and $y_2=1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

Solution: First show that y_1 is a solution:

$$\begin{aligned} y_1 &= t^{1/2}, \quad y_1' &= \frac{1}{2} \, t^{-1/2}, \quad y_1'' &= -\frac{1}{4} \, t^{-3/2}, \\ 2t^2 \left(-\frac{1}{4} \, t^{-\frac{3}{2}} \right) + 3t \left(\frac{1}{2} t^{-\frac{1}{2}} \right) - t^{\frac{1}{2}} &= -\frac{1}{2} t^{\frac{1}{2}} + \frac{3}{2} t^{\frac{1}{2}} - t^{\frac{1}{2}} = 0. \end{aligned}$$

$$y_2=t^{-1},$$

Example

Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

Solution: First show that y_1 is a solution:

$$\begin{aligned} y_1 &= t^{1/2}, \quad y_1' &= \frac{1}{2} \, t^{-1/2}, \quad y_1'' &= -\frac{1}{4} \, t^{-3/2}, \\ 2t^2 \left(-\frac{1}{4} \, t^{-\frac{3}{2}} \right) + 3t \left(\frac{1}{2} t^{-\frac{1}{2}} \right) - t^{\frac{1}{2}} &= -\frac{1}{2} t^{\frac{1}{2}} + \frac{3}{2} t^{\frac{1}{2}} - t^{\frac{1}{2}} = 0. \end{aligned}$$

$$y_2 = t^{-1}, \quad y_2' = -t^{-2},$$

Example

Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

Solution: First show that y_1 is a solution:

$$\begin{aligned} y_1 &= t^{1/2}, \quad y_1' &= \frac{1}{2} \, t^{-1/2}, \quad y_1'' &= -\frac{1}{4} \, t^{-3/2}, \\ 2t^2 \left(-\frac{1}{4} \, t^{-\frac{3}{2}} \right) + 3t \left(\frac{1}{2} t^{-\frac{1}{2}} \right) - t^{\frac{1}{2}} &= -\frac{1}{2} t^{\frac{1}{2}} + \frac{3}{2} t^{\frac{1}{2}} - t^{\frac{1}{2}} &= 0. \end{aligned}$$

$$y_2 = t^{-1}, \quad y_2' = -t^{-2}, \quad y_2'' = 2t^{-3},$$

Example

Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

Solution: First show that y_1 is a solution:

$$\begin{aligned} y_1 &= t^{1/2}, \quad y_1' &= \frac{1}{2} \, t^{-1/2}, \quad y_1'' &= -\frac{1}{4} \, t^{-3/2}, \\ 2t^2 \left(-\frac{1}{4} \, t^{-\frac{3}{2}} \right) + 3t \left(\frac{1}{2} t^{-\frac{1}{2}} \right) - t^{\frac{1}{2}} &= -\frac{1}{2} t^{\frac{1}{2}} + \frac{3}{2} t^{\frac{1}{2}} - t^{\frac{1}{2}} &= 0. \end{aligned}$$

$$y_2=t^{-1}, \quad y_2'=-t^{-2}, \quad y_2''=2t^{-3},$$

$$2t^2\left(2t^{-3}\right)+3t\left(-t^{-2}\right)-t^{-1}$$

Example

Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

Solution: First show that y_1 is a solution:

$$\begin{aligned} y_1 &= t^{1/2}, \quad y_1' &= \frac{1}{2} \, t^{-1/2}, \quad y_1'' &= -\frac{1}{4} \, t^{-3/2}, \\ 2t^2 \left(-\frac{1}{4} \, t^{-\frac{3}{2}} \right) + 3t \left(\frac{1}{2} t^{-\frac{1}{2}} \right) - t^{\frac{1}{2}} &= -\frac{1}{2} t^{\frac{1}{2}} + \frac{3}{2} t^{\frac{1}{2}} - t^{\frac{1}{2}} &= 0. \end{aligned}$$

$$y_2 = t^{-1}, \quad y_2' = -t^{-2}, \quad y_2'' = 2t^{-3},$$

$$2t^2(2t^{-3}) + 3t(-t^{-2}) - t^{-1} = 4t^{-1} - 3t^{-1} - t^{-1} = 0.$$

Example

Show that $y_1=\sqrt{t}$ and $y_2=1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

Example

Show that $y_1=\sqrt{t}$ and $y_2=1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

$$W_{y_1y_2}(t) = \begin{vmatrix} y_1 & y_2 \ y_1' & y_2' \end{vmatrix}$$

Example

Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

$$W_{y_1y_2}(t) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} t^{1/2} & t^{-1} \\ \frac{1}{2} t^{-1/2} & -t^{-2} \end{vmatrix}.$$

Example

Show that $y_1=\sqrt{t}$ and $y_2=1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

$$W_{y_1y_2}(t) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} t^{1/2} & t^{-1} \\ \frac{1}{2} t^{-1/2} & -t^{-2} \end{vmatrix}.$$

$$W_{y_1y_2}(t) = -t^{1/2} t^{-2} - \frac{1}{2} t^{-1/2} t^{-1}$$

Example

Show that $y_1=\sqrt{t}$ and $y_2=1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

$$W_{y_1y_2}(t) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} t^{1/2} & t^{-1} \\ \frac{1}{2} t^{-1/2} & -t^{-2} \end{vmatrix}.$$

$$W_{y_1y_2}(t) = -t^{1/2} t^{-2} - \frac{1}{2} t^{-1/2} t^{-1} = -t^{-3/2} - \frac{1}{2} t^{-3/2}$$

Example

Show that $y_1=\sqrt{t}$ and $y_2=1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

$$W_{y_1y_2}(t) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} t^{1/2} & t^{-1} \\ \frac{1}{2} t^{-1/2} & -t^{-2} \end{vmatrix}.$$

$$W_{y_1y_2}(t) = -t^{1/2} t^{-2} - \frac{1}{2} t^{-1/2} t^{-1} = -t^{-3/2} - \frac{1}{2} t^{-3/2}$$

$$W_{y_1y_2}(t) = -\frac{3}{3} t^{-3/2}$$

Example

Show that $y_1 = \sqrt{t}$ and $y_2 = 1/t$ are fundamental solutions of

$$2t^2y'' + 3ty' - y = 0.$$

Solution: We show that y_1 , y_2 are linearly independent.

$$W_{y_1y_2}(t) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} t^{1/2} & t^{-1} \\ \frac{1}{2} t^{-1/2} & -t^{-2} \end{vmatrix}.$$

$$W_{y_1y_2}(t) = -t^{1/2} t^{-2} - \frac{1}{2} t^{-1/2} t^{-1} = -t^{-3/2} - \frac{1}{2} t^{-3/2}$$
 $W_{y_1y_2}(t) = -\frac{3}{3} t^{-3/2} \quad \Rightarrow \quad y_1, \ y_2 \ \mathrm{li}.$

 $\langle 1 \rangle$

Variable coefficients second order linear ODE (Sect. 2.1).

- Second order linear ODE.
- Superposition property.
- Existence and uniqueness of solutions.
- Linearly dependent and independent functions.
- ▶ The Wronskian of two functions.
- General and fundamental solutions.
- ► Abel's theorem on the Wronskian.
- Special Second order nonlinear equations.

Theorem (Abel)

If a_1 , $a_0:(t_1,t_2)\to\mathbb{R}$ are continuous functions and y_1 , y_2 are continuously differentiable solutions of the equation

$$y'' + a_1(t) y' + a_0(t) y = 0,$$

then the Wronskian $W_{y_1y_2}$ is a solution of the equation

$$W'_{y_1y_2}(t) + a_1(t) W_{y_1y_2}(t) = 0.$$

Therefore, for any $t_0 \in (t_1, t_2)$, the Wronskian $W_{y_1y_2}$ is given by

$$W_{y_1y_2}(t) = W_{y_1y_2}(t_0) e^{A(t)}$$
 $A(t) = \int_{t_0}^t a_1(s) ds.$

Theorem (Abel)

If a_1 , $a_0:(t_1,t_2)\to\mathbb{R}$ are continuous functions and y_1 , y_2 are continuously differentiable solutions of the equation

$$y'' + a_1(t) y' + a_0(t) y = 0,$$

then the Wronskian $W_{y_1y_2}$ is a solution of the equation

$$W'_{y_1y_2}(t) + a_1(t) W_{y_1y_2}(t) = 0.$$

Therefore, for any $t_0 \in (t_1, t_2)$, the Wronskian $W_{y_1y_2}$ is given by

$$W_{y_1y_2}(t) = W_{y_1y_2}(t_0) e^{A(t)}$$
 $A(t) = \int_{t_0}^t a_1(s) ds.$

Remarks: If the the Wronskian of two solutions vanishes at the initial time, then it vanishes at all times.

Example

Find the Wronskian of two solutions of the equation

$$t^2 y'' - t(t+2) y' + (t+2) y = 0,$$
 $t > 0.$

Example

Find the Wronskian of two solutions of the equation

$$t^2 y'' - t(t+2) y' + (t+2) y = 0,$$
 $t > 0.$

Solution: Write the equation as in Abel's Theorem,

$$y'' - \left(\frac{2}{t} + 1\right)y' + \left(\frac{2}{t^2} + \frac{1}{t}\right)y = 0.$$

Example

Find the Wronskian of two solutions of the equation

$$t^2 y'' - t(t+2) y' + (t+2) y = 0,$$
 $t > 0.$

Solution: Write the equation as in Abel's Theorem,

$$y'' - \left(\frac{2}{t} + 1\right)y' + \left(\frac{2}{t^2} + \frac{1}{t}\right)y = 0.$$

Abel's Theorem says that the Wronskian satisfies the equation

$$W'_{y_1y_2}(t) - \left(\frac{2}{t} + 1\right)W_{y_1y_2}(t) = 0.$$

Example

Find the Wronskian of two solutions of the equation

$$t^2 y'' - t(t+2) y' + (t+2) y = 0,$$
 $t > 0.$

Solution: Write the equation as in Abel's Theorem,

$$y'' - \left(\frac{2}{t} + 1\right)y' + \left(\frac{2}{t^2} + \frac{1}{t}\right)y = 0.$$

Abel's Theorem says that the Wronskian satisfies the equation

$$W'_{y_1y_2}(t) - \left(\frac{2}{t} + 1\right) W_{y_1y_2}(t) = 0.$$

This is a first order, linear equation for $W_{y_1y_2}$.

Example

Find the Wronskian of two solutions of the equation

$$t^{2}y'' - t(t+2)y' + (t+2)y = 0,$$
 $t > 0$

Solution: Write the equation as in Abel's Theorem,

$$y'' - \left(\frac{2}{t} + 1\right)y' + \left(\frac{2}{t^2} + \frac{1}{t}\right)y = 0.$$

Abel's Theorem says that the Wronskian satisfies the equation

$$W'_{y_1y_2}(t) - \left(\frac{2}{t} + 1\right) W_{y_1y_2}(t) = 0.$$

This is a first order, linear equation for $W_{y_1y_2}$. The integrating factor method implies

$$A(t) = -\int_{t_0}^t \left(\frac{2}{s} + 1\right) ds$$

Example

Find the Wronskian of two solutions of the equation

$$t^{2}y'' - t(t+2)y' + (t+2)y = 0,$$
 $t > 0$

Solution: Write the equation as in Abel's Theorem,

$$y'' - \left(\frac{2}{t} + 1\right)y' + \left(\frac{2}{t^2} + \frac{1}{t}\right)y = 0.$$

Abel's Theorem says that the Wronskian satisfies the equation

$$W'_{y_1y_2}(t) - \left(\frac{2}{t} + 1\right) W_{y_1y_2}(t) = 0.$$

This is a first order, linear equation for $W_{y_1y_2}$. The integrating factor method implies

$$A(t) = -\int_{t_0}^t \left(\frac{2}{s} + 1\right) ds = -2 \ln\left(\frac{t}{t_0}\right) - (t - t_0)$$

Example

Find the Wronskian of two solutions of the equation

$$t^2 y'' - t(t+2) y' + (t+2) y = 0,$$
 $t > 0.$

Solution:
$$A(t) = -2 \ln \left(\frac{t}{t_0}\right) - (t - t_0)$$

Example

Find the Wronskian of two solutions of the equation

$$t^2 y'' - t(t+2) y' + (t+2) y = 0,$$
 $t > 0.$

Solution:
$$A(t)=-2\ln\Bigl(rac{t}{t_0}\Bigr)-(t-t_0)=\ln\Bigl(rac{t_0^2}{t^2}\Bigr)-(t-t_0).$$

Example

Find the Wronskian of two solutions of the equation

$$t^2 y'' - t(t+2) y' + (t+2) y = 0,$$
 $t > 0.$

Solution:
$$A(t) = -2 \ln \left(\frac{t}{t_0} \right) - (t - t_0) = \ln \left(\frac{t_0^2}{t^2} \right) - (t - t_0).$$

The integrating factor is $\mu = \frac{t_0^2}{t^2} e^{-(t-t_0)}$.

Example

Find the Wronskian of two solutions of the equation

$$t^2 y'' - t(t+2) y' + (t+2) y = 0,$$
 $t > 0.$

Solution:
$$A(t) = -2 \ln \left(\frac{t}{t_0} \right) - (t - t_0) = \ln \left(\frac{t_0^2}{t^2} \right) - (t - t_0).$$

The integrating factor is $\mu=rac{t_0^2}{t^2}\,e^{-(t-t_0)}.$ Therefore,

$$\left[\mu(t)W_{y_1y_2}(t)\right]'=0$$

Example

Find the Wronskian of two solutions of the equation

$$t^{2}y'' - t(t+2)y' + (t+2)y = 0,$$
 $t > 0.$

Solution:
$$A(t) = -2 \ln \left(\frac{t}{t_0} \right) - (t - t_0) = \ln \left(\frac{t_0^2}{t^2} \right) - (t - t_0).$$

The integrating factor is $\mu=rac{t_0^2}{t^2}\,e^{-(t-t_0)}.$ Therefore,

$$\left[\mu(t)W_{y_1y_2}(t)\right]' = 0 \quad \Rightarrow \quad \mu(t)W_{y_1y_2}(t) - \mu(t_0)W_{y_1y_2}(t_0) = 0$$

Example

Find the Wronskian of two solutions of the equation

$$t^{2}y'' - t(t+2)y' + (t+2)y = 0, t > 0.$$

Solution:
$$A(t) = -2 \ln \left(\frac{t}{t_0} \right) - (t - t_0) = \ln \left(\frac{t_0^2}{t^2} \right) - (t - t_0).$$

The integrating factor is $\mu=rac{t_0^2}{t^2}\,e^{-(t-t_0)}.$ Therefore,

$$\left[\mu(t)W_{y_1y_2}(t)\right]'=0 \quad \Rightarrow \quad \mu(t)W_{y_1y_2}(t)-\mu(t_0)W_{y_1y_2}(t_0)=0$$

so, the solution is $W_{y_1y_2}(t) = W_{y_1y_2}(t_0) \frac{t^2}{t_0^2} e^{(t-t_0)}$.

Example

Find the Wronskian of two solutions of the equation

$$t^{2}y'' - t(t+2)y' + (t+2)y = 0,$$
 $t > 0.$

Solution:
$$A(t) = -2 \ln \left(\frac{t}{t_0} \right) - (t - t_0) = \ln \left(\frac{t_0^2}{t^2} \right) - (t - t_0).$$

The integrating factor is $\mu=rac{t_0^2}{t^2}\,e^{-(t-t_0)}.$ Therefore,

$$\left[\mu(t)W_{y_1y_2}(t)\right]'=0 \quad \Rightarrow \quad \mu(t)W_{y_1y_2}(t)-\mu(t_0)W_{y_1y_2}(t_0)=0$$

so, the solution is
$$W_{y_1y_2}(t) = W_{y_1y_2}(t_0) \frac{t^2}{t_0^2} e^{(t-t_0)}$$
.

Denoting
$$c = (W_{y_1 y_2}(t_0)/t_0^2) e^{-t_0}$$
,

Example

Find the Wronskian of two solutions of the equation

$$t^{2}y'' - t(t+2)y' + (t+2)y = 0,$$
 $t > 0.$

Solution:
$$A(t) = -2 \ln \left(\frac{t}{t_0} \right) - (t - t_0) = \ln \left(\frac{t_0^2}{t^2} \right) - (t - t_0).$$

The integrating factor is $\mu=rac{t_0^2}{t^2}\,e^{-(t-t_0)}.$ Therefore,

$$\left[\mu(t)W_{y_1y_2}(t)\right]'=0 \quad \Rightarrow \quad \mu(t)W_{y_1y_2}(t)-\mu(t_0)W_{y_1y_2}(t_0)=0$$

so, the solution is $W_{y_1y_2}(t) = W_{y_1y_2}(t_0) \frac{t^2}{t_0^2} e^{(t-t_0)}$.

Denoting
$$c = (W_{v_1 v_2}(t_0)/t_0^2) e^{-t_0}$$
, then $W_{v_1 v_2}(t) = c t^2 e^t$.

Variable coefficients second order linear ODE (Sect. 2.1).

- Second order linear ODE.
- Superposition property.
- Existence and uniqueness of solutions.
- Linearly dependent and independent functions.
- ▶ The Wronskian of two functions.
- General and fundamental solutions.
- ▶ Abel's theorem on the Wronskian.
- Special Second order nonlinear equations

Definition

Given a functions $f: \mathbb{R}^3 \to \mathbb{R}$, a second order differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ is given by

$$y''=f(t,y,y').$$

The equation is *linear* iff f is linear in the arguments y and y'.

Definition

Given a functions $f: \mathbb{R}^3 \to \mathbb{R}$, a second order differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ is given by

$$y''=f(t,y,y').$$

The equation is *linear* iff f is linear in the arguments y and y'.

Remarks:

► Nonlinear second order differential equation are usually difficult to solve.

Definition

Given a functions $f: \mathbb{R}^3 \to \mathbb{R}$, a second order differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ is given by

$$y''=f(t,y,y').$$

The equation is *linear* iff f is linear in the arguments y and y'.

- ► Nonlinear second order differential equation are usually difficult to solve.
- ► However, there are two particular cases where *second order* equations can be transformed into *first order* equations.

Definition

Given a functions $f: \mathbb{R}^3 \to \mathbb{R}$, a second order differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ is given by

$$y''=f(t,y,y').$$

The equation is *linear* iff f is linear in the arguments y and y'.

- ► Nonlinear second order differential equation are usually difficult to solve.
- ► However, there are two particular cases where *second order* equations can be transformed into *first order* equations.

(a)
$$y'' = f(t, y')$$
.

Definition

Given a functions $f: \mathbb{R}^3 \to \mathbb{R}$, a second order differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ is given by

$$y''=f(t,y,y').$$

The equation is *linear* iff f is linear in the arguments y and y'.

- ► Nonlinear second order differential equation are usually difficult to solve.
- ► However, there are two particular cases where *second order* equations can be transformed into *first order* equations.
 - (a) y'' = f(t, y'). The function y is missing.

Definition

Given a functions $f: \mathbb{R}^3 \to \mathbb{R}$, a second order differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ is given by

$$y''=f(t,y,y').$$

The equation is *linear* iff f is linear in the arguments y and y'.

- ► Nonlinear second order differential equation are usually difficult to solve.
- ► However, there are two particular cases where *second order* equations can be transformed into *first order* equations.
 - (a) y'' = f(t, y'). The function y is missing.
 - (b) y'' = f(y, y').

Definition

Given a functions $f: \mathbb{R}^3 \to \mathbb{R}$, a second order differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ is given by

$$y''=f(t,y,y').$$

The equation is *linear* iff f is linear in the arguments y and y'.

- ► Nonlinear second order differential equation are usually difficult to solve.
- ► However, there are two particular cases where *second order* equations can be transformed into *first order* equations.
 - (a) y'' = f(t, y'). The function y is missing.
 - (b) y'' = f(y, y'). The independent variable t is missing.

Remark: If second order differential equation has the form y'' = f(t, y'), then the equation for v = y' is the first order equation v' = f(t, v).

Remark: If second order differential equation has the form y'' = f(t, y'), then the equation for v = y' is the first order equation v' = f(t, v).

Example

Remark: If second order differential equation has the form y'' = f(t, y'), then the equation for v = y' is the first order equation v' = f(t, v).

Example

Find the y solution of the second order nonlinear equation $y'' = -2t(y')^2$ with initial conditions y(0) = 2, y'(0) = 1.

Solution: Introduce v = y'.

Remark: If second order differential equation has the form y'' = f(t, y'), then the equation for v = y' is the first order equation v' = f(t, v).

Example

Find the y solution of the second order nonlinear equation $y'' = -2t(y')^2$ with initial conditions y(0) = 2, y'(0) = 1.

Remark: If second order differential equation has the form y'' = f(t, y'), then the equation for v = y' is the first order equation v' = f(t, v).

Example

Find the y solution of the second order nonlinear equation $y'' = -2t(y')^2$ with initial conditions y(0) = 2, y'(0) = 1.

$$v' = -2t v^2$$

Remark: If second order differential equation has the form y'' = f(t, y'), then the equation for v = y' is the first order equation v' = f(t, v).

Example

Find the y solution of the second order nonlinear equation $y'' = -2t(y')^2$ with initial conditions y(0) = 2, y'(0) = 1.

$$v' = -2t v^2 \quad \Rightarrow \quad \frac{v'}{v^2} = -2t$$

Remark: If second order differential equation has the form y'' = f(t, y'), then the equation for v = y' is the first order equation v' = f(t, v).

Example

Find the y solution of the second order nonlinear equation $y'' = -2t(y')^2$ with initial conditions y(0) = 2, y'(0) = 1.

$$v' = -2t v^2$$
 \Rightarrow $\frac{v'}{v^2} = -2t$ \Rightarrow $-\frac{1}{v} = -t^2 + c$.

Remark: If second order differential equation has the form y'' = f(t, y'), then the equation for v = y' is the first order equation v' = f(t, v).

Example

Find the y solution of the second order nonlinear equation $y'' = -2t(y')^2$ with initial conditions y(0) = 2, y'(0) = 1.

$$v' = -2t v^2 \quad \Rightarrow \quad \frac{v'}{v^2} = -2t \quad \Rightarrow \quad -\frac{1}{v} = -t^2 + c.$$

So,
$$\frac{1}{y'} = t^2 - c$$
, that is, $y' = \frac{1}{t^2 - c}$.

Remark: If second order differential equation has the form y'' = f(t, y'), then the equation for v = y' is the first order equation v' = f(t, v).

Example

Find the y solution of the second order nonlinear equation $y'' = -2t(y')^2$ with initial conditions y(0) = 2, y'(0) = 1.

Solution: Introduce v = y'. Then v' = y'', and

$$v' = -2t v^2$$
 \Rightarrow $\frac{v'}{v^2} = -2t$ \Rightarrow $-\frac{1}{v} = -t^2 + c$.

$$1=y'(0)$$

Remark: If second order differential equation has the form y'' = f(t, y'), then the equation for v = y' is the first order equation v' = f(t, v).

Example

Find the y solution of the second order nonlinear equation $y'' = -2t(y')^2$ with initial conditions y(0) = 2, y'(0) = 1.

Solution: Introduce v = y'. Then v' = y'', and

$$v' = -2t v^2 \quad \Rightarrow \quad \frac{v'}{v^2} = -2t \quad \Rightarrow \quad -\frac{1}{v} = -t^2 + c.$$

$$1=y'(0)=-\frac{1}{c}$$

Remark: If second order differential equation has the form y'' = f(t, y'), then the equation for v = y' is the first order equation v' = f(t, v).

Example

Find the y solution of the second order nonlinear equation $y'' = -2t(y')^2$ with initial conditions y(0) = 2, y'(0) = 1.

Solution: Introduce v = y'. Then v' = y'', and

$$v' = -2t v^2 \quad \Rightarrow \quad \frac{v'}{v^2} = -2t \quad \Rightarrow \quad -\frac{1}{v} = -t^2 + c.$$

$$1 = y'(0) = -\frac{1}{c} \quad \Rightarrow \quad c = -1$$

Remark: If second order differential equation has the form y'' = f(t, y'), then the equation for v = y' is the first order equation v' = f(t, v).

Example

Find the y solution of the second order nonlinear equation $y'' = -2t(y')^2$ with initial conditions y(0) = 2, y'(0) = 1.

Solution: Introduce v = y'. Then v' = y'', and

$$v' = -2t v^2 \quad \Rightarrow \quad \frac{v'}{v^2} = -2t \quad \Rightarrow \quad -\frac{1}{v} = -t^2 + c.$$

$$1 = y'(0) = -\frac{1}{c} \quad \Rightarrow \quad c = -1 \quad \Rightarrow \quad y' = \frac{1}{t^2 - 1}.$$

Example

Solution: Then,
$$y = \int \frac{dt}{t^2 - 1} + c$$
.

Example

Solution: Then,
$$y = \int \frac{dt}{t^2 - 1} + c$$
. Partial Fractions!

Example

Solution: Then,
$$y = \int \frac{dt}{t^2 - 1} + c$$
. Partial Fractions! $\frac{1}{t^2 - 1}$

Example

Solution: Then,
$$y=\int \frac{dt}{t^2-1}+c$$
. Partial Fractions!
$$\frac{1}{t^2-1}=\frac{1}{(t-1)(t+1)}$$

Example

Solution: Then,
$$y = \int \frac{dt}{t^2 - 1} + c$$
. Partial Fractions!
$$\frac{1}{t^2 - 1} = \frac{1}{(t - 1)(t + 1)} = \frac{a}{(t - 1)} + \frac{b}{(t + 1)}.$$

Example

Solution: Then,
$$y = \int \frac{dt}{t^2 - 1} + c$$
. Partial Fractions!
$$\frac{1}{t^2 - 1} = \frac{1}{(t - 1)(t + 1)} = \frac{a}{(t - 1)} + \frac{b}{(t + 1)}.$$

Example

Find the y solution of the second order nonlinear equation $y'' = -2t(y')^2$ with initial conditions y(0) = 2, y'(0) = 1.

Solution: Then,
$$y = \int \frac{dt}{t^2 - 1} + c$$
. Partial Fractions!
$$\frac{1}{t^2 - 1} = \frac{1}{(t - 1)(t + 1)} = \frac{a}{(t - 1)} + \frac{b}{(t + 1)}.$$

Hence, 1 = a(t+1) + b(t-1). Evaluating at t = 1 and t = -1

Example

Solution: Then,
$$y=\int \frac{dt}{t^2-1}+c$$
. Partial Fractions!
$$\frac{1}{t^2-1}=\frac{1}{(t-1)(t+1)}=\frac{a}{(t-1)}+\frac{b}{(t+1)}.$$

Hence,
$$1=a(t+1)+b(t-1)$$
. Evaluating at $t=1$ and $t=-1$ we get $a=\frac{1}{2}$, $b=-\frac{1}{2}$.

Example

Solution: Then,
$$y=\int \frac{dt}{t^2-1}+c$$
. Partial Fractions!
$$\frac{1}{t^2-1}=\frac{1}{(t-1)(t+1)}=\frac{a}{(t-1)}+\frac{b}{(t+1)}.$$

Hence,
$$1=a(t+1)+b(t-1)$$
. Evaluating at $t=1$ and $t=-1$ we get $a=\frac{1}{2},\ b=-\frac{1}{2}$. So $\frac{1}{t^2-1}=\frac{1}{2}\Big[\frac{1}{(t-1)}-\frac{1}{(t+1)}\Big]$.

Example

Solution: Then,
$$y = \int \frac{dt}{t^2 - 1} + c$$
. Partial Fractions!
$$\frac{1}{t^2 - 1} = \frac{1}{(t - 1)(t + 1)} = \frac{a}{(t - 1)} + \frac{b}{(t + 1)}.$$

Hence,
$$1=a(t+1)+b(t-1)$$
. Evaluating at $t=1$ and $t=-1$ we get $a=\frac{1}{2}$, $b=-\frac{1}{2}$. So $\frac{1}{t^2-1}=\frac{1}{2}\Big[\frac{1}{(t-1)}-\frac{1}{(t+1)}\Big]$. $y=\frac{1}{2}\big(\ln|t-1|-\ln|t+1|\big)+c$.

Example

Solution: Then,
$$y=\int \frac{dt}{t^2-1}+c$$
. Partial Fractions!
$$\frac{1}{t^2-1}=\frac{1}{(t-1)(t+1)}=\frac{a}{(t-1)}+\frac{b}{(t+1)}.$$

Hence,
$$1=a(t+1)+b(t-1)$$
. Evaluating at $t=1$ and $t=-1$ we get $a=\frac{1}{2},\ b=-\frac{1}{2}$. So $\frac{1}{t^2-1}=\frac{1}{2}\Big[\frac{1}{(t-1)}-\frac{1}{(t+1)}\Big].$ $y=\frac{1}{2}\big(\ln|t-1|-\ln|t+1|\big)+c.$ $2=y(0)$

$$y = \frac{1}{2} (\ln|t-1| - \ln|t+1|) + c.$$
 $2 = y(0)$

Example

Solution: Then,
$$y=\int \frac{dt}{t^2-1}+c$$
. Partial Fractions!
$$\frac{1}{t^2-1}=\frac{1}{(t-1)(t+1)}=\frac{a}{(t-1)}+\frac{b}{(t+1)}.$$

Hence,
$$1=a(t+1)+b(t-1)$$
. Evaluating at $t=1$ and $t=-1$ we get $a=\frac{1}{2},\ b=-\frac{1}{2}$. So $\frac{1}{t^2-1}=\frac{1}{2}\Big[\frac{1}{(t-1)}-\frac{1}{(t+1)}\Big].$
$$y=\frac{1}{2}\big(\ln|t-1|-\ln|t+1|\big)+c. \qquad 2=y(0)=\frac{1}{2}(0-0)+c.$$

Example

Find the y solution of the second order nonlinear equation $y'' = -2t(y')^2$ with initial conditions y(0) = 2, y'(0) = 1.

Solution: Then,
$$y = \int \frac{dt}{t^2 - 1} + c$$
. Partial Fractions!
$$\frac{1}{t^2 - 1} = \frac{1}{(t - 1)(t + 1)} = \frac{a}{(t - 1)} + \frac{b}{(t + 1)}.$$

Hence,
$$1 = a(t+1) + b(t-1)$$
. Evaluating at $t = 1$ and $t = -1$ we get $a = \frac{1}{2}$, $b = -\frac{1}{2}$. So $\frac{1}{t^2 - 1} = \frac{1}{2} \Big[\frac{1}{(t-1)} - \frac{1}{(t+1)} \Big]$.

$$y = \frac{1}{2} (\ln|t-1| - \ln|t+1|) + c.$$
 $2 = y(0) = \frac{1}{2}(0-0) + c.$

We conclude
$$y = \frac{1}{2} (\ln|t - 1| - \ln|t + 1|) + 2$$
.

Remark: We now consider the case (b) y'' = f(y, y'). The independent variable t is missing.

Remark: We now consider the case (b) y'' = f(y, y'). The independent variable t is missing.

Theorem

Consider a second order differential equation y'' = f(y, y'), and introduce the function v(t) = y'(t).

Remark: We now consider the case (b) y'' = f(y, y'). The independent variable t is missing.

Theorem

Consider a second order differential equation y'' = f(y, y'), and introduce the function v(t) = y'(t). If the function y is invertible,

Remark: We now consider the case (b) y'' = f(y, y'). The independent variable t is missing.

Theorem

Consider a second order differential equation y'' = f(y, y'), and introduce the function v(t) = y'(t). If the function y is invertible, then the new function $\hat{v}(y) = v(t(y))$

Remark: We now consider the case (b) y'' = f(y, y'). The independent variable t is missing.

Theorem

Consider a second order differential equation y'' = f(y, y'), and introduce the function v(t) = y'(t). If the function y is invertible, then the new function $\hat{v}(y) = v(t(y))$ satisfies the first order differential equation

$$\frac{d\hat{v}}{dy} = \frac{1}{\hat{v}} f(y, \hat{v}(y)).$$

Remark: We now consider the case (b) y'' = f(y, y'). The independent variable t is missing.

Theorem

Consider a second order differential equation y'' = f(y, y'), and introduce the function v(t) = y'(t). If the function y is invertible, then the new function $\hat{v}(y) = v(t(y))$ satisfies the first order differential equation

$$\frac{d\hat{v}}{dy} = \frac{1}{\hat{v}} f(y, \hat{v}(y)).$$

Proof: Notice that v'(t) = f(y, v(t)).

Remark: We now consider the case (b) y'' = f(y, y'). The independent variable t is missing.

Theorem

Consider a second order differential equation y'' = f(y, y'), and introduce the function v(t) = y'(t). If the function y is invertible, then the new function $\hat{v}(y) = v(t(y))$ satisfies the first order differential equation

$$\frac{d\hat{v}}{dy} = \frac{1}{\hat{v}} f(y, \hat{v}(y)).$$

$$\left. \frac{d\hat{v}}{dy} \right|_{y}$$

Remark: We now consider the case (b) y'' = f(y, y'). The independent variable t is missing.

Theorem

Consider a second order differential equation y'' = f(y, y'), and introduce the function v(t) = y'(t). If the function y is invertible, then the new function $\hat{v}(y) = v(t(y))$ satisfies the first order differential equation

$$\frac{d\hat{v}}{dy} = \frac{1}{\hat{v}} f(y, \hat{v}(y)).$$

$$\left. \frac{d\hat{v}}{dy} \right|_{y} = \left. \frac{dv}{dt} \right|_{t(y)} \left. \frac{dt}{dy} \right|_{t(y)}$$

Remark: We now consider the case (b) y'' = f(y, y'). The independent variable t is missing.

Theorem

Consider a second order differential equation y'' = f(y, y'), and introduce the function v(t) = y'(t). If the function y is invertible, then the new function $\hat{v}(y) = v(t(y))$ satisfies the first order differential equation

$$\frac{d\hat{v}}{dy} = \frac{1}{\hat{v}} f(y, \hat{v}(y)).$$

$$\frac{d\hat{v}}{dy}\Big|_{y} = \frac{dv}{dt}\Big|_{t(y)} \frac{dt}{dy}\Big|_{t(y)} = \frac{v'}{y'}\Big|_{t(y)}$$

Remark: We now consider the case (b) y'' = f(y, y'). The independent variable t is missing.

Theorem

Consider a second order differential equation y'' = f(y, y'), and introduce the function v(t) = y'(t). If the function y is invertible, then the new function $\hat{v}(y) = v(t(y))$ satisfies the first order differential equation

$$\frac{d\hat{v}}{dy} = \frac{1}{\hat{v}} f(y, \hat{v}(y)).$$

$$\frac{d\hat{v}}{dy}\Big|_{y} = \frac{dv}{dt}\Big|_{t(y)} \frac{dt}{dy}\Big|_{t(y)} = \frac{v'}{y'}\Big|_{t(y)} = \frac{v'}{v}\Big|_{t(y)}$$

Remark: We now consider the case (b) y'' = f(y, y'). The independent variable t is missing.

Theorem

Consider a second order differential equation y'' = f(y, y'), and introduce the function v(t) = y'(t). If the function y is invertible, then the new function $\hat{v}(y) = v(t(y))$ satisfies the first order differential equation

$$\frac{d\hat{v}}{dy} = \frac{1}{\hat{v}} f(y, \hat{v}(y)).$$

$$\frac{d\hat{v}}{dy}\Big|_{y} = \frac{dv}{dt}\Big|_{t(y)} \frac{dt}{dy}\Big|_{t(y)} = \frac{v'}{y'}\Big|_{t(y)} = \frac{v'}{v}\Big|_{t(y)} = \frac{f(y,v)}{v}\Big|_{t(y)}.$$

Remark: We now consider the case (b) y'' = f(y, y'). The independent variable t is missing.

Theorem

Consider a second order differential equation y'' = f(y, y'), and introduce the function v(t) = y'(t). If the function y is invertible, then the new function $\hat{v}(y) = v(t(y))$ satisfies the first order differential equation

$$\frac{d\hat{v}}{dy} = \frac{1}{\hat{v}} f(y, \hat{v}(y)).$$

$$\frac{d\hat{v}}{dy}\Big|_{y} = \frac{dv}{dt}\Big|_{t(y)} \frac{dt}{dy}\Big|_{t(y)} = \frac{v'}{y'}\Big|_{t(y)} = \frac{v'}{v}\Big|_{t(y)} = \frac{f(y,v)}{v}\Big|_{t(y)}.$$

Therefore,
$$\frac{d\hat{v}}{dy} = \frac{1}{\hat{v}} f(y, \hat{v}(y)).$$

Example

Find a solution y to the second order equation y'' = 2y y'.

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: The variable t does not appear in the equation.

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: The variable t does not appear in the equation.

Hence, v(t) = y'(t).

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: The variable t does not appear in the equation. Hence, v(t) = y'(t). The equation is v'(t) = 2y(t)v(t).

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: The variable t does not appear in the equation.

Hence, v(t) = y'(t). The equation is v'(t) = 2y(t) v(t).

Now introduce $\hat{v}(y) = v(t(y))$.

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: The variable t does not appear in the equation.

Hence, v(t) = y'(t). The equation is v'(t) = 2y(t) v(t).

Now introduce $\hat{v}(y) = v(t(y))$. Then

$$\frac{d\hat{v}}{dy} = \left(\frac{dv}{dt} \frac{dt}{dy}\right)\Big|_{t(y)}$$

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: The variable t does not appear in the equation.

Hence, v(t) = y'(t). The equation is v'(t) = 2y(t) v(t).

Now introduce $\hat{v}(y) = v(t(y))$. Then

$$\frac{d\hat{v}}{dy} = \left(\frac{dv}{dt} \frac{dt}{dy}\right)\Big|_{t(y)} = \frac{v'}{y'}\Big|_{t(y)}$$

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: The variable t does not appear in the equation.

Hence, v(t) = y'(t). The equation is v'(t) = 2y(t) v(t).

Now introduce $\hat{v}(y) = v(t(y))$. Then

$$\frac{d\hat{v}}{dy} = \left(\frac{dv}{dt} \frac{dt}{dy}\right)\Big|_{t(y)} = \frac{v'}{y'}\Big|_{t(y)} = \frac{v'}{v}\Big|_{t(y)}.$$

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: The variable t does not appear in the equation.

Hence, v(t) = y'(t). The equation is v'(t) = 2y(t) v(t).

Now introduce $\hat{v}(y) = v(t(y))$. Then

$$\frac{d\hat{v}}{dy} = \left(\frac{dv}{dt}\frac{dt}{dy}\right)\Big|_{t(y)} = \frac{v'}{y'}\Big|_{t(y)} = \frac{v'}{v}\Big|_{t(y)}.$$

$$\frac{d\hat{v}}{dy}$$

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: The variable t does not appear in the equation.

Hence, v(t) = y'(t). The equation is v'(t) = 2y(t) v(t).

Now introduce $\hat{v}(y) = v(t(y))$. Then

$$\frac{d\hat{v}}{dy} = \left(\frac{dv}{dt}\frac{dt}{dy}\right)\Big|_{t(y)} = \frac{v'}{y'}\Big|_{t(y)} = \frac{v'}{v}\Big|_{t(y)}.$$

$$\frac{d\hat{v}}{dy} = \frac{2yv}{v}\Big|_{t(y)}$$

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: The variable t does not appear in the equation.

Hence, v(t) = y'(t). The equation is v'(t) = 2y(t) v(t).

Now introduce $\hat{v}(y) = v(t(y))$. Then

$$\frac{d\hat{v}}{dy} = \left(\frac{dv}{dt}\frac{dt}{dy}\right)\Big|_{t(y)} = \frac{v'}{y'}\Big|_{t(y)} = \frac{v'}{v}\Big|_{t(y)}.$$

$$\frac{d\hat{v}}{dy} = \frac{2yv}{v}\Big|_{t(y)} \quad \Rightarrow \quad \frac{d\hat{v}}{dy} = 2y$$

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: The variable t does not appear in the equation.

Hence, v(t) = y'(t). The equation is v'(t) = 2y(t) v(t).

Now introduce $\hat{v}(y) = v(t(y))$. Then

$$\frac{d\hat{v}}{dy} = \left(\frac{dv}{dt}\frac{dt}{dy}\right)\Big|_{t(y)} = \frac{v'}{y'}\Big|_{t(y)} = \frac{v'}{v}\Big|_{t(y)}.$$

$$\frac{d\hat{v}}{dy} = \frac{2yv}{v}\Big|_{t(y)} \quad \Rightarrow \quad \frac{d\hat{v}}{dy} = 2y \quad \Rightarrow \quad \hat{v}(y) = y^2 + c.$$

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: The variable t does not appear in the equation.

Hence, v(t) = y'(t). The equation is v'(t) = 2y(t) v(t).

Now introduce $\hat{v}(y) = v(t(y))$. Then

$$\frac{d\hat{v}}{dy} = \left(\frac{dv}{dt}\frac{dt}{dy}\right)\Big|_{t(y)} = \frac{v'}{y'}\Big|_{t(y)} = \frac{v'}{v}\Big|_{t(y)}.$$

$$\frac{d\hat{v}}{dy} = \frac{2yv}{v}\Big|_{t(y)} \quad \Rightarrow \quad \frac{d\hat{v}}{dy} = 2y \quad \Rightarrow \quad \hat{v}(y) = y^2 + c.$$

Since
$$v(t) = \hat{v}(y(t))$$
,

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: The variable t does not appear in the equation.

Hence, v(t) = y'(t). The equation is v'(t) = 2y(t) v(t).

Now introduce $\hat{v}(y) = v(t(y))$. Then

$$\frac{d\hat{v}}{dy} = \left(\frac{dv}{dt}\frac{dt}{dy}\right)\Big|_{t(y)} = \frac{v'}{y'}\Big|_{t(y)} = \frac{v'}{v}\Big|_{t(y)}.$$

$$\frac{d\hat{v}}{dy} = \frac{2yv}{v}\Big|_{t(y)} \quad \Rightarrow \quad \frac{d\hat{v}}{dy} = 2y \quad \Rightarrow \quad \hat{v}(y) = y^2 + c.$$

Since
$$v(t) = \hat{v}(y(t))$$
, we get $v(t) = y^2(t) + c$.

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: Recall: $v(t) = y^2(t) + c$.

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: Recall: $v(t) = y^2(t) + c$. This is a separable equation,

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: Recall: $v(t) = y^2(t) + c$. This is a separable equation,

$$\frac{y'(t)}{y^2(t)+c}=1.$$

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: Recall: $v(t) = y^2(t) + c$. This is a separable equation,

$$\frac{y'(t)}{y^2(t)+c}=1.$$

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: Recall: $v(t) = y^2(t) + c$. This is a separable equation,

$$\frac{y'(t)}{y^2(t)+c}=1.$$

$$\int \frac{dy}{1+y^2} = \int dt + c_0$$

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: Recall: $v(t) = y^2(t) + c$. This is a separable equation,

$$\frac{y'(t)}{y^2(t)+c}=1.$$

$$\int \frac{dy}{1+y^2} = \int dt + c_0 \quad \Rightarrow \quad \arctan(y) = t + c_0$$

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: Recall: $v(t) = y^2(t) + c$. This is a separable equation,

$$\frac{y'(t)}{y^2(t)+c}=1.$$

$$\int rac{dy}{1+y^2} = \int dt + c_0 \quad \Rightarrow \quad \operatorname{arctan}(y) = t + c_0 y(t) = an(t+c_0).$$

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: Recall: $v(t) = y^2(t) + c$. This is a separable equation,

$$\frac{y'(t)}{y^2(t)+c}=1.$$

Since we only need to find a solution of the equation, and the integral depends on whether c>0, c=0, c<0, we choose (for no special reason) only one case, c=1.

$$\int rac{dy}{1+y^2} = \int dt + c_0 \quad \Rightarrow \quad \operatorname{arctan}(y) = t + c_0 y(t) = an(t+c_0).$$

Again, for no reason, we choose $c_0 = 0$,

Example

Find a solution y to the second order equation y'' = 2y y'.

Solution: Recall: $v(t) = y^2(t) + c$. This is a separable equation,

$$\frac{y'(t)}{y^2(t)+c}=1.$$

Since we only need to find a solution of the equation, and the integral depends on whether c>0, c=0, c<0, we choose (for no special reason) only one case, c=1.

$$\int rac{dy}{1+y^2} = \int dt + c_0 \quad \Rightarrow \quad \operatorname{arctan}(y) = t + c_0 y(t) = an(t+c_0).$$

Again, for no reason, we choose $c_0 = 0$, and we conclude that one possible solution to our problem is $y(t) = \tan(t)$.

Second order linear ODE (Sect. 2.2).

- Review: Second order linear differential equations.
- ▶ Idea: Soving constant coefficients equations.
- ▶ The characteristic equation.
- Solution formulas for constant coefficients equations.

Definition

Given functions a_1 , a_0 , $b: \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1(t) y' + a_0(t) y = b(t)$$

is called a *second order linear* differential equation.

Definition

Given functions a_1 , a_0 , $b: \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1(t) y' + a_0(t) y = b(t)$$

is called a *second order linear* differential equation. If b=0, the equation is called *homogeneous*.

Definition

Given functions a_1 , a_0 , $b: \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1(t) y' + a_0(t) y = b(t)$$

is called a *second order linear* differential equation. If b=0, the equation is called *homogeneous*. If the coefficients a_1 , $a_2 \in \mathbb{R}$ are constants, the equation is called of *constant coefficients*.

Definition

Given functions a_1 , a_0 , $b: \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1(t) y' + a_0(t) y = b(t)$$

is called a *second order linear* differential equation. If b=0, the equation is called *homogeneous*. If the coefficients a_1 , $a_2 \in \mathbb{R}$ are constants, the equation is called of *constant coefficients*.

Theorem (Superposition property)

If the functions y_1 and y_2 are solutions to the homogeneous linear equation

$$y'' + a_1(t) y' + a_0(t) y = 0,$$

then the linear combination $c_1y_1(t) + c_2y_2(t)$ is also a solution for any constants $c_1, c_2 \in \mathbb{R}$.

Second order linear ODE (Sect. 2.2).

- Review: Second order linear differential equations.
- ► Idea: Soving constant coefficients equations.
- The characteristic equation.
- Solution formulas for constant coefficients equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} ,

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in \mathbb{R}$,

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

If
$$y(t) = e^{rt}$$
, then $y'(t) =$

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

If
$$y(t) = e^{rt}$$
, then $y'(t) = re^{rt}$,

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

If
$$y(t) = e^{rt}$$
, then $y'(t) = re^{rt}$, and $y''(t) =$

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

If
$$y(t) = e^{rt}$$
, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

If
$$y(t)=e^{rt}$$
, then $y'(t)=re^{rt}$, and $y''(t)=r^2e^{rt}$. Hence
$$(r^2+5r+6)e^{rt}=0$$

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

If
$$y(t)=e^{rt}$$
, then $y'(t)=re^{rt}$, and $y''(t)=r^2e^{rt}$. Hence
$$(r^2+5r+6)e^{rt}=0 \quad \Leftrightarrow \quad r^2+5r+6=0.$$

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.

If
$$y(t) = e^{rt}$$
, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$. Hence $(r^2 + 5r + 6)e^{rt} = 0 \Leftrightarrow r^2 + 5r + 6 = 0$.

That is, r must be a root of the polynomial $p(r) = r^2 + 5r + 6$.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in \mathbb{R}$, since the exponential can be canceled out from the equation.

If
$$y(t) = e^{rt}$$
, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$. Hence $(r^2 + 5r + 6)e^{rt} = 0 \Leftrightarrow r^2 + 5r + 6 = 0$.

That is, r must be a root of the polynomial $p(r) = r^2 + 5r + 6$.

This polynomial is called the characteristic polynomial of the differential equation.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right)$$

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} \left(-5 \pm 1 \right)$$

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} \left(-5 \pm 1 \right) \quad \Rightarrow \quad \begin{cases} r_1 = -2, \\ r_2 = -3. \end{cases}$$

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} \left(-5 \pm 1 \right) \quad \Rightarrow \quad \begin{cases} r_1 = -2, \\ r_2 = -3. \end{cases}$$

Therefore, we have found two solutions to the ODE,

$$y_1(t) = e^{-2t}, y_2(t) = e^{-3t}.$$

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} \left(-5 \pm 1 \right) \quad \Rightarrow \quad \begin{cases} r_1 = -2, \\ r_2 = -3. \end{cases}$$

Therefore, we have found two solutions to the ODE,

$$y_1(t) = e^{-2t}, y_2(t) = e^{-3t}.$$

Their superposition provides infinitely many solutions,

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} \left(-5 \pm 1 \right) \quad \Rightarrow \quad \begin{cases} r_1 = -2, \\ r_2 = -3. \end{cases}$$

Therefore, we have found two solutions to the ODE,

$$y_1(t) = e^{-2t}, y_2(t) = e^{-3t}.$$

Their superposition provides infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Summary: The differential equation y'' + 5y' + 6y = 0 has infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Summary: The differential equation y'' + 5y' + 6y = 0 has infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Remarks:

▶ There are two free constants in the solution found above.

Summary: The differential equation y'' + 5y' + 6y = 0 has infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Remarks:

- ▶ There are two free constants in the solution found above.
- ▶ The ODE above is second order, so two integrations must be done to find the solution. This explain the origin of the two free constant in the solution.

Summary: The differential equation y'' + 5y' + 6y = 0 has infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Remarks:

- ▶ There are two free constants in the solution found above.
- ► The ODE above is second order, so two integrations must be done to find the solution. This explain the origin of the two free constant in the solution.
- ► An IVP for a second order differential equation will have a unique solution if the IVP contains two initial conditions.

Second order linear ODE (Sect. 2.2).

- Review: Second order linear differential equations.
- ▶ Idea: Soving constant coefficients equations.
- ► The characteristic equation.
- Solution formulas for constant coefficients equations.

Definition

Given a second order linear homogeneous differential equation with constant coefficients

$$y'' + a_1 y' + a_0 = 0, (4)$$

the characteristic polynomial and the characteristic equation associated with the differential equation in (4) are, respectively,

$$p(r) = r^2 + a_1 r + a_0, \qquad p(r) = 0.$$

Definition

Given a second order linear homogeneous differential equation with constant coefficients

$$y'' + a_1 y' + a_0 = 0, (4)$$

the characteristic polynomial and the characteristic equation associated with the differential equation in (4) are, respectively,

$$p(r) = r^2 + a_1 r + a_0, \qquad p(r) = 0.$$

Remark: If r_1 , r_2 are the solutions of the characteristic equation and c_1 , c_2 are constants, then we will show that the general solution of Eq. (4) is given by

$$y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

We now find the constants c_1 and c_2 that satisfy the initial conditions above:

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

$$1 = y(0) = c_1 + c_2,$$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

$$1 = y(0) = c_1 + c_2, \qquad -1 = y'(0) = -2c_1 - 3c_2.$$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

$$1 = y(0) = c_1 + c_2,$$
 $-1 = y'(0) = -2c_1 - 3c_2.$
 $c_1 = 1 - c_2$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

$$1 = y(0) = c_1 + c_2, -1 = y'(0) = -2c_1 - 3c_2.$$

$$c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2$$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

$$1 = y(0) = c_1 + c_2, \qquad -1 = y'(0) = -2c_1 - 3c_2.$$

$$c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2 \Rightarrow c_2 = -1$$

Example

Find the solution *y* of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

$$1 = y(0) = c_1 + c_2, \qquad -1 = y'(0) = -2c_1 - 3c_2.$$

$$c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2 \Rightarrow c_2 = -1 \Rightarrow c_1 = 2.$$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

We now find the constants c_1 and c_2 that satisfy the initial conditions above:

$$1 = y(0) = c_1 + c_2, \qquad -1 = y'(0) = -2c_1 - 3c_2.$$

$$c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2 \Rightarrow c_2 = -1 \Rightarrow c_1 = 2.$$

Therefore, the unique solution to the initial value problem is

$$v(t) = 2e^{-2t} - e^{-3t}$$
.

Example

Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Example

Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$,

Example

Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation

$$2r^2 - 3r + 1 = 0$$

Example

Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation

$$2r^2 - 3r + 1 = 0 \implies r = \frac{1}{4}(3 \pm \sqrt{9 - 8})$$

Example

Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation

$$2r^2 - 3r + 1 = 0 \implies r = \frac{1}{4}(3 \pm \sqrt{9 - 8}) \implies \begin{cases} r_1 = 1, \\ r_2 = \frac{1}{2}. \end{cases}$$

Example

Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation

$$2r^2 - 3r + 1 = 0 \implies r = \frac{1}{4}(3 \pm \sqrt{9 - 8}) \implies \begin{cases} r_1 = 1, \\ r_2 = \frac{1}{2}. \end{cases}$$

Therefore, the general solution of the equation above is

$$y(t) = c_1 e^t + c_2 e^{t/2},$$

where c_1 , c_2 are arbitrary constants.

Second order linear ODE (Sect. 2.2).

- Review: Second order linear differential equations.
- ▶ Idea: Soving constant coefficients equations.
- ▶ The characteristic equation.
- ► Solution formulas for constant coefficients equations.

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1 y' + a_0 y = 0.$$

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1 y' + a_0 y = 0.$$

Let r_+ , r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$,

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1 y' + a_0 y = 0.$$

Let r_+ , r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$, and let c_0 , c_1 be arbitrary constants.

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1 y' + a_0 y = 0.$$

Let r_+ , r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$, and let c_0 , c_1 be arbitrary constants. Then, the general solution of the differential eqation is given by:

(a) If
$$r_+ \neq r_-$$
, real or complex, then $y(t) = c_0 e^{r_+ t} + c_1 e^{r_- t}$.

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1 y' + a_0 y = 0.$$

Let r_+ , r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$, and let c_0 , c_1 be arbitrary constants. Then, the general solution of the differential eqation is given by:

- (a) If $r_+ \neq r_-$, real or complex, then $y(t) = c_0 e^{r_+ t} + c_1 e^{r_- t}$.
- (b) If $r_+=r_-=\hat{r}\in\mathbb{R}$, then is $y(t)=c_0\,e^{\hat{r}t}+c_1\,te^{\hat{r}t}$.

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1 y' + a_0 y = 0.$$

Let r_+ , r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$, and let c_0 , c_1 be arbitrary constants. Then, the general solution of the differential eqation is given by:

- (a) If $r_+ \neq r_-$, real or complex, then $y(t) = c_0 e^{r_+ t} + c_1 e^{r_- t}$.
- (b) If $r_+=r_-=\hat{r}\in\mathbb{R}$, then is $y(t)=c_0\,e^{\hat{r}\,t}+c_1\,te^{\hat{r}\,t}$.

Furthermore, given real constants t_0 , y_0 and y_1 , there is a unique solution to the initial value problem

$$y'' + a_1 y' + a_0 y = 0,$$
 $y(t_0) = y_0,$ $y'(t_0) = y_1.$

