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Radioactive decay

Remarks:

(a) Radioactive substances randomly emit protons, electors,
radiation, and they are transformed in another substance.

(b) It can be seen that the time rate of change of the amount N
of a radioactive substances is proportional to the negative
amount of radioactive substance.

N'(t) = —aN(t), N(0) = No, a>0.
(c) The integrating factor method implies N(t) = Np e~ 2.
(d) The half-life is the time 7 needed to get N(7) = Np/2.
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Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are
found. Knowing that Carbon-14 half-live is 7 = 5730 years, date
the remains.

Solution: Set t = 0 when the organism dies. Since the amount N
of Carbon-14 only decays after the organism dies,

N(t) = Ny 274/, 7 = 5730 years.

The remains contain 14% of the original amount at the time t,

N My

N, ~ 100 100

t
o= log,(14/100) =t = 7log,(100/14).

The organism died 16, 253 years ago. <



Modeling with first order equations (Sect. 1.5).

» Radioactive decay.
» Carbon-14 dating.

» Salt in a water tank.
» The experimental device.
The main equations.
Analysis of the mathematical model.
Predictions for particular situations.

vvyy



Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if
salty water comes in and goes out of the tank.



Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if
salty water comes in and goes out of the tank.
Main ideas of the test:

» Since the mass of salt and water is conserved, we construct a
mathematical model for the salt concentration in water.



Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if
salty water comes in and goes out of the tank.

Main ideas of the test:

» Since the mass of salt and water is conserved, we construct a
mathematical model for the salt concentration in water.

» The amount of salt in the tank depends on the salt
concentration coming in and going out of the tank.



Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if
salty water comes in and goes out of the tank.

Main ideas of the test:

» Since the mass of salt and water is conserved, we construct a
mathematical model for the salt concentration in water.

» The amount of salt in the tank depends on the salt
concentration coming in and going out of the tank.

» The salt in the tank also depends on the water rates coming
in and going out of the tank.



Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if
salty water comes in and goes out of the tank.

Main ideas of the test:
» Since the mass of salt and water is conserved, we construct a
mathematical model for the salt concentration in water.
» The amount of salt in the tank depends on the salt
concentration coming in and going out of the tank.
» The salt in the tank also depends on the water rates coming
in and going out of the tank.

» To construct a model means to find the differential equation
that takes into account the above properties of the system.



Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if
salty water comes in and goes out of the tank.

Main ideas of the test:

» Since the mass of salt and water is conserved, we construct a
mathematical model for the salt concentration in water.
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» Finding the solution to the differential equation with a

particular initial condition means we can predict the evolution
of the salt in the tank if we know the tank initial condition.
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The experimental device.

Definitions:

» ri(t), ro(t): Rates in and out of water entering and leaving
the tank at the time t.

> qi(t), go(t): Salt concentration of the water entering and
leaving the tank at the time t.

» V/(t): Water volume in the tank at the time t.
» Q(t): Salt mass in the tank at the time ¢.

Units:

(0] = ] = e [a0] = o8] = e

[V(t)] = Volume, [Q(t)] = Mass.
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The main equations.

Remark: The mass conservation provides the main equations of
the mathematical description for salt in water.

Main equations:

d
EV(t) = ri(t) — ro(t), Volume conservation, (1)

d
EQ(t) = ri(t) qi(t) — ro(t) go(t), Mass conservation,  (2)
t .
go(t) = Vi Instantaneously mixed, (3)

ri, ro :  Constants. (4)
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Remarks:
[ﬂ}_Volume_{__ ]
dt 1 Time i Tof:
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dt) = Time idi 090 |,
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Analysis of the mathematical model.

Egs. (4) and (1) imply

V(t)=(ri—ro)t+ Vo, (5)
where V(0) = V; is the initial volume of water in the tank.
Egs. (3) and (2) imply

Q(t)

d
EQ(t) =riqi(t)—ro

Egs. (5) and (6) imply

ro

d
a0 =ralt) - Ve,

Q(t). (7)
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Recall: aQ(t) =r q,-(t) - m Q(t)
Notation: a(t) = —ﬁ, and b(t) = r qi(t).
i — To 0

The main equation of the description is given by
Q'(t) = a(t) Q(t) + b(t).

Linear ODE for @. Solution: Integrating factor method.

t
Q(t) = &) [Qo+ / eAl) p(s) ds]
0

with Q(0) = Qo, and A(t) = /Ota(s) ds.
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Solution: Always holds Q'(t) = a(t) Q(t) + b(t).
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A(t) = aot, p(t) =e™", e®'Q(t) = Qo +/ e by ds.
0

Q(t) = e ™* [Qo + @(e"")t - 1)}. = (Qo - ?) ety Do,

a0 0 a0

b %
But -2 = rq;—0 = q;Vy, and ag = L.
ao r Vo



Predictions for particular situations.

Example
Assume that r; = r, = r and g; are constants.

If r, gi, Qo and Vg are given, find Q(t).
Solution: Recall the IVP: Q'(t) + ag Q(t) = by, Q(0) = Qo.

Integrating factor method:

t
A(t) = aot, p(t) =e™", e®'Q(t) = Qo +/ e by ds.
0

Q(t) = e ™* [Qo + @(ea‘)t - 1)}. = (Qo - ?) ety Do,

a0 0 a0

b Vi
But -2 — rq; Yo _ giVo, and ag = L. We conclude:
ag r Vo

Q(t) = (Q — qiVb) e Vo g\



Predictions for particular situations.

Example
Assume that r; = r, = r and g; are constants.
If r, gi, Qo and Vg are given, find Q(t).

Solution: Recall: Q(t) = (Qo —q; Vo) e t/Vo 4+ i V.



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.
If r, gi, Qo and Vg are given, find Q(t).

Solution: Recall: Q(t) = (Qo — gi Vo) e Vo 4 i V.

Particular cases:



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.
If r, gi, Qo and Vg are given, find Q(t).

Solution: Recall: Q(t) = (Qo —q; Vo) e /o 4 qi V.

Particular cases:

> >4 a
> = g1, 50 Q(t) = Qo;

> — <4qi.

v
PN
O
ot
o =<



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.

If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/Vp = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.

If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/Vp = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

Solution: This problem is a particular case g; = 0 of the previous
Example.



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.

If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/Vp = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

Solution: This problem is a particular case g; = 0 of the previous
Example. Since Q(t) = (Qo — qi V) e t/Vo 4 qi Vb,



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.

If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/Vp = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

Solution: This problem is a particular case g; = 0 of the previous
Example. Since Q(t) = (Qo — qi V) e Vo 1 iV, we get

Q(t) _ QO efrt/VO.



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.
If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/Vp = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

Solution: This problem is a particular case g; = 0 of the previous
Example. Since Q(t) = (Qo — qi V) e Vo 1 iV, we get

Q(t) _ QO efrt/VO.

Since V(t) =(ri—ro)t+ W



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.
If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/Vp = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

Solution: This problem is a particular case g; = 0 of the previous
Example. Since Q(t) = (Qo — qi V) e Vo 1 iV, we get

Q(t) — QO efrt/VO.

Since V/(t) = (ri —ro)t+ Vo and rj = ro,



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.
If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/Vp = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

Solution: This problem is a particular case g; = 0 of the previous
Example. Since Q(t) = (Qo — qi V) e Vo 1 iV, we get

Q(t) _ QO efrt/VO.

Since V(t) = (ri — ro) t + Vo and r; = r,, we obtain V/(t) = V.



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.
If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/Vp = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

Solution: This problem is a particular case g; = 0 of the previous
Example. Since Q(t) = (Qo — qi V) e Vo 1 iV, we get

Q(t) _ QO efrt/VO.

Since V(t) = (ri — ro) t + Vo and r; = r,, we obtain V/(t) = V.
So (1) = Q(£)/ V(1) i given by q(t) = 22 e~7*/*
0



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.
If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/Vp = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

Solution: This problem is a particular case g; = 0 of the previous
Example. Since Q(t) = (Qo —q; Vo) e Vo 4 gV, we get
Q(t) = Qe /.

Since V(t) = (r; — ro) t + Vo and r; = r,, we obtain V(t) = V.
So q(t) = Q(t)/V/(t) is given by q(t) = % e /o Therefore,
0

1 Qo

Y t
100 Vg q(t1)



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.
If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/Vp = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

Solution: This problem is a particular case g; = 0 of the previous
Example. Since Q(t) = (Qo —q; Vo) e Vo 4 gV, we get
Q(t) = Qe /.

Since V(t) = (ri — ro) t + Vo and r; = r,, we obtain V/(t) = V.

So q(t) = Q(t)/V/(t) is given by q(t) = 32 e /o Therefore,

1 Qo Qo —rt1/V,
— — —qg(ty) = — e M/ V0
100 V, q(tr) Vo <



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.
If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/Vp = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

Solution: This problem is a particular case g; = 0 of the previous
Example. Since Q(t) = (Qo —q; Vo) e Vo 4 gV, we get
Q(t) = Qe /.

Since V(t) = (ri — ro) t + Vo and r; = r,, we obtain V/(t) = V.

So q(t) = Q(t)/V/(t) is given by q(t) = 32 e /o Therefore,

1 Q0 Q0 —rt1/ —rt1/ 1
¥ — t — 7 rti/ Vo rt 0 —
00 v, 9=y e - € 100



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.

If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/ Vo = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

1
Solution: Recall: e /o — 100"



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.

If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/ Vo = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

1
Solution: Recall: e~/ — 100" Then,



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.

If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/ Vo = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

1
Solution: Recall: e~/ — 100" Then,
1



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.

If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/ Vo = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

1
Solution: Recall: e~/ — 100" Then,

= In<—> = —In(100) = VLO t1 = In(100).



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.

If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/ Vo = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

1
Solution: Recall: e~/ — 100" Then,
"t —|n(i> = —In(100) = — t = In(100)
Vo - \100/ Vo & '

%
We conclude that t; = 70 In(100).



Predictions for particular situations.

Example

Assume that r; = r, = r and g; are constants.

If r = 2 liters/min, g; = 0, Vo = 200 liters, Qo/ Vo = 1 grams/liter,
find t; such that q(t1) = Q(t1)/V/(t1) is 1% the initial value.

1
Solution: Recall: e~/ — 100" Then,

= In<—> = —In(100) = VLO t1 = In(100).

%
We conclude that t; = 70 In(100).

In this case: t; = 100 In(100). <



Predictions for particular situations.

Example

Assume that r; = r, = r are constants. If r = 5x10° gal/year,
qi(t) = 2 +sin(2t) grams/gal, Vo = 10° gal, Qo = 0, find Q(t).



Predictions for particular situations.

Example
Assume that r; = r, = r are constants. If r = 5x10° gal/year,
qi(t) = 2 +sin(2t) grams/gal, Vo = 10° gal, Qo = 0, find Q(t).

Solution: Recall: Q'(t) = a(t) Q(t) + b(t).



Predictions for particular situations.

Example
Assume that r; = r, = r are constants. If r = 5x10° gal/year,
qi(t) = 2 +sin(2t) grams/gal, Vo = 10° gal, Qo = 0, find Q(t).

Solution: Recall: Q'(t) = a(t) Q(t) + b(t). In this case:
fo

a(t) = () t+ Vo



Predictions for particular situations.

Example
Assume that r; = r, = r are constants. If r = 5x10° gal/year,
qi(t) = 2 +sin(2t) grams/gal, Vo = 10° gal, Qo = 0, find Q(t).
Solution: Recall: Q'(t) = a(t) Q(t) + b(t). In this case:

ro

r
t e U—— t = —— = —
a( ) (ri _ ro) t+ VO = a( ) VO 4o,



Predictions for particular situations.

Example
Assume that r; = r, = r are constants. If r = 5x10° gal/year,
qi(t) = 2 +sin(2t) grams/gal, Vo = 10° gal, Qo = 0, find Q(t).

Solution: Recall: Q'(t) = a(t) Q(t) + b(t). In this case:
fo

r
t e U—— t = —— = —
a( ) (ri _ ro) t+ VO = a( ) VO 4o,

b(t) = ri qi(t)



Predictions for particular situations.

Example
Assume that r; = r, = r are constants. If r = 5x10° gal/year,
qi(t) = 2 +sin(2t) grams/gal, Vo = 10° gal, Qo = 0, find Q(t).

Solution: Recall: Q'(t) = a(t) Q(t) + b(t). In this case:
fo

r
t e U—— t = —— = —
a( ) (ri _ ro) t+ VO = a( ) VO 4o,

b(t) =riqi(t) = b(t)=r[2+sin(2t)].



Predictions for particular situations.

Example
Assume that r; = r, = r are constants. If r = 5x10° gal/year,
qi(t) = 2 +sin(2t) grams/gal, Vo = 10° gal, Qo = 0, find Q(t).
Solution: Recall: Q'(t) = a(t) Q(t) + b(t). In this case:

ro

a(t) = RCETSIFaY = a(t) = —— = —ao,

b(t) =riqi(t) = b(t)=r[2+sin(2t)].

We need to solve the IVP: Q'(t) = —ap Q(t) + b(t), Q(0) =0.



Predictions for particular situations.

Example
Assume that r; = r, = r are constants. If r = 5x10° gal/year,
qi(t) = 2 +sin(2t) grams/gal, Vo = 10° gal, Qo = 0, find Q(t).

Solution: Recall: Q'(t) = a(t) Q(t) + b(t). In this case:

)=~ v ro’;H o= A==
b(t) = r; qi(t) b(t) = r[2+sin(2t)].

We need to solve the IVP: Q'(t) = —ap Q(t) + b(t), Q(0) =0.

aot Q / aos
0



Predictions for particular situations.

Example
Assume that r; = r, = r are constants. If r = 5x10° gal/year,
qi(t) = 2 +sin(2t) grams/gal, Vo = 10° gal, Qo = 0, find Q(t).
Solution: Recall: Q'(t) = a(t) Q(t) + b(t). In this case:

ro

a(t) = RCETSIFaY = a(t) = —— = —ao,

b(t) =riqi(t) = b(t)=r[2+sin(2t)].

We need to solve the IVP: Q'(t) = —ap Q(t) + b(t), Q(0) =0.

t
et Q(¢t) :/ e%° b(s) ds.
0

t
We conclude: Q(t) = re /" / e/ Vo [2+ sin(2s)] ds.
0



Exact equations (Sect. 1.4).

» Exact differential equations.
» The Poincaré Lemma.
» Implicit solutions and the potential function.

» Generalization: The integrating factor method.



Exact differential equations.

Definition
Given an open rectangle R = (t1, t2) x (u1, un) C R? and
continuously differentiable functions M, N : R — R,



Exact differential equations.

Definition
Given an open rectangle R = (t1, t2) x (u1, un) C R? and
continuously differentiable functions M, N : R — R, denoted as

(t,u) — M(t,u) and (t,u) — N(t,u),



Exact differential equations.

Definition

Given an open rectangle R = (t1, t2) x (u1, un) C R? and
continuously differentiable functions M, N : R — R, denoted as
(t,u) — M(t,u) and (t,u) — N(t,u), the differential equation in
the unknown function y : (t1, t2) — R given by

N(t,y(t))y'(t) + M(t,y(t)) =0
is called exact iff for every point (t,u) € R holds

OeN(t, u) = 0,M(t, u)



Exact differential equations.

Definition

Given an open rectangle R = (t1, t2) x (u1, un) C R? and
continuously differentiable functions M, N : R — R, denoted as
(t,u) — M(t,u) and (t,u) — N(t,u), the differential equation in
the unknown function y : (t1, t2) — R given by

N(t,y(t))y'(t) + M(t,y(t)) =0
is called exact iff for every point (t,u) € R holds

OeN(t, u) = 0,M(t, u)

@, and O,M = oM
ot

Recall: we use the notation: 9;N = 5y
u



Exact differential equations.

Example
Show whether the differential equation below is exact,

2ty(t) y'(t) + 2t + y*(t) = 0.



Exact differential equations.

Example
Show whether the differential equation below is exact,

2ty(t) y'(t) + 2t + y?(t) = 0.

Solution: We first identify the functions N and M,



Exact differential equations.

Example
Show whether the differential equation below is exact,

2ty(t) y'(t) + 2t + y?(t) = 0.

Solution: We first identify the functions N and M,

[2ty ()] /() + [2t + y2(t)] =0



Exact differential equations.

Example
Show whether the differential equation below is exact,

2ty(t) y'(t) + 2t + y*(t) = 0.
Solution: We first identify the functions N and M,

N(t,u) = 2tu,

Roy]y'(6)+ 2t+y*(6)] =0 = {M(t,u)—2t+u2.



Exact differential equations.

Example
Show whether the differential equation below is exact,

2ty(t) y'(t) + 2t + y*(t) = 0.
Solution: We first identify the functions N and M,

N(t,u) = 2tu,

Roy]y'(6)+ 2t+y*(6)] =0 = {M(t,u)—2t+u2.

The equation is exact iff 9;N = 9, M.



Exact differential equations.

Example
Show whether the differential equation below is exact,

2ty(t) y'(t) + 2t + y*(t) = 0.
Solution: We first identify the functions N and M,

N(t,u) = 2tu,

Roy]y'(6)+ 2t+y*(6)] =0 = {M(t,u)—2t+u2.

The equation is exact iff 9;N = 9,M. Since
N(t,u) = 2tu



Exact differential equations.

Example
Show whether the differential equation below is exact,

2ty(t) y'(t) + 2t + y*(t) = 0.
Solution: We first identify the functions N and M,

N(t,u) = 2tu,

Roy]y'(6)+ 2t+y*(6)] =0 = {M(t,u)—2t+u2.

The equation is exact iff 9;N = 9,M. Since
N(t,u) =2tu = 0N(t,u)=2u,



Exact differential equations.

Example
Show whether the differential equation below is exact,

2ty(t) y'(t) + 2t + y*(t) = 0.
Solution: We first identify the functions N and M,

N(t,u) = 2tu,

Roy]y'(6)+ 2t+y*(6)] =0 = {M(t,u)—2t+u2.

The equation is exact iff 9;N = 9,M. Since
N(t,u) =2tu = 0N(t,u)=2u,

M(t,u) = 2t + u?



Exact differential equations.

Example
Show whether the differential equation below is exact,

2ty(t) y'(t) + 2t + y*(t) = 0.
Solution: We first identify the functions N and M,

N(t,u) = 2tu,

Roy]y'(6)+ 2t+y*(6)] =0 = {M(t,u)—2t+u2.

The equation is exact iff 9;N = 9,M. Since
N(t,u) =2tu = 0N(t,u)=2u,

M(t,u) =2t +uv*> = 9,M(t,u)=2u.



Exact differential equations.

Example
Show whether the differential equation below is exact,

2ty(t) y'(t) + 2t + y*(t) = 0.
Solution: We first identify the functions N and M,

N(t,u) = 2tu,

Roy]y'(6)+ 2t+y*(6)] =0 = {M(t,u)—2t+u2.

The equation is exact iff 9;N = 9,M. Since
N(t,u) =2tu = 0N(t,u)=2u,

M(t,u) =2t +uv*> = 9,M(t,u)=2u.
We conclude: 0:N(t,u) = 0,M(t, u).



Exact differential equations.

Example
Show whether the differential equation below is exact,

2ty(t) y'(t) + 2t + y*(t) = 0.
Solution: We first identify the functions N and M,

N(t,u) = 2tu,

Roy]y'(6)+ 2t+y*(6)] =0 = {M(t,u)—2t+u2.

The equation is exact iff 9;N = 9,M. Since
N(t,u) =2tu = 0N(t,u)=2u,

M(t,u) =2t +uv*> = 9,M(t,u)=2u.
We conclude: 0:N(t,u) = 0,M(t, u). <

Remark: The ODE above is not separable and non-linear.



Exact differential equations.

Example
Show whether the differential equation below is exact,

sin(t)y’(t) + t2e(y/(t) — y/(t) = —y(t) cos(t) — 2te¥(®).



Exact differential equations.

Example
Show whether the differential equation below is exact,

sin(t)y’(t) + t2e(y/(t) — y/(t) = —y(t) cos(t) — 2te¥(®).

Solution: We first identify the functions N and M,



Exact differential equations.

Example
Show whether the differential equation below is exact,

sin(t)y’(t) + t2e(y/(t) — y/(t) = —y(t) cos(t) — 2te¥(®).
Solution: We first identify the functions N and M, if we write

[sin(t) + £2e/() — 1] y/(¢) + [y(¢) cos(t) +2te”)] = 0,



Exact differential equations.

Example
Show whether the differential equation below is exact,

sin(t)y/(t) + 2" 0y/(t) — y/(t) = —y(t) cos(t) — 2te¥ V).
Solution: We first identify the functions N and M, if we write
[sin(t) + t2e”™ — 1] y/(t) + [y(t) cos(t) + 2teM] = 0,
we can see that

N(t,u) =sin(t) + t?e¥ — 1



Exact differential equations.

Example
Show whether the differential equation below is exact,

sin(t)y/(t) + 2" 0y/(t) — y/(t) = —y(t) cos(t) — 2te¥ V).
Solution: We first identify the functions N and M, if we write
[sin(t) + t2e”™ — 1] y/(t) + [y(t) cos(t) + 2teM] = 0,
we can see that

N(t,u) =sin(t) +t?e" —1 = 9;N(t,u) = cos(t) + 2te"

9



Exact differential equations.

Example
Show whether the differential equation below is exact,

sin(t)y/(t) + 2" 0y/(t) — y/(t) = —y(t) cos(t) — 2te¥ V).
Solution: We first identify the functions N and M, if we write
[sin(t) + t2e”™ — 1] y/(t) + [y(t) cos(t) + 2teM] = 0,
we can see that
N(t,u) =sin(t) +t?e" —1 = 9;N(t,u) = cos(t) + 2te",

M(t,u) = ucos(t) + 2te"



Exact differential equations.

Example
Show whether the differential equation below is exact,

sin(t)y/(t) + 2" 0y/(t) — y/(t) = —y(t) cos(t) — 2te¥ V).
Solution: We first identify the functions N and M, if we write
[sin(t) + t2e”™ — 1] y/(t) + [y(t) cos(t) + 2teM] = 0,
we can see that
N(t,u) =sin(t) +t?e" —1 = 9;N(t,u) = cos(t) + 2te",

M(t,u) = ucos(t) +2te” = O,M(t,u) = cos(t) + 2te".



Exact differential equations.

Example
Show whether the differential equation below is exact,

sin(t)y/(t) + 2" 0y/(t) — y/(t) = —y(t) cos(t) — 2te¥ V).
Solution: We first identify the functions N and M, if we write
[sin(t) + t2e”™ — 1] y/(t) + [y(t) cos(t) + 2teM] = 0,
we can see that
N(t,u) =sin(t) + t?e“ =1 = 9:N(t,u) = cos(t) + 2te"

M(t,u) = ucos(t) +2te” = O,M(t,u) = cos(t) + 2te".

The equation is exact, since 0:N(t, u) = 0,M(t, u).

9

<



Exact differential equations.

Example

Show whether the linear differential equation below is exact,

Y'(t) = —a(t) y(t) + b(t),  a(t)#0.



Exact differential equations.

Example

Show whether the linear differential equation below is exact,
y'(t) = —a(t) y(t) + b(t),  a(t) #0.

Solution: We first find the functions N and M,



Exact differential equations.

Example

Show whether the linear differential equation below is exact,
y'(t) = —a(t) y(t) + b(t),  a(t) #0.

Solution: We first find the functions N and M,

y' +a(t)y — b(t) =0



Exact differential equations.

Example

Show whether the linear differential equation below is exact,
y'(t) = —a(t) y(t) + b(t),  a(t) #0.
Solution: We first find the functions N and M,

N(t,u) =1,

y'+a(t)y —b(t) =0 = { M(t, u) = a(t) u — b(t).



Exact differential equations.

Example

Show whether the linear differential equation below is exact,
y'(t) = —a(t) y(t) + b(t),  a(t) #0.
Solution: We first find the functions N and M,

N(t,u) =1,

y'+a(t)y —b(t) =0 = { M(t, u) = a(t) u — b(t).

The differential equation is not exact,



Exact differential equations.

Example

Show whether the linear differential equation below is exact,
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Exact differential equations.

Example

Show whether the linear differential equation below is exact,
y'(t) = —a(t) y(t) + b(t),  a(t) #0.
Solution: We first find the functions N and M,

Aty —b(e)—0 = 4 MEu=L
yoraby - M(t,u) = a(t) u — b(t).
The differential equation is not exact, since

N(t,u)=1 = 0N(t,u)=0,

M(t,u) = a(t)u — b(t) = 9I,M(t,u) = a(t).
This implies that 0:N(t, u) # 9,M(t, u).
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» Exact differential equations.
» The Poincaré Lemma.
» Implicit solutions and the potential function.

» Generalization: The integrating factor method.
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continuously differentiable functions M, N : R — R satisfy the

;
equiation OeN(t, u) = ,M(t, u)

iff there exists a twice continuously differentiable function
¥ R — R, called potential function, such that for all (t,u) € R
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The Poincaré Lemma.
Remark: The coefficients N and M of an exact equations are the
derivatives of a potential function 1.

Lemma (Poincaré)

Given an open rectangle R = (t1,t2) x (u1, u2) C R?, the
continuously differentiable functions M, N : R — R satisfy the

;
equiation O:N(t, u) = Dy M(t, u)

iff there exists a twice continuously differentiable function
¥ R — R, called potential function, such that for all (t,u) € R

hold:
OF gt u) = N(tu), Bt u) = M(t, u).
0N = 0:0,1,
Proof: (<) Simple: ‘ Out) = 0N = 0,M.
auM - auatwa

(=) Difficult: Poincaré, 1880.
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The Poincaré Lemma.

Example

Show that the function v(t, u) = t? + tu? is the potential function
for the exact differential equation

2ty(t) y'(t) + 2t + y?(t) = 0.
Solution: We already saw that the differential equation above is
exact, since the functions M and N,
N(t,u) = 2tu,
M(t,u) = 2t + u°
The potential function is 1(t, u) = t> + tu?, since

} = 8tN:2U:8uM.

o) =2t + > = M, dytp =2tu=N. <

Remark: The Poincaré Lemma only states necessary and sufficient
conditions on NV and M for the existence of .
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Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let M, N : R — R be continuously differentiable functions on an
open rectangle R = (t1, t2) x (u1, uz) C R2. If the differential
equation

N(t,y(t))y'(t) + M(t, y(t)) =0 (8)

is exact, then every solution y : (t1,t2) — R must satisfy the
algebraic equation

P(ty(t) =,
where ¢ € R and ¢ : R — R is a potential function for Eq. (8).



Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let M, N : R — R be continuously differentiable functions on an
open rectangle R = (t1, t2) x (u1, uz) C R2. If the differential
equation

N(t,y(t))y'(t) + M(t, y(t)) =0 (8)

is exact, then every solution y : (t1,t2) — R must satisfy the
algebraic equation

P(ty(t) =,
where ¢ € R and ¢ : R — R is a potential function for Eq. (8).

Proof: 0= N(t,y)y + M(t,y)



Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let M, N : R — R be continuously differentiable functions on an
open rectangle R = (t1, t2) x (u1, uz) C R2. If the differential
equation

N(t,y(t))y'(t) + M(t, y(t)) =0 (8)

is exact, then every solution y : (t1,t2) — R must satisfy the
algebraic equation

P(ty(t) =,
where ¢ € R and ¢ : R — R is a potential function for Eq. (8).

d
Proof: 0= N(t,y)y' + M(t,y) = d,(t,y) d% + 0r(t, y)).



Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let M, N : R — R be continuously differentiable functions on an
open rectangle R = (t1, t2) x (u1, uz) C R2. If the differential
equation

N(t,y(t))y'(t) + M(t, y(t)) =0 (8)

is exact, then every solution y : (t1,t2) — R must satisfy the
algebraic equation

P(ty(t) =,
where ¢ € R and ¢ : R — R is a potential function for Eq. (8).

d
Proof: 0= N(t,y)y' + M(t,y) = d,(t,y) d% + 0r(t, y)).

0= u(t.v(1)



Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let M, N : R — R be continuously differentiable functions on an
open rectangle R = (t1, t2) x (u1, uz) C R2. If the differential
equation

N(t,y(t))y'(t) + M(t, y(t)) =0 (8)

is exact, then every solution y : (t1,t2) — R must satisfy the
algebraic equation

P(ty(t) =,
where ¢ € R and ¢ : R — R is a potential function for Eq. (8).

d
Proof: 0= N(t,y)y' + M(t,y) = d,(t,y) d% + 0r(t, y)).

0= Su(ty(t) & wey)=c .



Implicit solutions and the potential function.

Example
Find all solutions y to the equation

[sin(t) + t2e”™® — 1] y/(t) + y(t) cos(t) + 2te*) = 0.



Implicit solutions and the potential function.

Example
Find all solutions y to the equation

[sin(t) + t2e”™® — 1] y/(t) + y(t) cos(t) + 2te*) = 0.

Solution: Recall: The equation is exact,



Implicit solutions and the potential function.

Example
Find all solutions y to the equation

[sin(t) + t2e”™® — 1] y/(t) + y(t) cos(t) + 2te*) = 0.
Solution: Recall: The equation is exact,

N(t,u) =sin(t) + t?e" — 1



Implicit solutions and the potential function.

Example
Find all solutions y to the equation

[sin(t) + t2e”™® — 1] y/(t) + y(t) cos(t) + 2te*) = 0.
Solution: Recall: The equation is exact,

N(t,u) =sin(t) + t?e" —1 = 9:N(t,u) = cos(t) + 2te"

)



Implicit solutions and the potential function.

Example
Find all solutions y to the equation

[sin(t) + t2e”™® — 1] y/(t) + y(t) cos(t) + 2te*) = 0.

Solution: Recall: The equation is exact,

N(t,u) =sin(t) + t?e" —1 = 9:N(t,u) = cos(t) + 2te",

M(t, u) = ucos(t) + 2te"



Implicit solutions and the potential function.

Example
Find all solutions y to the equation

[sin(t) + t2e”™® — 1] y/(t) + y(t) cos(t) + 2te*) = 0.

Solution: Recall: The equation is exact,

N(t,u) =sin(t) + t?e" —1 = 9:N(t,u) = cos(t) + 2te",

M(t,u) = ucos(t) + 2te” = 9, ,M(t,u) = cos(t) + 2te",



Implicit solutions and the potential function.

Example
Find all solutions y to the equation

[sin(t) + t2e”™® — 1] y/(t) + y(t) cos(t) + 2te*) = 0.
Solution: Recall: The equation is exact,

N(t,u) =sin(t) + t?e" —1 = 9;N(t,u) = cos(t) + 2te",

M(t,u) = ucos(t) + 2te” = 9, ,M(t,u) = cos(t) + 2te",
hence, 9;:N = 9, M.



Implicit solutions and the potential function.

Example
Find all solutions y to the equation
[sin(t) + t2e”™® — 1] y/(t) + y(t) cos(t) + 2te*) = 0.
Solution: Recall: The equation is exact,
N(t,u) =sin(t) + t?e" —1 = 9;N(t,u) = cos(t) + 2te",
M(t,u) = ucos(t) + 2te” = 9, ,M(t,u) = cos(t) + 2te",

hence, 0;:N = 9, M. Poincaré Lemma says the exists 1,
auw(ta u): N(tv U), atw(ta U) = M(t’ U).



Implicit solutions and the potential function.

Example
Find all solutions y to the equation
[sin(t) + t2e”™® — 1] y/(t) + y(t) cos(t) + 2te*) = 0.

Solution: Recall: The equation is exact,

N(t,u) =sin(t) + t?e" —1 = 9;N(t,u) = cos(t) + 2te",

M(t,u) = ucos(t) + 2te” = 9, ,M(t,u) = cos(t) + 2te",
hence, 0;:N = 9, M. Poincaré Lemma says the exists 1,

Oup(t,u) = N(t,u), Ow(t,u) = M(t,u).

These are actually equations for .
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Example
Find all solutions y to the equation

[sin(t) + t2e”™® — 1] y/(t) + y(t) cos(t) + 2te*) = 0.
Solution: Recall: The equation is exact,
N(t,u) =sin(t) + t?e" —1 = 9:N(t,u) = cos(t) + 2te",
M(t,u) = ucos(t) + 2te” = 9, ,M(t,u) = cos(t) + 2te",
hence, 0;:N = 9, M. Poincaré Lemma says the exists 1,
Oup(t,u) = N(t,u), Ow(t,u) = M(t,u).

These are actually equations for 1. From the first one,

U(t,u) = /[sin(t) + t?e” — 1] du + g(t).
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Example

Find all solutions y to the equation
[sin(t) + t2ev(t) — 1] y'(t) + y(t) cos(t) + 2te’(t) = 0.
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Example

Find all solutions y to the equation
[sin(t) + t2ev(t) — 1] y'(t) + y(t) cos(t) + 2te’(t) = 0.
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Y(t, u) = usin(t) + t?e" — u.

So the solution y satisfies y(t)sin(t) + t2ev(t) _ y(t)=c. 4
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» Generalization: The integrating factor method.

Remark:

Sometimes a non-exact equation can we transformed into an exact
equation multiplying the equation by an integrating factor. Just
like in the case of linear differential equations.
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Theorem (Integrating factor)

Let M, N : R — R be continuously differentiable functions on
R = (t1,t2) x (u1, uz) C R?, with N # 0. If the equation

N(t,y (1)) y'(t) + M(t, y(t)) =0

is not exact, that is, 0;N(t, u) # 0,M(t, u), and if the function

N(t. o) [0uM(t, u) — 9eN(t, u)]

does not depend on the variable u, then the equation

(t,y(t)) y'(t) + M(t, y(t))] =0

(D[N
p 1 v
is exact, where ORI [0uM(t, u) — O:N(t, u)].
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Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

(2 + ty(t)] y'(t) + [Bty(t) + y*(t)] = 0.

. [aul\/l(t, u) — 0:N(t, u)] 1
Solution: N(t, 1) =7
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/
We find a function u solution of K
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Therefore, the equation below is exact:

[+ 2y(8)] ¥ (1) + 3y (1) + ty3(t)] =0.
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Example
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Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

(2 + ty(t)] y'(t) + [Bty(t) + y3(t)] = 0.
Solution: ¥(t, u) = /(t3 + t?u) du + g(t).
1
Integrating, 1(t,u) = t3u + 3 t2u® + g(t).
Introduce 1 in 8yp = M, where M = 3t2u + tu?. So,
drb(t, u) = 3t%u + tu® + g'(t) = M(t,u) = 3t%u + tv°,

So g’(t) = 0 and we choose g(t) = 0. We conclude that a
1
potential function is ¢(t, u) = t3u + = t?0°.

2
And every solution y satisfies £3 y(t) + t2 [y(t)]z = c.



