Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
- Carbon-14 dating.
- Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

Radioactive decay

Remarks:

(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.

Radioactive decay

Remarks:
(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.
(b) It can be seen that the time rate of change of the amount N of a radioactive substances is proportional to the negative amount of radioactive substance.

Radioactive decay

Remarks:

(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.
(b) It can be seen that the time rate of change of the amount N of a radioactive substances is proportional to the negative amount of radioactive substance.

$$
N^{\prime}(t)=-a N(t), \quad N(0)=N_{0}, \quad a>0
$$

Radioactive decay

Remarks:

(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.
(b) It can be seen that the time rate of change of the amount N of a radioactive substances is proportional to the negative amount of radioactive substance.

$$
N^{\prime}(t)=-a N(t), \quad N(0)=N_{0}, \quad a>0
$$

(c) The integrating factor method implies $N(t)=N_{0} e^{-a t}$.

Radioactive decay

Remarks:

(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.
(b) It can be seen that the time rate of change of the amount N of a radioactive substances is proportional to the negative amount of radioactive substance.

$$
N^{\prime}(t)=-a N(t), \quad N(0)=N_{0}, \quad a>0
$$

(c) The integrating factor method implies $N(t)=N_{0} e^{-a t}$.
(d) The half-life is the time τ needed to get $N(\tau)=N_{0} / 2$.

Radioactive decay

Remarks:

(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.
(b) It can be seen that the time rate of change of the amount N of a radioactive substances is proportional to the negative amount of radioactive substance.

$$
N^{\prime}(t)=-a N(t), \quad N(0)=N_{0}, \quad a>0
$$

(c) The integrating factor method implies $N(t)=N_{0} e^{-a t}$.
(d) The half-life is the time τ needed to get $N(\tau)=N_{0} / 2$.

$$
N_{0} e^{-a \tau}=\frac{N_{0}}{2}
$$

Radioactive decay

Remarks:

(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.
(b) It can be seen that the time rate of change of the amount N of a radioactive substances is proportional to the negative amount of radioactive substance.

$$
N^{\prime}(t)=-a N(t), \quad N(0)=N_{0}, \quad a>0
$$

(c) The integrating factor method implies $N(t)=N_{0} e^{-a t}$.
(d) The half-life is the time τ needed to get $N(\tau)=N_{0} / 2$.

$$
N_{0} e^{-a \tau}=\frac{N_{0}}{2} \quad \Rightarrow \quad-a \tau=\ln \left(\frac{1}{2}\right)
$$

Radioactive decay

Remarks:

(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.
(b) It can be seen that the time rate of change of the amount N of a radioactive substances is proportional to the negative amount of radioactive substance.

$$
N^{\prime}(t)=-a N(t), \quad N(0)=N_{0}, \quad a>0
$$

(c) The integrating factor method implies $N(t)=N_{0} e^{-a t}$.
(d) The half-life is the time τ needed to get $N(\tau)=N_{0} / 2$.

$$
N_{0} e^{-a \tau}=\frac{N_{0}}{2} \Rightarrow-a \tau=\ln \left(\frac{1}{2}\right) \quad \Rightarrow \quad \tau=\frac{\ln (2)}{a}
$$

Radioactive decay

Remarks:

(a) Radioactive substances randomly emit protons, electors, radiation, and they are transformed in another substance.
(b) It can be seen that the time rate of change of the amount N of a radioactive substances is proportional to the negative amount of radioactive substance.

$$
N^{\prime}(t)=-a N(t), \quad N(0)=N_{0}, \quad a>0
$$

(c) The integrating factor method implies $N(t)=N_{0} e^{-a t}$.
(d) The half-life is the time τ needed to get $N(\tau)=N_{0} / 2$.

$$
N_{0} e^{-a \tau}=\frac{N_{0}}{2} \quad \Rightarrow \quad-a \tau=\ln \left(\frac{1}{2}\right) \quad \Rightarrow \quad \tau=\frac{\ln (2)}{a} .
$$

(e) Using the half-life, we get $N(t)=N_{0} 2^{-t / \tau}$.

Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-live is $\tau=5730$ years, date the remains.

Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-live is $\tau=5730$ years, date the remains.

Solution: Set $t=0$ when the organism dies.

Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-live is $\tau=5730$ years, date the remains.

Solution: Set $t=0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-live is $\tau=5730$ years, date the remains.

Solution: Set $t=0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$
N(t)=N_{0} 2^{-t / \tau}
$$

Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-live is $\tau=5730$ years, date the remains.

Solution: Set $t=0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$
N(t)=N_{0} 2^{-t / \tau}, \quad \tau=5730 \text { years }
$$

Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-live is $\tau=5730$ years, date the remains.

Solution: Set $t=0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$
N(t)=N_{0} 2^{-t / \tau}, \quad \tau=5730 \text { years }
$$

The remains contain 14% of the original amount at the time t,

Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-live is $\tau=5730$ years, date the remains.

Solution: Set $t=0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$
N(t)=N_{0} 2^{-t / \tau}, \quad \tau=5730 \text { years }
$$

The remains contain 14% of the original amount at the time t,

$$
\frac{N(t)}{N_{0}}=\frac{14}{100}
$$

Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-live is $\tau=5730$ years, date the remains.

Solution: Set $t=0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$
N(t)=N_{0} 2^{-t / \tau}, \quad \tau=5730 \text { years }
$$

The remains contain 14% of the original amount at the time t,

$$
\frac{N(t)}{N_{0}}=\frac{14}{100} \quad \Rightarrow \quad 2^{-t / \tau}=\frac{14}{100}
$$

Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-live is $\tau=5730$ years, date the remains.

Solution: Set $t=0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$
N(t)=N_{0} 2^{-t / \tau}, \quad \tau=5730 \text { years }
$$

The remains contain 14% of the original amount at the time t,

$$
\begin{aligned}
& \quad \frac{N(t)}{N_{0}}=\frac{14}{100} \quad \Rightarrow \quad 2^{-t / \tau}=\frac{14}{100} \\
& -\frac{t}{\tau}=\log _{2}(14 / 100)
\end{aligned}
$$

Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-live is $\tau=5730$ years, date the remains.

Solution: Set $t=0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$
N(t)=N_{0} 2^{-t / \tau}, \quad \tau=5730 \text { years }
$$

The remains contain 14% of the original amount at the time t,

$$
\begin{aligned}
\frac{N(t)}{N_{0}}=\frac{14}{100} & \Rightarrow \quad 2^{-t / \tau}=\frac{14}{100} \\
-\frac{t}{\tau}=\log _{2}(14 / 100) & \Rightarrow \quad t=\tau \log _{2}(100 / 14)
\end{aligned}
$$

Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are found. Knowing that Carbon-14 half-live is $\tau=5730$ years, date the remains.

Solution: Set $t=0$ when the organism dies. Since the amount N of Carbon-14 only decays after the organism dies,

$$
N(t)=N_{0} 2^{-t / \tau}, \quad \tau=5730 \text { years }
$$

The remains contain 14% of the original amount at the time t,

$$
\begin{aligned}
\frac{N(t)}{N_{0}}=\frac{14}{100} & \Rightarrow \quad 2^{-t / \tau}=\frac{14}{100} \\
-\frac{t}{\tau}=\log _{2}(14 / 100) & \Rightarrow \quad t=\tau \log _{2}(100 / 14)
\end{aligned}
$$

The organism died 16, 253 years ago.

Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
- Carbon-14 dating.
- Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if salty water comes in and goes out of the tank.

Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if salty water comes in and goes out of the tank.

Main ideas of the test:

- Since the mass of salt and water is conserved, we construct a mathematical model for the salt concentration in water.

Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if salty water comes in and goes out of the tank.

Main ideas of the test:

- Since the mass of salt and water is conserved, we construct a mathematical model for the salt concentration in water.
- The amount of salt in the tank depends on the salt concentration coming in and going out of the tank.

Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if salty water comes in and goes out of the tank.

Main ideas of the test:

- Since the mass of salt and water is conserved, we construct a mathematical model for the salt concentration in water.
- The amount of salt in the tank depends on the salt concentration coming in and going out of the tank.
- The salt in the tank also depends on the water rates coming in and going out of the tank.

Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if salty water comes in and goes out of the tank.

Main ideas of the test:

- Since the mass of salt and water is conserved, we construct a mathematical model for the salt concentration in water.
- The amount of salt in the tank depends on the salt concentration coming in and going out of the tank.
- The salt in the tank also depends on the water rates coming in and going out of the tank.
- To construct a model means to find the differential equation that takes into account the above properties of the system.

Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if salty water comes in and goes out of the tank.

Main ideas of the test:

- Since the mass of salt and water is conserved, we construct a mathematical model for the salt concentration in water.
- The amount of salt in the tank depends on the salt concentration coming in and going out of the tank.
- The salt in the tank also depends on the water rates coming in and going out of the tank.
- To construct a model means to find the differential equation that takes into account the above properties of the system.
- Finding the solution to the differential equation with a particular initial condition means we can predict the evolution of the salt in the tank if we know the tank initial condition.

Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
- Carbon-14 dating.
- Main example: Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

The experimental device.

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_{i}(t), q_{o}(t)$: Salt concentration of the water entering and leaving the tank at the time t.

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_{i}(t), q_{o}(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- $V(t)$: Water volume in the tank at the time t.

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_{i}(t), q_{o}(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- $V(t)$: Water volume in the tank at the time t.
- $Q(t)$: Salt mass in the tank at the time t.

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_{i}(t), q_{o}(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- $V(t)$: Water volume in the tank at the time t.
- $Q(t)$: Salt mass in the tank at the time t.

Units:

$$
\left[r_{i}(t)\right]=\left[r_{0}(t)\right]=\frac{\text { Volume }}{\text { Time }},
$$

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_{i}(t), q_{o}(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- $V(t)$: Water volume in the tank at the time t.
- $Q(t)$: Salt mass in the tank at the time t.

Units:

$$
\left[r_{i}(t)\right]=\left[r_{0}(t)\right]=\frac{\text { Volume }}{\text { Time }}, \quad\left[q_{i}(t)\right]=\left[q_{o}(t)\right]=\frac{\text { Mass }}{\text { Volume }}
$$

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_{i}(t), q_{o}(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- $V(t)$: Water volume in the tank at the time t.
- $Q(t)$: Salt mass in the tank at the time t.

Units:

$$
\begin{gathered}
{\left[r_{i}(t)\right]=\left[r_{o}(t)\right]=\frac{\text { Volume }}{\text { Time }}, \quad\left[q_{i}(t)\right]=\left[q_{o}(t)\right]=\frac{\text { Mass }}{\text { Volume }} .} \\
{[V(t)]=\text { Volume }}
\end{gathered}
$$

The experimental device.

Definitions:

- $r_{i}(t), r_{o}(t)$: Rates in and out of water entering and leaving the tank at the time t.
- $q_{i}(t), q_{o}(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- $V(t)$: Water volume in the tank at the time t.
- $Q(t)$: Salt mass in the tank at the time t.

Units:

$$
\begin{gathered}
{\left[r_{i}(t)\right]=\left[r_{o}(t)\right]=\frac{\text { Volume }}{\text { Time }}, \quad\left[q_{i}(t)\right]=\left[q_{o}(t)\right]=\frac{\text { Mass }}{\text { Volume }} .} \\
{[V(t)]=\text { Volume }, \quad[Q(t)]=\text { Mass. }}
\end{gathered}
$$

Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
- Carbon-14 dating.
- Main example: Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

The main equations.

Remark: The mass conservation provides the main equations of the mathematical description for salt in water.

The main equations.

Remark: The mass conservation provides the main equations of the mathematical description for salt in water.

Main equations:

$$
\begin{equation*}
\frac{d}{d t} V(t)=r_{i}(t)-r_{o}(t) \tag{1}
\end{equation*}
$$

Volume conservation,

The main equations.

Remark: The mass conservation provides the main equations of the mathematical description for salt in water.

Main equations:

$$
\begin{array}{ll}
\frac{d}{d t} V(t)=r_{i}(t)-r_{o}(t), & \text { Volume conservation, } \\
\frac{d}{d t} Q(t)=r_{i}(t) q_{i}(t)-r_{o}(t) q_{o}(t), & \text { Mass conservation, } \tag{2}
\end{array}
$$

The main equations.

Remark: The mass conservation provides the main equations of the mathematical description for salt in water.

Main equations:

$$
\begin{array}{cc}
\frac{d}{d t} V(t)=r_{i}(t)-r_{o}(t), & \text { Volume conservation, } \\
\frac{d}{d t} Q(t)=r_{i}(t) q_{i}(t)-r_{o}(t) q_{o}(t), \quad \text { Mass conservation, } \\
q_{o}(t)=\frac{Q(t)}{V(t)}, \quad \text { Instantaneously mixed, } \tag{3}
\end{array}
$$

The main equations.

Remark: The mass conservation provides the main equations of the mathematical description for salt in water.

Main equations:

$$
\begin{align*}
\frac{d}{d t} V(t) & =r_{i}(t)-r_{0}(t), \tag{1}\\
\frac{d}{d t} Q(t) & =r_{i}(t) q_{i}(t)-r_{0}(t) q_{0}(t), \tag{2}\\
q_{0}(t)=\frac{Q(t)}{V(t)}, & \text { Mass conservation, } \tag{3}\\
r_{i}, r_{0}: & \text { Instantaneously mixed, } \tag{4}\\
& \text { Constants. }
\end{align*}
$$

The main equations.

Remarks:

$$
\begin{gathered}
{\left[\frac{d V}{d t}\right]=\frac{\text { Volume }}{\text { Time }}=\left[r_{i}-r_{0}\right],} \\
{\left[\frac{d Q}{d t}\right]=\frac{\text { Mass }}{\text { Time }}=\left[r_{i} q_{i}-r_{0} q_{o}\right],} \\
{\left[r_{i} q_{i}-r_{0} q_{0}\right]=\frac{\text { Volume }}{\text { Time }} \frac{\text { Mass }}{\text { Volume }}=\frac{\text { Mass }}{\text { Time }} .}
\end{gathered}
$$

Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
- Carbon-14 dating.
- Main example: Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

Analysis of the mathematical model.

Eqs. (4) and (1) imply

$$
\begin{equation*}
V(t)=\left(r_{i}-r_{o}\right) t+V_{0} \tag{5}
\end{equation*}
$$

where $V(0)=V_{0}$ is the initial volume of water in the tank.

Analysis of the mathematical model.

Eqs. (4) and (1) imply

$$
\begin{equation*}
V(t)=\left(r_{i}-r_{o}\right) t+V_{0} \tag{5}
\end{equation*}
$$

where $V(0)=V_{0}$ is the initial volume of water in the tank.
Eqs. (3) and (2) imply

$$
\begin{equation*}
\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-r_{o} \frac{Q(t)}{V(t)} . \tag{6}
\end{equation*}
$$

Analysis of the mathematical model.

Eqs. (4) and (1) imply

$$
\begin{equation*}
V(t)=\left(r_{i}-r_{o}\right) t+V_{0} \tag{5}
\end{equation*}
$$

where $V(0)=V_{0}$ is the initial volume of water in the tank.
Eqs. (3) and (2) imply

$$
\begin{equation*}
\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-r_{o} \frac{Q(t)}{V(t)} . \tag{6}
\end{equation*}
$$

Eqs. (5) and (6) imply

$$
\begin{equation*}
\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{o}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t) . \tag{7}
\end{equation*}
$$

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} Q(t)$.

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$,

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$, and $b(t)=r_{i} q_{i}(t)$.

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{o}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$, and $b(t)=r_{i} q_{i}(t)$.
The main equation of the description is given by

$$
Q^{\prime}(t)=a(t) Q(t)+b(t)
$$

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{o}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$, and $b(t)=r_{i} q_{i}(t)$.
The main equation of the description is given by

$$
Q^{\prime}(t)=a(t) Q(t)+b(t)
$$

Linear ODE for Q.

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{0}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$, and $b(t)=r_{i} q_{i}(t)$.
The main equation of the description is given by

$$
Q^{\prime}(t)=a(t) Q(t)+b(t)
$$

Linear ODE for Q. Solution: Integrating factor method.

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$, and $b(t)=r_{i} q_{i}(t)$.
The main equation of the description is given by

$$
Q^{\prime}(t)=a(t) Q(t)+b(t)
$$

Linear ODE for Q. Solution: Integrating factor method.

$$
Q(t)=e^{A(t)}\left[Q_{0}+\int_{0}^{t} e^{-A(s)} b(s) d s\right]
$$

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{0}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$, and $b(t)=r_{i} q_{i}(t)$.
The main equation of the description is given by

$$
Q^{\prime}(t)=a(t) Q(t)+b(t)
$$

Linear ODE for Q. Solution: Integrating factor method.

$$
Q(t)=e^{A(t)}\left[Q_{0}+\int_{0}^{t} e^{-A(s)} b(s) d s\right]
$$

with $Q(0)=Q_{0}$,

Analysis of the mathematical model.

Recall: $\frac{d}{d t} Q(t)=r_{i} q_{i}(t)-\frac{r_{0}}{\left(r_{i}-r_{o}\right) t+V_{0}} Q(t)$.
Notation: $a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}$, and $b(t)=r_{i} q_{i}(t)$.
The main equation of the description is given by

$$
Q^{\prime}(t)=a(t) Q(t)+b(t)
$$

Linear ODE for Q. Solution: Integrating factor method.

$$
Q(t)=e^{A(t)}\left[Q_{0}+\int_{0}^{t} e^{-A(s)} b(s) d s\right]
$$

with $Q(0)=Q_{0}$, and $A(t)=\int_{0}^{t} a(s) d s$.

Modeling with first order equations (Sect. 1.5).

- Radioactive decay.
- Carbon-14 dating.
- Main example: Salt in a water tank.
- The experimental device.
- The main equations.
- Analysis of the mathematical model.
- Predictions for particular situations.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Always holds $Q^{\prime}(t)=a(t) Q(t)+b(t)$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Always holds $Q^{\prime}(t)=a(t) Q(t)+b(t)$. In this case:

$$
a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Always holds $Q^{\prime}(t)=a(t) Q(t)+b(t)$.
In this case:

$$
a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=-\frac{r}{V_{0}}=-a_{0}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Always holds $Q^{\prime}(t)=a(t) Q(t)+b(t)$.
In this case:

$$
\begin{gathered}
a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=-\frac{r}{V_{0}}=-a_{0} \\
b(t)=r_{i} q_{i}(t)
\end{gathered}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Always holds $Q^{\prime}(t)=a(t) Q(t)+b(t)$.
In this case:

$$
\begin{gathered}
a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=-\frac{r}{V_{0}}=-a_{0} \\
b(t)=r_{i} q_{i}(t) \Rightarrow b(t)=r q_{i}=b_{0} .
\end{gathered}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Always holds $Q^{\prime}(t)=a(t) Q(t)+b(t)$.
In this case:

$$
\begin{gathered}
a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=-\frac{r}{V_{0}}=-a_{0} \\
b(t)=r_{i} q_{i}(t) \Rightarrow b(t)=r q_{i}=b_{0} .
\end{gathered}
$$

We need to solve the IVP:

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Always holds $Q^{\prime}(t)=a(t) Q(t)+b(t)$.
In this case:

$$
\begin{gathered}
a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=-\frac{r}{V_{0}}=-a_{0}, \\
b(t)=r_{i} q_{i}(t) \Rightarrow b(t)=r q_{i}=b_{0} .
\end{gathered}
$$

We need to solve the IVP:

$$
Q^{\prime}(t)=-a_{0} Q(t)+b_{0}, \quad Q(0)=Q_{0}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)+a_{0} Q(t)=b_{0}, \quad Q(0)=Q_{0}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)+a_{0} Q(t)=b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)+a_{0} Q(t)=b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
A(t)=a_{0} t
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)+a_{0} Q(t)=b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
A(t)=a_{0} t, \quad \mu(t)=e^{a_{0} t}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)+a_{0} Q(t)=b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
A(t)=a_{0} t, \quad \mu(t)=e^{a_{0} t}, \quad e^{a_{0} t} Q(t)=Q_{0}+\int_{0}^{t} e^{a_{0} s} b_{0} d s
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)+a_{0} Q(t)=b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
\begin{aligned}
& A(t)=a_{0} t, \quad \mu(t)=e^{a_{0} t}, \quad e^{a_{0} t} Q(t)=Q_{0}+\int_{0}^{t} e^{a_{0} s} b_{0} d s \\
& Q(t)=e^{-a_{0} t}\left[Q_{0}+\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right)\right] .
\end{aligned}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)+a_{0} Q(t)=b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
\begin{aligned}
& A(t)=a_{0} t, \quad \mu(t)=e^{a_{0} t}, \quad e^{a_{0} t} Q(t)=Q_{0}+\int_{0}^{t} e^{a_{0} s} b_{0} d s \\
& Q(t)=e^{-a_{0} t}\left[Q_{0}+\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right)\right] .=\left(Q_{0}-\frac{b_{0}}{a_{0}}\right) e^{-a_{0} t}+\frac{b_{0}}{a_{0}}
\end{aligned}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)+a_{0} Q(t)=b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
\begin{aligned}
A(t) & =a_{0} t, \quad \mu(t)=e^{a_{0} t}, \quad e^{a_{0} t} Q(t)=Q_{0}+\int_{0}^{t} e^{a_{0} s} b_{0} d s . \\
Q(t) & =e^{-a_{0} t}\left[Q_{0}+\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right)\right] \cdot=\left(Q_{0}-\frac{b_{0}}{a_{0}}\right) e^{-a_{0} t}+\frac{b_{0}}{a_{0}} . \\
\text { But } \frac{b_{0}}{a_{0}} & =r q_{i} \frac{V_{0}}{r}
\end{aligned}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)+a_{0} Q(t)=b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
\begin{aligned}
A(t) & =a_{0} t, \quad \mu(t)=e^{a_{0} t}, \quad e^{a_{0} t} Q(t)=Q_{0}+\int_{0}^{t} e^{a_{0} s} b_{0} d s . \\
Q(t) & =e^{-a_{0} t}\left[Q_{0}+\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right)\right] \cdot=\left(Q_{0}-\frac{b_{0}}{a_{0}}\right) e^{-a_{0} t}+\frac{b_{0}}{a_{0}} . \\
\text { But } \frac{b_{0}}{a_{0}} & =r q_{i} \frac{V_{0}}{r}=q_{i} V_{0},
\end{aligned}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)+a_{0} Q(t)=b_{0}, \quad Q(0)=Q_{0}$.
Integrating factor method:

$$
\begin{aligned}
& A(t)=a_{0} t, \quad \mu(t)=e^{a_{0} t}, \quad e^{a_{0} t} Q(t)=Q_{0}+\int_{0}^{t} e^{a_{0} s} b_{0} d s \\
& Q(t)=e^{-a_{0} t}\left[Q_{0}+\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right)\right] .=\left(Q_{0}-\frac{b_{0}}{a_{0}}\right) e^{-a_{0} t}+\frac{b_{0}}{a_{0}}
\end{aligned}
$$

But $\frac{b_{0}}{a_{0}}=r q_{i} \frac{V_{0}}{r}=q_{i} V_{0}$, and $a_{0}=\frac{r}{V_{0}}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall the IVP: $Q^{\prime}(t)+a_{0} Q(t)=b_{0}, \quad Q(0)=Q_{0}$. Integrating factor method:

$$
\begin{aligned}
& A(t)=a_{0} t, \quad \mu(t)=e^{a_{0} t}, \quad e^{a_{0} t} Q(t)=Q_{0}+\int_{0}^{t} e^{a_{0} s} b_{0} d s . \\
& Q(t)=e^{-a_{0} t}\left[Q_{0}+\frac{b_{0}}{a_{0}}\left(e^{a_{0} t}-1\right)\right] .=\left(Q_{0}-\frac{b_{0}}{a_{0}}\right) e^{-a_{0} t}+\frac{b_{0}}{a_{0}} .
\end{aligned}
$$

But $\frac{b_{0}}{a_{0}}=r q_{i} \frac{V_{0}}{r}=q_{i} V_{0}$, and $a_{0}=\frac{r}{V_{0}}$. We conclude:

$$
Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0} .
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall: $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall: $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$.
Particular cases:

- $\frac{Q_{0}}{V_{0}}>q_{i} ;$
- $\frac{Q_{0}}{V_{0}}=q_{i}$, so $Q(t)=Q_{0}$;
- $\frac{Q_{0}}{V_{0}}<q_{i}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If r, q_{i}, Q_{0} and V_{0} are given, find $Q(t)$.
Solution: Recall: $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$.
Particular cases:

- $\frac{Q_{0}}{V_{0}}>q_{i} ;$
- $\frac{Q_{0}}{V_{0}}=q_{i}$, so $Q(t)=Q_{0}$;
- $\frac{Q_{0}}{V_{0}}<q_{i}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$,

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Since $V(t)=\left(r_{i}-r_{0}\right) t+V_{0}$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Since $V(t)=\left(r_{i}-r_{0}\right) t+V_{0}$ and $r_{i}=r_{0}$,

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Since $V(t)=\left(r_{i}-r_{0}\right) t+V_{0}$ and $r_{i}=r_{0}$, we obtain $V(t)=V_{0}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Since $V(t)=\left(r_{i}-r_{0}\right) t+V_{0}$ and $r_{i}=r_{0}$, we obtain $V(t)=V_{0}$.
So $q(t)=Q(t) / V(t)$ is given by $q(t)=\frac{Q_{0}}{V_{0}} e^{-r t / V_{0}}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/ l i t e r$, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Since $V(t)=\left(r_{i}-r_{0}\right) t+V_{0}$ and $r_{i}=r_{0}$, we obtain $V(t)=V_{0}$.
So $q(t)=Q(t) / V(t)$ is given by $q(t)=\frac{Q_{0}}{V_{0}} e^{-r t / V_{0}}$. Therefore,

$$
\frac{1}{100} \frac{Q_{0}}{V_{0}}=q\left(t_{1}\right)
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{o}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/ l i t e r$, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Since $V(t)=\left(r_{i}-r_{0}\right) t+V_{0}$ and $r_{i}=r_{0}$, we obtain $V(t)=V_{0}$.
So $q(t)=Q(t) / V(t)$ is given by $q(t)=\frac{Q_{0}}{V_{0}} e^{-r t / V_{0}}$. Therefore,

$$
\frac{1}{100} \frac{Q_{0}}{V_{0}}=q\left(t_{1}\right)=\frac{Q_{0}}{V_{0}} e^{-r t_{1} / V_{0}}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/ l i t e r$, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: This problem is a particular case $q_{i}=0$ of the previous Example. Since $Q(t)=\left(Q_{0}-q_{i} V_{0}\right) e^{-r t / V_{0}}+q_{i} V_{0}$, we get

$$
Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Since $V(t)=\left(r_{i}-r_{0}\right) t+V_{0}$ and $r_{i}=r_{0}$, we obtain $V(t)=V_{0}$.
So $q(t)=Q(t) / V(t)$ is given by $q(t)=\frac{Q_{0}}{V_{0}} e^{-r t / V_{0}}$. Therefore,

$$
\frac{1}{100} \frac{Q_{0}}{V_{0}}=q\left(t_{1}\right)=\frac{Q_{0}}{V_{0}} e^{-r t_{1} / V_{0}} \quad \Rightarrow \quad e^{-r t_{1} / V_{0}}=\frac{1}{100} .
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/ l i t e r$, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: Recall: $e^{-r t_{1} / V_{0}}=\frac{1}{100}$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams/liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: Recall: $e^{-r t_{1} / V_{0}}=\frac{1}{100}$. Then,

$$
-\frac{r}{V_{0}} t_{1}=\ln \left(\frac{1}{100}\right)
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams/liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: Recall: $e^{-r t_{1} / V_{0}}=\frac{1}{100}$. Then,

$$
-\frac{r}{V_{0}} t_{1}=\ln \left(\frac{1}{100}\right)=-\ln (100)
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: Recall: $e^{-r t_{1} / V_{0}}=\frac{1}{100}$. Then,

$$
-\frac{r}{V_{0}} t_{1}=\ln \left(\frac{1}{100}\right)=-\ln (100) \quad \Rightarrow \quad \frac{r}{V_{0}} t_{1}=\ln (100)
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: Recall: $e^{-r t_{1} / V_{0}}=\frac{1}{100}$. Then,

$$
-\frac{r}{V_{0}} t_{1}=\ln \left(\frac{1}{100}\right)=-\ln (100) \quad \Rightarrow \quad \frac{r}{V_{0}} t_{1}=\ln (100)
$$

We conclude that $t_{1}=\frac{V_{0}}{r} \ln (100)$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ and q_{i} are constants.
If $r=2$ liters $/ \mathrm{min}, q_{i}=0, V_{0}=200$ liters, $Q_{0} / V_{0}=1$ grams $/$ liter, find t_{1} such that $q\left(t_{1}\right)=Q\left(t_{1}\right) / V\left(t_{1}\right)$ is 1% the initial value.

Solution: Recall: $e^{-r t_{1} / V_{0}}=\frac{1}{100}$. Then,

$$
-\frac{r}{V_{0}} t_{1}=\ln \left(\frac{1}{100}\right)=-\ln (100) \quad \Rightarrow \quad \frac{r}{V_{0}} t_{1}=\ln (100)
$$

We conclude that $t_{1}=\frac{V_{0}}{r} \ln (100)$.
In this case: $t_{1}=100 \ln (100)$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6}$ gal/year, $q_{i}(t)=2+\sin (2 t)$ grams $/ \mathrm{gal}, V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6}$ gal/year, $q_{i}(t)=2+\sin (2 t)$ grams $/ \mathrm{gal}, V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=a(t) Q(t)+b(t)$.

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6}$ gal/year, $q_{i}(t)=2+\sin (2 t)$ grams $/ \mathrm{gal}, V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=a(t) Q(t)+b(t)$. In this case:

$$
a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}}
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6}$ gal/year, $q_{i}(t)=2+\sin (2 t)$ grams $/ \mathrm{gal}, V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=a(t) Q(t)+b(t)$. In this case:

$$
a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \quad \Rightarrow \quad a(t)=-\frac{r}{V_{0}}=-a_{0},
$$

Predictions for particular situations.

Example

Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6}$ gal/year, $q_{i}(t)=2+\sin (2 t)$ grams $/ \mathrm{gal}, V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=a(t) Q(t)+b(t)$. In this case:

$$
\begin{aligned}
& a(t)=-\frac{r_{0}}{\left(r_{i}-r_{o}\right) t+V_{0}} \Rightarrow a(t)=-\frac{r}{V_{0}}=-a_{0}, \\
& b(t)=r_{i} q_{i}(t)
\end{aligned}
$$

Predictions for particular situations.

Example
Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6}$ gal/year, $q_{i}(t)=2+\sin (2 t)$ grams $/ \mathrm{gal}, V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=a(t) Q(t)+b(t)$. In this case:

$$
\begin{gathered}
a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=-\frac{r}{V_{0}}=-a_{0}, \\
b(t)=r_{i} q_{i}(t) \Rightarrow b(t)=r[2+\sin (2 t)] .
\end{gathered}
$$

Predictions for particular situations.

Example
Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6}$ gal/year, $q_{i}(t)=2+\sin (2 t)$ grams $/ \mathrm{gal}, V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=a(t) Q(t)+b(t)$. In this case:

$$
\begin{gathered}
a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=-\frac{r}{V_{0}}=-a_{0}, \\
b(t)=r_{i} q_{i}(t) \Rightarrow b(t)=r[2+\sin (2 t)] .
\end{gathered}
$$

We need to solve the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b(t), Q(0)=0$.

Predictions for particular situations.

Example
Assume that $r_{i}=r_{0}=r$ are constants. If $r=5 \times 10^{6}$ gal/year, $q_{i}(t)=2+\sin (2 t)$ grams $/ \mathrm{gal}, V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=a(t) Q(t)+b(t)$. In this case:

$$
\begin{gathered}
a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=-\frac{r}{V_{0}}=-a_{0}, \\
b(t)=r_{i} q_{i}(t) \Rightarrow b(t)=r[2+\sin (2 t)] .
\end{gathered}
$$

We need to solve the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b(t), Q(0)=0$.

$$
e^{a_{0} t} Q(t)=\int_{0}^{t} e^{a_{0} s} b(s) d s
$$

Predictions for particular situations.

Example
Assume that $r_{i}=r_{o}=r$ are constants. If $r=5 \times 10^{6}$ gal/year, $q_{i}(t)=2+\sin (2 t)$ grams $/$ gal, $V_{0}=10^{6}$ gal, $Q_{0}=0$, find $Q(t)$.

Solution: Recall: $Q^{\prime}(t)=a(t) Q(t)+b(t)$. In this case:

$$
\begin{gathered}
a(t)=-\frac{r_{0}}{\left(r_{i}-r_{0}\right) t+V_{0}} \Rightarrow a(t)=-\frac{r}{V_{0}}=-a_{0}, \\
b(t)=r_{i} q_{i}(t) \Rightarrow b(t)=r[2+\sin (2 t)] .
\end{gathered}
$$

We need to solve the IVP: $Q^{\prime}(t)=-a_{0} Q(t)+b(t), Q(0)=0$.

$$
e^{a_{0} t} Q(t)=\int_{0}^{t} e^{a_{0} s} b(s) d s
$$

We conclude: $Q(t)=r e^{-r t / V_{0}} \int_{0}^{t} e^{r s / V_{0}}[2+\sin (2 s)] d s$.

Exact equations (Sect. 1.4).

- Exact differential equations.
- The Poincaré Lemma.
- Implicit solutions and the potential function.
- Generalization: The integrating factor method.

Exact differential equations.

Definition
Given an open rectangle $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$ and continuously differentiable functions $M, N: R \rightarrow \mathbb{R}$,

Exact differential equations.

Definition

Given an open rectangle $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$ and continuously differentiable functions $M, N: R \rightarrow \mathbb{R}$, denoted as $(t, u) \mapsto M(t, u)$ and $(t, u) \mapsto N(t, u)$,

Exact differential equations.

Definition

Given an open rectangle $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$ and continuously differentiable functions $M, N: R \rightarrow \mathbb{R}$, denoted as $(t, u) \mapsto M(t, u)$ and $(t, u) \mapsto N(t, u)$, the differential equation in the unknown function $y:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ given by

$$
N(t, y(t)) y^{\prime}(t)+M(t, y(t))=0
$$

is called exact iff for every point $(t, u) \in R$ holds

$$
\partial_{t} N(t, u)=\partial_{u} M(t, u)
$$

Exact differential equations.

Definition

Given an open rectangle $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$ and continuously differentiable functions $M, N: R \rightarrow \mathbb{R}$, denoted as $(t, u) \mapsto M(t, u)$ and $(t, u) \mapsto N(t, u)$, the differential equation in the unknown function $y:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ given by

$$
N(t, y(t)) y^{\prime}(t)+M(t, y(t))=0
$$

is called exact iff for every point $(t, u) \in R$ holds

$$
\partial_{t} N(t, u)=\partial_{u} M(t, u)
$$

Recall: we use the notation: $\partial_{t} N=\frac{\partial N}{\partial t}$, and $\partial_{u} M=\frac{\partial M}{\partial u}$.

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We first identify the functions N and M,

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We first identify the functions N and M,

$$
[2 t y(t)] y^{\prime}(t)+\left[2 t+y^{2}(t)\right]=0
$$

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We first identify the functions N and M,

$$
[2 t y(t)] y^{\prime}(t)+\left[2 t+y^{2}(t)\right]=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=2 t u \\
M(t, u)=2 t+u^{2}
\end{array}\right.
$$

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We first identify the functions N and M,

$$
[2 t y(t)] y^{\prime}(t)+\left[2 t+y^{2}(t)\right]=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=2 t u \\
M(t, u)=2 t+u^{2}
\end{array}\right.
$$

The equation is exact iff $\partial_{t} N=\partial_{u} M$.

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We first identify the functions N and M,

$$
[2 t y(t)] y^{\prime}(t)+\left[2 t+y^{2}(t)\right]=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=2 t u \\
M(t, u)=2 t+u^{2}
\end{array}\right.
$$

The equation is exact iff $\partial_{t} N=\partial_{u} M$. Since

$$
N(t, u)=2 t u
$$

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We first identify the functions N and M,

$$
[2 t y(t)] y^{\prime}(t)+\left[2 t+y^{2}(t)\right]=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=2 t u \\
M(t, u)=2 t+u^{2}
\end{array}\right.
$$

The equation is exact iff $\partial_{t} N=\partial_{u} M$. Since

$$
N(t, u)=2 t u \quad \Rightarrow \quad \partial_{t} N(t, u)=2 u
$$

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We first identify the functions N and M,

$$
[2 t y(t)] y^{\prime}(t)+\left[2 t+y^{2}(t)\right]=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=2 t u \\
M(t, u)=2 t+u^{2}
\end{array}\right.
$$

The equation is exact iff $\partial_{t} N=\partial_{u} M$. Since

$$
\begin{aligned}
& N(t, u)=2 t u \quad \Rightarrow \quad \partial_{t} N(t, u)=2 u \\
& M(t, u)=2 t+u^{2}
\end{aligned}
$$

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We first identify the functions N and M,

$$
[2 t y(t)] y^{\prime}(t)+\left[2 t+y^{2}(t)\right]=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=2 t u \\
M(t, u)=2 t+u^{2}
\end{array}\right.
$$

The equation is exact iff $\partial_{t} N=\partial_{u} M$. Since

$$
\begin{gathered}
N(t, u)=2 t u \quad \Rightarrow \quad \partial_{t} N(t, u)=2 u \\
M(t, u)=2 t+u^{2} \quad \Rightarrow \quad \partial_{u} M(t, u)=2 u
\end{gathered}
$$

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We first identify the functions N and M,

$$
[2 t y(t)] y^{\prime}(t)+\left[2 t+y^{2}(t)\right]=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=2 t u \\
M(t, u)=2 t+u^{2}
\end{array}\right.
$$

The equation is exact iff $\partial_{t} N=\partial_{u} M$. Since

$$
\begin{gathered}
N(t, u)=2 t u \quad \Rightarrow \quad \partial_{t} N(t, u)=2 u \\
M(t, u)=2 t+u^{2} \quad \Rightarrow \quad \partial_{u} M(t, u)=2 u
\end{gathered}
$$

We conclude: $\partial_{t} N(t, u)=\partial_{u} M(t, u)$.

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We first identify the functions N and M,

$$
[2 t y(t)] y^{\prime}(t)+\left[2 t+y^{2}(t)\right]=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=2 t u \\
M(t, u)=2 t+u^{2}
\end{array}\right.
$$

The equation is exact iff $\partial_{t} N=\partial_{u} M$. Since

$$
\begin{gathered}
N(t, u)=2 t u \quad \Rightarrow \quad \partial_{t} N(t, u)=2 u \\
M(t, u)=2 t+u^{2} \quad \Rightarrow \quad \partial_{u} M(t, u)=2 u
\end{gathered}
$$

We conclude: $\partial_{t} N(t, u)=\partial_{u} M(t, u)$.
Remark: The ODE above is not separable and non-linear.

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
\sin (t) y^{\prime}(t)+t^{2} e^{y(t)} y^{\prime}(t)-y^{\prime}(t)=-y(t) \cos (t)-2 t e^{y(t)}
$$

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
\sin (t) y^{\prime}(t)+t^{2} e^{y(t)} y^{\prime}(t)-y^{\prime}(t)=-y(t) \cos (t)-2 t e^{y(t)}
$$

Solution: We first identify the functions N and M,

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
\sin (t) y^{\prime}(t)+t^{2} e^{y(t)} y^{\prime}(t)-y^{\prime}(t)=-y(t) \cos (t)-2 t e^{y(t)}
$$

Solution: We first identify the functions N and M, if we write

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+\left[y(t) \cos (t)+2 t e^{y(t)}\right]=0
$$

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
\sin (t) y^{\prime}(t)+t^{2} e^{y(t)} y^{\prime}(t)-y^{\prime}(t)=-y(t) \cos (t)-2 t e^{y(t)}
$$

Solution: We first identify the functions N and M, if we write

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+\left[y(t) \cos (t)+2 t e^{y(t)}\right]=0
$$

we can see that

$$
N(t, u)=\sin (t)+t^{2} e^{u}-1
$$

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
\sin (t) y^{\prime}(t)+t^{2} e^{y(t)} y^{\prime}(t)-y^{\prime}(t)=-y(t) \cos (t)-2 t e^{y(t)}
$$

Solution: We first identify the functions N and M, if we write

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+\left[y(t) \cos (t)+2 t e^{y(t)}\right]=0
$$

we can see that

$$
N(t, u)=\sin (t)+t^{2} e^{u}-1 \quad \Rightarrow \quad \partial_{t} N(t, u)=\cos (t)+2 t e^{u}
$$

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
\sin (t) y^{\prime}(t)+t^{2} e^{y(t)} y^{\prime}(t)-y^{\prime}(t)=-y(t) \cos (t)-2 t e^{y(t)}
$$

Solution: We first identify the functions N and M, if we write

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+\left[y(t) \cos (t)+2 t e^{y(t)}\right]=0
$$

we can see that

$$
\begin{aligned}
& N(t, u)=\sin (t)+t^{2} e^{u}-1 \quad \Rightarrow \quad \partial_{t} N(t, u)=\cos (t)+2 t e^{u} \\
& M(t, u)=u \cos (t)+2 t e^{u}
\end{aligned}
$$

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
\sin (t) y^{\prime}(t)+t^{2} e^{y(t)} y^{\prime}(t)-y^{\prime}(t)=-y(t) \cos (t)-2 t e^{y(t)}
$$

Solution: We first identify the functions N and M, if we write

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+\left[y(t) \cos (t)+2 t e^{y(t)}\right]=0,
$$

we can see that

$$
\begin{aligned}
& N(t, u)=\sin (t)+t^{2} e^{u}-1 \quad \Rightarrow \quad \partial_{t} N(t, u)=\cos (t)+2 t e^{u} \\
& M(t, u)=u \cos (t)+2 t e^{u} \quad \Rightarrow \quad \partial_{u} M(t, u)=\cos (t)+2 t e^{u}
\end{aligned}
$$

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
\sin (t) y^{\prime}(t)+t^{2} e^{y(t)} y^{\prime}(t)-y^{\prime}(t)=-y(t) \cos (t)-2 t e^{y(t)}
$$

Solution: We first identify the functions N and M, if we write

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+\left[y(t) \cos (t)+2 t e^{y(t)}\right]=0,
$$

we can see that

$$
\begin{aligned}
& N(t, u)=\sin (t)+t^{2} e^{u}-1 \quad \Rightarrow \quad \partial_{t} N(t, u)=\cos (t)+2 t e^{u} \\
& M(t, u)=u \cos (t)+2 t e^{u} \quad \Rightarrow \quad \partial_{u} M(t, u)=\cos (t)+2 t e^{u}
\end{aligned}
$$

The equation is exact, since $\partial_{t} N(t, u)=\partial_{u} M(t, u)$.

Exact differential equations.

Example

Show whether the linear differential equation below is exact,

$$
y^{\prime}(t)=-a(t) y(t)+b(t), \quad a(t) \neq 0
$$

Exact differential equations.

Example

Show whether the linear differential equation below is exact,

$$
y^{\prime}(t)=-a(t) y(t)+b(t), \quad a(t) \neq 0
$$

Solution: We first find the functions N and M,

Exact differential equations.

Example

Show whether the linear differential equation below is exact,

$$
y^{\prime}(t)=-a(t) y(t)+b(t), \quad a(t) \neq 0
$$

Solution: We first find the functions N and M,

$$
y^{\prime}+a(t) y-b(t)=0
$$

Exact differential equations.

Example

Show whether the linear differential equation below is exact,

$$
y^{\prime}(t)=-a(t) y(t)+b(t), \quad a(t) \neq 0
$$

Solution: We first find the functions N and M,

$$
y^{\prime}+a(t) y-b(t)=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=1 \\
M(t, u)=a(t) u-b(t)
\end{array}\right.
$$

Exact differential equations.

Example

Show whether the linear differential equation below is exact,

$$
y^{\prime}(t)=-a(t) y(t)+b(t), \quad a(t) \neq 0 .
$$

Solution: We first find the functions N and M,

$$
y^{\prime}+a(t) y-b(t)=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=1 \\
M(t, u)=a(t) u-b(t)
\end{array}\right.
$$

The differential equation is not exact,

Exact differential equations.

Example

Show whether the linear differential equation below is exact,

$$
y^{\prime}(t)=-a(t) y(t)+b(t), \quad a(t) \neq 0
$$

Solution: We first find the functions N and M,

$$
y^{\prime}+a(t) y-b(t)=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=1 \\
M(t, u)=a(t) u-b(t)
\end{array}\right.
$$

The differential equation is not exact, since

$$
N(t, u)=1
$$

Exact differential equations.

Example

Show whether the linear differential equation below is exact,

$$
y^{\prime}(t)=-a(t) y(t)+b(t), \quad a(t) \neq 0
$$

Solution: We first find the functions N and M,

$$
y^{\prime}+a(t) y-b(t)=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=1 \\
M(t, u)=a(t) u-b(t)
\end{array}\right.
$$

The differential equation is not exact, since

$$
N(t, u)=1 \quad \Rightarrow \quad \partial_{t} N(t, u)=0
$$

Exact differential equations.

Example

Show whether the linear differential equation below is exact,

$$
y^{\prime}(t)=-a(t) y(t)+b(t), \quad a(t) \neq 0
$$

Solution: We first find the functions N and M,

$$
y^{\prime}+a(t) y-b(t)=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=1 \\
M(t, u)=a(t) u-b(t)
\end{array}\right.
$$

The differential equation is not exact, since

$$
N(t, u)=1 \quad \Rightarrow \quad \partial_{t} N(t, u)=0
$$

$$
M(t, u)=a(t) u-b(t)
$$

Exact differential equations.

Example

Show whether the linear differential equation below is exact,

$$
y^{\prime}(t)=-a(t) y(t)+b(t), \quad a(t) \neq 0
$$

Solution: We first find the functions N and M,

$$
y^{\prime}+a(t) y-b(t)=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=1 \\
M(t, u)=a(t) u-b(t)
\end{array}\right.
$$

The differential equation is not exact, since

$$
\begin{gathered}
N(t, u)=1 \quad \Rightarrow \quad \partial_{t} N(t, u)=0, \\
M(t, u)=a(t) u-b(t) \quad \Rightarrow \quad \partial_{u} M(t, u)=a(t) .
\end{gathered}
$$

Exact differential equations.

Example

Show whether the linear differential equation below is exact,

$$
y^{\prime}(t)=-a(t) y(t)+b(t), \quad a(t) \neq 0
$$

Solution: We first find the functions N and M,

$$
y^{\prime}+a(t) y-b(t)=0 \Rightarrow\left\{\begin{array}{l}
N(t, u)=1 \\
M(t, u)=a(t) u-b(t)
\end{array}\right.
$$

The differential equation is not exact, since

$$
\begin{gathered}
N(t, u)=1 \quad \Rightarrow \quad \partial_{t} N(t, u)=0, \\
M(t, u)=a(t) u-b(t) \quad \Rightarrow \quad \partial_{u} M(t, u)=a(t) .
\end{gathered}
$$

This implies that $\partial_{t} N(t, u) \neq \partial_{u} M(t, u)$.

Exact equations (Sect. 1.4).

- Exact differential equations.
- The Poincaré Lemma.
- Implicit solutions and the potential function.
- Generalization: The integrating factor method.

The Poincaré Lemma.

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ.

The Poincaré Lemma.

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ.

Lemma (Poincaré)

Given an open rectangle $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$, the continuously differentiable functions $M, N: R \rightarrow \mathbb{R}$ satisfy the equation

$$
\partial_{t} N(t, u)=\partial_{u} M(t, u)
$$

iff there exists a twice continuously differentiable function $\psi: R \rightarrow \mathbb{R}$, called potential function, such that for all $(t, u) \in R$ holds

$$
\partial_{u} \psi(t, u)=N(t, u), \quad \partial_{t} \psi(t, u)=M(t, u) .
$$

The Poincaré Lemma.

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ.

Lemma (Poincaré)

Given an open rectangle $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$, the continuously differentiable functions $M, N: R \rightarrow \mathbb{R}$ satisfy the equation

$$
\partial_{t} N(t, u)=\partial_{u} M(t, u)
$$

iff there exists a twice continuously differentiable function $\psi: R \rightarrow \mathbb{R}$, called potential function, such that for all $(t, u) \in R$ holds

$$
\partial_{u} \psi(t, u)=N(t, u), \quad \partial_{t} \psi(t, u)=M(t, u) .
$$

Proof: (\Leftarrow) Simple:

The Poincaré Lemma.

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ.

Lemma (Poincaré)

Given an open rectangle $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$, the continuously differentiable functions $M, N: R \rightarrow \mathbb{R}$ satisfy the equation

$$
\partial_{t} N(t, u)=\partial_{u} M(t, u)
$$

iff there exists a twice continuously differentiable function $\psi: R \rightarrow \mathbb{R}$, called potential function, such that for all $(t, u) \in R$ holds

$$
\partial_{u} \psi(t, u)=N(t, u), \quad \partial_{t} \psi(t, u)=M(t, u) .
$$

Proof: (\Leftarrow) Simple: $\left.\begin{array}{c}\partial_{t} N=\partial_{t} \partial_{u} \psi, \\ \partial_{u} M=\partial_{u} \partial_{t} \psi,\end{array}\right\} \Rightarrow \partial_{t} N=\partial_{u} M$.

The Poincaré Lemma.

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ.

Lemma (Poincaré)

Given an open rectangle $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$, the continuously differentiable functions $M, N: R \rightarrow \mathbb{R}$ satisfy the equation

$$
\partial_{t} N(t, u)=\partial_{u} M(t, u)
$$

iff there exists a twice continuously differentiable function $\psi: R \rightarrow \mathbb{R}$, called potential function, such that for all $(t, u) \in R$ holds

$$
\partial_{u} \psi(t, u)=N(t, u), \quad \partial_{t} \psi(t, u)=M(t, u) .
$$

Proof: (\Leftarrow) Simple: $\left.\begin{array}{c}\partial_{t} N=\partial_{t} \partial_{u} \psi, \\ \partial_{u} M=\partial_{u} \partial_{t} \psi,\end{array}\right\} \Rightarrow \partial_{t} N=\partial_{u} M$.
(\Rightarrow) Difficult: Poincaré, 1880.

The Poincaré Lemma.

Example

Show that the function $\psi(t, u)=t^{2}+t u^{2}$ is the potential function for the exact differential equation

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

The Poincaré Lemma.

Example

Show that the function $\psi(t, u)=t^{2}+t u^{2}$ is the potential function for the exact differential equation

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We already saw that the differential equation above is exact,

The Poincaré Lemma.

Example

Show that the function $\psi(t, u)=t^{2}+t u^{2}$ is the potential function for the exact differential equation

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We already saw that the differential equation above is exact, since the functions M and N,

$$
\begin{aligned}
N(t, u) & =2 t u \\
M(t, u) & =2 t+u^{2}
\end{aligned}
$$

The Poincaré Lemma.

Example

Show that the function $\psi(t, u)=t^{2}+t u^{2}$ is the potential function for the exact differential equation

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We already saw that the differential equation above is exact, since the functions M and N,

$$
\left.\begin{array}{l}
N(t, u)=2 t u \\
M(t, u)=2 t+u^{2}
\end{array}\right\} \quad \Rightarrow \quad \partial_{t} N=2 u=\partial_{u} M
$$

The Poincaré Lemma.

Example

Show that the function $\psi(t, u)=t^{2}+t u^{2}$ is the potential function for the exact differential equation

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We already saw that the differential equation above is exact, since the functions M and N,

$$
\left.\begin{array}{l}
N(t, u)=2 t u, \\
M(t, u)=2 t+u^{2}
\end{array}\right\} \quad \Rightarrow \quad \partial_{t} N=2 u=\partial_{u} M
$$

The potential function is $\psi(t, u)=t^{2}+t u^{2}$,

The Poincaré Lemma.

Example

Show that the function $\psi(t, u)=t^{2}+t u^{2}$ is the potential function for the exact differential equation

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We already saw that the differential equation above is exact, since the functions M and N,

$$
\left.\begin{array}{l}
N(t, u)=2 t u, \\
M(t, u)=2 t+u^{2}
\end{array}\right\} \quad \Rightarrow \quad \partial_{t} N=2 u=\partial_{u} M
$$

The potential function is $\psi(t, u)=t^{2}+t u^{2}$, since

$$
\partial_{t} \psi=2 t+u^{2}=M
$$

The Poincaré Lemma.

Example

Show that the function $\psi(t, u)=t^{2}+t u^{2}$ is the potential function for the exact differential equation

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We already saw that the differential equation above is exact, since the functions M and N,

$$
\left.\begin{array}{l}
N(t, u)=2 t u, \\
M(t, u)=2 t+u^{2}
\end{array}\right\} \quad \Rightarrow \quad \partial_{t} N=2 u=\partial_{u} M
$$

The potential function is $\psi(t, u)=t^{2}+t u^{2}$, since

$$
\partial_{t} \psi=2 t+u^{2}=M, \quad \partial_{u} \psi=2 t u=N
$$

The Poincaré Lemma.

Example

Show that the function $\psi(t, u)=t^{2}+t u^{2}$ is the potential function for the exact differential equation

$$
2 t y(t) y^{\prime}(t)+2 t+y^{2}(t)=0
$$

Solution: We already saw that the differential equation above is exact, since the functions M and N,

$$
\left.\begin{array}{l}
N(t, u)=2 t u \\
M(t, u)=2 t+u^{2}
\end{array}\right\} \quad \Rightarrow \quad \partial_{t} N=2 u=\partial_{u} M
$$

The potential function is $\psi(t, u)=t^{2}+t u^{2}$, since

$$
\partial_{t} \psi=2 t+u^{2}=M, \quad \partial_{u} \psi=2 t u=N
$$

Remark: The Poincaré Lemma only states necessary and sufficient conditions on N and M for the existence of ψ.

Exact equations (Sect. 1.4).

- Exact differential equations.
- The Poincaré Lemma.
- Implicit solutions and the potential function.
- Generalization: The integrating factor method.

Implicit solutions and the potential function.

Theorem (Exact differential equations)
Let $M, N: R \rightarrow \mathbb{R}$ be continuously differentiable functions on an open rectangle $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$. If the differential equation

$$
\begin{equation*}
N(t, y(t)) y^{\prime}(t)+M(t, y(t))=0 \tag{8}
\end{equation*}
$$

is exact, then every solution $y:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ must satisfy the algebraic equation

$$
\psi(t, y(t))=c
$$

where $c \in \mathbb{R}$ and $\psi: R \rightarrow \mathbb{R}$ is a potential function for $E q$. (8).

Implicit solutions and the potential function.

Theorem (Exact differential equations)
Let $M, N: R \rightarrow \mathbb{R}$ be continuously differentiable functions on an open rectangle $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$. If the differential equation

$$
\begin{equation*}
N(t, y(t)) y^{\prime}(t)+M(t, y(t))=0 \tag{8}
\end{equation*}
$$

is exact, then every solution $y:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ must satisfy the algebraic equation

$$
\psi(t, y(t))=c
$$

where $c \in \mathbb{R}$ and $\psi: R \rightarrow \mathbb{R}$ is a potential function for $E q$. (8).

Proof: $0=N(t, y) y^{\prime}+M(t, y)$

Implicit solutions and the potential function.

Theorem (Exact differential equations)
Let $M, N: R \rightarrow \mathbb{R}$ be continuously differentiable functions on an open rectangle $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$. If the differential equation

$$
\begin{equation*}
N(t, y(t)) y^{\prime}(t)+M(t, y(t))=0 \tag{8}
\end{equation*}
$$

is exact, then every solution $y:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ must satisfy the algebraic equation

$$
\psi(t, y(t))=c
$$

where $c \in \mathbb{R}$ and $\psi: R \rightarrow \mathbb{R}$ is a potential function for $E q$. (8).
Proof: $\left.0=N(t, y) y^{\prime}+M(t, y)=\partial_{y} \psi(t, y) \frac{d y}{d t}+\partial_{t} \psi(t, y)\right)$.

Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let $M, N: R \rightarrow \mathbb{R}$ be continuously differentiable functions on an open rectangle $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$. If the differential equation

$$
\begin{equation*}
N(t, y(t)) y^{\prime}(t)+M(t, y(t))=0 \tag{8}
\end{equation*}
$$

is exact, then every solution $y:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ must satisfy the algebraic equation

$$
\psi(t, y(t))=c
$$

where $c \in \mathbb{R}$ and $\psi: R \rightarrow \mathbb{R}$ is a potential function for $E q$. (8).

$$
\begin{gathered}
\text { Proof: } \left.0=N(t, y) y^{\prime}+M(t, y)=\partial_{y} \psi(t, y) \frac{d y}{d t}+\partial_{t} \psi(t, y)\right) \\
0=\frac{d}{d t} \psi(t, y(t))
\end{gathered}
$$

Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let $M, N: R \rightarrow \mathbb{R}$ be continuously differentiable functions on an open rectangle $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$. If the differential equation

$$
\begin{equation*}
N(t, y(t)) y^{\prime}(t)+M(t, y(t))=0 \tag{8}
\end{equation*}
$$

is exact, then every solution $y:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ must satisfy the algebraic equation

$$
\psi(t, y(t))=c
$$

where $c \in \mathbb{R}$ and $\psi: R \rightarrow \mathbb{R}$ is a potential function for $E q$. (8).
Proof: $\left.0=N(t, y) y^{\prime}+M(t, y)=\partial_{y} \psi(t, y) \frac{d y}{d t}+\partial_{t} \psi(t, y)\right)$.

$$
0=\frac{d}{d t} \psi(t, y(t)) \quad \Leftrightarrow \quad \psi(t, y(t))=c
$$

Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0 .
$$

Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0 .
$$

Solution: Recall: The equation is exact,

Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0 .
$$

Solution: Recall: The equation is exact,

$$
N(t, u)=\sin (t)+t^{2} e^{u}-1
$$

Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0
$$

Solution: Recall: The equation is exact,

$$
N(t, u)=\sin (t)+t^{2} e^{u}-1 \quad \Rightarrow \quad \partial_{t} N(t, u)=\cos (t)+2 t e^{u}
$$

Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0 .
$$

Solution: Recall: The equation is exact,

$$
\begin{aligned}
& N(t, u)=\sin (t)+t^{2} e^{u}-1 \quad \Rightarrow \quad \partial_{t} N(t, u)=\cos (t)+2 t e^{u} \\
& M(t, u)=u \cos (t)+2 t e^{u}
\end{aligned}
$$

Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0
$$

Solution: Recall: The equation is exact,

$$
\begin{aligned}
& N(t, u)=\sin (t)+t^{2} e^{u}-1 \quad \Rightarrow \quad \partial_{t} N(t, u)=\cos (t)+2 t e^{u} \\
& M(t, u)=u \cos (t)+2 t e^{u} \quad \Rightarrow \quad \partial_{u} M(t, u)=\cos (t)+2 t e^{u}
\end{aligned}
$$

Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0
$$

Solution: Recall: The equation is exact,

$$
\begin{aligned}
& N(t, u)=\sin (t)+t^{2} e^{u}-1 \quad \Rightarrow \quad \partial_{t} N(t, u)=\cos (t)+2 t e^{u} \\
& M(t, u)=u \cos (t)+2 t e^{u} \quad \Rightarrow \quad \partial_{u} M(t, u)=\cos (t)+2 t e^{u}
\end{aligned}
$$

hence, $\partial_{t} N=\partial_{u} M$.

Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0
$$

Solution: Recall: The equation is exact,

$$
\begin{aligned}
& N(t, u)=\sin (t)+t^{2} e^{u}-1 \quad \Rightarrow \quad \partial_{t} N(t, u)=\cos (t)+2 t e^{u} \\
& M(t, u)=u \cos (t)+2 t e^{u} \quad \Rightarrow \quad \partial_{u} M(t, u)=\cos (t)+2 t e^{u}
\end{aligned}
$$

hence, $\partial_{t} N=\partial_{u} M$. Poincaré Lemma says the exists ψ,

$$
\partial_{u} \psi(t, u)=N(t, u), \quad \partial_{t} \psi(t, u)=M(t, u)
$$

Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0
$$

Solution: Recall: The equation is exact,

$$
\begin{aligned}
& N(t, u)=\sin (t)+t^{2} e^{u}-1 \quad \Rightarrow \quad \partial_{t} N(t, u)=\cos (t)+2 t e^{u} \\
& M(t, u)=u \cos (t)+2 t e^{u} \quad \Rightarrow \quad \partial_{u} M(t, u)=\cos (t)+2 t e^{u}
\end{aligned}
$$

hence, $\partial_{t} N=\partial_{u} M$. Poincaré Lemma says the exists ψ,

$$
\partial_{u} \psi(t, u)=N(t, u), \quad \partial_{t} \psi(t, u)=M(t, u) .
$$

These are actually equations for ψ.

Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0
$$

Solution: Recall: The equation is exact,

$$
\begin{aligned}
& N(t, u)=\sin (t)+t^{2} e^{u}-1 \quad \Rightarrow \quad \partial_{t} N(t, u)=\cos (t)+2 t e^{u} \\
& M(t, u)=u \cos (t)+2 t e^{u} \quad \Rightarrow \quad \partial_{u} M(t, u)=\cos (t)+2 t e^{u}
\end{aligned}
$$

hence, $\partial_{t} N=\partial_{u} M$. Poincaré Lemma says the exists ψ,

$$
\partial_{u} \psi(t, u)=N(t, u), \quad \partial_{t} \psi(t, u)=M(t, u) .
$$

These are actually equations for ψ. From the first one,

$$
\psi(t, u)=\int\left[\sin (t)+t^{2} e^{u}-1\right] d u+g(t)
$$

Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0 .
$$

Solution: $\psi(t, u)=\int\left[\sin (t)+t^{2} e^{u}-1\right] d u+g(t)$.

Implicit solutions and the potential function.

Example
Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0 .
$$

Solution: $\psi(t, u)=\int\left[\sin (t)+t^{2} e^{u}-1\right] d u+g(t)$. Integrating,

$$
\psi(t, u)=u \sin (t)+t^{2} e^{u}-u+g(t)
$$

Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0 .
$$

Solution: $\psi(t, u)=\int\left[\sin (t)+t^{2} e^{u}-1\right] d u+g(t)$. Integrating,

$$
\psi(t, u)=u \sin (t)+t^{2} e^{u}-u+g(t) .
$$

Introduce this expression into $\partial_{t} \psi(t, u)=M(t, u)$,

Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0 .
$$

Solution: $\psi(t, u)=\int\left[\sin (t)+t^{2} e^{u}-1\right] d u+g(t)$. Integrating,

$$
\psi(t, u)=u \sin (t)+t^{2} e^{u}-u+g(t)
$$

Introduce this expression into $\partial_{t} \psi(t, u)=M(t, u)$, that is,

$$
\partial_{t} \psi(t, u)=u \cos (t)+2 t e^{u}+g^{\prime}(t)
$$

Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0 .
$$

Solution: $\psi(t, u)=\int\left[\sin (t)+t^{2} e^{u}-1\right] d u+g(t)$. Integrating,

$$
\psi(t, u)=u \sin (t)+t^{2} e^{u}-u+g(t)
$$

Introduce this expression into $\partial_{t} \psi(t, u)=M(t, u)$, that is,

$$
\partial_{t} \psi(t, u)=u \cos (t)+2 t e^{u}+g^{\prime}(t)=M(t, u)
$$

Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0 .
$$

Solution: $\psi(t, u)=\int\left[\sin (t)+t^{2} e^{u}-1\right] d u+g(t)$. Integrating,

$$
\psi(t, u)=u \sin (t)+t^{2} e^{u}-u+g(t)
$$

Introduce this expression into $\partial_{t} \psi(t, u)=M(t, u)$, that is,

$$
\partial_{t} \psi(t, u)=u \cos (t)+2 t e^{u}+g^{\prime}(t)=M(t, u)=u \cos (t)+2 t e^{u},
$$

Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0 .
$$

Solution: $\psi(t, u)=\int\left[\sin (t)+t^{2} e^{u}-1\right] d u+g(t)$. Integrating,

$$
\psi(t, u)=u \sin (t)+t^{2} e^{u}-u+g(t)
$$

Introduce this expression into $\partial_{t} \psi(t, u)=M(t, u)$, that is,

$$
\partial_{t} \psi(t, u)=u \cos (t)+2 t e^{u}+g^{\prime}(t)=M(t, u)=u \cos (t)+2 t e^{u}
$$

Therefore, $g^{\prime}(t)=0$, so we choose $g(t)=0$.

Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0 .
$$

Solution: $\psi(t, u)=\int\left[\sin (t)+t^{2} e^{u}-1\right] d u+g(t)$. Integrating,

$$
\psi(t, u)=u \sin (t)+t^{2} e^{u}-u+g(t)
$$

Introduce this expression into $\partial_{t} \psi(t, u)=M(t, u)$, that is,

$$
\partial_{t} \psi(t, u)=u \cos (t)+2 t e^{u}+g^{\prime}(t)=M(t, u)=u \cos (t)+2 t e^{u}
$$

Therefore, $g^{\prime}(t)=0$, so we choose $g(t)=0$. We obtain,

$$
\psi(t, u)=u \sin (t)+t^{2} e^{u}-u
$$

Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$
\left[\sin (t)+t^{2} e^{y(t)}-1\right] y^{\prime}(t)+y(t) \cos (t)+2 t e^{y(t)}=0 .
$$

Solution: $\psi(t, u)=\int\left[\sin (t)+t^{2} e^{u}-1\right] d u+g(t)$. Integrating,

$$
\psi(t, u)=u \sin (t)+t^{2} e^{u}-u+g(t) .
$$

Introduce this expression into $\partial_{t} \psi(t, u)=M(t, u)$, that is,

$$
\partial_{t} \psi(t, u)=u \cos (t)+2 t e^{u}+g^{\prime}(t)=M(t, u)=u \cos (t)+2 t e^{u},
$$

Therefore, $g^{\prime}(t)=0$, so we choose $g(t)=0$. We obtain,

$$
\psi(t, u)=u \sin (t)+t^{2} e^{u}-u
$$

So the solution y satisfies $y(t) \sin (t)+t^{2} e^{y(t)}-y(t)=c$.

Exact equations (Sect. 1.4).

- Exact differential equations.
- The Poincaré Lemma.
- Implicit solutions and the potential function.
- Generalization: The integrating factor method.

Remark:
Sometimes a non-exact equation can we transformed into an exact equation multiplying the equation by an integrating factor. Just like in the case of linear differential equations.

Generalization: The integrating factor method.

Theorem (Integrating factor)
Let $M, N: R \rightarrow \mathbb{R}$ be continuously differentiable functions on $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$, with $N \neq 0$. If the equation

$$
N(t, y(t)) y^{\prime}(t)+M(t, y(t))=0
$$

is not exact, that is, $\partial_{t} N(t, u) \neq \partial_{u} M(t, u)$,

Generalization: The integrating factor method.

Theorem (Integrating factor)
Let $M, N: R \rightarrow \mathbb{R}$ be continuously differentiable functions on $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$, with $N \neq 0$. If the equation

$$
N(t, y(t)) y^{\prime}(t)+M(t, y(t))=0
$$

is not exact, that is, $\partial_{t} N(t, u) \neq \partial_{u} M(t, u)$, and if the function

$$
\frac{1}{N(t, u)}\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]
$$

does not depend on the variable u,

Generalization: The integrating factor method.

Theorem (Integrating factor)

Let $M, N: R \rightarrow \mathbb{R}$ be continuously differentiable functions on $R=\left(t_{1}, t_{2}\right) \times\left(u_{1}, u_{2}\right) \subset \mathbb{R}^{2}$, with $N \neq 0$. If the equation

$$
N(t, y(t)) y^{\prime}(t)+M(t, y(t))=0
$$

is not exact, that is, $\partial_{t} N(t, u) \neq \partial_{u} M(t, u)$, and if the function

$$
\frac{1}{N(t, u)}\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]
$$

does not depend on the variable u, then the equation

$$
\mu(t)\left[N(t, y(t)) y^{\prime}(t)+M(t, y(t))\right]=0
$$

is exact, where $\frac{\mu^{\prime}(t)}{\mu(t)}=\frac{1}{N(t, u)}\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]$.

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0 .
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0 .
$$

Solution: The equation is not exact:

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0 .
$$

Solution: The equation is not exact:

$$
N(t, u)=t^{2}+t u
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0 .
$$

Solution: The equation is not exact:

$$
N(t, u)=t^{2}+t u \quad \Rightarrow \quad \partial_{t} N(t, u)=2 t+u,
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0 .
$$

Solution: The equation is not exact:

$$
\begin{aligned}
& N(t, u)=t^{2}+t u \quad \Rightarrow \quad \partial_{t} N(t, u)=2 t+u, \\
& M(t, u)=3 t u+u^{2}
\end{aligned}
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: The equation is not exact:

$$
\begin{aligned}
N(t, u)=t^{2}+t u & \Rightarrow \partial_{t} N(t, u)=2 t+u \\
M(t, u)=3 t u+u^{2} & \Rightarrow \quad \partial_{u} M(t, u)=3 t+2 u
\end{aligned}
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: The equation is not exact:

$$
\begin{aligned}
N(t, u)=t^{2}+t u & \Rightarrow \quad \partial_{t} N(t, u)=2 t+u \\
M(t, u)=3 t u+u^{2} & \Rightarrow \quad \partial_{u} M(t, u)=3 t+2 u
\end{aligned}
$$

hence $\partial_{t} N \neq \partial_{u} M$.

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: The equation is not exact:

$$
\begin{aligned}
N(t, u)=t^{2}+t u & \Rightarrow \partial_{t} N(t, u)=2 t+u \\
M(t, u)=3 t u+u^{2} & \Rightarrow \partial_{u} M(t, u)=3 t+2 u
\end{aligned}
$$

hence $\partial_{t} N \neq \partial_{u} M$. We now verify whether the extra condition in Theorem above holds:

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: The equation is not exact:

$$
\begin{aligned}
N(t, u)=t^{2}+t u & \Rightarrow \partial_{t} N(t, u)=2 t+u \\
M(t, u)=3 t u+u^{2} & \Rightarrow \partial_{u} M(t, u)=3 t+2 u
\end{aligned}
$$

hence $\partial_{t} N \neq \partial_{u} M$. We now verify whether the extra condition in Theorem above holds:

$$
\frac{\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]}{N(t, u)}
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: The equation is not exact:

$$
\begin{aligned}
N(t, u)=t^{2}+t u & \Rightarrow \partial_{t} N(t, u)=2 t+u \\
M(t, u)=3 t u+u^{2} & \Rightarrow \quad \partial_{u} M(t, u)=3 t+2 u
\end{aligned}
$$

hence $\partial_{t} N \neq \partial_{u} M$. We now verify whether the extra condition in Theorem above holds:

$$
\frac{\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]}{N(t, u)}=\frac{1}{\left(t^{2}+t u\right)}[(3 t+2 u)-(2 t+u)]
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: The equation is not exact:

$$
\begin{aligned}
N(t, u)=t^{2}+t u & \Rightarrow \quad \partial_{t} N(t, u)=2 t+u \\
M(t, u)=3 t u+u^{2} & \Rightarrow \quad \partial_{u} M(t, u)=3 t+2 u
\end{aligned}
$$

hence $\partial_{t} N \neq \partial_{u} M$. We now verify whether the extra condition in Theorem above holds:

$$
\begin{gathered}
\frac{\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]}{N(t, u)}=\frac{1}{\left(t^{2}+t u\right)}[(3 t+2 u)-(2 t+u)] \\
\frac{\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]}{N(t, u)}=\frac{1}{t(t+u)}(t+u)
\end{gathered}
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: The equation is not exact:

$$
\begin{aligned}
N(t, u)=t^{2}+t u & \Rightarrow \partial_{t} N(t, u)=2 t+u \\
M(t, u)=3 t u+u^{2} & \Rightarrow \quad \partial_{u} M(t, u)=3 t+2 u
\end{aligned}
$$

hence $\partial_{t} N \neq \partial_{u} M$. We now verify whether the extra condition in Theorem above holds:

$$
\begin{gathered}
\frac{\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]}{N(t, u)}=\frac{1}{\left(t^{2}+t u\right)}[(3 t+2 u)-(2 t+u)] \\
\frac{\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]}{N(t, u)}=\frac{1}{t(t+u)}(t+u)=\frac{1}{t}
\end{gathered}
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\frac{\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]}{N(t, u)}=\frac{1}{t}$.

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\frac{\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]}{N(t, u)}=\frac{1}{t}$.
We find a function μ solution of $\frac{\mu^{\prime}}{\mu}=\frac{\left[\partial_{u} M-\partial_{t} N\right]}{N}$,

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\frac{\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]}{N(t, u)}=\frac{1}{t}$.
We find a function μ solution of $\frac{\mu^{\prime}}{\mu}=\frac{\left[\partial_{u} M-\partial_{t} N\right]}{N}$, that is

$$
\frac{\mu^{\prime}(t)}{\mu(t)}=\frac{1}{t}
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\frac{\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]}{N(t, u)}=\frac{1}{t}$.
We find a function μ solution of $\frac{\mu^{\prime}}{\mu}=\frac{\left[\partial_{u} M-\partial_{t} N\right]}{N}$, that is

$$
\frac{\mu^{\prime}(t)}{\mu(t)}=\frac{1}{t} \quad \Rightarrow \quad \ln (\mu(t))=\ln (t)
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\frac{\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]}{N(t, u)}=\frac{1}{t}$.
We find a function μ solution of $\frac{\mu^{\prime}}{\mu}=\frac{\left[\partial_{u} M-\partial_{t} N\right]}{N}$, that is

$$
\frac{\mu^{\prime}(t)}{\mu(t)}=\frac{1}{t} \quad \Rightarrow \quad \ln (\mu(t))=\ln (t) \quad \Rightarrow \quad \mu(t)=t
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\frac{\left[\partial_{u} M(t, u)-\partial_{t} N(t, u)\right]}{N(t, u)}=\frac{1}{t}$.
We find a function μ solution of $\frac{\mu^{\prime}}{\mu}=\frac{\left[\partial_{u} M-\partial_{t} N\right]}{N}$, that is

$$
\frac{\mu^{\prime}(t)}{\mu(t)}=\frac{1}{t} \quad \Rightarrow \quad \ln (\mu(t))=\ln (t) \quad \Rightarrow \quad \mu(t)=t
$$

Therefore, the equation below is exact:

$$
\left[t^{3}+t^{2} y(t)\right] y^{\prime}(t)+\left[3 t^{2} y(t)+t y^{2}(t)\right]=0
$$

Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\left[t^{3}+t^{2} y(t)\right] y^{\prime}(t)+\left[3 t^{2} y(t)+t y^{2}(t)\right]=0$.

Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\left[t^{3}+t^{2} y(t)\right] y^{\prime}(t)+\left[3 t^{2} y(t)+t y^{2}(t)\right]=0$.
This equation is exact:

Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\left[t^{3}+t^{2} y(t)\right] y^{\prime}(t)+\left[3 t^{2} y(t)+t y^{2}(t)\right]=0$.
This equation is exact:

$$
\tilde{N}(t, u)=t^{3}+t^{2} u
$$

Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\left[t^{3}+t^{2} y(t)\right] y^{\prime}(t)+\left[3 t^{2} y(t)+t y^{2}(t)\right]=0$.
This equation is exact:

$$
\tilde{N}(t, u)=t^{3}+t^{2} u \quad \Rightarrow \quad \partial_{t} \tilde{N}(t, u)=3 t^{2}+2 t u
$$

Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\left[t^{3}+t^{2} y(t)\right] y^{\prime}(t)+\left[3 t^{2} y(t)+t y^{2}(t)\right]=0$.
This equation is exact:

$$
\begin{gathered}
\tilde{N}(t, u)=t^{3}+t^{2} u \quad \Rightarrow \quad \partial_{t} \tilde{N}(t, u)=3 t^{2}+2 t u, \\
\tilde{M}(t, u)=3 t^{2} u+t u^{2}
\end{gathered}
$$

Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\left[t^{3}+t^{2} y(t)\right] y^{\prime}(t)+\left[3 t^{2} y(t)+t y^{2}(t)\right]=0$.
This equation is exact:

$$
\begin{array}{cc}
\tilde{N}(t, u)=t^{3}+t^{2} u \quad & \Rightarrow \partial_{t} \tilde{N}(t, u)=3 t^{2}+2 t u \\
\tilde{M}(t, u)=3 t^{2} u+t u^{2} & \Rightarrow \quad \partial_{u} \tilde{M}(t, u)=3 t^{2}+2 t u
\end{array}
$$

Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\left[t^{3}+t^{2} y(t)\right] y^{\prime}(t)+\left[3 t^{2} y(t)+t y^{2}(t)\right]=0$.
This equation is exact:

$$
\begin{gathered}
\tilde{N}(t, u)=t^{3}+t^{2} u \quad \Rightarrow \quad \partial_{t} \tilde{N}(t, u)=3 t^{2}+2 t u \\
\tilde{M}(t, u)=3 t^{2} u+t u^{2} \quad \Rightarrow \quad \partial_{u} \tilde{M}(t, u)=3 t^{2}+2 t u,
\end{gathered}
$$

that is, $\partial_{t} \tilde{N}=\partial_{u} \tilde{M}$.

Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\left[t^{3}+t^{2} y(t)\right] y^{\prime}(t)+\left[3 t^{2} y(t)+t y^{2}(t)\right]=0$.
This equation is exact:

$$
\begin{array}{cc}
\tilde{N}(t, u)=t^{3}+t^{2} u \quad & \Rightarrow \partial_{t} \tilde{N}(t, u)=3 t^{2}+2 t u \\
\tilde{M}(t, u)=3 t^{2} u+t u^{2} & \Rightarrow \partial_{u} \tilde{M}(t, u)=3 t^{2}+2 t u
\end{array}
$$

that is, $\partial_{t} \tilde{N}=\partial_{u} \tilde{M}$. Therefore, there exists ψ such that

$$
\partial_{u} \psi(t, u)=\tilde{N}(t, u), \quad \partial_{t} \psi(t, u)=\tilde{M}(t, u) .
$$

Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\left[t^{3}+t^{2} y(t)\right] y^{\prime}(t)+\left[3 t^{2} y(t)+t y^{2}(t)\right]=0$.
This equation is exact:

$$
\begin{array}{cc}
\tilde{N}(t, u)=t^{3}+t^{2} u \quad & \Rightarrow \partial_{t} \tilde{N}(t, u)=3 t^{2}+2 t u \\
\tilde{M}(t, u)=3 t^{2} u+t u^{2} & \Rightarrow \quad \partial_{u} \tilde{M}(t, u)=3 t^{2}+2 t u
\end{array}
$$

that is, $\partial_{t} \tilde{N}=\partial_{u} \tilde{M}$. Therefore, there exists ψ such that

$$
\partial_{u} \psi(t, u)=\tilde{N}(t, u), \quad \partial_{t} \psi(t, u)=\tilde{M}(t, u) .
$$

From the first equation above we obtain

$$
\partial_{u} \psi=t^{3}+t^{2} u
$$

Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\left[t^{3}+t^{2} y(t)\right] y^{\prime}(t)+\left[3 t^{2} y(t)+t y^{2}(t)\right]=0$.
This equation is exact:

$$
\begin{array}{cc}
\tilde{N}(t, u)=t^{3}+t^{2} u \quad & \Rightarrow \quad \partial_{t} \tilde{N}(t, u)=3 t^{2}+2 t u \\
\tilde{M}(t, u)=3 t^{2} u+t u^{2} & \Rightarrow \partial_{u} \tilde{M}(t, u)=3 t^{2}+2 t u
\end{array}
$$

that is, $\partial_{t} \tilde{N}=\partial_{u} \tilde{M}$. Therefore, there exists ψ such that

$$
\partial_{u} \psi(t, u)=\tilde{N}(t, u), \quad \partial_{t} \psi(t, u)=\tilde{M}(t, u)
$$

From the first equation above we obtain

$$
\partial_{u} \psi=t^{3}+t^{2} u \quad \Rightarrow \quad \psi(t, u)=\int\left(t^{3}+t^{2} u\right) d u+g(t)
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\psi(t, u)=\int\left(t^{3}+t^{2} u\right) d u+g(t)$.

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\psi(t, u)=\int\left(t^{3}+t^{2} u\right) d u+g(t)$.
Integrating, $\psi(t, u)=t^{3} u+\frac{1}{2} t^{2} u^{2}+g(t)$.

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\psi(t, u)=\int\left(t^{3}+t^{2} u\right) d u+g(t)$.
Integrating, $\psi(t, u)=t^{3} u+\frac{1}{2} t^{2} u^{2}+g(t)$.
Introduce ψ in $\partial_{t} \psi=\tilde{M}$, where $\tilde{M}=3 t^{2} u+t u^{2}$.

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\psi(t, u)=\int\left(t^{3}+t^{2} u\right) d u+g(t)$.
Integrating, $\psi(t, u)=t^{3} u+\frac{1}{2} t^{2} u^{2}+g(t)$.
Introduce ψ in $\partial_{t} \psi=\tilde{M}$, where $\tilde{M}=3 t^{2} u+t u^{2}$. So,

$$
\partial_{t} \psi(t, u)=3 t^{2} u+t u^{2}+g^{\prime}(t)
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\psi(t, u)=\int\left(t^{3}+t^{2} u\right) d u+g(t)$.
Integrating, $\psi(t, u)=t^{3} u+\frac{1}{2} t^{2} u^{2}+g(t)$.
Introduce ψ in $\partial_{t} \psi=\tilde{M}$, where $\tilde{M}=3 t^{2} u+t u^{2}$. So,

$$
\partial_{t} \psi(t, u)=3 t^{2} u+t u^{2}+g^{\prime}(t)=\tilde{M}(t, u)
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\psi(t, u)=\int\left(t^{3}+t^{2} u\right) d u+g(t)$.
Integrating, $\psi(t, u)=t^{3} u+\frac{1}{2} t^{2} u^{2}+g(t)$.
Introduce ψ in $\partial_{t} \psi=\tilde{M}$, where $\tilde{M}=3 t^{2} u+t u^{2}$. So,

$$
\partial_{t} \psi(t, u)=3 t^{2} u+t u^{2}+g^{\prime}(t)=\tilde{M}(t, u)=3 t^{2} u+t u^{2}
$$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\psi(t, u)=\int\left(t^{3}+t^{2} u\right) d u+g(t)$.
Integrating, $\psi(t, u)=t^{3} u+\frac{1}{2} t^{2} u^{2}+g(t)$.
Introduce ψ in $\partial_{t} \psi=\tilde{M}$, where $\tilde{M}=3 t^{2} u+t u^{2}$. So,

$$
\partial_{t} \psi(t, u)=3 t^{2} u+t u^{2}+g^{\prime}(t)=\tilde{M}(t, u)=3 t^{2} u+t u^{2}
$$

So $g^{\prime}(t)=0$ and we choose $g(t)=0$.

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\psi(t, u)=\int\left(t^{3}+t^{2} u\right) d u+g(t)$.
Integrating, $\psi(t, u)=t^{3} u+\frac{1}{2} t^{2} u^{2}+g(t)$.
Introduce ψ in $\partial_{t} \psi=\tilde{M}$, where $\tilde{M}=3 t^{2} u+t u^{2}$. So,

$$
\partial_{t} \psi(t, u)=3 t^{2} u+t u^{2}+g^{\prime}(t)=\tilde{M}(t, u)=3 t^{2} u+t u^{2}
$$

So $g^{\prime}(t)=0$ and we choose $g(t)=0$. We conclude that a potential function is $\psi(t, u)=t^{3} u+\frac{1}{2} t^{2} u^{2}$.

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
\left[t^{2}+t y(t)\right] y^{\prime}(t)+\left[3 t y(t)+y^{2}(t)\right]=0
$$

Solution: $\psi(t, u)=\int\left(t^{3}+t^{2} u\right) d u+g(t)$.
Integrating, $\psi(t, u)=t^{3} u+\frac{1}{2} t^{2} u^{2}+g(t)$.
Introduce ψ in $\partial_{t} \psi=\tilde{M}$, where $\tilde{M}=3 t^{2} u+t u^{2}$. So,

$$
\partial_{t} \psi(t, u)=3 t^{2} u+t u^{2}+g^{\prime}(t)=\tilde{M}(t, u)=3 t^{2} u+t u^{2}
$$

So $g^{\prime}(t)=0$ and we choose $g(t)=0$. We conclude that a potential function is $\psi(t, u)=t^{3} u+\frac{1}{2} t^{2} u^{2}$.
And every solution y satisfies $t^{3} y(t)+\frac{1}{2} t^{2}[y(t)]^{2}=c$.

