
Modeling with first order equations (Sect. 1.5).

I Radioactive decay.
I Carbon-14 dating.

I Salt in a water tank.
I The experimental device.
I The main equations.
I Analysis of the mathematical model.
I Predictions for particular situations.



Radioactive decay

Remarks:

(a) Radioactive substances randomly emit protons, electors,
radiation, and they are transformed in another substance.

(b) It can be seen that the time rate of change of the amount N
of a radioactive substances is proportional to the negative
amount of radioactive substance.

N ′(t) = −a N(t), N(0) = N0, a > 0.

(c) The integrating factor method implies N(t) = N0 e−at .

(d) The half-life is the time τ needed to get N(τ) = N0/2.

N0 e−aτ =
N0

2
⇒ −aτ = ln

(1

2

)
⇒ τ =

ln(2)

a
.

(e) Using the half-life, we get N(t) = N0 2−t/τ .
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Radioactive decay

Example

Remains containing 14% of the original amount of Carbon-14 are
found. Knowing that Carbon-14 half-live is τ = 5730 years, date
the remains.

Solution: Set t = 0 when the organism dies. Since the amount N
of Carbon-14 only decays after the organism dies,

N(t) = N0 2−t/τ , τ = 5730 years.

The remains contain 14% of the original amount at the time t,

N(t)

N0

=
14

100
⇒ 2−t/τ =

14

100

− t

τ
= log2(14/100) ⇒ t = τ log2(100/14).

The organism died 16, 253 years ago. C
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Modeling with first order equations (Sect. 1.5).

I Radioactive decay.
I Carbon-14 dating.

I Salt in a water tank.
I The experimental device.
I The main equations.
I Analysis of the mathematical model.
I Predictions for particular situations.



Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if
salty water comes in and goes out of the tank.

Main ideas of the test:

I Since the mass of salt and water is conserved, we construct a
mathematical model for the salt concentration in water.

I The amount of salt in the tank depends on the salt
concentration coming in and going out of the tank.

I The salt in the tank also depends on the water rates coming
in and going out of the tank.

I To construct a model means to find the differential equation
that takes into account the above properties of the system.

I Finding the solution to the differential equation with a
particular initial condition means we can predict the evolution
of the salt in the tank if we know the tank initial condition.
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Modeling with first order equations (Sect. 1.5).

I Radioactive decay.
I Carbon-14 dating.

I Main example: Salt in a water tank.
I The experimental device.
I The main equations.
I Analysis of the mathematical model.
I Predictions for particular situations.
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The experimental device.

Definitions:

I ri (t), ro(t): Rates in and out of water entering and leaving
the tank at the time t.

I qi (t), qo(t): Salt concentration of the water entering and
leaving the tank at the time t.

I V (t): Water volume in the tank at the time t.

I Q(t): Salt mass in the tank at the time t.

Units:[
ri (t)

]
=

[
ro(t)

]
=

Volume

Time
,

[
qi (t)

]
=

[
qo(t)

]
=

Mass

Volume
.

[
V (t)

]
= Volume,

[
Q(t)

]
= Mass.
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The main equations.

Remark: The mass conservation provides the main equations of
the mathematical description for salt in water.

Main equations:

d

dt
V (t) = ri (t)− ro(t), Volume conservation, (1)

d

dt
Q(t) = ri (t) qi (t)− ro(t) qo(t), Mass conservation, (2)

qo(t) =
Q(t)

V (t)
, Instantaneously mixed, (3)

ri , ro : Constants. (4)
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The main equations.

Remarks: [dV

dt

]
=

Volume

Time
=

[
ri − ro

]
,

[dQ

dt

]
=

Mass

Time
=

[
riqi − roqo

]
,

[
riqi − roqo

]
=

Volume

Time

Mass

Volume
=

Mass

Time
.
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Analysis of the mathematical model.

Eqs. (4) and (1) imply

V (t) = (ri − ro) t + V0, (5)

where V (0) = V0 is the initial volume of water in the tank.

Eqs. (3) and (2) imply

d

dt
Q(t) = ri qi (t)− ro

Q(t)

V (t)
. (6)

Eqs. (5) and (6) imply

d

dt
Q(t) = ri qi (t)−

ro
(ri − ro) t + V0

Q(t). (7)
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Analysis of the mathematical model.

Recall:
d

dt
Q(t) = ri qi (t)−

ro
(ri − ro) t + V0

Q(t).

Notation: a(t) = − ro
(ri − ro) t + V0

, and b(t) = ri qi (t).

The main equation of the description is given by

Q ′(t) = a(t) Q(t) + b(t).

Linear ODE for Q. Solution: Integrating factor method.

Q(t) = eA(t)
[
Q0 +

∫ t

0
e−A(s) b(s) ds

]
with Q(0) = Q0, and A(t) =

∫ t

0
a(s) ds.
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Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r , qi , Q0 and V0 are given, find Q(t).

Solution: Always holds Q ′(t) = a(t) Q(t) + b(t).
In this case:

a(t) = − ro
(ri − ro) t + V0

⇒ a(t) = − r

V0
= −a0,

b(t) = ri qi (t) ⇒ b(t) = rqi = b0.

We need to solve the IVP:

Q ′(t) = −a0 Q(t) + b0, Q(0) = Q0.
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Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r , qi , Q0 and V0 are given, find Q(t).

Solution: Recall the IVP: Q ′(t) + a0 Q(t) = b0, Q(0) = Q0.

Integrating factor method:

A(t) = a0t, µ(t) = ea0t , ea0tQ(t) = Q0 +

∫ t

0
ea0s b0 ds.

Q(t) = e−a0t
[
Q0 +

b0

a0

(
ea0t − 1

)]
. =

(
Q0 −

b0

a0

)
e−a0t +

b0

a0
.

But
b0

a0
= rqi

V0

r
= qiV0, and a0 =

r

V0
. We conclude:

Q(t) =
(
Q0 − qiV0

)
e−rt/V0 + qiV0.
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Predictions for particular situations.

Example

Assume that ri = ro = r and qi are constants.
If r = 2 liters/min, qi = 0, V0 = 200 liters, Q0/V0 = 1 grams/liter,
find t1 such that q(t1) = Q(t1)/V (t1) is 1% the initial value.

Solution: This problem is a particular case qi = 0 of the previous
Example. Since Q(t) =

(
Q0 − qiV0

)
e−rt/V0 + qiV0, we get

Q(t) = Q0 e−rt/V0 .

Since V (t) = (ri − ro) t + V0 and ri = ro , we obtain V (t) = V0.

So q(t) = Q(t)/V (t) is given by q(t) =
Q0

V0
e−rt/V0 . Therefore,

1

100

Q0

V0
= q(t1) =

Q0

V0
e−rt1/V0 ⇒ e−rt1/V0 =

1

100
.
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Example.

Since Q(t) =
(
Q0 − qiV0

)
e−rt/V0 + qiV0, we get
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In this case: t1 = 100 ln(100). C
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Predictions for particular situations.

Example

Assume that ri = ro = r are constants. If r = 5x106 gal/year,
qi (t) = 2 + sin(2t) grams/gal, V0 = 106 gal, Q0 = 0, find Q(t).

Solution: Recall: Q ′(t) = a(t) Q(t) + b(t). In this case:

a(t) = − ro
(ri − ro) t + V0

⇒ a(t) = − r

V0
= −a0,

b(t) = ri qi (t) ⇒ b(t) = r
[
2 + sin(2t)

]
.

We need to solve the IVP: Q ′(t) = −a0 Q(t) + b(t), Q(0) = 0.

ea0tQ(t) =

∫ t

0
ea0s b(s) ds.

We conclude: Q(t) = re−rt/V0

∫ t

0
ers/V0

[
2 + sin(2s)

]
ds.
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Exact equations (Sect. 1.4).

I Exact differential equations.

I The Poincaré Lemma.

I Implicit solutions and the potential function.

I Generalization: The integrating factor method.



Exact differential equations.

Definition
Given an open rectangle R = (t1, t2)× (u1, u2) ⊂ R2 and
continuously differentiable functions M,N : R → R,

denoted as
(t, u) 7→ M(t, u) and (t, u) 7→ N(t, u), the differential equation in
the unknown function y : (t1, t2)→ R given by

N(t, y(t)) y ′(t) + M(t, y(t)) = 0

is called exact iff for every point (t, u) ∈ R holds

∂tN(t, u) = ∂uM(t, u)

Recall: we use the notation: ∂tN =
∂N

∂t
, and ∂uM =

∂M

∂u
.
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Exact differential equations.

Example

Show whether the differential equation below is exact,

2ty(t) y ′(t) + 2t + y2(t) = 0.

Solution: We first identify the functions N and M,

[
2ty(t)

]
y ′(t) +

[
2t + y2(t)

]
= 0 ⇒

{
N(t, u) = 2tu,

M(t, u) = 2t + u2.

The equation is exact iff ∂tN = ∂uM. Since

N(t, u) = 2tu ⇒ ∂tN(t, u) = 2u,

M(t, u) = 2t + u2 ⇒ ∂uM(t, u) = 2u.

We conclude: ∂tN(t, u) = ∂uM(t, u). C

Remark: The ODE above is not separable and non-linear.
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Exact differential equations.

Example

Show whether the differential equation below is exact,

sin(t)y ′(t) + t2ey(t)y ′(t)− y ′(t) = −y(t) cos(t)− 2tey(t).

Solution: We first identify the functions N and M, if we write[
sin(t) + t2ey(t) − 1

]
y ′(t) +

[
y(t) cos(t) + 2tey(t)

]
= 0,

we can see that

N(t, u) = sin(t) + t2eu − 1 ⇒ ∂tN(t, u) = cos(t) + 2teu,

M(t, u) = u cos(t) + 2teu ⇒ ∂uM(t, u) = cos(t) + 2teu.

The equation is exact, since ∂tN(t, u) = ∂uM(t, u). C
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Exact differential equations.

Example

Show whether the linear differential equation below is exact,

y ′(t) = −a(t) y(t) + b(t), a(t) 6= 0.

Solution: We first find the functions N and M,

y ′ + a(t)y − b(t) = 0 ⇒

{
N(t, u) = 1,

M(t, u) = a(t) u − b(t).

The differential equation is not exact, since

N(t, u) = 1 ⇒ ∂tN(t, u) = 0,

M(t, u) = a(t)u − b(t) ⇒ ∂uM(t, u) = a(t).

This implies that ∂tN(t, u) 6= ∂uM(t, u). C
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Exact equations (Sect. 1.4).

I Exact differential equations.

I The Poincaré Lemma.

I Implicit solutions and the potential function.

I Generalization: The integrating factor method.



The Poincaré Lemma.

Remark: The coefficients N and M of an exact equations are the
derivatives of a potential function ψ.

Lemma (Poincaré)

Given an open rectangle R = (t1, t2)× (u1, u2) ⊂ R2, the
continuously differentiable functions M,N : R → R satisfy the
equation

∂tN(t, u) = ∂uM(t, u)

iff there exists a twice continuously differentiable function
ψ : R → R, called potential function, such that for all (t, u) ∈ R
holds

∂uψ(t, u) = N(t, u), ∂tψ(t, u) = M(t, u).

Proof: (⇐) Simple:
∂tN = ∂t∂uψ,

∂uM = ∂u∂tψ,

}
⇒ ∂tN = ∂uM.

(⇒) Difficult: Poincaré, 1880.
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The Poincaré Lemma.

Example

Show that the function ψ(t, u) = t2 + tu2 is the potential function
for the exact differential equation

2ty(t) y ′(t) + 2t + y2(t) = 0.

Solution: We already saw that the differential equation above is
exact, since the functions M and N,

N(t, u) = 2tu,

M(t, u) = 2t + u2

}
⇒ ∂tN = 2u = ∂uM.

The potential function is ψ(t, u) = t2 + tu2, since

∂tψ = 2t + u2 = M, ∂uψ = 2tu = N. C

Remark: The Poincaré Lemma only states necessary and sufficient
conditions on N and M for the existence of ψ.
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Example

Show that the function ψ(t, u) = t2 + tu2 is the potential function
for the exact differential equation

2ty(t) y ′(t) + 2t + y2(t) = 0.

Solution: We already saw that the differential equation above is
exact,

since the functions M and N,

N(t, u) = 2tu,

M(t, u) = 2t + u2

}
⇒ ∂tN = 2u = ∂uM.

The potential function is ψ(t, u) = t2 + tu2, since

∂tψ = 2t + u2 = M, ∂uψ = 2tu = N. C
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Remark: The Poincaré Lemma only states necessary and sufficient
conditions on N and M for the existence of ψ.



The Poincaré Lemma.
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Exact equations (Sect. 1.4).

I Exact differential equations.

I The Poincaré Lemma.

I Implicit solutions and the potential function.

I Generalization: The integrating factor method.



Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let M,N : R → R be continuously differentiable functions on an
open rectangle R = (t1, t2)× (u1, u2) ⊂ R2. If the differential
equation

N(t, y(t)) y ′(t) + M(t, y(t)) = 0 (8)

is exact, then every solution y : (t1, t2)→ R must satisfy the
algebraic equation

ψ(t, y(t)) = c ,

where c ∈ R and ψ : R → R is a potential function for Eq. (8).

Proof: 0 = N(t, y) y ′ + M(t, y) = ∂yψ(t, y)
dy

dt
+ ∂tψ(t, y)).

0 =
d

dt
ψ(t, y(t)) ⇔ ψ(t, y(t)) = c .
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Implicit solutions and the potential function.

Example

Find all solutions y to the equation[
sin(t) + t2ey(t) − 1

]
y ′(t) + y(t) cos(t) + 2tey(t) = 0.

Solution: Recall: The equation is exact,

N(t, u) = sin(t) + t2eu − 1 ⇒ ∂tN(t, u) = cos(t) + 2teu,

M(t, u) = u cos(t) + 2teu ⇒ ∂uM(t, u) = cos(t) + 2teu,

hence, ∂tN = ∂uM. Poincaré Lemma says the exists ψ,

∂uψ(t, u) = N(t, u), ∂tψ(t, u) = M(t, u).

These are actually equations for ψ. From the first one,

ψ(t, u) =

∫ [
sin(t) + t2eu − 1

]
du + g(t).
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Introduce this expression into ∂tψ(t, u) = M(t, u), that is,

∂tψ(t, u) = u cos(t) + 2teu + g ′(t) = M(t, u) = u cos(t) + 2teu,

Therefore, g ′(t) = 0, so we choose g(t) = 0. We obtain,

ψ(t, u) = u sin(t) + t2eu − u.

So the solution y satisfies y(t) sin(t) + t2ey(t) − y(t) = c . C



Implicit solutions and the potential function.

Example

Find all solutions y to the equation[
sin(t) + t2ey(t) − 1

]
y ′(t) + y(t) cos(t) + 2tey(t) = 0.

Solution: ψ(t, u) =

∫ [
sin(t) + t2eu − 1

]
du + g(t). Integrating,

ψ(t, u) = u sin(t) + t2eu − u + g(t).

Introduce this expression into ∂tψ(t, u) = M(t, u), that is,

∂tψ(t, u) = u cos(t) + 2teu + g ′(t) = M(t, u) = u cos(t) + 2teu,

Therefore, g ′(t) = 0, so we choose g(t) = 0. We obtain,

ψ(t, u) = u sin(t) + t2eu − u.

So the solution y satisfies y(t) sin(t) + t2ey(t) − y(t) = c . C



Implicit solutions and the potential function.

Example

Find all solutions y to the equation[
sin(t) + t2ey(t) − 1

]
y ′(t) + y(t) cos(t) + 2tey(t) = 0.

Solution: ψ(t, u) =

∫ [
sin(t) + t2eu − 1

]
du + g(t). Integrating,

ψ(t, u) = u sin(t) + t2eu − u + g(t).

Introduce this expression into ∂tψ(t, u) = M(t, u),

that is,

∂tψ(t, u) = u cos(t) + 2teu + g ′(t) = M(t, u) = u cos(t) + 2teu,

Therefore, g ′(t) = 0, so we choose g(t) = 0. We obtain,

ψ(t, u) = u sin(t) + t2eu − u.

So the solution y satisfies y(t) sin(t) + t2ey(t) − y(t) = c . C



Implicit solutions and the potential function.

Example

Find all solutions y to the equation[
sin(t) + t2ey(t) − 1

]
y ′(t) + y(t) cos(t) + 2tey(t) = 0.

Solution: ψ(t, u) =

∫ [
sin(t) + t2eu − 1

]
du + g(t). Integrating,

ψ(t, u) = u sin(t) + t2eu − u + g(t).

Introduce this expression into ∂tψ(t, u) = M(t, u), that is,

∂tψ(t, u) = u cos(t) + 2teu + g ′(t)

= M(t, u) = u cos(t) + 2teu,

Therefore, g ′(t) = 0, so we choose g(t) = 0. We obtain,

ψ(t, u) = u sin(t) + t2eu − u.

So the solution y satisfies y(t) sin(t) + t2ey(t) − y(t) = c . C



Implicit solutions and the potential function.

Example

Find all solutions y to the equation[
sin(t) + t2ey(t) − 1

]
y ′(t) + y(t) cos(t) + 2tey(t) = 0.

Solution: ψ(t, u) =

∫ [
sin(t) + t2eu − 1

]
du + g(t). Integrating,

ψ(t, u) = u sin(t) + t2eu − u + g(t).

Introduce this expression into ∂tψ(t, u) = M(t, u), that is,

∂tψ(t, u) = u cos(t) + 2teu + g ′(t) = M(t, u)

= u cos(t) + 2teu,

Therefore, g ′(t) = 0, so we choose g(t) = 0. We obtain,

ψ(t, u) = u sin(t) + t2eu − u.

So the solution y satisfies y(t) sin(t) + t2ey(t) − y(t) = c . C



Implicit solutions and the potential function.

Example

Find all solutions y to the equation[
sin(t) + t2ey(t) − 1

]
y ′(t) + y(t) cos(t) + 2tey(t) = 0.

Solution: ψ(t, u) =

∫ [
sin(t) + t2eu − 1

]
du + g(t). Integrating,

ψ(t, u) = u sin(t) + t2eu − u + g(t).

Introduce this expression into ∂tψ(t, u) = M(t, u), that is,

∂tψ(t, u) = u cos(t) + 2teu + g ′(t) = M(t, u) = u cos(t) + 2teu,

Therefore, g ′(t) = 0, so we choose g(t) = 0. We obtain,

ψ(t, u) = u sin(t) + t2eu − u.

So the solution y satisfies y(t) sin(t) + t2ey(t) − y(t) = c . C



Implicit solutions and the potential function.

Example

Find all solutions y to the equation[
sin(t) + t2ey(t) − 1

]
y ′(t) + y(t) cos(t) + 2tey(t) = 0.

Solution: ψ(t, u) =

∫ [
sin(t) + t2eu − 1

]
du + g(t). Integrating,

ψ(t, u) = u sin(t) + t2eu − u + g(t).

Introduce this expression into ∂tψ(t, u) = M(t, u), that is,

∂tψ(t, u) = u cos(t) + 2teu + g ′(t) = M(t, u) = u cos(t) + 2teu,

Therefore, g ′(t) = 0, so we choose g(t) = 0.

We obtain,

ψ(t, u) = u sin(t) + t2eu − u.

So the solution y satisfies y(t) sin(t) + t2ey(t) − y(t) = c . C



Implicit solutions and the potential function.

Example

Find all solutions y to the equation[
sin(t) + t2ey(t) − 1

]
y ′(t) + y(t) cos(t) + 2tey(t) = 0.

Solution: ψ(t, u) =

∫ [
sin(t) + t2eu − 1

]
du + g(t). Integrating,

ψ(t, u) = u sin(t) + t2eu − u + g(t).

Introduce this expression into ∂tψ(t, u) = M(t, u), that is,

∂tψ(t, u) = u cos(t) + 2teu + g ′(t) = M(t, u) = u cos(t) + 2teu,

Therefore, g ′(t) = 0, so we choose g(t) = 0. We obtain,

ψ(t, u) = u sin(t) + t2eu − u.

So the solution y satisfies y(t) sin(t) + t2ey(t) − y(t) = c . C



Implicit solutions and the potential function.

Example

Find all solutions y to the equation[
sin(t) + t2ey(t) − 1

]
y ′(t) + y(t) cos(t) + 2tey(t) = 0.

Solution: ψ(t, u) =

∫ [
sin(t) + t2eu − 1

]
du + g(t). Integrating,

ψ(t, u) = u sin(t) + t2eu − u + g(t).

Introduce this expression into ∂tψ(t, u) = M(t, u), that is,

∂tψ(t, u) = u cos(t) + 2teu + g ′(t) = M(t, u) = u cos(t) + 2teu,

Therefore, g ′(t) = 0, so we choose g(t) = 0. We obtain,

ψ(t, u) = u sin(t) + t2eu − u.

So the solution y satisfies y(t) sin(t) + t2ey(t) − y(t) = c . C



Exact equations (Sect. 1.4).

I Exact differential equations.

I The Poincaré Lemma.

I Implicit solutions and the potential function.

I Generalization: The integrating factor method.

Remark:
Sometimes a non-exact equation can we transformed into an exact
equation multiplying the equation by an integrating factor. Just
like in the case of linear differential equations.



Generalization: The integrating factor method.

Theorem (Integrating factor)

Let M,N : R → R be continuously differentiable functions on
R = (t1, t2)× (u1, u2) ⊂ R2, with N 6= 0. If the equation

N(t, y(t)) y ′(t) + M(t, y(t)) = 0

is not exact, that is, ∂tN(t, u) 6= ∂uM(t, u),

and if the function

1

N(t, u)

[
∂uM(t, u)− ∂tN(t, u)

]
does not depend on the variable u, then the equation

µ(t)
[
N(t, y(t)) y ′(t) + M(t, y(t))

]
= 0

is exact, where
µ′(t)

µ(t)
=

1

N(t, u)

[
∂uM(t, u)− ∂tN(t, u)

]
.
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Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation[
t2 + t y(t)

]
y ′(t) +

[
3t y(t) + y2(t)

]
= 0.

Solution: The equation is not exact:

N(t, u) = t2 + tu ⇒ ∂tN(t, u) = 2t + u,

M(t, u) = 3tu + u2 ⇒ ∂uM(t, u) = 3t + 2u,

hence ∂tN 6= ∂uM. We now verify whether the extra condition in
Theorem above holds:[

∂uM(t, u)− ∂tN(t, u)
]

N(t, u)
=

1

(t2 + tu)

[
(3t + 2u)− (2t + u)

]
[
∂uM(t, u)− ∂tN(t, u)

]
N(t, u)

=
1

t(t + u)
(t + u) =

1

t
.
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=
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∂uM − ∂tN

]
N

, that is
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t
⇒ ln(µ(t)) = ln(t) ⇒ µ(t) = t.
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]
y ′(t) +

[
3t2 y(t) + t y2(t)

]
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Ñ(t, u) = t3 + t2u ⇒ ∂tÑ(t, u) = 3t2 + 2tu,

M̃(t, u) = 3t2u + tu2 ⇒ ∂uM̃(t, u) = 3t2 + 2tu,

that is, ∂tÑ = ∂uM̃. Therefore, there exists ψ such that

∂uψ(t, u) = Ñ(t, u), ∂tψ(t, u) = M̃(t, u).

From the first equation above we obtain

∂uψ = t3 + t2u ⇒ ψ(t, u) =

∫ (
t3 + t2u

)
du + g(t).
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that is, ∂tÑ = ∂uM̃. Therefore, there exists ψ such that
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∂uψ(t, u) = Ñ(t, u), ∂tψ(t, u) = M̃(t, u).

From the first equation above we obtain

∂uψ = t3 + t2u ⇒ ψ(t, u) =

∫ (
t3 + t2u

)
du + g(t).



Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation[
t2 + t y(t)

]
y ′(t) +

[
3t y(t) + y2(t)

]
= 0.

Solution:
[
t3 + t2 y(t)

]
y ′(t) +

[
3t2 y(t) + t y2(t)

]
= 0.

This equation is exact:
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Ñ(t, u) = t3 + t2u ⇒ ∂tÑ(t, u) = 3t2 + 2tu,
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